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Permutations, shuffles, and descents
• A = a finite set (alphabet) of size a

SA := the set of all permutations of A

= bijections u : [a]→ A (bijective words)

Example: A = {1, 3, 5, 7, 8}, u = 51783 ∈ SA

Note: S[n] = Sn, the symmetric group

• A,B = disjoint finite sets; u ∈ SA, v ∈ SB

u� v := the set of all shuffles of u and v

Example:
A = {1, 2, 3, 5},B = {4, 6, 7}, u = 1235 ∈ SA, v = 764 ∈ SB

1723654 ∈ u� v
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Permutations, shuffles, and descents

• A = a totally ordered finite set of size a
The descent set of u ∈ SA is

Des(u) := {1 ≤ i ≤ a− 1 : u(i) > u(i + 1)}

The descent number of u is

des(u) := |Des(u)|

Example: u = 4
ˆ
8
ˆ
7
ˆ
213

ˆ
65

Des(u) = {2, 3, 4, 7}, des(u) = 4

Question: What is the distribution of des(w) for w ∈ u� v?
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Permutations, shuffles, and descents

What is the distribution of des(w) for w ∈ u� v?
In particular, what are the smallest and largest values of des(w)?

Example: u = 1432, v = 65

a = 4, b = 2, des(u) = 2, des(v) = 1

u� v = {1
ˆ
4
ˆ
32

ˆ
65, 1

ˆ
43

ˆ
625, 14

ˆ
6
ˆ
325, 1

ˆ
6
ˆ
4
ˆ
325,

ˆ
61

ˆ
4
ˆ
325,

1
ˆ
43

ˆ
6
ˆ
52, 14

ˆ
63

ˆ
52, 1

ˆ
6
ˆ
43

ˆ
52,

ˆ
61

ˆ
43

ˆ
52, 14

ˆ
6
ˆ
5
ˆ
32,

1
ˆ
64

ˆ
5
ˆ
32,

ˆ
614

ˆ
5
ˆ
32, 1

ˆ
6
ˆ
5
ˆ
4
ˆ
32,

ˆ
61

ˆ
5
ˆ
4
ˆ
32,

ˆ
6
ˆ
51

ˆ
4
ˆ
32}∑

w∈u�v

qdes(w) = 3q2 + 9q3 + 3q4
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Permutations, shuffles, and descents

Question: What is the distribution of des(w) for w ∈ u� v?

Theorem (Stanley ’72)

If |A| = a, |B| = b with A ∩ B = ∅, and u ∈ SA, v ∈ SB with
des(u) = i , des(v) = j , then the number of w ∈ u� v with
des(w) = k is (

a + j − i

k − i

)(
b + i − j

k − j

)

Example:
u = 1432, i = des(u) = 2; v = 65, j = des(v) = 1

#{w ∈ u� v : des(w) = k} =

(
3

k − 2

)(
3

k − 1

)
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Permutations, shuffles, and descents

Theorem (Stanley ’72; Goulden ’85, Stadler ’99)

If |A| = a, |B| = b with A ∩ B = ∅, and u ∈ SA, v ∈ SB with
des(u) = i , des(v) = j , then the number of w ∈ u� v with
des(w) = k is (

a + j − i

k − i

)(
b + i − j

k − j

)

Remarks:

• Does not depend on u and v (only on des(u) and des(v)).

• Does not depend on the relative order of A and B.

• Actually holds on the level of descent sets.

• Follows from multiplication of quasi-symmetric functions.
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Permutations, shuffles, and descents

Main Question:

What is the cyclic analogue?
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Cyclic permutations, shuffles, and descents
• A = a finite set, u ∈ SA. The cyclic permutation [u] is the

equivalence class (orbit) of u under cyclic shifts:

[u] := the set of all cyclic shifts of u

Example: [1432] = {1432, 4321, 3214, 2143}
Denote

cSA := SA/cyclic equivalence = {[u] : u ∈ SA}

• A,B = disjoint finite sets; u ∈ SA, v ∈ SB

u�c v := the set of all cyclic shuffles of u and v

= the set of all shuffles of u′ ∈ [u] and v ′ ∈ [v ]

Example: u = 1234, v = 56789

w = 734819562 ∈ u�c v
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Cyclic permutations, shuffles, and descents
• A = a totally ordered finite set of size a.

The cyclic descent set of u ∈ SA is

cDes(u) := {1 ≤ i ≤ a : u(i) > u(i + 1)},

where u(a + 1) := u(1).

The cyclic descent number of u is

cdes(u) := | cDes(u)|.

Example: u = 2
ˆ
415

ˆ
6
ˆ
3 ∈ S[6]

Des(u) = {2, 5}, cDes(u) = {2, 5, 6}

Example: v = 3
ˆ
415

ˆ
62 ∈ S[6]

cDes(v) = Des(v) = {2, 5}

Introduced by Cellini [’95] (for arbitrary Weyl groups); further
studied by Dilks, Petersen and Stembridge [’09] and others.
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Cyclic permutations, shuffles, and descents

Remarks:

• The number cdes(u) is invariant under cyclic shifts of u. Thus
cdes([u]) is well defined.

• Similarly, the set of cyclic shuffles [u]�c [v ] is cyclically
invariant. It can thus be viewed as consisting of cyclic
permutations [w ].

Main Question:

What is the distribution of cdes([w ]) for [w ] ∈ [u]�c [v ]?
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Main Question:

What is the distribution of cdes([w ]) for [w ] ∈ [u]�c [v ]?

Theorem (A-Gessel-Reiner-Roichman, ∼ 2021)

If |A| = a, |B| = b with A ∩ B = ∅, and u ∈ SA, v ∈ SB with
cdes([u]) = i , cdes([v ]) = j , then the number of [w ] ∈ [u]�c [v ]
with cdes([w ]) = k is

???
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Cyclic quasi-symmetric
functions
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Symmetric functions

• A symmetric function is a formal power series
f ∈ Z[[x1, x2, . . .]] of bounded degree such that, for any t ≥ 1,
any two sequences (i1, . . . , it) and (i ′1, . . . , i

′
t) of distinct

positive integers (indices), and any sequence (m1, . . . ,mt) of
positive integers (exponents), the coefficients of xm1

i1
· · · xmt

it
and xm1

i ′1
· · · xmt

i ′t
in f are equal.

Example:

x4
1x

2
2x

5
3 + x2

1x
5
2x

4
3 + x5

1x
4
2x

2
3 +

x4
1x

5
2x

2
3 + x5

1x
2
2x

4
3 + x2

1x
4
2x

5
3 +

x4
1x

2
2x

5
4 + x2

1x
5
2x

4
4 + x5

1x
4
2x

2
4 +

x4
1x

5
2x

2
4 + x5

1x
2
2x

4
4 + x2

1x
4
2x

5
4 + . . . ∈ Sym
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Symmetric functions

• A symmetric function is a formal power series
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Quasi-symmetric functions

• A quasi-symmetric function is a formal power series
f ∈ Z[[x1, x2, . . .]] of bounded degree such that, for any t ≥ 1,
any two increasing sequences i1 < . . . < it and i ′1 < . . . < i ′t of
positive integers, and any sequence (m1, . . . ,mt) of positive
integers, the coefficients of xm1
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· · · xmt

it
and xm1
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· · · xmt

i ′t
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are equal.

Example:
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2
6x

5
7 + . . . ∈ QSym
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Cyclic quasi-symmetric functions (new)

• A cyclic quasi-symmetric function is a formal power series
f ∈ Z[[x1, x2, . . .]] of bounded degree such that, for any t ≥ 1,
any two increasing sequences i1 < . . . < it and i ′1 < . . . < i ′t of
positive integers, any sequence m = (m1, . . . ,mt) of positive
integers, and any cyclic shift m′ = (m′1, . . . ,m

′
t) of m, the

coefficients of xm1
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· · · xmt

it
and x

m′
1

i ′1
· · · xm

′
t

i ′t
in f are equal.

Example:
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Comparison: similarities
• All are graded rings: Sym ( cQSym ( QSym.

• The n-th graded piece has a natural basis, indexed by simple
combinatorial objects:

Symn : {sλ : λ ` n} Schur functions

QSymn : {Fn,J : J ⊆ [n − 1]} Fundamental QSF

cQSymn : {F̂ c
n,[J] : ∅ 6= J ⊆ [n] up to cyclic shifts}

Normalized fundamental cQSF

• Dimension:

dim Symn = p(n) ∼ c
√
n (partitions)

dim QSymn = 2n−1 (compositions)

dim cQSymn =
1

n

∑
d |n

ϕ(d)2n/d − 1 ∼ 1

n
2n
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Comparison: similarities

• The involution ω:

Symn : sλ ↔ sλ′

QSymn : Fn,J ↔ Fn,[n−1]\J

cQSymn : F̂ c
n,[J] ↔ F̂ c

n,[[n]\J]

• Multiplication corresponds to (cyclic) shuffling. For u ∈ SA,
v ∈ SB (A ∩ B = ∅, A ∪ B = C ):

F|A|,cDes(u) · F|B|,cDes(v) =
∑

w∈u�v

F|C |,cDes(w)

F c
|A|,[cDes(u)] · F

c
|B|,[cDes(v)] =

∑
[w ]∈[u]�c [v ]

F c
|C |,[cDes(w)]
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Comparison: similarities and differences

• sλ/µ is a linear combination, with nonnegative integer
coefficients, of the basis elements of QSym; and similarly for
cQSym, except when λ/µ is a connected ribbon!

sλ/µ =
∑

T∈SYT(λ/µ)

Fn,Des(T ) [Gessel ’84]

=
∑
[J]

mc([J])F̂ c
n,[J]

The latter follows from the existence of cyclic descents for
standard Young tableaux (Rhoades [’10], A-Reiner-Roichman
[’18], A-Elizalde- Roichman [’19], Huang [’20])
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Comparison: differences

• The need for normalization: F̂ c
n,[J] = 1

dJ
F c
n,J , where

dJ := |StabZ/nZ(J)| = #{i ∈ Z/nZ : J + i ≡ J (mod n)}

• A (unique) linear dependence:∑
[J]

(−1)|J|F̂ c
n,[J] = 0

• The “non-Escher” property: clearly

cDes(u) 6= ∅, [n] (∀u ∈ Sn)

but F̂ c
n,[∅] = hn = s(n) and F̂ c

n,[[n]] = en = s(1n) are important
symmetric functions which should be part of the family.
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Other ingredients
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An unusual ring homomorphism
• Define a new product on Z[[q]] by

qi � qj := qmax(i ,j),

with the usual addition, to get the ring Z[[q]]�.

• Consider the ring of multivariate formal power series
Z[[x]] = Z[[x1, x2, . . .]] (with the usual addition and
multiplication), and its subring Z[[x]]bd consisting of
bounded-degree power series.

• Define a ring homomorphism Ψ : Z[[x]]bd → Z[[q]]� by

Ψ(xm1
i1
· · · xmk

ik
) := qik (k > 0, i1 < . . . < ik , m1, . . . ,mk > 0)

and Ψ(1) := 1.

•

Ψ(Fn,J) =
q|J|+1

(1− q)n
(J ⊆ [n − 1])
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A triple binomial identity

Doron Zeilberger
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A triple binomial identity

This is a special case of the triple-binomial identity∑
k

(
m − x + y

k

)(
n − y + x

n − k

)(
x + k

m + n

)
=

(
x

m

)(
y

n

)
which is equivalent to the hypergeometric identity

3F 2

(
a, b,−n

c , a + b − c − n + 1

∣∣∣∣ 1

)
=

(c − a)n̄(c − b)n̄

c n̄(c − a− b)n̄

We need the general case.
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A triple binomial identity

∑
k

(
m − x + y

k

)(
n − y + x

n − k

)(
x + k

m + n

)
=

(
x

m

)(
y

n

)

A brief history:

• The hypergeometric statement is due to Saalschütz (1890),
but equivalent to a result of Pfaff (1797).

• Combinatorial proofs were given by Cartier-Foata (1969) and
Andrews (1975).

• Stanley’s original shuffling result is actually a refinement of
the one presented here, and describes the joint distribution of
descent number and major index over u� v .

• Stanley used a q-analogue of the above identity, proved by
Gould (1972), and equivalent to one by Jackson (1910).
Gould’s proof was a variation of one by Nanjundiah (1958) of
the q = 1 case.
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... and the answer is:

Theorem (A-Gessel-Reiner-Roichman, ∼ 2021)
If |A| = a, |B| = b with A ∩ B = ∅, and u ∈ SA, v ∈ SB with
cdes([u]) = i , cdes([v ]) = j , then the number of [w ] ∈ [u]�c [v ] with
cdes([w ]) = k is

k(a− i)(b − j) + (a + b − k)ij

(a + j − i)(b + i − j)

(
a + j − i

k − i

)(
b + i − j

k − j

)
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Summary

• The ring cQSym of cyclic quasi-symmetric functions is
intermediate between Sym and QSym.

• It has many properties in common with QSym, but also some
interesting unique features.

• It has applications to combinatorial enumeration (and to other
areas).
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Thank You!
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