
Systematic counting of pattern-avoiding

partitions and some new partition identities

Rutgers University, Experimental Math Seminar, November

2019

Matthew C. Russell, Mingjia Yang*, Doron Zeilberger

Rutgers University

Quick introduction to integer partitions

∗ A partition of a positive integer n is a finite nonincreasing sequence

of positive integers λ1, λ2, ..., λk whose sum is equal to n. For

example, (4, 4, 2, 1) is a partition of 11.

∗ The (ordinary) generating function of a sequence {an}n≥0 is a power

series whose coefficients are the terms in the sequence (lining up in

order). That is,
∑∞

n=0 anq
n is the generating function for the

sequence {an}n≥0.

For example, let an be the number of partitions of n into parts all

equal to a positive integer i . Then the generating function of

{an}n≥0 is:
1

1− qi
= 1 + qi + q2i + ...

1

Quick introduction to integer partitions

∗ A partition of a positive integer n is a finite nonincreasing sequence

of positive integers λ1, λ2, ..., λk whose sum is equal to n. For

example, (4, 4, 2, 1) is a partition of 11.

∗ The (ordinary) generating function of a sequence {an}n≥0 is a power

series whose coefficients are the terms in the sequence (lining up in

order). That is,
∑∞

n=0 anq
n is the generating function for the

sequence {an}n≥0.

For example, let an be the number of partitions of n into parts all

equal to a positive integer i . Then the generating function of

{an}n≥0 is:
1

1− qi
= 1 + qi + q2i + ...

1

Some fascinating partition identities

q-Pochhammer Symbol: (a; q)n :=
∏n−1

j=0 (1− aqj)

(a; q)∞ :=
∏

j≥0(1− aqj)

∗ Euler’s Odd Distinct identity (1748):

∏
all i

(1 + qi) =
∏
all i

1− q2i

1− qi
=

∏
i odd

1

1− qi
=

1

(q; q2)∞

distinct parts → odd parts

∗ Rogers-Ramanujan identities (1894):

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞

adjacent parts differ by at least 2 → parts 1 or 4 mod 5
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞

adjacent parts differ by at least 2, smallest part at least 2 → parts 2

or 3 mod 5

2

Some fascinating partition identities

q-Pochhammer Symbol: (a; q)n :=
∏n−1

j=0 (1− aqj)

(a; q)∞ :=
∏

j≥0(1− aqj)

∗ Euler’s Odd Distinct identity (1748):

∏
all i

(1 + qi) =
∏
all i

1− q2i

1− qi
=

∏
i odd

1

1− qi
=

1

(q; q2)∞

distinct parts → odd parts

∗ Rogers-Ramanujan identities (1894):

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞

adjacent parts differ by at least 2 → parts 1 or 4 mod 5
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞

adjacent parts differ by at least 2, smallest part at least 2 → parts 2

or 3 mod 5

2

Some fascinating partition identities

q-Pochhammer Symbol: (a; q)n :=
∏n−1

j=0 (1− aqj)

(a; q)∞ :=
∏

j≥0(1− aqj)

∗ Euler’s Odd Distinct identity (1748):

∏
all i

(1 + qi) =
∏
all i

1− q2i

1− qi
=

∏
i odd

1

1− qi
=

1

(q; q2)∞

distinct parts → odd parts

∗ Rogers-Ramanujan identities (1894):

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞

adjacent parts differ by at least 2 → parts 1 or 4 mod 5
∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞

adjacent parts differ by at least 2, smallest part at least 2 → parts 2

or 3 mod 5 2

Ramanujan’s congruences (a digression)

p(n): number of partitions of n.

p(5k + 4) ≡ 0 (mod 5)

p(7k + 5) ≡ 0 (mod 7)

p(11k + 6) ≡ 0 (mod 11)

3

Ramanujan’s congruences (a digression)

p(n): number of partitions of n.

p(5k + 4) ≡ 0 (mod 5)

p(7k + 5) ≡ 0 (mod 7)

p(11k + 6) ≡ 0 (mod 11)

3

Efficient algorithms for counting

pattern-avoiding partitions

Motivation and background

p(n) : number of partitions of n.

P(n,m) : number of partitions of n with the largest part m.

p(n) =
n∑

m=1

P(n,m).

P(n,m) =
m∑

m′=1

P(n −m,m′) , n ≥ m ≥ 1

⇒ P(n,m) = P(n − 1,m − 1) + P(n −m,m).

The last equation gives us an efficient way (quadratic in time and

memory) to compute a table for p(n). But what if we want to count not

just any partition efficiently, but partitions with some restrictions? What

if we only want to count partitions whose adjacent parts differ by at least

2 (Rogers-Ramanujan)?

4

Motivation and background

p(n) : number of partitions of n.

P(n,m) : number of partitions of n with the largest part m.

p(n) =
n∑

m=1

P(n,m).

P(n,m) =
m∑

m′=1

P(n −m,m′) , n ≥ m ≥ 1

⇒ P(n,m) = P(n − 1,m − 1) + P(n −m,m).

The last equation gives us an efficient way (quadratic in time and

memory) to compute a table for p(n).

But what if we want to count not

just any partition efficiently, but partitions with some restrictions? What

if we only want to count partitions whose adjacent parts differ by at least

2 (Rogers-Ramanujan)?

4

Motivation and background

p(n) : number of partitions of n.

P(n,m) : number of partitions of n with the largest part m.

p(n) =
n∑

m=1

P(n,m).

P(n,m) =
m∑

m′=1

P(n −m,m′) , n ≥ m ≥ 1

⇒ P(n,m) = P(n − 1,m − 1) + P(n −m,m).

The last equation gives us an efficient way (quadratic in time and

memory) to compute a table for p(n). But what if we want to count not

just any partition efficiently, but partitions with some restrictions? What

if we only want to count partitions whose adjacent parts differ by at least

2 (Rogers-Ramanujan)?

4

Definition

∗ A pattern is a list a = [a1, a2, . . . , ar] (r ≥ 1) of non-negative

integers.

∗ A partition λ = (λ1, . . . , λk) contains the pattern

a = [a1, a2, . . . , ar] if there exists 1 ≤ i ≤ k − r such that:

λi − λi+1 = a1, λi+1 − λi+2 = a2, . . . , λi+r−1 − λi+r = ar .

∗ For example, (7, 6, 5, 4, 4) contains the pattern [1], the pattern [0],

the pattern [1, 1], the pattern [1, 0], and so on.

∗ A partition λ avoids (globally) the pattern if it does not contain the

pattern.

∗ A partition λ avoids (globally) the set of patterns A, if it avoids

every pattern in A. For example, partitions whose adjacent parts

differ by at least 2 is equivalent to partitions that avoid {[0], [1]}.

∗ A partition λ contains a pattern at the beginning if we begin from

the largest part of the partition and the pattern immediately appears.

For example, (7,6,5,4,4) contains the pattern [1, 1] at the beginning.

5

Definition

∗ A pattern is a list a = [a1, a2, . . . , ar] (r ≥ 1) of non-negative

integers.

∗ A partition λ = (λ1, . . . , λk) contains the pattern

a = [a1, a2, . . . , ar] if there exists 1 ≤ i ≤ k − r such that:

λi − λi+1 = a1, λi+1 − λi+2 = a2, . . . , λi+r−1 − λi+r = ar .

∗ For example, (7, 6, 5, 4, 4) contains the pattern [1], the pattern [0],

the pattern [1, 1], the pattern [1, 0], and so on.

∗ A partition λ avoids (globally) the pattern if it does not contain the

pattern.

∗ A partition λ avoids (globally) the set of patterns A, if it avoids

every pattern in A. For example, partitions whose adjacent parts

differ by at least 2 is equivalent to partitions that avoid {[0], [1]}.

∗ A partition λ contains a pattern at the beginning if we begin from

the largest part of the partition and the pattern immediately appears.

For example, (7,6,5,4,4) contains the pattern [1, 1] at the beginning.

5

Definition

∗ A pattern is a list a = [a1, a2, . . . , ar] (r ≥ 1) of non-negative

integers.

∗ A partition λ = (λ1, . . . , λk) contains the pattern

a = [a1, a2, . . . , ar] if there exists 1 ≤ i ≤ k − r such that:

λi − λi+1 = a1, λi+1 − λi+2 = a2, . . . , λi+r−1 − λi+r = ar .

∗ For example, (7, 6, 5, 4, 4) contains the pattern [1], the pattern [0],

the pattern [1, 1], the pattern [1, 0], and so on.

∗ A partition λ avoids (globally) the pattern if it does not contain the

pattern.

∗ A partition λ avoids (globally) the set of patterns A, if it avoids

every pattern in A. For example, partitions whose adjacent parts

differ by at least 2 is equivalent to partitions that avoid {[0], [1]}.

∗ A partition λ contains a pattern at the beginning if we begin from

the largest part of the partition and the pattern immediately appears.

For example, (7,6,5,4,4) contains the pattern [1, 1] at the beginning.

5

Definition

∗ A pattern is a list a = [a1, a2, . . . , ar] (r ≥ 1) of non-negative

integers.

∗ A partition λ = (λ1, . . . , λk) contains the pattern

a = [a1, a2, . . . , ar] if there exists 1 ≤ i ≤ k − r such that:

λi − λi+1 = a1, λi+1 − λi+2 = a2, . . . , λi+r−1 − λi+r = ar .

∗ For example, (7, 6, 5, 4, 4) contains the pattern [1], the pattern [0],

the pattern [1, 1], the pattern [1, 0], and so on.

∗ A partition λ avoids (globally) the pattern if it does not contain the

pattern.

∗ A partition λ avoids (globally) the set of patterns A, if it avoids

every pattern in A. For example, partitions whose adjacent parts

differ by at least 2 is equivalent to partitions that avoid {[0], [1]}.

∗ A partition λ contains a pattern at the beginning if we begin from

the largest part of the partition and the pattern immediately appears.

For example, (7,6,5,4,4) contains the pattern [1, 1] at the beginning.

5

Definition

∗ A pattern is a list a = [a1, a2, . . . , ar] (r ≥ 1) of non-negative

integers.

∗ A partition λ = (λ1, . . . , λk) contains the pattern

a = [a1, a2, . . . , ar] if there exists 1 ≤ i ≤ k − r such that:

λi − λi+1 = a1, λi+1 − λi+2 = a2, . . . , λi+r−1 − λi+r = ar .

∗ For example, (7, 6, 5, 4, 4) contains the pattern [1], the pattern [0],

the pattern [1, 1], the pattern [1, 0], and so on.

∗ A partition λ avoids (globally) the pattern if it does not contain the

pattern.

∗ A partition λ avoids (globally) the set of patterns A, if it avoids

every pattern in A. For example, partitions whose adjacent parts

differ by at least 2 is equivalent to partitions that avoid {[0], [1]}.

∗ A partition λ contains a pattern at the beginning if we begin from

the largest part of the partition and the pattern immediately appears.

For example, (7,6,5,4,4) contains the pattern [1, 1] at the beginning.

5

Definition

∗ A pattern is a list a = [a1, a2, . . . , ar] (r ≥ 1) of non-negative

integers.

∗ A partition λ = (λ1, . . . , λk) contains the pattern

a = [a1, a2, . . . , ar] if there exists 1 ≤ i ≤ k − r such that:

λi − λi+1 = a1, λi+1 − λi+2 = a2, . . . , λi+r−1 − λi+r = ar .

∗ For example, (7, 6, 5, 4, 4) contains the pattern [1], the pattern [0],

the pattern [1, 1], the pattern [1, 0], and so on.

∗ A partition λ avoids (globally) the pattern if it does not contain the

pattern.

∗ A partition λ avoids (globally) the set of patterns A, if it avoids

every pattern in A. For example, partitions whose adjacent parts

differ by at least 2 is equivalent to partitions that avoid {[0], [1]}.

∗ A partition λ contains a pattern at the beginning if we begin from

the largest part of the partition and the pattern immediately appears.

For example, (7,6,5,4,4) contains the pattern [1, 1] at the beginning.
5

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n).

6

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n).

6

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n).

6

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n).

6

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n).

6

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n).

6

Idea of our initial algorithm

∗ P[1,1,1](n,m): number of partitions of n with largest part m,

avoiding [1, 1, 1].

∗ P ′[1,1,1](n,m): the number of partitions of n with largest part m,

avoiding the pattern [1, 1, 1], and in addition, avoiding the pattern

[1, 1] at the very beginning.

∗ P ′′[1,1,1](n,m): number of partitions of n with largest part m, avoiding

[1, 1, 1], and in addition, avoiding the pattern [1] at the beginning.

P[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′[1,1,1](n −m,m − 1)

P ′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′) + P ′′[1,1,1](n −m,m − 1)

P ′′[1,1,1](n,m) =
∑

1≤m′≤m

m′ 6=m−1

P[1,1,1](n −m,m′)

This can be made into a quadratic time and memory algorithm to

compute a table for pA(n). 6

Going beyond...

What if we want to count partitions with more specific restrictions, for

example, not just globally, but also based on congruence conditions?

∗ One side of Schur’s celebrated 1926 theorem: partitions of m into

parts with minimal difference 3 and with no consecutive multiples of

3.

∗ And how about the a more complicated Kanade-Russell conjecture:

(1) No parts repeat.

(2) Adjacent parts do not differ by 1 if the smaller part is even.

(3) A sub-partition of type (2j + 4) + (2j + 2) + 2j is not allowed.

(4) A sub-partition of type (2j + 4) + (2j + 2) + (2j + 1) is not

allowed.

(5) A sub-partition of type (2j + 4) + (2j + 3) + (2j + 1) is not

allowed.

(6) Smallest part is at least 3.

7

Going beyond...

What if we want to count partitions with more specific restrictions, for

example, not just globally, but also based on congruence conditions?

∗ One side of Schur’s celebrated 1926 theorem: partitions of m into

parts with minimal difference 3 and with no consecutive multiples of

3.

∗ And how about the a more complicated Kanade-Russell conjecture:

(1) No parts repeat.

(2) Adjacent parts do not differ by 1 if the smaller part is even.

(3) A sub-partition of type (2j + 4) + (2j + 2) + 2j is not allowed.

(4) A sub-partition of type (2j + 4) + (2j + 2) + (2j + 1) is not

allowed.

(5) A sub-partition of type (2j + 4) + (2j + 3) + (2j + 1) is not

allowed.

(6) Smallest part is at least 3.

7

Going beyond...

What if we want to count partitions with more specific restrictions, for

example, not just globally, but also based on congruence conditions?

∗ One side of Schur’s celebrated 1926 theorem: partitions of m into

parts with minimal difference 3 and with no consecutive multiples of

3.

∗ And how about the a more complicated Kanade-Russell conjecture:

(1) No parts repeat.

(2) Adjacent parts do not differ by 1 if the smaller part is even.

(3) A sub-partition of type (2j + 4) + (2j + 2) + 2j is not allowed.

(4) A sub-partition of type (2j + 4) + (2j + 2) + (2j + 1) is not

allowed.

(5) A sub-partition of type (2j + 4) + (2j + 3) + (2j + 1) is not

allowed.

(6) Smallest part is at least 3.
7

Definition refined

∗ m, n,A: same as before (A is the set of patterns to avoid globally.)

∗ Mod : (loosely speaking) the list of patterns to avoid according to

mod conditions of the largest part of a sub-partition.

Examples:

1. Mod = [{[1, 1]}, {[2]}, {}] → forbidding sub-partition of type

(3j + 3) + (3j + 2) + (3j + 1) and type (3j + 4) + (3j + 2).

2. Mod = [{[0]}, {[0, 0]}] → even parts are not allowed to repeat,

and odd parts can appear at most twice.

∗ B: the set of patterns to avoid at the beginning of the partition

∗ I : the set of sub-partitions to avoid (we call this “initial conditions”)

8

Definition refined

∗ m, n,A: same as before (A is the set of patterns to avoid globally.)

∗ Mod : (loosely speaking) the list of patterns to avoid according to

mod conditions of the largest part of a sub-partition.

Examples:

1. Mod = [{[1, 1]}, {[2]}, {}]

→ forbidding sub-partition of type

(3j + 3) + (3j + 2) + (3j + 1) and type (3j + 4) + (3j + 2).

2. Mod = [{[0]}, {[0, 0]}] → even parts are not allowed to repeat,

and odd parts can appear at most twice.

∗ B: the set of patterns to avoid at the beginning of the partition

∗ I : the set of sub-partitions to avoid (we call this “initial conditions”)

8

Definition refined

∗ m, n,A: same as before (A is the set of patterns to avoid globally.)

∗ Mod : (loosely speaking) the list of patterns to avoid according to

mod conditions of the largest part of a sub-partition.

Examples:

1. Mod = [{[1, 1]}, {[2]}, {}] → forbidding sub-partition of type

(3j + 3) + (3j + 2) + (3j + 1) and type (3j + 4) + (3j + 2).

2. Mod = [{[0]}, {[0, 0]}] → even parts are not allowed to repeat,

and odd parts can appear at most twice.

∗ B: the set of patterns to avoid at the beginning of the partition

∗ I : the set of sub-partitions to avoid (we call this “initial conditions”)

8

Definition refined

∗ m, n,A: same as before (A is the set of patterns to avoid globally.)

∗ Mod : (loosely speaking) the list of patterns to avoid according to

mod conditions of the largest part of a sub-partition.

Examples:

1. Mod = [{[1, 1]}, {[2]}, {}] → forbidding sub-partition of type

(3j + 3) + (3j + 2) + (3j + 1) and type (3j + 4) + (3j + 2).

2. Mod = [{[0]}, {[0, 0]}]

→ even parts are not allowed to repeat,

and odd parts can appear at most twice.

∗ B: the set of patterns to avoid at the beginning of the partition

∗ I : the set of sub-partitions to avoid (we call this “initial conditions”)

8

Definition refined

∗ m, n,A: same as before (A is the set of patterns to avoid globally.)

∗ Mod : (loosely speaking) the list of patterns to avoid according to

mod conditions of the largest part of a sub-partition.

Examples:

1. Mod = [{[1, 1]}, {[2]}, {}] → forbidding sub-partition of type

(3j + 3) + (3j + 2) + (3j + 1) and type (3j + 4) + (3j + 2).

2. Mod = [{[0]}, {[0, 0]}] → even parts are not allowed to repeat,

and odd parts can appear at most twice.

∗ B: the set of patterns to avoid at the beginning of the partition

∗ I : the set of sub-partitions to avoid (we call this “initial conditions”)

8

Definition refined

∗ m, n,A: same as before (A is the set of patterns to avoid globally.)

∗ Mod : (loosely speaking) the list of patterns to avoid according to

mod conditions of the largest part of a sub-partition.

Examples:

1. Mod = [{[1, 1]}, {[2]}, {}] → forbidding sub-partition of type

(3j + 3) + (3j + 2) + (3j + 1) and type (3j + 4) + (3j + 2).

2. Mod = [{[0]}, {[0, 0]}] → even parts are not allowed to repeat,

and odd parts can appear at most twice.

∗ B: the set of patterns to avoid at the beginning of the partition

∗ I : the set of sub-partitions to avoid (we call this “initial conditions”)

8

Schur

(1) Parts with minimal difference 3. → A = {[0], [1], [2]}

(2) No sub-partition of type (3j + 3) + 3j . → Mod = [{[3]}, {}, {}]

Kanade-Russell

(1) No parts repeat. → A = {[0]}

(2) A sub-partition of type (2j + 1) + 2j is not allowed.

(3) A sub-partition of type (2j + 4) + (2j + 2) + 2j is not allowed.

(4) A sub-partition of type (2j + 4) + (2j + 2) + (2j + 1) is not allowed.

(5) A sub-partition of type (2j + 4) + (2j + 3) + (2j + 1) is not allowed.

(2),(3),(4),(5) → Mod = [{[2, 2], [2, 1], [1, 2]}, {[1]}]

(6) Smallest part is at least 3. → I = {[1], [2]}.
9

Generalized algorithm

Let GP(m, n,A,Mod ,B, I) be the number of partitions of n, with largest

part m, and the restrictions A, Mod , B, I .

(1) If m > n, return 0. If m = n, return 1.

(2) Check if m is equal to the largest part of any of the forbidden

sub-partitions in I : if so, and if the forbidden sub-partition is just [m]

then return 0, otherwise we add the underlying partition pattern to B

and we have a set of new beginning restrictions B ′.

10

Generalized algorithm

(3) If Mod = {}, then by chopping off the largest part we get the

recurrence:

GP(n,m,A,Mod ,B, I) =
∑

1≤m′≤m

[m−m′]6∈A∪B′

GP(n −m,m′,A,Mod ,B ′′, I).

Note the “valid” m′ will be those such that the singleton [m −m′] is not

in the forbidden patterns (either globally or at the beginning). B ′′ is the

set of new beginning restrictions, obtained from A ∪ B ′ by chopping off

the difference m −m′ from the patterns in A ∪ B ′.

��m m′ [a, b] ∈ A ∪ B ′

a a a b

↓
a a B ′′

11

Generalized algorithm

(3) If Mod = {}, then by chopping off the largest part we get the

recurrence:

GP(n,m,A,Mod ,B, I) =
∑

1≤m′≤m

[m−m′]6∈A∪B′

GP(n −m,m′,A,Mod ,B ′′, I).

Note the “valid” m′ will be those such that the singleton [m −m′] is not

in the forbidden patterns (either globally or at the beginning). B ′′ is the

set of new beginning restrictions, obtained from A ∪ B ′ by chopping off

the difference m −m′ from the patterns in A ∪ B ′.

��m m′ [a, b] ∈ A ∪ B ′

a a a b

↓
a a B ′′

11

Generalized algorithm

(3) If Mod = {}, then by chopping off the largest part we get the

recurrence:

GP(n,m,A,Mod ,B, I) =
∑

1≤m′≤m

[m−m′]6∈A∪B′

GP(n −m,m′,A,Mod ,B ′′, I).

Note the “valid” m′ will be those such that the singleton [m −m′] is not

in the forbidden patterns (either globally or at the beginning). B ′′ is the

set of new beginning restrictions, obtained from A ∪ B ′ by chopping off

the difference m −m′ from the patterns in A ∪ B ′.

��m m′ [a, b] ∈ A ∪ B ′

a a a b

↓
a a B ′′

11

Generalized algorithm

(4) If Mod 6= {}, let the length of Mod be k . If m ≡ i (mod k) then we

get the recurrence:

GP(n,m,A,Mod ,B, I) =
∑

1≤m′≤m

[m−m′]6∈A∪B′∪Mod [i+1]

GP(n−m,m′,A,Mod ,B ′′, I).

“Valid” m′ will be those such that the singleton [m −m′] is not in the

forbidden patterns (either globally or at the beginning or according to the

Mod condition).

B ′′ is the set of new beginning restrictions, obtained from

A ∪ B ′ ∪Mod [i + 1] by chopping off the difference m −m′ from the

patterns in A ∪ B ′ ∪Mod [i + 1].

Close analysis is still to be done but I think this algorithm can also be

made quadratic in time and memory to compute a table for pA,Mod,B,I (n).

12

Generalized algorithm

(4) If Mod 6= {}, let the length of Mod be k . If m ≡ i (mod k) then we

get the recurrence:

GP(n,m,A,Mod ,B, I) =
∑

1≤m′≤m

[m−m′]6∈A∪B′∪Mod [i+1]

GP(n−m,m′,A,Mod ,B ′′, I).

“Valid” m′ will be those such that the singleton [m −m′] is not in the

forbidden patterns (either globally or at the beginning or according to the

Mod condition).

B ′′ is the set of new beginning restrictions, obtained from

A ∪ B ′ ∪Mod [i + 1] by chopping off the difference m −m′ from the

patterns in A ∪ B ′ ∪Mod [i + 1].

Close analysis is still to be done but I think this algorithm can also be

made quadratic in time and memory to compute a table for pA,Mod,B,I (n).

12

Searching for partition identities

A little (very incomplete) history of searching for identities

∗ 1894: Rogers-Ramanujan identities first published

(MacMahon verified by hand, calculating 89 terms)

∗ 1952: “Slater list” (Lucy J. Slater worked out a list of 130

Rogers-Ramanujan type identities, deduced from Bailey pairs)

∗ 1970: Andrews computer search

∗ 1988: Capparelli identities (conjectured from VOA, proved by

Andrews and many others later)

∗ 2009: Mc Laughlin, Sills and Zimmer computer search

∗ 2014+: Kanade-Russell computer search

∗ 2014: Nandi’s conjectures (obtained from Lie algebra, 3 conjectures

still open) 13

Preliminaries

“Sum side”: a generating function that counts the pattern-avoiding

partitions that we are currently interested in (according to A, Mod and

I). May or may not have an analytic (multi-)sum.

“Product side”: the side with infinite products. We use Frank Garvan’s

qseries Maple package to “factor” the generating function from the

“sum side” into infinite products.

We use a “list notation” to denote a “product side”, for example

[−2,−1, 0, 1, 0] denotes (q4;q5)∞
(q;q5)2∞(q2;q5)∞

. So if the list has only −1 and 0

in it, that means the “product side” satisfies certain congruence

conditions. For example, [−1, 0, 0,−1, 0] denotes 1
(q;q5)∞(q4;q5)∞

, that is,

the parts are 1 or 4 modulo 5, which is a famous Rogers-Ramanujan

“product side”.

Comp(m, k): the set of patterns of length at most m (i.e., at most m

parts) and largest part at most k . 14

Our current search strategy

GP(n,m,A,Mod,B,I)

↓
GxnSeq(N,A,Mod,B, I)

the first N terms of the sequence enumerating partitions obeying

restrictions according to A, Mod , B and I

↓
Search(N,A,Mod,B, I,S)

searches partition identities that have “product side” up to mod bN/2c

A: a set of sets of forbidden patterns. Example: A = {{[0]}, {[1], [2, 2]}}

We will search through all sets in A, “powersets” of Mod, as well as

powerset of I. S is the set of elements allowed to appear in the “list

notation” of the “product side”. We take S = {−2,−1, 0, 1}. And we

ususally just assume B to be {} since we are not interested in restrictions

at the beginning at this moment.
15

Search examples

Let’s look at some examples to see how Search(N,A,Mod,B, I,S)

works.

∗ A = {{[0]}, {[1], [2]}}, Mod = [], I = {}
-This means we search for partitions that avoid either A = {[0]}
globally, or avoid A = {[1], [2]} globally.

∗ A = {}, Mod = [{[0]}, {[0, 0]}], I = {[1]}
-This means we search for partitions that avoid nothing globally, but

has either Mod = [{}, {[0, 0]}], Mod = [{[0]}, {}],
Mod = [{[0]}, {[0, 0]}] or Mod = [{}, {}] (which is no restriction at

all) for Mod restrictions. In addition, we are either avoiding 1 as a

part, or nothing at all for “initial conditions”.

16

Amarel cluster computing

Thanks to Amarel, we are able to split our job into smaller tasks and feed

the tasks to 500 nodes and “theoretically” increase our speed by 500

times.

17

Search space

A Mod I

powerset of Comp(2, 2) [Comp(1, 3),Comp(1, 3),Comp(1, 3)] {[1], [2]}

(≤ 2 parts, parts ≤ 2) (≤ 1 part, parts ≤ 3)

{Comp(5, 1), 5} [] {[1]}

(≤ 5 parts, parts ≤ 1,

forbidding at most 5 global patterns)

{Comp(4, 2), 5} [] {[1]}

{Comp(4, 1), 3} [Comp(1, 3),Comp(1, 3),Comp(1, 3)] {[1]}

{} [{Comp(2, 3), 3}, {Comp(2, 3), 3}] {[1]}

Basically, we have to ensure that we are checking (approximately) at

most 227 “sum-sides” for Amarel to be able to handle in one day.

Disclaimer: even for the list above, we did not exhaust everything in

them because a few of the tasks ran into problems on Amarel. 18

Discoveries

Needless to say, we discovered many old identities, like Gordon,

Andrews-Bressoud, Capparelli, among many others. But many of them

are new. I will present a very incomplete list here.

A, Mod, I → Product Side

(1) {}, [{[1], [2]}, {[0], [2], [3]}, {}], {} → 0, 1, 3, 6, 7, 8, 9, 11 mod

12

(2) {}, [{}, {[1], [2]}, {[0], [2], [3]}], {[1], [2]} → 0, 3, 4, 5, 6, 9, 11

mod 12

(3) {[1]}, [{[0], [3]}, {}, {}], {} → 1, 2, 4, 6, 8, 10, 11 mod 12

(4) {[1]}, [{},{[0], [3]}, {}], {[1]} → 0, 2, 3, 4, 6, 9, 10 mod 12

(5) {[1]}, [{}, {},{[0], [3]}], {[1]} → 0, 2, 3, 6, 8, 9, 10 mod 12

(6) {[1]}, [{}, {[0], [3]},{[0], [3]}], {[1]} → 0, 2, 3, 6, 9, 10 mod 12

19

A, Mod, I → Product Side

(7) {}, [{[0, 1]}, {[2], [1, 1]}], {} → 0, 1, 2, 3, 6, 7, 8, 9, 10 mod 12

(8) {}, [{[0, 1], [1, 2]}, {[0], [1, 1], [2, 2]}], {} → 0, 1, 3, 4, 7, 8, 9, 10

mod 12

(9) {[1, 0], [1, 1, 1]}, [], {[1]} → 0, 2, 3, 4, 5, 6, 8, 9, 11 mod 12

(10) {[1, 1], [0, 0, 0], [1, 0, 1], [1, 0, 0, 1]}, [], {} → 1, 2, 3, 5, 7, 9,

10, 11 mod 12

From (9), we obtained its “companion identity” by hand:

(9) {[0, 1], [1, 1, 1]}, [], {[1,1], [3,2,1]} → 0, 1, 3, 4, 6, 7, 8, 9, 10

mod 12

20

A, Mod, I → Product Side

(7) {}, [{[0, 1]}, {[2], [1, 1]}], {} → 0, 1, 2, 3, 6, 7, 8, 9, 10 mod 12

(8) {}, [{[0, 1], [1, 2]}, {[0], [1, 1], [2, 2]}], {} → 0, 1, 3, 4, 7, 8, 9, 10

mod 12

(9) {[1, 0], [1, 1, 1]}, [], {[1]} → 0, 2, 3, 4, 5, 6, 8, 9, 11 mod 12

(10) {[1, 1], [0, 0, 0], [1, 0, 1], [1, 0, 0, 1]}, [], {} → 1, 2, 3, 5, 7, 9,

10, 11 mod 12

From (9), we obtained its “companion identity” by hand:

(9) {[0, 1], [1, 1, 1]}, [], {[1,1], [3,2,1]} → 0, 1, 3, 4, 6, 7, 8, 9, 10

mod 12

20

An infinite family

Revisit (10): {[1, 1], [0, 0, 0], [1, 0, 1], [1, 0, 0, 1]}, [], {} → 1, 2, 3,

5, 7, 9, 10, 11 mod 12

∗ Observe that the “sum side” of (10) is equivalent to:

–At most 3 occurrences of every part

–For all i , not allowed to have i , i + 1, i + 2 in the partition

∗ This seems to generalize to an infinite family:

– At most k occurrences of any given part

– For all i, not allowed to have i , i + 1, . . . , i + k − 1 all as parts in

the partition

21

An infinite family

Revisit (10): {[1, 1], [0, 0, 0], [1, 0, 1], [1, 0, 0, 1]}, [], {} → 1, 2, 3,

5, 7, 9, 10, 11 mod 12

∗ Observe that the “sum side” of (10) is equivalent to:

–At most 3 occurrences of every part

–For all i , not allowed to have i , i + 1, i + 2 in the partition

∗ This seems to generalize to an infinite family:

– At most k occurrences of any given part

– For all i, not allowed to have i , i + 1, . . . , i + k − 1 all as parts in

the partition

21

Additional identities

The “product sides” of (1)− (10) all correspond to partitions whose

parts satisfy certain congruence conditions, or equivalently, only 0 and

−1 are present in the “list notation”. Here are some identities we found

that also allow 1 (again, a very incomplete list):

(11) {[0,1,0]}, [{[0]}, {}, {}], {} → [-1, -1, -1, -1, -1, 1, -1, -1, -1, -1,

-1, 0] (mod 12)

(12) {}, [{[1], [2]}, {[2]}, {[0], [3]}], {} → [-1, -1, -1, 1, 0, -1, -1, -1,

-1, 0, 0, -1] (mod 12)

(13) {}, [{[1], [2]}, {[0], [2], [3]}, {[0], [3]}], {} → [-1, 0, -1, 1, 0, -1,

-1, -1, -1, 0, 0, -1] (mod 12)

(14) {[1, 2], [2, 1]}, [{}, {[0], [1], [2], [3]}, {[2]}], {[1], [2]} → [-1, 0,

-1, 1, 0, -1, -1, -1, -1, 0, 0, -1] (mod 12)

(15) {[0]}, [{[2], [1, 1]}, {[1, 2], [3, 2]}], {} → [-1, 0, -1, 0, -1, 1, -1,

-1, -1, 1, -1, -1, -1, 1, -1, 0, -1, 0, -1, 0] (mod 20)

22

Future work

1. Deal with the cases that ran into problems on Amarel. This will

enable us to say something like: we have searched everything in this

group, and we are sure no identities (less than certain modulo) can be

found in this group.

2. Search for larger modulo identities by increasing the N in

Search(N,A,Mod,B, I,S).

3. Put more variations on the initial conditions.

4. Currently our approach only deals with conditions on contiguous

sub-partitions. It will be nice to develop a general frame work/an efficient

way to search for identities that avoid sub-partitions that are not

necessarily contiguous (like in the infinite family we presented).

23

Drew Sill and Ali Uncu’s suggestions

1. Some identities have ”wierd” ”sum side”, for example, the big Göllnitz

companion identity ”sum side” requires difference of at least 6 between

parts EXCEPT that it is ok if the smallest two parts are 1 and 6. Maybe

many such ”wierd” partition identites are out there, we would like to

search for them.

2. Incorporate Nandi’s ∗ operator, which is the asterisk in the pattern

[3, 2∗, 3, 0] into our program to search for more Nandi-type partition

identities.

24

Thank you!

24

	Efficient algorithms for counting pattern-avoiding partitions
	Searching for partition identities

