Noncommutative Catalan numbers: Orthogonality, Positivity and Beyond
 Vladimir Retakh (joint with Arkady Berenstein)

Our goal is threefold:

- Further generalize noncommutative Catalan numbers from our previous paper and, by specializing them, obtain (commutative and noncommutative) deformations of several classical sequences.
- Using these generalized Catalan numbers as (commutative or noncommutative) moments, complete the theory of noncommutative orthogonal polynomials which originated in 1994 by Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon.
- Establish noncommutative total positivity of the corresponding Hankel matrices.
cf. V.I. Lenin, "The Three Sources and Three Component Parts of Marxism"

Three classical definitions of Catalan numbers:

- c_{n} is the number of all monotonic lattice paths in $[0, n] \times[0, n]$ from $(0,0)$ to (n, n) which lie below the diagonal.
- Set

$$
d_{m}(n):=\left|\begin{array}{cccc}
c_{m} & c_{m+1} & \ldots & c_{m+n} \\
c_{m+1} & c_{m+2} & \ldots & c_{m+n+1} \\
& \ldots & \ldots & \\
c_{m+n} & c_{m+n+1} & \ldots & c_{m+2 n}
\end{array}\right| .
$$

Catalan numbers are solutions of the equations $d_{m}(n)=1$ for $m=0,1$ and $n \geq 0$.

- Let

$$
P=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & \ddots \\
0 & 1 & 2 & 1 & \ddots \\
0 & 0 & 1 & 2 & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Then $\left(P^{n}\right)_{00}=c_{n}=\frac{2 n!}{n!(n+1)!}$, the n-th Catalan number.

Remark: Another way

$$
P^{\prime}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & \cdots \\
1 & 1 & 1 & 0 & \ddots \\
1 & 1 & 1 & 1 & \ddots \\
1 & 1 & 1 & 1 & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Then $\left(\left(P^{\prime}\right)^{n}\right)_{00}=c_{n}$.
One can also obtain many sequences from OEIS for various matrices P.

Noncommutative Version

Let F be the free group generated by x_{k}, $k \in \mathbf{Z}_{\geq 0}$ and F_{m} be the (free) subgroup of F generated by x_{0}, \ldots, x_{m}.
To each point $p=\left(p_{1}, p_{2}\right)$ on a plane we associate its content $c(p):=p_{1}-p_{2}$. If P is a Catalan path and $p \in P$ then $c(p) \geq 0$.
We say that a point $p=\left(p_{1}, p_{2}\right)$ is a southeast (resp. northwest) corner of a path P if $\left(p_{1}-1, p_{2}\right) \in P$ and $\left(p_{1}, p_{2}+1\right) \in P$ (resp. $\left(p_{1}, p_{2}-1\right) \in P$ and $\left.\left(p_{1}+1, p_{2}\right) \in P\right)$.

4
To each Catalan path P from $(0,0)$ to (n, n) we assign an element $M_{P} \in F_{n}$ by

$$
M_{P}=\prod x_{c(p)}^{\sigma(p)},
$$

where the product is over all corners $p \in P$ (taken in the natural order) and

$$
\sigma(p)= \begin{cases}1 & \text { if } p \text { is southeast } \\ -1 & \text { if } p \text { is northwest }\end{cases}
$$

Let \mathcal{P}_{n} be the set of all Catalan paths from $(0,0)$ to (n, n). Define the noncommutative Catalan number $C_{n} \in \mathbf{F}_{n}$ by

$$
C_{n}=\sum_{P \in \mathcal{P}_{n}} M_{P} .
$$

Example: $M_{P}=x_{2} x_{0}^{-1} x_{1}$ for the above path P

$$
\begin{aligned}
C_{0} & =x_{0}, C_{1}=x_{1}, \\
& C_{2}=x_{2}+x_{1} x_{0}^{-1} x_{1}, \\
C_{3} & =x_{3}+x_{2} x_{1}^{-1} x_{2}+x_{2} x_{0}^{-1} x_{1}+x_{1} x_{0}^{-1} x_{2}+x_{1} x_{0}^{-1} x_{1} x_{0}^{-1} x_{1}
\end{aligned}
$$

Under the counit homomorphism $x_{k} \mapsto 1$ the image of C_{n} is c_{n}, the ordinary Catalan number.
Symmetry: Under anti-automorphism ${ }^{7}$ of $\mathbf{Z} F$ such that $\bar{x}_{k}=x_{k}$ for $k \geq 0$ we have $\bar{C}_{n}=C_{n}$ for any n.

6

Quasideterminant equations

Introduce Hankel matrix

$$
H_{m}(n)=\left(\begin{array}{cccc}
C_{m} & C_{m+1} & \ldots & C_{m+n} \\
C_{m+1} & C_{m+2} & \ldots & C_{m+n+1} \\
& \ldots & \ldots & \\
C_{m+n} & C_{m+n+1} & \ldots & C_{m+2 n}
\end{array}\right)
$$

Define its quasideterminant $Q_{m}(n)$ as the inverse to the southeast element of $H_{m}(n)^{-1}$. Can be computed as

$$
Q_{m}(n)=C_{m+2 n}-r_{n}(m) H_{m}(n-1)^{-1} r_{n}(m)^{T}
$$

where $r_{n}(m)=\left(C_{m+n}, \ldots C_{m+2 n-1}\right)$.
Note: $Q_{m}(n)=d_{m}(n) / d_{m}(n-1)=1$ under specialization $x_{k} \mapsto 1$.

Theorem 1. Laurent polynomials C_{n} are solutions of the system

$$
Q_{m}(n)=x_{m+2 n}, \quad m=0,1 ; \quad n \geq 0
$$

$L D U$-factorizations of Hankel matri-

 cesLet $H_{m}:=H_{m}(\infty)$.
Problem: $H_{m}=L_{m} D_{m} U_{m}$. Describe entries of L_{m}, D_{m}, U_{m} for $m=0,1$. It is clear that $U_{m}(i, j)=\bar{L}_{m}(j, i)$.

$$
D_{m}=\operatorname{diag}\left(x_{m}, x_{m+2}, x_{m+4}, \ldots\right)
$$

To describe entries of L_{m} introduce truncated Catalan numbers (parking functions).
Let \mathcal{P}_{n}^{k} be the set of all Catalan paths P from $(0,0)$ to (n, n) such that the rightmost southeast corner of P has coordinates (n, s), $s \leq k \leq n$. Then

$$
C_{n}^{k}=\sum_{P \in \mathcal{P}_{n}^{k}} M_{P}
$$

$C_{n}^{0}=x_{n}, C_{n}^{1}=x_{n}+\sum_{i=1}^{n-1} x_{i} x_{i-1}^{-1} x_{n-1}$,
$C_{n}^{n-1}=C_{n}^{n}=C_{n}$
Theorem 2. For $j \geq i$ and $m=0,1$

$$
L_{m}(j, i)=C_{j+i+m}^{j-i} \cdot x_{2 i+m}^{-1}
$$

In particular, $L_{m}(j, 0)=C_{j+m} \cdot x_{m}^{-1}$

Entries of L_{m}^{-1} are noncommutative binomial coefficients (up to a sign).
$y_{k}:=x_{k} x_{k-1}^{-1} ; \quad y_{J}:=y_{j_{k}+k-1} \cdots y_{j_{2}+1} y_{j_{1}}$
for any $J=\left\{j_{1}<j_{2}<\cdots<j_{k}\right\}, k \geq 1$.
Define the binomial coefficient

$$
\binom{\mathbf{n}}{\mathbf{k}}=\sum_{J \subset[1, n] \mid, J]=k} y_{J}
$$

Under specialization $x_{k} \mapsto q^{k(k-1) / 2}$ we have

$$
\binom{\mathbf{n}}{\mathbf{k}} \mapsto q^{k(k-1)}\binom{n}{k}_{q}
$$

Examples: $\binom{\mathbf{n}}{0}=1,\binom{\mathbf{n}}{1}=\sum_{i=1}^{n} y_{i}$,
$\binom{\mathbf{n}}{2}=\sum_{1 \leq i<j \leq n} y_{j+1} y_{i},\binom{\mathbf{n}}{\mathbf{n}}=y_{2 n-1} \ldots y_{3} y_{1}$
Pascal: $\binom{\mathbf{n}+\mathbf{1}}{\mathbf{k}}=\binom{\mathbf{n}}{\mathbf{k}}+y_{n+k}\binom{\mathbf{n}}{\mathbf{k}-1}$
Theorem 3. For $m=0,1$ and $0 \leq i \leq j$

$$
L_{m}^{-1}(j, i)=(-1)^{i+j}\binom{\mathbf{i}+\mathbf{j}+\mathbf{m}}{\mathbf{j}-\mathbf{i}}
$$

Third approach
Theorem 4. Let $\mathbf{x}=\left\{x_{0}, x_{1}, \ldots\right\}$ be a sequence of free variables. Set
$J_{\mathbf{x}}=\left(\begin{array}{cccc}x_{1} x_{0}^{-1} & 1 & 0 & \cdots \\ x_{2} x_{0}^{-1} & x_{2} x_{1}^{-1}+x_{3} x_{2}^{-1} & 1 & \ddots \\ 0 & x_{4} x_{2}^{-1} & x_{4} x_{3}^{-1}+x_{5} x_{4}^{-1} & \ddots \\ \vdots & \ddots & \ddots & \ddots\end{array}\right)$
Then $\left(J_{\mathbf{x}}\right)_{00}^{n} \cdot x_{0}=C_{n}$.
To put expressions $\left(P^{n}\right)_{00}$ in a context. Set

$$
E=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & & 0 \\
0 & 0 & 0 & 1 & \ldots \\
& & \ldots & &
\end{array}\right)
$$

Consider matrix equation

$$
L_{P} P=E L_{P}
$$

P is production matrix,
L_{P} is output matrix.
Exercise. The i-th row of L is the 0 -th row of $P^{i}, i \geq 0$.

If P has $P_{i, i+1}=1$ and P is a Hessenberg matrix, i.e. $P_{i j}=0$ for all $j>i+1$ then L_{P} is lower unitriangular and thus invertible.

A symmetric version of $J_{\mathbf{x}}$:

$$
\tilde{J}_{\mathbf{x}}=\left(\begin{array}{cccc}
x_{1} & x_{2} & 0 & \cdots \\
x_{2} & x_{2} x_{1}^{-1} x_{2}+x_{3} & x_{4} & \ddots \\
0 & x_{4} & x_{4} x_{3}^{-1} x_{4}+x_{5} & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Then $H_{1}=L_{0} \tilde{J}_{\mathbf{x}} \bar{L}_{0}$.

Fix a unital ring R and an anti-involution on R. For any left R-linear map $\mu: R[t] \rightarrow$ R define an inner product $\langle\cdot, \cdot\rangle_{\mu}$ on $R[t]$ by

$$
\left\langle p, \sum_{i} a_{i} t^{i}\right\rangle_{\mu}:=\sum_{i} \mu\left(p \cdot t^{i}\right) \bar{a}_{i}
$$

For any matrix $M \in \operatorname{Mat}(R)$ denote by M^{T} the transposed of M, i.e., $\left(M^{T}\right)_{i j}=$ $\bar{M}_{j i}$ for all $i, j \geq 0$. We say that M is symmetric if $M^{T}=M$, i.e., $M_{j i}=\bar{M}_{i j}$ for all $i, j \geq 0$.

Theorem 5. Let $\pi_{\bullet}=\left\{\pi_{k}\right\}$ be a monic orthogonal basis in $R[t]$ with respect to some $\langle\cdot, \cdot\rangle_{\mu}$. Then:
(a) π_{\bullet} admits a tri-diagonal Jacobi matrix of π_{\bullet} (i.e., $t \pi_{k}=\sum_{\ell} J_{k \ell} \pi_{\ell}$) such that $J D$ is symmetric in $\operatorname{Mat}(R)$ with a unique symmetric diagonal matrix $D, D_{00}=\mu_{0}$. (b) Let $H_{k}:=\left(\mu\left(t^{k+i+j}\right)\right), J_{k}=\left(\left\langle\pi_{i}(t), t^{k} \pi_{j}(t)\right\rangle_{\mu}\right)$, $i, j, k \geq 0$. Then $H_{k}=L_{J} J_{k} L_{J}^{T}, J_{k}=J^{k} D$ for $k \geq 0$.
(c) $\left\langle\pi_{k}(t), \pi_{k}(t)\right\rangle_{\mu}=D_{k k}$ and $\pi_{k}(t)=\sum_{\ell=0}^{k}\left(L_{J}^{-1}\right)_{k \ell}$. t^{ℓ} for $k \geq 0$.
Corollary. $\mu\left(t^{n}\right)=\left(J^{n} D\right)_{00}$ and

$$
H_{0}=L_{J} D L_{J}^{T}, \quad J=L_{J}^{-1} H_{1} L_{J}^{-T} D^{-1} .
$$

This simplifies the parametrization of (commutative and noncommutative) orthogonal polynomials because the entries of the matrix $L_{J_{\mathrm{x}}}^{-1}$ involved in the Theorem are, up to sign, are generalized binomial coefficients, in
particular

$$
\pi_{n}(t)=\sum_{k=0}^{n}(-1)^{n-k}\binom{\mathbf{n}+\mathbf{k}}{\mathbf{n}-\mathbf{k}} t^{k}
$$

for all $n \geq 0$. The polynomials π_{\bullet} satisfy the recursion $\pi_{0}(t)=x_{0}, \pi_{1}(t)=t-x_{1}$,

$$
\begin{aligned}
t \pi_{n}(t)= & \pi_{n+1}+\left(x_{2 n+1} x_{2 n}^{-1}-x_{2 n} x_{2 n-1}^{-1}\right) \pi_{n}(t)+ \\
& x_{2 n} x_{2 n-2}^{-1} \pi_{n-1}(t), n \geq 1
\end{aligned}
$$

Specializing all x_{i} to $1, \pi_{\bullet}$ becomes the Chebyshev polynomials of third kind, the polynomials satisfy the recursion $\pi_{0}=1$, $\pi_{1}=t-1$,

$$
t \pi_{n}=\pi_{n-1}+2 \pi_{n}+\pi_{n+1}, n \geq 1
$$

Returning to the general case, we can notice some positivity built in $J_{\mathbf{x}}$, which is manifested by its factorization:

$$
J_{\mathbf{x}}=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
y_{2} & 1 & 0 & \ddots \\
0 & y_{4} & 1 & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right) \cdot\left(\begin{array}{cccc}
y_{1} & 1 & 0 & \ldots \\
0 & y_{3} & 1 & 0 \\
0 & 0 & y_{5} & 1 \\
0 \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right)
$$

where we abbreviated $y_{i}=x_{i} x_{i-1}^{-1}$ for $i \geq 1$. Thus, J_{x} totally nonnegative if all x_{i} are declared positive.

