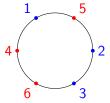
Cyclic permutations, shuffles, and quasi-symmetric functions

Ron Adin

Bar-Ilan University

Rutgers Experimental Mathematics Seminar Feb. 4, 2021



Based on joint work with

Ira Gessel (Brandeis) Vic Reiner (Minnesota) Yuval Roichman (Bar-Ilan)

Special thanks to Darij Grinberg (Drexel)

The cyclic analogue

Cyclic quasi-symmetric functions

Other ingredients

Summary

A = a finite set (alphabet) of size a

Permutations, shuffles, descents

$$S_A :=$$
 the set of all permutations of A
= bijections $u : [a] \to A$ (bijective words)

Example:
$$A = \{1, 3, 5, 7, 8\}, u = 51783 \in S_A$$

A = a finite set (alphabet) of size a

Permutations, shuffles, descents

000000

$$S_A :=$$
 the set of all permutations of A
= bijections $u : [a] \to A$ (bijective words)

Example:
$$A = \{1, 3, 5, 7, 8\}, u = 51783 \in S_A$$

Note: $S_{[n]} = S_n$, the symmetric group

• A = a finite set (alphabet) of size a

$$S_A :=$$
 the set of all permutations of A
= bijections $u : [a] \to A$ (bijective words)

Example:
$$A = \{1, 3, 5, 7, 8\}, u = 51783 \in S_A$$

Note: $S_{[n]} = S_n$, the symmetric group

• $A, B = \text{disjoint finite sets}; u \in S_A, v \in S_B$

 $u \sqcup v :=$ the set of all shuffles of u and v

Example:

$$A = \{1, 2, 3, 5\}, B = \{4, 6, 7\}, u = 1235 \in S_A, v = 764 \in S_B$$

$$1723654$$
 ∈ $u \sqcup v$

0000000

Permutations, shuffles, and descents

• A = a totally ordered finite set of size a The descent set of $u \in S_A$ is

$$\mathsf{Des}(u) := \{1 \le i \le a - 1 : u(i) > u(i+1)\}$$

 A = a totally ordered finite set of size a The descent set of $u \in S_A$ is

$$\mathsf{Des}(u) := \{1 \le i \le a - 1 : u(i) > u(i+1)\}$$

The descent number of u is

$$\mathsf{des}(u) := |\mathsf{Des}(u)|$$

000000

Permutations, shuffles, and descents

 A = a totally ordered finite set of size a The descent set of $u \in S_{\Delta}$ is

$$Des(u) := \{1 \le i \le a - 1 : u(i) > u(i+1)\}$$

The descent number of u is

$$\mathsf{des}(u) := |\mathsf{Des}(u)|$$

Example: u = 48721365

$$Des(u) = \{2, 3, 4, 7\}, des(u) = 4$$

• A = a totally ordered finite set of size aThe descent set of $u \in S_A$ is

$$\mathsf{Des}(u) := \{1 \le i \le a - 1 : u(i) > u(i+1)\}$$

The descent number of *u* is

$$\mathsf{des}(u) := |\mathsf{Des}(u)|$$

Example: u = 48721365

$$Des(u) = \{2, 3, 4, 7\}, des(u) = 4$$

Question: What is the distribution of des(w) for $w \in u \sqcup v$?

What is the distribution of des(w) for $w \in u \sqcup v$? In particular, what are the smallest and largest values of des(w)?

Example: u = 1432, v = 65

What is the distribution of des(w) for $w \in u \sqcup v$? In particular, what are the smallest and largest values of des(w)?

a = 4, b = 2, des(u) = 2, des(v) = 1

Example:
$$u = 1432, v = 65$$

Permutations, shuffles, descents

What is the distribution of des(w) for $w \in u \sqcup v$? In particular, what are the smallest and largest values of des(w)?

```
Example: u = 1432, v = 65
                                                                                                                                                                            a = 4, b = 2, des(u) = 2, des(v) = 1
                                                                                 u \sqcup v = \{143265, 143625, 146325, 164325, 614325, \dots, v = \{143265, 143625, 146325, \dots, v = \{143265, \dots, v = \{143
                                                                                                                                                                                                          143652, 146352, 164352, 614352, 146532,
                                                                                                                                                                                                          164532, 614532, 165432, 615432, 651432}
                                                                                                                                                                                                                   \sum q^{\mathsf{des}(w)} = 3q^2 + 9q^3 + 3q^4
                                                                                                                                                                                                      w \in u \cap v
```

Question: What is the distribution of des(w) for $w \in u \sqcup v$?

Theorem (Stanley '72)

Permutations, shuffles, descents

0000000

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \coprod v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Question: What is the distribution of des(w) for $w \in u \sqcup v$?

Theorem (Stanley '72)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \coprod v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Example:

Permutations, shuffles, descents

$$u = 1432$$
, $i = des(u) = 2$; $v = 65$, $j = des(v) = 1$

$$\#\{w \in u \sqcup v : \operatorname{des}(w) = k\} = \binom{3}{k-2} \binom{3}{k-1}$$

0000000

Theorem (Stanley '72; Goulden '85, Stadler '99)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \sqcup v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Theorem (Stanley '72; Goulden '85, Stadler '99)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \sqcup v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Remarks:

Permutations, shuffles, descents

0000000

Does not depend on u and v (only on des(u) and des(v)).

Theorem (Stanley '72; Goulden '85, Stadler '99)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \sqcup v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Remarks:

Permutations, shuffles, descents

- Does not depend on u and v (only on des(u) and des(v)).
- Does not depend on the relative order of A and B.

Theorem (Stanley '72; Goulden '85, Stadler '99)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \sqcup v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Remarks:

Permutations, shuffles, descents

- Does not depend on u and v (only on des(u) and des(v)).
- Does not depend on the relative order of A and B.
- Actually holds on the level of descent sets.

Theorem (Stanley '72; Goulden '85, Stadler '99)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with des(u) = i, des(v) = j, then the number of $w \in u \sqcup v$ with des(w) = k is

$$\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Remarks:

Permutations, shuffles, descents

- Does not depend on u and v (only on des(u) and des(v)).
- Does not depend on the relative order of A and B.
- Actually holds on the level of descent sets.
- Follows from multiplication of quasi-symmetric functions.

Main Question:

Permutations, shuffles, descents

000000

What is the cyclic analogue?

• A = a finite set, $u \in S_A$. The cyclic permutation [u] is the equivalence class (orbit) of u under cyclic shifts:

[u] :=the set of all cyclic shifts of u

• A = a finite set, $u \in S_A$. The cyclic permutation [u] is the equivalence class (orbit) of u under cyclic shifts:

```
[u] := the set of all cyclic shifts of u
```

```
Example: [1432] = \{1432, 4321, 3214, 2143\}
```

• A = a finite set, $u \in S_A$. The cyclic permutation [u] is the equivalence class (orbit) of u under cyclic shifts:

```
[u] := the set of all cyclic shifts of u
```

Example:
$$[1432] = \{1432, 4321, 3214, 2143\}$$

Denote

$$cS_A := S_A / \text{cyclic equivalence} = \{[u] : u \in S_A\}$$

• A = a finite set, $u \in S_A$. The cyclic permutation [u] is the equivalence class (orbit) of u under cyclic shifts:

```
[u] := the set of all cyclic shifts of u
```

Example:
$$[1432] = \{1432, 4321, 3214, 2143\}$$

Denote

$$cS_A := S_A / \text{cyclic equivalence} = \{[u] : u \in S_A\}$$

• $A, B = \text{disjoint finite sets}; u \in S_A, v \in S_B$

```
u \coprod_{c} v := the set of all cyclic shuffles of u and v
= \text{ the set of all shuffles of } u' \in [u] \text{ and } v' \in [v]
```

• A = a finite set, $u \in S_A$. The cyclic permutation [u] is the equivalence class (orbit) of u under cyclic shifts:

```
[u] := the set of all cyclic shifts of u
```

Example:
$$[1432] = \{1432, 4321, 3214, 2143\}$$

Denote

$$cS_A := S_A / \text{cyclic equivalence} = \{[u] : u \in S_A\}$$

• $A, B = \text{disjoint finite sets}; u \in S_A, v \in S_B$

```
u \coprod_{c} v := the set of all cyclic shuffles of u and v
= \text{ the set of all shuffles of } u' \in [u] \text{ and } v' \in [v]
```

Example:
$$u = 1234$$
, $v = 56789$

$$w = 734819562 \in u \sqcup_{c} v$$

 A = a totally ordered finite set of size a. The cyclic descent set of $u \in S_A$ is

$$\mathsf{cDes}(u) := \{1 \le i \le a : u(i) > u(i+1)\},$$

where u(a + 1) := u(1).

• A = a totally ordered finite set of size a. The cyclic descent set of $u \in S_A$ is

$$\mathsf{cDes}(u) := \{1 \leq i \leq a : \ u(i) > u(i+1)\},$$
 where $u(a+1) := u(1)$. The cyclic descent number of u is

cdes(u) := |cDes(u)|.

• A = a totally ordered finite set of size a. The cyclic descent set of $u \in S_A$ is

$$cDes(u) := \{1 \le i \le a : u(i) > u(i+1)\},\$$

where u(a+1) := u(1). The cyclic descent number of u is

$$cdes(u) := | cDes(u)|.$$

Example:
$$u = 241563 \in S_{[6]}$$

$$Des(u) = \{2, 5\}, \quad cDes(u) = \{2, 5, 6\}$$

• A = a totally ordered finite set of size a. The cyclic descent set of $u \in S_A$ is

$$cDes(u) := \{1 \le i \le a : u(i) > u(i+1)\},\$$

where u(a+1) := u(1). The cyclic descent number of u is

$$\mathsf{cdes}(u) := |\mathsf{cDes}(u)|.$$

Example:
$$u = 241563 \in S_{[6]}$$

$$Des(u) = \{2, 5\}, \quad cDes(u) = \{2, 5, 6\}$$

Example:
$$v = 341562 \in S_{[6]}$$

$$cDes(v) = Des(v) = \{2, 5\}$$

• A = a totally ordered finite set of size a. The cyclic descent set of $u \in S_A$ is

$$cDes(u) := \{1 \le i \le a : u(i) > u(i+1)\},\$$

where u(a+1) := u(1). The cyclic descent number of u is

$$cdes(u) := | cDes(u)|.$$

Example:
$$u = 241563 \in S_{[6]}$$

$$Des(u) = \{2, 5\}, \quad cDes(u) = \{2, 5, 6\}$$

Example:
$$v = 341562 \in S_{[6]}$$

$$cDes(v) = Des(v) = \{2, 5\}$$

Introduced by Cellini ['95] (for arbitrary Weyl groups);

• A = a totally ordered finite set of size a. The cyclic descent set of $u \in S_A$ is

$$cDes(u) := \{1 \le i \le a : u(i) > u(i+1)\},$$

where u(a+1) := u(1). The cyclic descent number of u is

$$\mathsf{cdes}(u) := | \mathsf{cDes}(u)|.$$

Example:
$$u = 241563 \in S_{[6]}$$

$$Des(u) = \{2, 5\}, \quad cDes(u) = \{2, 5, 6\}$$

Example:
$$v = 341562 \in S_{[6]}$$

$$\mathsf{cDes}(v) = \mathsf{Des}(v) = \{2, 5\}$$

Introduced by Cellini ['95] (for arbitrary Weyl groups); further studied by Dilks, Petersen and Stembridge ['09] and others.

Remarks:

• The number cdes(u) is invariant under cyclic shifts of u. Thus cdes([u]) is well defined.

Remarks:

- The number cdes(u) is invariant under cyclic shifts of u. Thus cdes([u]) is well defined.
- Similarly, the set of cyclic shuffles $[u] \coprod_c [v]$ is cyclically invariant. It can thus be viewed as consisting of cyclic permutations [w].

Cyclic permutations, shuffles, and descents

Remarks:

- The number cdes(u) is invariant under cyclic shifts of u. Thus cdes([u]) is well defined.
- Similarly, the set of cyclic shuffles $[u] \coprod_{c} [v]$ is cyclically invariant. It can thus be viewed as consisting of cyclic permutations [w].

Main Question:

What is the distribution of cdes([w]) for $[w] \in [u] \sqcup_c [v]$?

What is the distribution of cdes([w]) for $[w] \in [u] \sqcup_c [v]$?

Theorem (A-Gessel-Reiner-Roichman, ~ 2021) If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with cdes([u]) = i, cdes([v]) = j, then the number of $[w] \in [u] \coprod_{c} [v]$ with cdes([w]) = k is

Symmetric functions

• A symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \geq 1$, any two sequences (i_1, \ldots, i_t) and (i'_1, \ldots, i'_t) of distinct positive integers (indices), and any sequence (m_1, \ldots, m_t) of positive integers (exponents), the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m_1} \cdots x_{i'_t}^{m_t}$ in f are equal.

$$x_1^4 x_2^2 x_3^5 + x_1^2 x_2^5 x_3^4 + x_1^5 x_2^4 x_3^2 + \\ x_1^4 x_2^5 x_3^2 + x_1^5 x_2^2 x_3^4 + x_1^2 x_2^4 x_3^5 + \\$$

Symmetric functions

• A symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \geq 1$, any two sequences (i_1, \ldots, i_t) and (i'_1, \ldots, i'_t) of distinct positive integers (indices), and any sequence (m_1, \ldots, m_t) of positive integers (exponents), the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m_1} \cdots x_{i'_t}^{m_t}$ in f are equal.

$$\begin{aligned} & x_1^4 x_2^2 x_3^5 + x_1^2 x_2^5 x_3^4 + x_1^5 x_2^4 x_3^2 + \\ & x_1^4 x_2^5 x_3^2 + x_1^5 x_2^2 x_3^4 + x_1^2 x_2^4 x_3^5 + \\ & x_1^4 x_2^2 x_4^5 + x_1^2 x_2^5 x_4^4 + x_1^5 x_2^4 x_4^2 + \\ & x_1^4 x_2^5 x_4^2 + x_1^5 x_2^2 x_4^4 + x_1^2 x_2^4 x_4^5 + \ldots \in \mathsf{Sym} \end{aligned}$$

Quasi-symmetric functions

• A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, and any sequence (m_1, \ldots, m_t) of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m_1} \cdots x_{i'_t}^{m_t}$ in f are equal.

$$x_1^4 x_2^2 x_3^5 +$$

Quasi-symmetric functions

• A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, and any sequence (m_1, \ldots, m_t) of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m_1} \cdots x_{i'_t}^{m_t}$ in f are equal.

$$x_1^4 x_2^2 x_3^5 + x_1^4 x_2^2 x_4^5 +$$

Quasi-symmetric functions

• A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1,x_2,\ldots]]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i_1' < \ldots < i_t'$ of positive integers, and any sequence (m_1,\ldots,m_t) of positive integers, the coefficients of $x_{i_1}^{m_1}\cdots x_{i_t}^{m_t}$ and $x_{i_1'}^{m_1}\cdots x_{i_t'}^{m_t}$ in f are equal.

$$x_1^4 x_2^2 x_3^5 + x_1^4 x_2^2 x_4^5 + x_2^4 x_6^2 x_7^5 + \dots \in \mathsf{QSym}$$

Cyclic quasi-symmetric functions (new)

• A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, any sequence $m = (m_1, \dots, m_t)$ of positive integers, and any cyclic shift $m' = (m'_1, \ldots, m'_t)$ of m, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i_t'}^{m_1'} \cdots x_{i_t'}^{m_t'}$ in f are equal.

$$\begin{aligned} x_1^4 x_2^2 x_3^5 + \ldots &\in \mathsf{QSym} \\ x_1^4 x_2^2 x_3^5 + x_1^2 x_2^5 x_3^4 + x_1^5 x_2^4 x_3^2 + \ldots &\in \mathsf{cQSym} \\ x_1^4 x_2^2 x_3^5 + x_1^2 x_2^5 x_3^4 + x_1^5 x_2^4 x_3^2 + \\ x_1^4 x_2^5 x_3^2 + x_1^5 x_2^2 x_3^4 + x_1^2 x_2^4 x_3^5 + \ldots &\in \mathsf{Sym} \end{aligned}$$

00000000

Cyclic quasi-symmetric functions

• All are graded rings: Sym \subsetneq cQSym \subsetneq QSym.

- All are graded rings: Sym \subsetneq cQSym \subsetneq QSym.
- The n-th graded piece has a natural basis, indexed by simple combinatorial objects:

```
\begin{array}{ll} \operatorname{Sym}_n: & \{s_\lambda : \lambda \vdash n\} \quad \text{Schur functions} \\ \operatorname{QSym}_n: & \{F_{n,J} : J \subseteq [n-1]\} \quad \text{Fundamental QSF} \\ \operatorname{cQSym}_n: & \{\widehat{F}_{n,[J]}^c : \varnothing \neq J \subseteq [n] \text{ up to cyclic shifts} \} \\ & \quad \text{Normalized fundamental cQSF} \end{array}
```

- All are graded rings: Sym ⊆ cQSym ⊆ QSym.
- The *n*-th graded piece has a natural basis, indexed by simple combinatorial objects:

$$\begin{array}{lll} \operatorname{Sym}_n: & \{s_\lambda : \lambda \vdash n\} & \operatorname{Schur} \ \operatorname{functions} \\ \operatorname{QSym}_n: & \{F_{n,J} : J \subseteq [n-1]\} & \operatorname{Fundamental} \ \operatorname{QSF} \\ \operatorname{cQSym}_n: & \{\widehat{F}^c_{n,[J]} : \varnothing \neq J \subseteq [n] \ \operatorname{up} \ \operatorname{to} \ \operatorname{cyclic} \ \operatorname{shifts} \} \\ & \operatorname{Normalized} \ \operatorname{fundamental} \ \operatorname{cQSF} \end{array}$$

Dimension:

$$\dim \operatorname{Sym}_n = p(n) \sim c^{\sqrt{n}} \quad \text{(partitions)}$$

$$\dim \operatorname{QSym}_n = 2^{n-1} \quad \text{(compositions)}$$

$$\dim \operatorname{CQSym}_n = \frac{1}{n} \sum_{d \mid n} \varphi(d) 2^{n/d} - 1 \sim \frac{1}{n} 2^n$$

The involution ω:

$$\mathsf{Sym}_n: \ \ s_\lambda \leftrightarrow s_{\lambda'}$$

$$\operatorname{\mathsf{QSym}}_n: \ F_{n,J} \leftrightarrow F_{n,[n-1]\setminus J}$$

$$\mathsf{cQSym}_n: \quad \widehat{F}^c_{n,[J]} \leftrightarrow \widehat{F}^c_{n,[[n] \backslash J]}$$

The involution ω:

$$\begin{array}{ll} \mathsf{Sym}_n: & s_\lambda \leftrightarrow s_{\lambda'} \\ \mathsf{QSym}_n: & F_{n,J} \leftrightarrow F_{n,[n-1]\setminus J} \\ \mathsf{cQSym}_n: & \widehat{F}_{n,[J]}^c \leftrightarrow \widehat{F}_{n,[[n]\setminus J]}^c \end{array}$$

• Multiplication corresponds to (cyclic) shuffling. For $u \in S_A$, $v \in S_B$ $(A \cap B = \emptyset, A \cup B = C)$:

$$F_{|A|,c\mathsf{Des}(u)} \cdot F_{|B|,c\mathsf{Des}(v)} = \sum_{w \in u \sqcup v} F_{|C|,c\mathsf{Des}(w)}$$

$$F_{|A|,[c\mathsf{Des}(u)]}^c \cdot F_{|B|,[c\mathsf{Des}(v)]}^c = \sum_{[w] \in [u] \sqcup \iota_c[v]} F_{|C|,[c\mathsf{Des}(w)]}^c$$

• $s_{\lambda/\mu}$ is a linear combination, with nonnegative integer coefficients, of the basis elements of QSym; and similarly for cQSym, except when λ/μ is a connected ribbon!

$$s_{\lambda/\mu} = \sum_{T \in \mathsf{SYT}(\lambda/\mu)} F_{n,\mathsf{Des}(T)}$$
 [Gessel '84]
$$= \sum_{[J]} m^c([J]) \widehat{F}_{n,[J]}^c$$

The latter follows from the existence of cyclic descents for standard Young tableaux (Rhoades ['10], A-Reiner-Roichman ['18], A-Elizalde- Roichman ['19], Huang ['20])

Comparison: differences

• The need for normalization: $\widehat{F}_{n,[J]}^c = \frac{1}{d_J} F_{n,J}^c$, where

$$d_J := |Stab_{\mathbb{Z}/n\mathbb{Z}}(J)| = \#\{i \in \mathbb{Z}/n\mathbb{Z} : J + i \equiv J \pmod{n}\}$$

Comparison: differences

• The need for normalization: $\widehat{F}_{n,[J]}^c = \frac{1}{d_J} F_{n,J}^c$, where

$$d_J := |Stab_{\mathbb{Z}/n\mathbb{Z}}(J)| = \#\{i \in \mathbb{Z}/n\mathbb{Z} \,:\, J+i \equiv J \pmod{n}\}$$

A (unique) linear dependence:

$$\sum_{[J]} (-1)^{|J|} \widehat{F}_{n,[J]}^c = 0$$

Comparison: differences

• The need for normalization: $\widehat{F}_{n,[J]}^c = \frac{1}{d_J} F_{n,J}^c$, where

$$d_J:=|Stab_{\mathbb{Z}/n\mathbb{Z}}(J)|=\#\{i\in\mathbb{Z}/n\mathbb{Z}\,:\, J+i\equiv J\pmod n\}$$

A (unique) linear dependence:

$$\sum_{[J]} (-1)^{|J|} \widehat{F}_{n,[J]}^c = 0$$

The "non-Escher" property: clearly

$$cDes(u) \neq \emptyset, [n] \quad (\forall u \in S_n)$$

but $\widehat{F}_{n,[\varnothing]}^c = h_n = s_{(n)}$ and $\widehat{F}_{n,[[n]]}^c = e_n = s_{(1^n)}$ are important symmetric functions which should be part of the family.

Other ingredients

An unusual ring homomorphism

• Define a new product on $\mathbb{Z}[[q]]$ by

$$q^i \odot q^j := q^{\max(i,j)},$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

• Define a new product on $\mathbb{Z}[[q]]$ by

$$q^i \odot q^j := q^{\max(i,j)},$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

 Consider the ring of multivariate formal power series $\mathbb{Z}[[\mathbf{x}]] = \mathbb{Z}[[x_1, x_2, \ldots]]$ (with the usual addition and multiplication), and its subring $\mathbb{Z}[[x]]_{bd}$ consisting of bounded-degree power series.

An unusual ring homomorphism

• Define a new product on $\mathbb{Z}[[q]]$ by

$$q^i \odot q^j := q^{\max(i,j)},$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

- Consider the ring of multivariate formal power series $\mathbb{Z}[[\mathbf{x}]] = \mathbb{Z}[[x_1, x_2, \ldots]]$ (with the usual addition and multiplication), and its subring $\mathbb{Z}[[\mathbf{x}]]_{bd}$ consisting of bounded-degree power series.
- Define a ring homomorphism $\Psi: \mathbb{Z}[[\mathbf{x}]]_{\mathsf{bd}} \to \mathbb{Z}[[q]]_{\odot}$ by

$$\Psi(x_{i_1}^{m_1} \cdots x_{i_k}^{m_k}) := q^{i_k} \quad (k > 0, i_1 < \ldots < i_k, m_1, \ldots, m_k > 0)$$
 and $\Psi(1) := 1$.

• Define a new product on $\mathbb{Z}[[q]]$ by

$$q^i \odot q^j := q^{\max(i,j)},$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

- Consider the ring of multivariate formal power series $\mathbb{Z}[[\mathbf{x}]] = \mathbb{Z}[[x_1, x_2, \ldots]]$ (with the usual addition and multiplication), and its subring $\mathbb{Z}[[\mathbf{x}]]_{bd}$ consisting of bounded-degree power series.
- Define a ring homomorphism $\Psi: \mathbb{Z}[[\mathbf{x}]]_{\mathsf{bd}} o \mathbb{Z}[[q]]_{\odot}$ by

$$\Psi(x_{i_1}^{m_1} \cdots x_{i_k}^{m_k}) := q^{i_k} \quad (k > 0, \ i_1 < \ldots < i_k, \ m_1, \ldots, m_k > 0)$$
 and $\Psi(1) := 1$.

•

$$\Psi(F_{n,J}) = \frac{q^{|J|+1}}{(1-q)^n} \qquad (J \subseteq [n-1])$$

Permutations, shuffles, descents	The cyclic analogue	Cyclic quasi-symmetric functions	Other ingredients	Summary 000

Permutations, shuffles, descents

A triple binomial identity

Doron Zeilberger

$$\sum_{k} {n \choose k}^{2} {3n+k \choose 2n} = {3n \choose n}^{2}$$
WHO YOU GONNA CALL?

$$\sum_{k} {n \choose k}^{2} {3n+k \choose 2n} = {3n \choose n}^{2}$$
WHO YOU GONNA CALL?

This is a special case of the triple-binomial identity

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

A triple binomial identity

$$\sum_{k} {n \choose k}^{2} {3n+k \choose 2n} = {3n \choose n}^{2}$$
WHO YOU GONNA CALL?

This is a special case of the triple-binomial identity

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

which is equivalent to the hypergeometric identity

$$_{3}F_{2}\begin{pmatrix} a,b,-n \\ c,a+b-c-n+1 \end{pmatrix} 1 = \frac{(c-a)^{\bar{n}}(c-b)^{\bar{n}}}{c^{\bar{n}}(c-a-b)^{\bar{n}}}$$

$$\sum_{k} {n \choose k}^2 {3n+k \choose 2n} = {3n \choose n}^2$$
WHO YOU GONNA CALL?

This is a special case of the triple-binomial identity

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

which is equivalent to the hypergeometric identity

$$_{3}F_{2}\begin{pmatrix} a,b,-n \\ c,a+b-c-n+1 \end{pmatrix} 1 = \frac{(c-a)^{\bar{n}}(c-b)^{\bar{n}}}{c^{\bar{n}}(c-a-b)^{\bar{n}}}$$

We need the general case.

A triple binomial identity

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

A brief history:

 The hypergeometric statement is due to Saalschütz (1890), but equivalent to a result of Pfaff (1797).

A triple binomial identity

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

- The hypergeometric statement is due to Saalschütz (1890), but equivalent to a result of Pfaff (1797).
- Combinatorial proofs were given by Cartier-Foata (1969) and Andrews (1975).

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

- The hypergeometric statement is due to Saalschütz (1890), but equivalent to a result of Pfaff (1797).
- Combinatorial proofs were given by Cartier-Foata (1969) and Andrews (1975).
- Stanley's original shuffling result is actually a refinement of the one presented here, and describes the joint distribution of descent number and major index over u

 v.

A triple binomial identity

$$\sum_{k} {m-x+y \choose k} {n-y+x \choose n-k} {x+k \choose m+n} = {x \choose m} {y \choose n}$$

- The hypergeometric statement is due to Saalschütz (1890), but equivalent to a result of Pfaff (1797).
- Combinatorial proofs were given by Cartier-Foata (1969) and Andrews (1975).
- Stanley's original shuffling result is actually a refinement of the one presented here, and describes the joint distribution of descent number and major index over u

 v.
- Stanley used a q-analogue of the above identity, proved by Gould (1972), and equivalent to one by Jackson (1910). Gould's proof was a variation of one by Nanjundiah (1958) of the q=1 case.

... and the answer is:

... and the answer is:

Theorem (A-Gessel-Reiner-Roichman, ~ 2021)

If |A| = a, |B| = b with $A \cap B = \emptyset$, and $u \in S_A$, $v \in S_B$ with cdes([u]) = i, cdes([v]) = j, then the number of $[w] \in [u] \sqcup_c [v]$ with cdes([w]) = k is

$$\frac{k(a-i)(b-j)+(a+b-k)ij}{(a+j-i)(b+i-j)}\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}$$

Summary

Summary

- The ring cQSym of cyclic quasi-symmetric functions is intermediate between Sym and QSym.
- It has many properties in common with QSym, but also some interesting unique features.
- It has applications to combinatorial enumeration (and to other areas).

Thank You!