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The GOAL

Microscopic classical foundations of relativistic physics

WANTED:
A well-posed generally covariant joint initial value problem for:

The motion of massive charged point particles and the evolution
of the electromagnetic and gravitational fields they generate.

The Classical Radiation-Reaction Problem has been in the way!

TODAY:
The Lorentz-covariant electromagnetic problem.
(Turning Gravity off: G = 0)



Electrodynamics with point charges

The failed proto-type: Lorentz electrodynamics

The Maxwell-Lorentz Field equations:

@ The evolution equations for the fields:

0;B(t,s) = -V x E(t,s)
OE(t;8) = +V x B(t,8) — 473 ex@k(!)da 1)(S):

@ The for the fields:
V-B(t,s)=0
V-E(t,s) =4nr ; ekéqk(t)(s)

@ N.B.: Constraint equations restrict only field data.



Electrodynamics with point charges

The failed proto-type: Lorentz electrodynamics

The relativistic equations of particle motion

@ Einstein—Lorentz—Poincaré

a(t) = 1 PO

my /1 4 ‘pl#l?‘z
k

@ Newton’s law for the rate of change of momentum

m, #0

Px(t) = Tk (1)

@ Lorentz’ law for the electromagnetic force

(1) = ex [E(t, qk(t)) + k() x B(t,qk(1))]




Electrodynamics with point charges

The failed proto-type: Lorentz electrodynamics

is not well-definable!

@ Symbolically the equations of Lorentz Electrodynamics
seem to pose a joint Cauchy problem for positions q(f)
and momenta p(t), and for the fields B(t,s) and E(t,s),
with initial data constrained by the divergence equations.

° this Cauchy problem is ill defined!
@ Reason: E(t,qx(t)) and B(t, qx(t)) “infinite in all directions”

o f(t) can be “defined” through averaging (very popular!),
but result depends on how the averaging is done.

@ Deckert and Hartenstein: Singularities on initial light cones.
@ Also, fields too strongly divergent at particle world lines —

No meaningful energy-momentum conservation law!



Electrodynamics with point charges

Poincaré

The pre-metric Maxwell-Lorentz field equations

@ Minkowski spacetime threaded by N timelike world-lines.
@ Lorentz frame with space vector s € R and time t € R
@ The evolution equations for the B, D fields

0;B(t,8) = -V x E(t,8)
9;D(t,8) = +V x H(t,8) — 47 81 €xk(t)dqy(r)(S)

@ The for the B, D fields
V-B(t,s)=0
V-D(t,8) = 47 31 €kdq,(n)(S)
@ The for the sources: velocities
k()] <1



Electrodynamics with point charges

Electromagnetic Vacuum Laws

Electromagnetic Vacuum Laws: (B, D) « (H, E)
@ Maxwell(-Lorentz)’s law
H=B & E=D

@ Born-Infeld’s law B- D x (DxB)
H=

\/1 + (/B2 + [D[2) + £4|B x D2
D- ;B x (BxD)
\/1 L (B2 + D) + |B x DJ2
° law (N.B.: O := 62 — A)
H(t,s) = (1 +}fzm> B(t,s)
D(,s) = (1 + %—25) E(t,s).




Electrodynamics with point charges

ML and MBI and MBLTP Electromagnetic Field Theory

Rigorous Results on the Field Cauchy Problems

@ ML field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.

@ MBLTP field Cauchy problem (standard):
Global well-posedness (weak) with “arbitrary” data.

@ MBI field Cauchy problem:

o Global well-posedness (classical) with small data (no
charges!) (J. Speck; F. Pasqualotto)

e Finite-time blow up with certain plane wave data (no
charges!) (Y. Brenier; cf. D. Serre)

e Existence and Uniqueness of static finite-energy solutions
with N ; real analyticity away from point
charges (M.K.; cf. Bonheure et al.)



Electrodynamics with point charges

ML and MBI and MBLTP Electromagnetic Field Theory

MBLTP (and MBI ?) field momenta are finite!

@ Field momentum density: N
@ For ML and for MBI field equations

47M =D x B
@ For MBLTP field equations
47N =D xB+ExH-ExB-3x2(V-E)(V xB - xE)

@ N(t,s)is L} .(R®) about each q(t) for MBLTP fields (KT2).

(Expected for MBI fields, but surely FALSE for ML fields!)



Electrodynamics with point charges

BLTP Electrodynamics

Momentum Conservation — Equation of Motion (here: 1 pt charge)
4p(t) =~ [ mit.s)ols ()

@ With BLTP law: The fields B, D, E, E (and H) at (t,s)
depend on q(-), p(-), and D & H also on a(-).

@ (*) is equivalent to Volterra integral equation for a = a[q, p]

@ This leads to the fixed point equations

t = Q(a().p())

mo=mm+1/¢pmd
Mo\ J14BE
()= P(0) ~ [ (M(t:5) - N(0.5)) s Pi(a(). (")

@ Well-posedness if (Qs, P.)( -, ) is a Lipschitz Map.
e 4 4444



Electrodynamics with point charges

Thm: BLTP Electrodynamics is well-posed! (KTZ)

@ The Cauchy problem for MBLTP field + N point charges:

° for admissible initial data & m # 0.
o Global well-posedness if in a finite time:

(a) no particle reaches the speed of light,

(b) no particle reaches infinite acceleration,

(c) no two particles reach the same location.

@ Energy-Momentum conservation rigorously true.
@ “Self”-force analyzed rigorously (cf. Hoang & Radosz)
@ MBLTP oddities:
(a) longitudinal electrical waves;
) subluminal transversal electromagnetic wave modes;
) energy functional unbounded below;
) The MBLTP fields B, D, E, E require initial data.
N.B.: (B,D)o — (E, E)O feasible! (max. field energy)

(b
(c
(d



Electrodynamics with point charges

The Volterra equation for the BLTP acceleration

a= Wip]- (f~[a,v] + F=[q,v;a])

where ’
p
V=——+—— m#0
HRVAR s
and
Wiol — i 1 I p®p
[p] = sign (m)\/m T mR + |p’2

and

*[a, v](t) = e [E™(t, q(1)) + v() x B™(t, q(1))]
and ...... DRUM ROLL.......
e 4 4444



Electrodynamics with point charges

The Volterra equation for the acceleration

fuee[q, v; @] is the “self” force in BLTP electrodynamics

d
fsource[q’ v: a](t) — _dil. . nsource(t’ s)d3S




Electrodynamics with point charges

The Volterra equation for the acceleration

fuee[q, v; @] is the “self” force in BLTP electrodynamics

flq,v;a](t) = nts)d®s  « =¥ DROPPED

_(Tt RS




Electrodynamics with point charges

The Volterra equation for the acceleration

fuee[q, v; @] is the “self” force in BLTP electrodynamics

f[q,v;a](t):—% Rsl‘l(t,s)dSS « e DROPPED

S (N(t,s) — N(0,s — qo — V1)) &3S
dt Bet(q0)




Electrodynamics with point charges

The Volterra equation for the acceleration

fuee[q, v; @] is the “self” force in BLTP electrodynamics

f[q,v;a](t):—d/RSI'I(t,s)d3s « s DROPPED
= T3 (n(tas)*n(oaS*QO*VOT)) dss
dt Bct(do)
2 2
f[ zZ (1,0 + 23t 1)

-y (e- k)/ [z[gk] (1) —Z8 (1, tf)] (t—t)'kdr

0<k<1 0
-3 [6 Z[k (t tr) atz[gﬁ] (t tr)} (t— tr)2kdtr:|
0<k<

where £(t) = (q,v,a)(t), and £°(t) = (qo + Vot, Vo, 0), and ...



Electrodynamics with point charges

The Volterra equation for the acceleration

zy (1) =

2r pm
/ /(1—v(tr)|cosﬁ)7r[£k](t,q(tr)+C(t—tr)n)sinz?dﬂdgo,
0 JO

with
sin ¢ cos ¢

n=| sindsiny
cos v

and where, with |  meaning that q(t), v(t), a(t) are evaluated
att = ti(t,s), we have ...



Electrodynamics with point charges

The Volterra equation for the acceleration

[0] 41 _(n(q,s)—v)x(vxn(q,s))
2
4 I (1—v.n(q,s)) .
17 _ te(t,s)
4 n(q,s) —v
T3 _Tn(%s)]ret X/_oo v(t')xKe(t',t, s)dt’

_ tet(t,s)
ret o0

2 | 1-v-n(q.s)

te(t,s) i (t,s)
iy / Ke(t', 1, 8)dt' / V(£)xKe(t, t, 8)dt’

—0o0 —00

e (t.s) e (t,s)
_ / Ke(t', t,s)dt’ / Ke(t', t,s)v(t)dt

—00 —00



Electrodynamics with point charges

The Volterra equation for the acceleration

wll(t,5) = — 32| n(q, s) P@SXI(@S) V) xa) v | g 5) x (M@s) ~v)xa
(17v-n(q,s)) 2(17V-n(q,s)) ret

(n(a.s)—v)xa e (t.s)
— 2 |n(q,s) x 2172 x/ v(t')xKe(t, t,s)dt
(1-vn@s) | J-oo

_ trel(ts)
n(q,s)x(’“""s‘)")Xf” ></s Ke(',t,)d
ret ©

(1—v'n(q7s)) )

n(q,s)x

i tg'(t.s)
+ 5 %(qs)} / _ Kelt, t.8) [Vt 9))) + v(D)] df




Electrodynamics with point charges

The Volterra equation for the acceleration

Bl sy 52| 1y [ —yF (n@s) —v)x(vxn(a:s))
¢ (9 8 [(1_V'n(q’s))2v [ |V|} (1_V'n(q s))4 ret

[ v ” (9,8)x "(q’s)v)e,] X / tret(ts&g(t’ts)dt’

(17V-n(q,5) ret —o0

—i—%z

tet(t,s)
_%Zh “’”(w] X/é v(t)xKe(t' t s)dt’,
ret

3
1 vn(qs)) —0o0
with the abbreviations
7 _ V2 _|le_ 1Y|2
Ke(t,1,s) - AV (02 TsaOF)
(t—t")2—|s—q(t")|?

(/TP —s—a(t )
Ke(t'1.8) = HVETT=A0R) (6 g(e) - v(t)(t - 1).

9




Electrodynamics with point charges

The Volterra equation for the acceleration

The key proposition

Proposition (KTZ) Given C%' maps t — q(t) and t — p(t),
with Lip(q) = v, Lip(v) = a, and |v(t)| < v < 1, the Volterra
equation as a fixed point map has a unique C° solution
t—a(t) =alq(-),p(-)](t). Moreover, the solution depends
Lipschitz continuously on the maps t — q(t) and t — p(t).

The proof takes several dozen pages of careful estimates, but
at the end of the day it all pans out! The well-posedness result
for the joint initial value problem of MBLTP fields and their point
charge sources is a corollary of the above Proposition.



Electrodynamics with point charges

Motion along a constant electric capacitor field

[— BLTP Test Particle
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Figure: The velocity of a point charge, starting from rest in a strong,
constant applied electrostatic field E.




Electrodynamics with point charges

Motion along a constant electric capacitor field

[— BLTP Test Particle|
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Figure: The velocity of a point charge, starting from rest in a very
weak, constant applied electrostatic field E.




Electrodynamics with point charges

Motion along a constant electric capacitor field

[— BLTP Test Particle]
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Figure: The velocity of a point charge, starting from rest in a constant
applied electrostatic field E of slightly larger-than-critical field strength.



Turning Gravity back on (Neighborhood of G = 0)

Does G = 0 electrodynamics have G > 0
neighborhood?

Generally covariant formulation of the Cauchy problem for
coupled to electromagnetism with point charge
sources having bare mass requires:

@ electromagnetic Maxwell equations are equipped with
nonlinear or higher-order linear electromagnetic vacuum
laws to guarantee integrable field-energy and -momentum
densities and mild curvature singularities,

@ no Black Holes! — Energy-momentum-stress tensor of
each particle has negative (or zero) bare mass.

@ weak 2" Bianchi identity (j/w Burtscher, Stalker, STZ)

oeV.-T=0 = (« Big ?!)

No well-defined joint Cauchy problem yet!
The Genie is out of the bottle again!



Turning Gravity back on (Neighborhood of G = 0)

Fin!

THANK YOU FOR LISTENING!




Turning Gravity back on (Neighborhood of G = 0)
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