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Our goal is threefold:

• Further generalize noncommutative Cata-
lan numbers from our previous paper and,
by specializing them, obtain (commutative
and noncommutative) deformations of sev-
eral classical sequences.

•Using these generalized Catalan numbers
as (commutative or noncommutative) mo-
ments, complete the theory of noncommu-
tative orthogonal polynomials which origi-
nated in 1994 by Gelfand, Krob, Lascoux,
Leclerc, Retakh, Thibon.

• Establish noncommutative total positiv-
ity of the corresponding Hankel matrices.

cf. V.I. Lenin, “The Three Sources and
Three Component Parts of Marxism”
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Three classical definitions of Catalan num-
bers:

• cn is the number of all monotonic lattice
paths in [0, n] × [0, n] from (0, 0) to (n, n)
which lie below the diagonal.

• Set

dm(n) :=

∣∣∣∣∣∣∣∣
cm cm+1 . . . cm+n

cm+1 cm+2 . . . cm+n+1

. . . . . .
cm+n cm+n+1 . . . cm+2n

∣∣∣∣∣∣∣∣ .
Catalan numbers are solutions of the equa-

tions dm(n) = 1 for m = 0, 1 and n ≥ 0.

• Let

P =


1 1 0 0 . . .
1 2 1 0 . . .
0 1 2 1 . . .
0 0 1 2 . . .
... . . . . . . . . . . . .


Then (P n)00 = cn = 2n!

n!(n+1)!, the n-th

Catalan number.
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Remark: Another way

P ′ =


1 1 0 0 · · ·
1 1 1 0 . . .
1 1 1 1 . . .
1 1 1 1 . . .
... . . . . . . . . . . . .


Then ((P ′)n)00 = cn.

One can also obtain many sequences from
OEIS for various matrices P .

Noncommutative Version

Let F be the free group generated by xk,
k ∈ Z≥0 and Fm be the (free) subgroup of
F generated by x0, . . . , xm.

To each point p = (p1, p2) on a plane we
associate its content c(p) := p1 − p2. If P
is a Catalan path and p ∈ P then c(p) ≥ 0.

We say that a point p = (p1, p2) is a south-
east (resp. northwest) corner of a path P
if (p1−1, p2) ∈ P and (p1, p2+1) ∈ P (resp.
(p1, p2 − 1) ∈ P and (p1 + 1, p2) ∈ P ).
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To each Catalan path P from (0, 0) to
(n, n) we assign an element MP ∈ Fn by

MP =
∏

x
σ(p)
c(p) ,

where the product is over all corners p ∈ P
(taken in the natural order) and

σ(p) =

{
1 if p is southeast

−1 if p is northwest
.

Let Pn be the set of all Catalan paths from
(0, 0) to (n, n). Define the noncommuta-
tive Catalan number Cn ∈ Fn by

Cn =
∑
P∈Pn

MP .
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Example: MP = x2x
−1
0 x1 for the above

path P

C0 = x0, C1 = x1,

C2 = x2 + x1x
−1
0 x1,

C3 = x3+x2x
−1
1 x2+x2x

−1
0 x1+x1x

−1
0 x2+x1x

−1
0 x1x

−1
0 x1

Under the counit homomorphism xk 7→ 1
the image of Cn is cn, the ordinary Catalan
number.

Symmetry: Under anti-automorphism · of
ZF such that xk = xk for k ≥ 0 we have
Cn = Cn for any n.
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Quasideterminant equations

Introduce Hankel matrix

Hm(n) =


Cm Cm+1 . . . Cm+n

Cm+1 Cm+2 . . . Cm+n+1

. . . . . .
Cm+n Cm+n+1 . . . Cm+2n


Define its quasideterminant Qm(n) as the
inverse to the southeast element ofHm(n)−1.
Can be computed as

Qm(n) = Cm+2n−rn(m)Hm(n−1)−1rn(m)T

where rn(m) = (Cm+n, . . . Cm+2n−1).

Note: Qm(n) = dm(n)/dm(n−1) = 1 under
specialization xk 7→ 1.

Theorem 1. Laurent polynomials Cn are
solutions of the system

Qm(n) = xm+2n, m = 0, 1; n ≥ 0
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LDU-factorizations of Hankel matri-
ces

Let Hm := Hm(∞).

Problem: Hm = LmDmUm. Describe en-
tries of Lm, Dm, Um for m = 0, 1. It is clear
that Um(i, j) = Lm(j, i).

Dm = diag(xm, xm+2, xm+4, . . . )

To describe entries of Lm introduce trun-
cated Catalan numbers (parking functions).

Let Pkn be the set of all Catalan paths P
from (0, 0) to (n, n) such that the rightmost
southeast corner of P has coordinates (n, s),
s ≤ k ≤ n. Then

Ck
n =

∑
P∈Pkn

MP

C0
n = xn, C1

n = xn +
∑n−1

i=1 xix
−1
i−1xn−1,

Cn−1
n = Cn

n = Cn

Theorem 2. For j ≥ i and m = 0, 1

Lm(j, i) = Cj−i
j+i+m · x

−1
2i+m

In particular, Lm(j, 0) = Cj+m · x−1m
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Entries of L−1m are noncommutative bino-
mial coefficients (up to a sign).

yk := xkx
−1
k−1; yJ := yjk+k−1 · · · yj2+1yj1

for any J = {j1 < j2 < · · · < jk}, k ≥ 1.

Define the binomial coefficient(
n

k

)
=

∑
J⊂[1,n],|J |=k

yJ

Under specialization xk 7→ qk(k−1)/2 we have(
n

k

)
7→ qk(k−1)

(
n

k

)
q

Examples:
(
n
0

)
= 1,

(
n
1

)
=
∑n

i=1 yi,(
n
2

)
=
∑

1≤i<j≤n yj+1yi,
(
n
n

)
= y2n−1 . . . y3y1

Pascal:
(
n+1
k

)
=
(
n
k

)
+ yn+k

(
n

k−1
)

Theorem 3. For m = 0, 1 and 0 ≤ i ≤ j

L−1m (j, i) = (−1)i+j
(
i + j + m

j− i

)



9

Third approach

Theorem 4. Let x = {x0, x1, . . .} be a
sequence of free variables. Set

Jx =


x1x

−1
0 1 0 . . .

x2x
−1
0 x2x

−1
1 + x3x

−1
2 1 . . .

0 x4x
−1
2 x4x

−1
3 + x5x

−1
4

. . .
... . . . . . . . . .


Then (Jx)n00 · x0 = Cn.

To put expressions (P n)00 in a context. Set

E =


0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .

. . .


Consider matrix equation

LPP = ELP
P is production matrix,
LP is output matrix.
Exercise. The i-th row of L is the 0-th
row of P i, i ≥ 0.
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If P has Pi,i+1 = 1 and P is a Hessenberg
matrix, i.e. Pij = 0 for all j > i+1 then LP
is lower unitriangular and thus invertible.

A symmetric version of Jx:

J̃x =


x1 x2 0 . . .
x2 x2x

−1
1 x2 + x3 x4 . . .

0 x4 x4x
−1
3 x4 + x5 . . .

... . . . . . . . . .


Then H1 = L0J̃xL0.

Fix a unital ring R and an anti-involution ·
on R. For any left R-linear map µ : R[t]→
R define an inner product 〈·, ·〉µ on R[t] by

〈p,
∑
i

ait
i〉µ :=

∑
i

µ(p · ti)ai

For any matrix M ∈ Mat(R) denote by
MT the transposed of M , i.e., (MT )ij =
M ji for all i, j ≥ 0. We say that M is
symmetric if MT = M , i.e., Mji = M ij for
all i, j ≥ 0.
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Theorem 5. Let π• = {πk} be a monic or-
thogonal basis in R[t] with respect to some
〈·, ·〉µ. Then:

(a) π• admits a tri-diagonal Jacobi matrix
of π• (i.e., tπk =

∑̀
Jk`π`) such that JD is

symmetric in Mat(R) with a unique sym-
metric diagonal matrix D, D00 = µ0.

(b) LetHk :=
(
µ(tk+i+j)

)
, Jk =

(
〈πi(t), tkπj(t)〉µ

)
,

i, j, k ≥ 0. Then Hk = LJJkL
T
J , Jk = JkD

for k ≥ 0.

(c) 〈πk(t), πk(t)〉µ = Dkk and πk(t) =
k∑̀
=0

(L−1J )k`·

t` for k ≥ 0.

Corollary. µ(tn) = (JnD)00 and

H0 = LJDL
T
J , J = L−1J H1L

−T
J D−1 .

This simplifies the parametrization of (com-
mutative and noncommutative) orthogonal
polynomials because the entries of the ma-
trix L−1Jx involved in the Theorem are, up to
sign, are generalized binomial coefficients, in
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particular

πn(t) =

n∑
k=0

(−1)n−k
(
n + k

n− k

)
tk

for all n ≥ 0. The polynomials π• satisfy
the recursion π0(t) = x0, π1(t) = t− x1,
tπn(t) = πn+1+(x2n+1x

−1
2n−x2nx−12n−1)πn(t)+

x2nx
−1
2n−2πn−1(t), n ≥ 1 .

Specializing all xi to 1, π• becomes the
Chebyshev polynomials of third kind, the
polynomials satisfy the recursion π0 = 1,
π1 = t− 1,

tπn = πn−1 + 2πn + πn+1, n ≥ 1

Returning to the general case, we can notice
some positivity built in Jx, which is mani-
fested by its factorization:

Jx =


1 0 0 . . .
y2 1 0 . . .
0 y4 1 . . .
... . . . . . . . . .

·

y1 1 0 . . .
0 y3 1 0 . . .
0 0 y5 1 . . .
... . . . . . . . . .

 ,

where we abbreviated yi = xix
−1
i−1 for i ≥ 1.

Thus, Jx totally nonnegative if all xi are
declared positive.


