
1 / 22

Algorithmically Distinguishing Irreducible
Characters of Sn

Timothy Y. Chow and Jennifer Paulhus

December 10, 2020

2 / 22

Representation Theory of Finite Groups

A representation of a finite group G is a homomorphism
ρ : G → GL(Cd), where d is the degree or dimension of ρ.

2 / 22

Representation Theory of Finite Groups

A representation of a finite group G is a homomorphism
ρ : G → GL(Cd), where d is the degree or dimension of ρ.

A representation ρ is reducible if there is a nontrivial subspace
0 (V (Cd that is invariant; i.e., ρ(g)V ⊆ V for all g ∈ G .
If ρ is not reducible then we say it is irreducible.

2 / 22

Representation Theory of Finite Groups

A representation of a finite group G is a homomorphism
ρ : G → GL(Cd), where d is the degree or dimension of ρ.

A representation ρ is reducible if there is a nontrivial subspace
0 (V (Cd that is invariant; i.e., ρ(g)V ⊆ V for all g ∈ G .
If ρ is not reducible then we say it is irreducible.

The number of non-isomorphic irreducible representations of a
finite group is finite, and is equal to the number of conjugacy
classes.

Classifying the irreducible representations of a finite group G gives
us a lot of information about G .

3 / 22

Irreducible Characters

If ρ is a representation, then its character is the trace of ρ(g).
It is a complex-valued function.

The trace is invariant under conjugation, so a character is a class
function; i.e., it is constant on conjugacy classes.

3 / 22

Irreducible Characters

If ρ is a representation, then its character is the trace of ρ(g).
It is a complex-valued function.

The trace is invariant under conjugation, so a character is a class
function; i.e., it is constant on conjugacy classes.

It is a remarkable fact that if two representations have the same
character then they are isomorphic.

The trace of an irreducible representation is called an irreducible
character.

4 / 22

Irreducible Characters of Sn

Let Sn denote the symmetric group of permutations on n

elements.

4 / 22

Irreducible Characters of Sn

Let Sn denote the symmetric group of permutations on n

elements.

A partition of n is a weakly decreasing sequence λ = (λ1, . . . , λℓ)
of positive integers that sum to n. We write λ ⊢ n.

Note that the number of conjugacy classes of Sn is equal to the
number of partitions of n.

4 / 22

Irreducible Characters of Sn

Let Sn denote the symmetric group of permutations on n

elements.

A partition of n is a weakly decreasing sequence λ = (λ1, . . . , λℓ)
of positive integers that sum to n. We write λ ⊢ n.

Note that the number of conjugacy classes of Sn is equal to the
number of partitions of n.

Theorem. Given any λ ⊢ n, one can construct an irreducible
representation, called a Specht module and written Sλ,
corresponding to λ. The Specht modules are pairwise
non-isomorphic, and every irreducible representation of Sn is
isomorphic to some Sλ.

4 / 22

Irreducible Characters of Sn

Let Sn denote the symmetric group of permutations on n

elements.

A partition of n is a weakly decreasing sequence λ = (λ1, . . . , λℓ)
of positive integers that sum to n. We write λ ⊢ n.

Note that the number of conjugacy classes of Sn is equal to the
number of partitions of n.

Theorem. Given any λ ⊢ n, one can construct an irreducible
representation, called a Specht module and written Sλ,
corresponding to λ. The Specht modules are pairwise
non-isomorphic, and every irreducible representation of Sn is
isomorphic to some Sλ.

If ρ is (isomorphic to) a Specht module Sλ, then we write χλ for
the corresponding irreducible character.

5 / 22

A Basic Question About Irreducible Characters

Suppose that χλ and χµ are two distinct irreducible representations
of Sn. How hard is it to find π ∈ Sn such that χλ(π) 6= χµ(π)?

5 / 22

A Basic Question About Irreducible Characters

Suppose that χλ and χµ are two distinct irreducible representations
of Sn. How hard is it to find π ∈ Sn such that χλ(π) 6= χµ(π)?

Surprisingly, this question does not seem to have been asked before
anywhere in the literature.

5 / 22

A Basic Question About Irreducible Characters

Suppose that χλ and χµ are two distinct irreducible representations
of Sn. How hard is it to find π ∈ Sn such that χλ(π) 6= χµ(π)?

Surprisingly, this question does not seem to have been asked before
anywhere in the literature.

In one sense, the answer is, “Not hard.” Empirically, if one simply
tries various permutations with lots of fixed points, then it seems to
take at most a few tries to find some π such that χλ(π) 6= χµ(π).

However, giving a provable upper bound on the number of tries
seems difficult.

5 / 22

A Basic Question About Irreducible Characters

Suppose that χλ and χµ are two distinct irreducible representations
of Sn. How hard is it to find π ∈ Sn such that χλ(π) 6= χµ(π)?

Surprisingly, this question does not seem to have been asked before
anywhere in the literature.

In one sense, the answer is, “Not hard.” Empirically, if one simply
tries various permutations with lots of fixed points, then it seems to
take at most a few tries to find some π such that χλ(π) 6= χµ(π).

However, giving a provable upper bound on the number of tries
seems difficult.

Moreover, in general, even determining whether χλ(π) 6= 0 is
already NP-hard (Pak–Panova, 2017).

6 / 22

The Main Result

To have oracle access to a function f on Sn means that the only
way we can obtain information about f is to submit a query (i.e.,
an input value that we are free to choose) π ∈ Sn to an oracle,
which then truthfully tells us the value of f (π).

6 / 22

The Main Result

To have oracle access to a function f on Sn means that the only
way we can obtain information about f is to submit a query (i.e.,
an input value that we are free to choose) π ∈ Sn to an oracle,
which then truthfully tells us the value of f (π).

Theorem. There is a deterministic algorithm that, given oracle
access to a function f that is promised to be an irreducible
character of Sn, determines which irreducible character it is using
O(n3/2) queries (actually O(n) according to a more careful analysis
by Jiasheng Hu).

6 / 22

The Main Result

To have oracle access to a function f on Sn means that the only
way we can obtain information about f is to submit a query (i.e.,
an input value that we are free to choose) π ∈ Sn to an oracle,
which then truthfully tells us the value of f (π).

Theorem. There is a deterministic algorithm that, given oracle
access to a function f that is promised to be an irreducible
character of Sn, determines which irreducible character it is using
O(n3/2) queries (actually O(n) according to a more careful analysis
by Jiasheng Hu).

We can solve the original problem by running this algorithm on
(say) χλ until we reach a query π for which χλ(π) 6= χµ(π).

Note: It turns out that the queries we need are easy to compute if
we know the partition.

7 / 22

Young Diagrams

If λ = (λ1, . . . , λℓ) is a partition, then its Young diagram is a
left-justified grid of boxes having λi boxes in row i .

Below is the Young diagram of (7, 7, 5, 4, 1).

7 / 22

Young Diagrams

If λ = (λ1, . . . , λℓ) is a partition, then its Young diagram is a
left-justified grid of boxes having λi boxes in row i .

Below is the Young diagram of (7, 7, 5, 4, 1).

The conjugate λ′ of λ is the sequence of column lengths of λ.
The conjugate of (7, 7, 5, 4, 1) is (5, 4, 4, 4, 3, 2, 2).

8 / 22

Principal Hooks

The ith principal hook of a Young diagram D is the set

Hi := {(i , j) ∈ D : j ≥ i} ∪ {(j , i) ∈ D : j ≥ i}.

The ith principal hook length hi is the area of Hi .

Example.

h1 = 11, h2 = 8, h3 = 4, h5 = 1.

9 / 22

Outline of Algorithm

The algorithm has two phases.

During the forward pass, the principal hook lengths h1, h2, h3, . . .

are determined one at a time.

9 / 22

Outline of Algorithm

The algorithm has two phases.

During the forward pass, the principal hook lengths h1, h2, h3, . . .

are determined one at a time.

During the backward pass, the principal hook shapes are
determined one at a time, in reverse order, starting with the
innermost principal hook and working backward.

9 / 22

Outline of Algorithm

The algorithm has two phases.

During the forward pass, the principal hook lengths h1, h2, h3, . . .

are determined one at a time.

During the backward pass, the principal hook shapes are
determined one at a time, in reverse order, starting with the
innermost principal hook and working backward.

Each step of the backward pass determines the amount by which
the principal hook overhangs the arm and the leg of the principal
hook just inside of it. (Below, the arm overhang is 3 and the leg
overhang is 2.)

10 / 22

Border Strips

The algorithm relies heavily on the Murnaghan–Nakayama rule,
a combinatorial recipe for computing irreducible characters of Sn.

10 / 22

Border Strips

The algorithm relies heavily on the Murnaghan–Nakayama rule,
a combinatorial recipe for computing irreducible characters of Sn.

A border strip is a finite set of boxes such that in each row, the
boxes in that row are contiguous, and except for the top row, the
rightmost box in each row lies directly underneath the leftmost box
in the row above it.

10 / 22

Border Strips

The algorithm relies heavily on the Murnaghan–Nakayama rule,
a combinatorial recipe for computing irreducible characters of Sn.

A border strip is a finite set of boxes such that in each row, the
boxes in that row are contiguous, and except for the top row, the
rightmost box in each row lies directly underneath the leftmost box
in the row above it.

The area of a border strip is the total number of boxes.
If B is a border strip, its height h(B) is the number of rows of B
minus 1. The above four border strips have areas 11, 7, 1, 8 and
heights 3, 2, 0, 3 respectively.

11 / 22

Border Strip Tableaux

A composition is like a partition except that the sequence is not
necessarily weakly decreasing.

11 / 22

Border Strip Tableaux

A composition is like a partition except that the sequence is not
necessarily weakly decreasing.

Let λ be a partition of n and let α be a composition of n.
A border-strip tableau (BST) of shape λ and type α is a tiling
of the Young diagram of λ with border strips such that

1. the area of the ith border strip is αi , and

2. if the number i is written in each box of the ith border strip,
then the numbers weakly increase across every row and down
every column.

1 1 2 2 2
1 2 2 5
1 4 5 5
3

λ = (5, 4, 4, 1) and α = (4, 5, 1, 1, 3)

12 / 22

The Murnaghan–Nakayama Rule

Let λ be a partition of n, and let χλ be the irreducible character
of Sn indexed by λ. If π ∈ Sn and (αi) is the sequence of cycle
lengths of π, then

χλ(π) =
∑

T

∏

B∈T

(−1)h(B),

where the sum is over all BSTs T of shape λ and type α, and the
product is over the border strips B that tile T .

12 / 22

The Murnaghan–Nakayama Rule

Let λ be a partition of n, and let χλ be the irreducible character
of Sn indexed by λ. If π ∈ Sn and (αi) is the sequence of cycle
lengths of π, then

χλ(π) =
∑

T

∏

B∈T

(−1)h(B),

where the sum is over all BSTs T of shape λ and type α, and the
product is over the border strips B that tile T .

Example. Let λ = (5, 4, 2) and α = (6, 3, 2).

1 1 1 1 1
1 2 2 2
3 3

1 1 1 1 1
1 2 3 3
2 2

χλ(π) = (−1)1(−1)0(−1)0 + (−1)1(−1)1(−1)0 = 0.

13 / 22

The Murnaghan–Nakayama Rule (continued)

Example. Let λ = (5, 4, 2) and α = (6, 3, 2).

1 1 1 1 1
1 2 2 2
3 3

1 1 1 1 1
1 2 3 3
2 2

χλ(π) = (−1)1(−1)0(−1)0 + (−1)1(−1)1(−1)0 = 0.

13 / 22

The Murnaghan–Nakayama Rule (continued)

Example. Let λ = (5, 4, 2) and α = (6, 3, 2).

1 1 1 1 1
1 2 2 2
3 3

1 1 1 1 1
1 2 3 3
2 2

χλ(π) = (−1)1(−1)0(−1)0 + (−1)1(−1)1(−1)0 = 0.

Note that if we were to take λ = (5, 4, 2) and α = (6, 2, 3), then
there are no BSTs of shape λ and type α. Again we conclude
χλ(π) = 0, but for a “different reason.”

13 / 22

The Murnaghan–Nakayama Rule (continued)

Example. Let λ = (5, 4, 2) and α = (6, 3, 2).

1 1 1 1 1
1 2 2 2
3 3

1 1 1 1 1
1 2 3 3
2 2

χλ(π) = (−1)1(−1)0(−1)0 + (−1)1(−1)1(−1)0 = 0.

Note that if we were to take λ = (5, 4, 2) and α = (6, 2, 3), then
there are no BSTs of shape λ and type α. Again we conclude
χλ(π) = 0, but for a “different reason.”

In what follows, we take queries to be compositions α rather than
permutations.

14 / 22

The Forward Pass

Key Observation: There cannot exist a BST of shape λ and
type α if α1 > h1, because the 1st border strip would be simply
too large to fit inside the Young diagram.

14 / 22

The Forward Pass

Key Observation: There cannot exist a BST of shape λ and
type α if α1 > h1, because the 1st border strip would be simply
too large to fit inside the Young diagram.

Suppose for example that n = 10. Then we make the following
successive queries:

α = (10)

α = (9, 1)

α = (8, 1, 1)

α = (7, 1, 1, 1)

. . .

Then f (α) = 0 if α1 > h1. But when α1 = h1, there will be a BST
whose first border strip covers the 1st principal hook, with
everything else covered by singletons. All BSTs will look like this
and will have the same sign.

15 / 22

Example

Suppose n = 11 and λ = (5, 4, 2). Then h1 = 7.

15 / 22

Example

Suppose n = 11 and λ = (5, 4, 2). Then h1 = 7.

When α1 > 7, we have χλ(α) = 0. But when we reach α1 = 7, we
obtain the following 3 BSTs, which all have the same sign.

1 1 1 1 1
1 2 3 4
1 5

1 1 1 1 1
1 2 3 5
1 4

1 1 1 1 1
1 2 4 5
1 3

16 / 22

The Forward Pass (continued)

To recover h2, we “freeze” the largest part of α to be h1, and then
try decreasing values for the next largest part of α.

For example, if n = 20 and h1 = 10 then we try the queries

α = (10, 10)

α = (10, 9, 1)

α = (10, 8, 1, 1)

α = (10, 7, 1, 1, 1)

. . .

until we find α such that f (α) 6= 0. (In fact, the first two queries
are redundant because necessarily h2 ≤ h1 − 2.)

17 / 22

The Backward Pass

During the backward pass, we recover the shapes of the principal
hooks (not just their sizes, which we know from the forward pass)
one at a time, starting with the innermost principal hook.

17 / 22

The Backward Pass

During the backward pass, we recover the shapes of the principal
hooks (not just their sizes, which we know from the forward pass)
one at a time, starting with the innermost principal hook.

It turns out that one can reduce to the case where we know the
entire shape except for the first principal hook.

18 / 22

Two Useful Facts

Lemma 1. A border strip of a BST cannot contain more than one
box on the principal diagonal.

18 / 22

Two Useful Facts

Lemma 1. A border strip of a BST cannot contain more than one
box on the principal diagonal.

Proof. If the border strip contains (i , i) then by the definition of a
border strip, it cannot contain (j , j) with j > i .

18 / 22

Two Useful Facts

Lemma 1. A border strip of a BST cannot contain more than one
box on the principal diagonal.

Proof. If the border strip contains (i , i) then by the definition of a
border strip, it cannot contain (j , j) with j > i .

Lemma 2. For all k , the first k border strips must be entirely
contained in the first k principal hooks.

18 / 22

Two Useful Facts

Lemma 1. A border strip of a BST cannot contain more than one
box on the principal diagonal.

Proof. If the border strip contains (i , i) then by the definition of a
border strip, it cannot contain (j , j) with j > i .

Lemma 2. For all k , the first k border strips must be entirely
contained in the first k principal hooks.

Proof. Induction on k . If the (k + 1)st border strip has a box
beyond the (k + 1)st principal hook then it has to contain
(k + 2, k + 2) and (k + 1, k + 1), contradicting Lemma 1.

=⇒

19 / 22

Determining Overhangs

Assume we know the principal hook lengths hi and we want to
determine the arm and leg overhang lengths of the first principal
hook.

We apply the following sequence of queries until we encounter a
nonzero value of f (α):

α = (h1 − 1, h2 + 1, h3, h4, . . . , hk)

α = (h1 − 2, h2 + 2, h3, h4, . . . , hk)

α = (h1 − 3, h2 + 3, h3, h4, . . . , hk)

α = (h1 − 4, h2 + 4, h3, h4, . . . , hk)

. . .

Why does this work?

20 / 22

Determining Overhangs (continued)

By Lemma 2, for the 2nd border strip to contain more than h2
boxes, it must “steal” some boxes from the 1st principal hook.
This cannot happen if the 1st border strip is too large, because
then it will “block” the 2nd border strip from reaching boxes in the
1st principal hook.

20 / 22

Determining Overhangs (continued)

By Lemma 2, for the 2nd border strip to contain more than h2
boxes, it must “steal” some boxes from the 1st principal hook.
This cannot happen if the 1st border strip is too large, because
then it will “block” the 2nd border strip from reaching boxes in the
1st principal hook.

The smallest i that permits border strips of h1 − i and h2 + i tells
us the length of the shorter overhang. If we know the length of the
shorter overhang then we can deduce the length of the longer
overhang.

21 / 22

Which Overhang is Which?

Suppose we know that one overhang has length 3 and the other
overhang has length 4. There are only two possible shapes,
depending on which one is the arm overhang and which one is the
leg overhang. We call these two shapes λ and λ̂, and say that λ̂ is
the doppelgänger of λ.

21 / 22

Which Overhang is Which?

Suppose we know that one overhang has length 3 and the other
overhang has length 4. There are only two possible shapes,
depending on which one is the arm overhang and which one is the
leg overhang. We call these two shapes λ and λ̂, and say that λ̂ is
the doppelgänger of λ.

Distinguishing λ from λ̂ surprisingly subtle question and more than
half our paper is devoted to solving it on a case-by-case basis.

The general strategy is to devise α that “barely work” in the sense
that there are very few BSTs of type α. We can then analyze
exactly what the BSTs must look like and deduce what λ must be.

22 / 22

Concluding Remarks

Can a more efficient algorithm be found?

Empirically, permutations that consist mostly of fixed points are
good distinguishers. Enumerating the corresponding BSTs leads
naturally to enumerating skew tableaux.

22 / 22

Concluding Remarks

Can a more efficient algorithm be found?

Empirically, permutations that consist mostly of fixed points are
good distinguishers. Enumerating the corresponding BSTs leads
naturally to enumerating skew tableaux.

Skew tableaux are enumerated by the Naruse hook-length
formula which generalizes the Frame–Robinson–Thrall hook-length
formula. The trouble is that it seems hard to prove that various
alternating sums of hook-length formulae cannot “accidentally”
result in the same value.

If this could be done, then the number of queries might be
drastically reduced from O(n), perhaps even to O(1).

