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I. The main conjecture

Question: What is the minimum number of 

colors required to color all k-subsets of an n-set 

so that every color class is r-wise intersecting ?

Definition: A family of subsets is r-wise 

intersecting if every collection of at most r 

members of it has a common point.

Note: one color suffices iff k>(r-1)n/r
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Construction:

s  = largest integer smaller than 
𝒓𝒌

𝒓−𝟏

For i<n-s+1,  Fi = of all k-subsets A with min A=i

Color classes: these Fi and one more color class

containing all remaining k-subsets

This gives that 𝒏 −
𝒓

𝒓−𝟏
𝒌 − 𝟏 colors suffice.

Conjecture: this is tight for all k ≤ (r-1)k/r.
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Conjecture (equivalent formulation):  If  

n ≥ (t-1)+kr/(r-1) then in any t-coloring of all k-

subsets of an n-set [n]={1,2,…,n} there are (at 

most) r  k-subsets of the same color that do 

not share a common point. 

Note: for r=2 this is Kneser’s conjecture (1955) 

proved by Lovász (1978)
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Simplified proofs:  Bárány (1978), Greene (2002)

All proofs are topological, applying the Borsuk-

Ulam Theorem.
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Conjecture (equivalent formulation):  If  

n ≥ (t-1)+kr/(r-1) then in any t-coloring of all k-

subsets of an n-set [n]={1,2,…,n} there are (at 

most) r  k-subsets of the same color that do 

not share a common point. 
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II. Tackling the conjecture: attempt no. 0

Apply tools from equivariant topology in the 

spirit of the Bárány-Shlosman-Szűcs (81) 

topological Tverberg’s Theorem. 

Approach appears to give an approximate 

version of the conjecture for some parameters 
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III. Tackling the conjecture: attempt no. 1

Try to reduce it to known results about 

Kneser Hypergraphs

Definition: The Kneser Hypergraph KGr(k,n) is the 

r-uniform hypergraph whose vertices are all k-

subsets of [n], where an r-tuple of k- subsets 

forms an edge iff the subsets are pairwise 

disjoint.

Theorem [Alon, Frankl, Lovász (86), conjectured 

by Erdős (73)]: If n≥(t-1)(r-1)+kr then the 

chromatic number of KGr(k,n) is > t
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Thm (AFL, equivalent formulation): if 

n≥(t-1)(r-1)+kr then in any t-coloring of all k-

subsets of [n] there are r pairwise disjoint 

subsets of the same color.

Conjecture: if n≥(t-1)+kr/(r-1) then in any t-coloring

of all k-subsets of [n] there are r subsets of the 

same color that do not share a common point. 
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Conjecture: if n≥(t-1)+kr/(r-1) then in any t-coloring of all k-

subsets of [n] there are r subsets of the same color that do 

not share a common point. 

Attempted proof: Given such a t-coloring, replace

each i in [n] by a set Ci of size r-1. For each k-

subset F={i1,i2, …, ik}, let C(F) be all (r-1)k subsets 

containing one element of each 𝑪𝒊𝒋 and color all

members of C(F) by the color of F.

This gives a t-coloring of (almost all) k-subsets

of a set of size at least (t-1)(k-1)+kr. The hope is to 

use AFL and get r pairwise disjoint subsets of the 

same color here, which would give r subsets of 

the same color with no common point. 
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The trouble is that this is not a coloring of all k-

subsets, the subsets containing more than one 

element in some Ci are absent. Thus we cannot 

use AFL, as we don’t have here a coloring of the 

hypergraph KGr(k,n), only a coloring of an 

induced subgraph of it.

Wishful thinking: maybe this induced 

subgraph has the same chromatic number as 

the full hypergraph ?
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IV. Tackling the conjecture: attempt no. 2

Try to reduce it to known results about 

Stable Kneser Hypergraphs

Definition: A k-subset F of [n] is r-stable if any 

two elements of F are at distance at least r in the 

cyclic order on [n].  

The Stable Kneser Hypergraph SKGr(k,n) is the 

induced subgraph of KGr(k,n) whose vertices are 

all r-stable k-subsets of [n].
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In the construction in attempt no. 1, if we place 

every set Ci contiguously along the cycle of 

length (r-1)n, all edges of SKGr(k,n) do appear
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Conjecture [Ziegler (2002), Alon, Drewnowski, 

Łuczak (2009)]: The chromatic number of 

SKGr(k,n) is equal to that of the full hypergraph 

KGr(k,n). 

This holds for r=2, 

as proved by 

Schrijver (1978)

In ADL it is shown that if it holds for r1 and r2 , it 

also holds for r=r1r2 . Thus it holds for any r 

which is a power of 2.

This is used in ADL to construct ideals of 

natural numbers which are not nonatomic yet 

have the Nykodým property.
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It gives unexpected examples of ideals with the 

positive summability property, settling a problem 

of Drewnowski and Paul (2000). 

The relevant property of stable Kneser

hypergraphs is the following:  For every integer 

r ≥ 2, any (small) ϵ >0 and any (large) C, there exists 

a stable Kneser r-uniform hypergraph K=(V,E) with 

chromatic number > C satisfying the following:  

For any weight function w(v) on the vertices and for 

any 1≤s<r, there exists a subset W of V containing 

at most s vertices of any edge, so that 

 

𝒗∈𝑾

𝒘 𝒗 ≥ 𝟏 − 𝝐
𝒔

𝒓
 

𝒗∈𝑽

𝒘(𝒗)
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The Ziegler+ADL conjecture is open for all r 

which is not a power of 2, but a weaker result 

of Frick (2020) about this conjecture suffices 

to prove the conjecture discussed here for 

every prime r. 
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Conjecture [Ziegler, ADL]: The chromatic number of 

SKGr(k,n) is equal to that of the full hypergraph 

KGr(k,n). Equivalently: if n ≥ (t-1)(r-1)+kr, then in any t-

coloring of the r-stable k-subsets of [n] there are r pairwise 

disjoint r-stable subsets of the same color. 

The argument that if it holds for r1 and r2 , it also 

holds for r=r1r2 :

Given a t-coloring of the r=r1r2 –stable k-subsets 

of [n], put k1=(t-1)(r1-1)+kr1 and define a t-coloring 

of the r2-stable k1-subsets F of [n] as follows. 

Every r1-stable k-subset of F is r=r1r2 stable in 

[n], hence has a color. By the result for r1 there 

are r1 pairwise disjoint r1-stable k-subsets of F of 

some color j, color F by this color j.
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Note that n ≥ (t-1)(r1r2-1)+kr1r2=(t-1)(r2-1)+k1r2 =

(t-1)(r2-1)+[(t-1)(r1-1)+kr1]r2     (!)

By the result for r2 there are r2 pairwise 

disjoint r2 –stable k1-subsets of the same 

color j. Each of them contains r1 pairwise 

disjoint r1-stable k-subsets of the same color 

j, giving altogether r=r1r2 pairwise disjoint 

r1r2-stable k-subsets of color j in the original 

coloring.  
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Example: t=r1=r2=k=2,  r=r1r2=4, k1=(t-1)(r1-1)+kr1=5

n=(t-1)(r-1)+kr=11
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Example: t=r1=r2=k=2,  r=r1r2=4, k1=(t-1)(r1-1)+kr1=5

n=(t-1)(r-1)+kr=11
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Example: t=r1=r2=k=2,  r=r1r2=4, k1=(t-1)(r1-1)+kr1=5

n=(t-1)(r-1)+kr=11
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V. Remarks, Problems

Does the conjecture hold for all admissible 

values of the parameters t, k, r ?

Remark: easy to see it holds for r>k (as in this 

case every r-wise intersecting family which does 

not contain a common point [is not a star] is of 

size at most k, hence if we have less than t-1 

stars we can’t cover all k-subsets)
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Problem (with Ryan Alweiss): Let V be a linear 

space of dimension m of vectors of length n 

over F2 and let F be the family of  2m -1 subsets 

of [n]  whose characteristic vectors are the 

nonzero members of V.  Can F be partitioned 

into o(m) 3-wise intersecting families ?
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Problem (with Ryan Alweiss): Let V be a linear space of 

dimension m of vectors of length n over F2 and let F be 

the family of  2m -1 subsets of [n]  whose characteristic 

vectors are the nonzero members of V.  Can F be 

partitioned into o(m) 3-wise intersecting families ?

Remarks: By the validity of the main conjecture

for r=3 the answer is NO if n is at most 2.999 m

If the answer is NO for every such V with 

n=20 m, then in any coloring of the elements of 

the group 𝑭𝟐
𝒎 by o(m) colors there is a 

monochromatic solution to the equation x+y=z  

(This is Schur’s Problem for 𝑭𝟐
𝒎)
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Problem (with Ryan Alweiss): Let V be a linear space of 

dimension m of vectors of length n over F2 and let F be 

the family of  2m -1  subsets of [n]  whose characteristic 

vectors are the nonzero members of V.  Can F be 

partitioned into o(m) 3-wise intersecting families ?

If the answer is YES for some such V and some n, 

then the t-colors Ramsey number

r(3,3,…,3) is larger than exponential in t and hence 

the maximum possible Shannon Capacity of a 

graph with independence number 2 is not finite 

(this is the Schur-Erdős Problem).  

Note that 0.75 m colors suffice using some 

properties of the Clebsch graph
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Thank You


