Hilbert's Monkey Saddle and other Curiosities All 3-(Point-)Particle Riesz Equilibria on a Circle

Michael Kiessling \& Renna Yi

Department of Mathematics
Rutgers -New Brunswick
Experimental Mathematics Seminar Rutgers University
December 07, 2017
Revision of Slides: Dec. 09, 2017

Optimal N-Particle Configurations on \mathbb{S}^{n}

- Pick N distinct points $\mathbf{p}_{k} \in \mathbb{R}^{n+1}, k \in\{1, \ldots, N\}$, with $\left|\mathbf{p}_{k}\right|=1$
- Take any pair, say p_{i} and p_{j}.
- Denote their Euclidean distance by $r_{i j}>0$.
- Assign each ij pair a Riesz s-energy $V_{s}\left(r_{i j}\right)$, with

of an N-pt. configuration $\omega^{(N)}$,

- Optimal average s-Riesz pair energy of N point particles:
$v_{s}(N):=\inf _{\omega(N)}\left\langle V_{s}\right\rangle\left(\omega^{(N)}\right)$

Optimal N-Particle Configurations on \mathbb{S}^{n}

- Pick N distinct points $\mathbf{p}_{k} \in \mathbb{R}^{n+1}, k \in\{1, \ldots, N\}$, with $\left|\mathbf{p}_{k}\right|=1$
- Take any pair, say \mathbf{p}_{i} and \mathbf{p}_{j}.
- Denote their Euclidean distance by $r_{i j}>0$.
- Assign each ij pair a Riesz s-energy $V_{s}\left(r_{i j}\right)$, with

- Optimal average s-Riesz pair energy of N point particles:

Optimal N-Particle Configurations on \mathbb{S}^{n}

- Pick N distinct points $\mathbf{p}_{k} \in \mathbb{R}^{n+1}, k \in\{1, \ldots, N\}$, with $\left|\mathbf{p}_{k}\right|=1$
- Take any pair, say \mathbf{p}_{i} and \mathbf{p}_{j}.
- Denote their Euclidean distance by $r_{i j}>0$.
- Assign each ij pair a Riesz s-energy $V_{s}\left(r_{i j}\right)$, with

of an N-pt. configuration $\omega^{(N)}$,

- Optimal average s-Riesz pair energy of N point particles:

Optimal N-Particle Configurations on \mathbb{S}^{n}

- Pick N distinct points $\mathbf{p}_{k} \in \mathbb{R}^{n+1}, k \in\{1, \ldots, N\}$, with $\left|\mathbf{p}_{k}\right|=1$
- Take any pair, say \mathbf{p}_{i} and \mathbf{p}_{j}.
- Denote their Euclidean distance by $r_{i j}>0$.
- Assign each ij pair a Riesz s-energy $V_{s}\left(r_{i j}\right)$, with

$$
\begin{array}{ll}
V_{s}(r):=\frac{1}{s}\left(\frac{1}{r^{s}}-1\right), & s \in \mathbb{R}, \quad s \neq 0 \\
V_{0}(r):=\ln \frac{1}{r} & \left(=\lim _{s \rightarrow 0} V_{s}(r)\right)
\end{array}
$$

- Optimal average s-Riesz pair energy of N point particles:

Optimal N-Particle Configurations on \mathbb{S}^{n}

- Pick N distinct points $\mathbf{p}_{k} \in \mathbb{R}^{n+1}, k \in\{1, \ldots, N\}$, with $\left|\mathbf{p}_{k}\right|=1$
- Take any pair, say \mathbf{p}_{i} and \mathbf{p}_{j}.
- Denote their Euclidean distance by $r_{i j}>0$.
- Assign each ij pair a Riesz s-energy $V_{s}\left(r_{i j}\right)$, with

$$
\begin{array}{ll}
V_{s}(r):=\frac{1}{s}\left(\frac{1}{r^{s}}-1\right), & s \in \mathbb{R}, \quad s \neq 0 \\
V_{0}(r):=\ln \frac{1}{r} & \left(=\lim _{s \rightarrow 0} V_{s}(r)\right)
\end{array}
$$

- Average pair energy of an N-pt. configuration $\omega^{(N)}$,

$$
\left\langle V_{s}\right\rangle\left(\omega^{(N)}\right):=\frac{2}{N(N-1)} \sum_{1 \leq i<j \leq N} \sum_{s}\left(r_{i j}\right)
$$

- Optimal average s-Riesz pair energy of N point particles:

Optimal N-Particle Configurations on \mathbb{S}^{n}

- Pick N distinct points $\mathbf{p}_{k} \in \mathbb{R}^{n+1}, k \in\{1, \ldots, N\}$, with $\left|\mathbf{p}_{k}\right|=1$
- Take any pair, say \mathbf{p}_{i} and \mathbf{p}_{j}.
- Denote their Euclidean distance by $r_{i j}>0$.
- Assign each ij pair a Riesz s-energy $V_{s}\left(r_{i j}\right)$, with

$$
\begin{array}{ll}
V_{s}(r):=\frac{1}{s}\left(\frac{1}{r^{s}}-1\right), & \\
s \in \mathbb{R}, \quad s \neq 0 \\
V_{0}(r):=\ln \frac{1}{r} & \left(=\lim _{s \rightarrow 0} V_{s}(r)\right)
\end{array}
$$

- Average pair energy of an N-pt. configuration $\omega^{(N)}$,

$$
\left\langle V_{s}\right\rangle\left(\omega^{(N)}\right):=\frac{2}{N(N-1)} \sum_{1 \leq i<j \leq N} V_{s}\left(r_{i j}\right)
$$

- Optimal average s-Riesz pair energy of N point particles:

$$
v_{s}(N):=\inf _{\omega^{(N)}}\left\langle V_{s}\right\rangle\left(\omega^{(N)}\right)
$$

Optimal N-Particle Configurations on $\mathbb{S}^{n}: n=2$

Optimal N-Particle Configurations on \mathbb{S}^{n} when $s \geq-2$

- An optimizer $\omega_{*}^{(N)}$ exists whenever $s \geq-2$:

$$
v_{s}(N)=\left\langle V_{s}\right\rangle\left(\omega_{*}^{(N)}\right)
$$

- Optimizers $\omega_{*}^{(N)}\left(/ O(n+1)\right.$ and $\left./ S_{N}\right)$ generally not unique!

- Smale's 7th problem for the 21st century

Optimal N-Particle Configurations on \mathbb{S}^{n} when $s \geq-2$

- An optimizer $\omega_{*}^{(N)}$ exists whenever $s \geq-2$:

$$
v_{s}(N)=\left\langle V_{s}\right\rangle\left(\omega_{*}^{(N)}\right)
$$

- Optimizers $\omega_{*}^{(N)}\left(/ O(n+1)\right.$ and $\left./ S_{N}\right)$ generally not unique!

$$
\text { large }-N \text { expansion for } n=2 \text { and } s=0:
$$

- Smale's 7th problem for the 21st century

Optimal N-Particle Configurations on \mathbb{S}^{n} when $s \geq-2$

- An optimizer $\omega_{*}^{(N)}$ exists whenever $s \geq-2$:

$$
v_{s}(N)=\left\langle V_{s}\right\rangle\left(\omega_{*}^{(N)}\right)
$$

- Optimizers $\omega_{*}^{(N)}\left(/ O(n+1)\right.$ and $\left./ S_{N}\right)$ generally not unique!
- Empirical: \# of local minimizers $\propto e^{\gamma_{n} N}$ for some $\gamma_{n}>0$.

- Smale's 7th problem for the 21st century

For each N, can one find $\omega_{e}^{(N)}$ on \mathbb{S}^{2} such that

Optimal N-Particle Configurations on \mathbb{S}^{n} when $s \geq-2$

- An optimizer $\omega_{*}^{(N)}$ exists whenever $s \geq-2$:

$$
v_{s}(N)=\left\langle V_{s}\right\rangle\left(\omega_{*}^{(N)}\right)
$$

- Optimizers $\omega_{*}^{(N)}\left(/ O(n+1)\right.$ and $\left./ S_{N}\right)$ generally not unique!
- Empirical: \# of local minimizers $\propto e^{\gamma_{n} N}$ for some $\gamma_{n}>0$.
- Asymptotic large $-N$ expansion for $n=2$ and $s=0$:

$$
\frac{N(N-1)}{2} v_{0}(N)=a N^{2}+b N \ln N+c N+d \ln N+\mathcal{O}(1)
$$

$$
a=\frac{1}{4} \ln \frac{e}{4}, \quad b=-\frac{1}{4}, \quad c=\ln \left(2(2 / 3)^{1 / 4} \pi^{3 / 4} / \Gamma(1 / 3)^{3 / 2}\right), \quad d ?
$$

Optimal N-Particle Configurations on \mathbb{S}^{n} when $s \geq-2$

- An optimizer $\omega_{*}^{(N)}$ exists whenever $s \geq-2$:

$$
v_{s}(N)=\left\langle V_{s}\right\rangle\left(\omega_{*}^{(N)}\right)
$$

- Optimizers $\omega_{*}^{(N)}\left(/ O(n+1)\right.$ and $\left./ S_{N}\right)$ generally not unique!
- Empirical: \# of local minimizers $\propto e^{\gamma_{n} N}$ for some $\gamma_{n}>0$.
- Asymptotic large- N expansion for $n=2$ and $s=0$:

$$
\frac{N(N-1)}{2} v_{0}(N)=a N^{2}+b N \ln N+c N+d \ln N+\mathcal{O}(1)
$$

$a=\frac{1}{4} \ln \frac{e}{4}, \quad b=-\frac{1}{4}, \quad c=\ln \left(2(2 / 3)^{1 / 4} \pi^{3 / 4} / \Gamma(1 / 3)^{3 / 2}\right), \quad d ?$

- Smale's 7th problem for the 21st century

For each N, can one find $\omega_{\dot{\alpha}}^{(N)}$ on \mathbb{S}^{2} such that

$$
\left|v_{0}(N)-\left\langle V_{s}\right\rangle\left(\omega_{\infty}^{(N)}\right)\right|<D \frac{\ln N}{N(N-1)}
$$

using not more than $\operatorname{Poly}(N)$ many steps?

Optimal N-Particle Arrangements on \mathbb{S}^{n} when $s<-2$

- An optimizer $\omega_{*}^{(N)}$ generally does not exist when $s<-2$. \longrightarrow COAGULATION onto not more than 3 points! (Björk)

- 3 points inevitably on GREAT CIRCLE: \mathbb{S}^{1}

- We speak of "optimal N-particle arrangement" in this case.
- $N=2 M$: optimizer $=M$ points each in two antipodal points
- $N=2 M+1$: More COMPLICATED

Optimal N-Particle Arrangements on \mathbb{S}^{n} when $s<-2$

- An optimizer $\omega_{*}^{(N)}$ generally does not exist when $s<-2$. \longrightarrow COAGULATION onto not more than 3 points! (Björk)

- 3 points inevitably on GREAT CIRCLE: \mathbb{S}^{1}.
- We speak of "
- $N=2 M$: optimizer $=M$ points each in two antipodal points

Optimal N-Particle Arrangements on \mathbb{S}^{n} when $s<-2$

- An optimizer $\omega_{*}^{(N)}$ generally does not exist when $s<-2$. \longrightarrow COAGULATION onto not more than 3 points! (Björk)

- 3 points inevitably on GREAT CIRCLE: \mathbb{S}^{1}.
- We speak of "optimal N-particle arrangement" in this case.
- $N=2 M$: optimizer $=M$ points each in two antipodal points

Optimal N-Particle Arrangements on \mathbb{S}^{n} when $s<-2$

- An optimizer $\omega_{*}^{(N)}$ generally does not exist when $s<-2$. \longrightarrow COAGULATION onto not more than 3 points! (Björk)

- 3 points inevitably on GREAT CIRCLE: \mathbb{S}^{1}.
- We speak of "optimal N-particle arrangement" in this case.
- $N=2 M$: optimizer $=M$ points each in two antipodal points

Optimal N-Particle Arrangements on \mathbb{S}^{n} when $s<-2$

- An optimizer $\omega_{*}^{(N)}$ generally does not exist when $s<-2$. \longrightarrow COAGULATION onto not more than 3 points! (Björk)

- 3 points inevitably on GREAT CIRCLE: \mathbb{S}^{1}.
- We speak of "optimal N-particle arrangement" in this case.
- $N=2 M$: optimizer $=M$ points each in two antipodal points
- $N=2 M+1$: More COMPLICATED / INTERESTING!

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

- Average pair energy of 3-particle arrangement $\omega^{(3)} \equiv(\alpha, \beta, \gamma)$

$$
\begin{gathered}
\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma):=\frac{1}{3}\left(V_{s}(|a|)+V_{s}(|b|)+V_{s}(|c|)\right) \\
|a|=2 \sin \alpha, \quad|b|=2 \sin \beta, \quad|c|=2 \sin \gamma
\end{gathered}
$$

- Minimal average s-Riesz pair-energy of $N=3$ particles:

- Compactify via:

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

- Average pair energy of 3-particle arrangement $\omega^{(3)} \equiv(\alpha, \beta, \gamma)$

$$
\begin{gathered}
\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma):=\frac{1}{3}\left(V_{s}(|a|)+V_{s}(|b|)+V_{s}(|c|)\right) \\
|a|=2 \sin \alpha, \quad|b|=2 \sin \beta, \quad|c|=2 \sin \gamma
\end{gathered}
$$

- Minimal average s-Riesz pair-energy of $N=3$ particles:

$$
v_{s}(3):=\inf _{\alpha+\beta+\gamma=\pi}\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)
$$

- Compactify via:

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

- Average pair energy of 3-particle arrangement $\omega^{(3)} \equiv(\alpha, \beta, \gamma)$

$$
\begin{gathered}
\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma):=\frac{1}{3}\left(V_{s}(|a|)+V_{s}(|b|)+V_{s}(|c|)\right) \\
|a|=2 \sin \alpha, \quad|b|=2 \sin \beta, \quad|c|=2 \sin \gamma
\end{gathered}
$$

- Minimal average s-Riesz pair-energy of $N=3$ particles:

$$
v_{s}(3):=\inf _{\alpha+\beta+\gamma=\pi}\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)
$$

- Compactify via:

$$
\begin{aligned}
& V_{s}(0):=-s^{-1}, \quad s<0 \\
& V_{s}(0):=+\infty, \quad s \geq 0
\end{aligned}
$$

and find all extremal / critical points of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$!

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The absolute minimizers (Nerattini-Brauchart-K.):
Theorem
Set $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$.

- Then for $s \neq s_{3}$ the optimal minimal Riesz s-energy $N=3$ arrangement on \mathbb{S}^{1} is unique (up to rotation/permutation).
- For $s<s_{3}$ it is given by the antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$.
- For $s>s_{3}$ it is given by the equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$
- At $s=s_{3}$ both have the same Riesz s $_{3}$-energy (averaged over the pairs.)

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The absolute minimizers (Nerattini-Brauchart-K.):

Theorem

Set $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$.

- Then for $s \neq s_{3}$ the optimal minimal Riesz s-energy $N=3$ arrangement on \mathbb{S}^{1} is unique (up to rotation/permutation).

For $s<s_{3}$ it is given by the antipodal arrangement
$(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$.
For $s>s_{3}$ it is given by the equilateral configuration
$(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$.
At $s=s_{3}$ both have the same Riesz s_{3}-energy (averaged over the pairs.)

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The absolute minimizers (Nerattini-Brauchart-K.):

Theorem

Set $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$.

- Then for $s \neq s_{3}$ the optimal minimal Riesz s-energy $N=3$ arrangement on \mathbb{S}^{1} is unique (up to rotation/permutation).
- For $s<s_{3}$ it is given by the antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$.
- For $s>s_{3}$ it is given by the equilateral configuration
- At $s=s_{3}$ both have the same Riesz s_{3}-energy (averaged over the pairs.)

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The absolute minimizers (Nerattini-Brauchart-K.):

Theorem

Set $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$.

- Then for $s \neq s_{3}$ the optimal minimal Riesz s-energy $N=3$ arrangement on \mathbb{S}^{1} is unique (up to rotation/permutation).
- For $s<s_{3}$ it is given by the antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$.
- For $s>s_{3}$ it is given by the equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The absolute minimizers (Nerattini-Brauchart-K.):

Theorem

Set $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$.

- Then for $s \neq s_{3}$ the optimal minimal Riesz s-energy $N=3$ arrangement on \mathbb{S}^{1} is unique (up to rotation/permutation).
- For $s<s_{3}$ it is given by the antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$.
- For $s>s_{3}$ it is given by the equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$.
- At $s=s_{3}$ both have the same Riesz s_{3}-energy (averaged over the pairs.)

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The relative minimzers of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$ which are not absolute:

Theorem

Recall that $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$. The following list exhausts all the relative minimizers which are not absolute.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The relative minimzers of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$ which are not absolute:

Theorem

Recall that $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$. The following list exhausts all the relative minimizers which are not absolute.

- For $s_{3}<s<-2$ the antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation) is a relative minimizer which is not absolute.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The relative minimzers of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$ which are not absolute:

Theorem

Recall that $s_{3}:=\ln (4 / 9) / \ln (4 / 3)$. The following list exhausts all the relative minimizers which are not absolute.

- For $s_{3}<s<-2$ the antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation) is a relative minimizer which is not absolute.
- For $-4<s<s_{3}$ the equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a relative minimizer which is not absolute.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The relative maximizers of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$ which are not absolute:

Theorem

For $s<-4$ the equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a relative maximizer which is not absolute. This exhausts all relative maximers of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$ which are not absolute.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The absolute maximizers of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$:

Theorem

For all $s<0$ the completely degenerate triangular configuration (i.e. the one-point arrangement) given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is the unique (up to rotation) absolute maximizer of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$. Contracting and compactifying all energies to $[-1,1]$, the one-pt arrangement is the unique (up to rotation) absolute maximizer for all s.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The saddle points of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$:

Theorem

The following list exhausts all the saddle points:

- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a saddle point at $s=-4$.
- The antinodal arrancement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation) is a saddle for $-2 \leq s<0$. Contracting and compactifying all energies to $[-1,1]$, the antipodal arrangement is a saddle for all $s \geq 0$, too.
- For $\{s<-2\} \cap\{s \neq-4\}$ there are two families (disjoint open sets) of non-universal isosceles triangular equilibrium configurations, and all these are saddle points.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The saddle points of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$:

Theorem

The following list exhausts all the saddle points:

- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a saddle point at $s=-4$.
> - The antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation) is a saddle for $-2 \leq s<0$. Contracting and compactifying all energies to $[-1,1]$, the antioodal arrangement is a saddle for all $s \geq 0$, too.
> - For $\{s<-2\} \cap\{s \neq-4\}$ there are two families (disjoint
> open sets) of non-universal isosceles triangular equilibrium configurations, and all these are saddle points.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The saddle points of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$:

Theorem

The following list exhausts all the saddle points:

- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a saddle point at $s=-4$.
- The antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation) is a saddle for $-2 \leq s<0$. Contracting and compactifying all energies to $[-1,1]$, the antipodal arrangement is a saddle for all $s \geq 0$, too.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The saddle points of $\left\langle V_{s}\right\rangle(\alpha, \beta, \gamma)$:

Theorem

The following list exhausts all the saddle points:

- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a saddle point at $s=-4$.
- The antipodal arrangement $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation) is a saddle for $-2 \leq s<0$. Contracting and compactifying all energies to $[-1,1]$, the antipodal arrangement is a saddle for all $s \geq 0$, too.
- For $\{s<-2\} \cap\{s \neq-4\}$ there are two families (disjoint open sets) of non-universal isosceles triangular equilibrium configurations, and all these are saddle points.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

Non-proper pseudo equilibria:

Theorem

The following are the only non-proper pseudo Riesz s-force equilibria of $N=3$ point particles on \mathbb{S}^{1}.

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a non-proper pseudo Riesz s-force equilibrium for all $s \geq-1$
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a non-proper pseudo Riesz s-force equilibrium for all $s \geq-1$.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

Non-proper pseudo equilibria:

Theorem

The following are the only non-proper pseudo Riesz s-force equilibria of $N=3$ point particles on \mathbb{S}^{1}.

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a non-proper pseudo Riesz s-force equilibrium for all $s \geq-1$.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

Non-proper pseudo equilibria:

Theorem

The following are the only non-proper pseudo Riesz s-force equilibria of $N=3$ point particles on \mathbb{S}^{1}.

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a non-proper pseudo Riesz s-force equilibrium for all $s \geq-1$.
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a non-proper pseudo Riesz s-force equilibrium for all $s \geq-1$.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The proper Riesz s-force equilibria:

Theorem

This list exhausts all proper Riesz s-force 3-particle equilibria:

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a proper Riesz s-force equilibrium for all $s<-1$
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a proper Riesz s-force equilibrium for all $s<-1$.
- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a proper Riesz s-force equilibrium for all $s \in \mathbb{R}$.
- For each $s<-2$ except $s=-4$, there exists a
non-universal isosceles triangular proper Riesz s-force

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The proper Riesz s-force equilibria:

Theorem

This list exhausts all proper Riesz s-force 3-particle equilibria:

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a proper Riesz s-force equilibrium for all $s<-1$.
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a proper Riesz s-force equilibrium for all $s<-1$.
- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a proper Riesz s-force equilibrium for all $s \in \mathbb{R}$.
- For each $s<-2$ except $s=-4$, there exists a
non-universal isosceles triangular proper Riesz s-force

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The proper Riesz s-force equilibria:

Theorem

This list exhausts all proper Riesz s-force 3-particle equilibria:

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a proper Riesz s-force equilibrium for all $s<-1$.
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a proper Riesz s-force equilibrium for all $s<-1$.
The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a
proper Riesz s-force equilibrium for all $s \in \mathbb{R}$.
For each $s<-2$ except $s=-4$, there exists a
non-universal isosceles triangular proper Riesz s-force

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The proper Riesz s-force equilibria:

Theorem

This list exhausts all proper Riesz s-force 3-particle equilibria:

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a proper Riesz s-force equilibrium for all $s<-1$.
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a proper Riesz s-force equilibrium for all $s<-1$.
- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a proper Riesz s-force equilibrium for all $s \in \mathbb{R}$.

Optimal 3-Particle Arrangements on \mathbb{S}^{1}

The proper Riesz s-force equilibria:

Theorem

This list exhausts all proper Riesz s-force 3-particle equilibria:

- The completely degenerate triangular configuration given by $(\alpha, \beta, \gamma)=(0,0, \pi)$ (up to permutation) is a proper Riesz s-force equilibrium for all $s<-1$.
- The antipodal arrangement given by $(\alpha, \beta, \gamma)=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$ (up to permutation), is a proper Riesz s-force equilibrium for all $s<-1$.
- The equilateral configuration $(\alpha, \beta, \gamma)=\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ is a proper Riesz s-force equilibrium for all $s \in \mathbb{R}$.
- For each $s<-2$ except $s=-4$, there exists a non-universal isosceles triangular proper Riesz s-force equilibrium, i.e. its shape depends on s.

The two isosceles families of non-universal equilibria:

Theorem

- The family of isosceles triangular Riesz s-force equilibria for $s \in(-\infty,-4)$ interpolates continuously and monotonically between a right triangular configuration ($\gamma=\pi / 2$), to which it converges when $s \downarrow-\infty$, and the equilateral configuration ($\gamma=\pi / 3$), to which it converges when $s \uparrow-4$.
- The family of isosceles triangular Riesz s-force equilibria for $s \in(-4,-2)$ interpolates continuously and monotonically between the equilateral configuration ($\gamma=\pi / 3$), to which it converges when $s \uparrow-4$, and the antipodal arrangement $(\gamma=0)$, to which it converges when $s \uparrow-2$.

The two isosceles families of non-universal equilibria:

Theorem

- The family of isosceles triangular Riesz s-force equilibria for $s \in(-\infty,-4)$ interpolates continuously and monotonically between a right triangular configuration ($\gamma=\pi / 2$), to which it converges when $s \downarrow-\infty$, and the equilateral configuration ($\gamma=\pi / 3$), to which it converges when $s \uparrow-4$.
- The family of isosceles triangular Riesz s-force equilibria for $s \in(-4,-2)$ interpolates continuously and monotonically between the equilateral configuration $(\gamma=\pi / 3)$, to which it converges when $s \uparrow-4$, and the antipodal arrangement $(\gamma=0)$, to which it converges when $s \uparrow-2$.

The two isosceles families of non-universal equilibria:

Theorem

- The family of isosceles triangular Riesz s-force equilibria for $s \in(-\infty,-4)$ interpolates continuously and monotonically between a right triangular configuration ($\gamma=\pi / 2$), to which it converges when $s \downarrow-\infty$, and the equilateral configuration ($\gamma=\pi / 3$), to which it converges when $s \uparrow-4$.
- The family of isosceles triangular Riesz s-force equilibria for $s \in(-4,-2)$ interpolates continuously and monotonically between the equilateral configuration ($\gamma=\pi / 3$), to which it converges when $s \uparrow-4$, and the antipodal arrangement $(\gamma=0)$, to which it converges when $s \uparrow-2$.

The two isosceles families of non-universal equilibria (cont.d):

Theorem

The asymptotics of γ as function of s for the isosceles triangles is given by the following:
(a) in a left neighborhood of $\gamma=\pi / 2$ (as $s \downarrow-\infty$),

$$
\gamma(s) \asymp \frac{\pi}{2}-\sqrt{ } 2^{1+s}
$$

(b) in a neighborhood of $\gamma=\pi / 3$ (for $s \approx-4$),

$$
\gamma(s)=\frac{\pi}{3}-\frac{1}{2 \sqrt{3}}(4+s)+\mathcal{O}\left((s+4)^{2}\right)
$$

(c) in a right neighborhood of $\gamma=0$ (as $s \uparrow-2$),

$$
\gamma(s) \asymp 0+2^{\frac{1}{2+s}}
$$

Equilibrium BIFURCATION diagram:

Figure: Bifurcation diagram (γ vs. s) of the Riesz s-force equilibria. Color code: MINIMUM, minimum, saddle, maximum, MAXIMUM.

γ
Figure: $U_{s}(\gamma): s \in\left\{-30,-15,-10,-7,-5,-4, \frac{\ln (4 / 9)}{\ln (4 / 3)},-2,-1\right\}$.
The graphs are monotonically ordered with s, decreasing with s

The Figure shows the graph of $\left\langle V_{-4}\right\rangle(\alpha, \beta, \pi-\alpha-\beta)$ over the isosceles triangle $(\alpha, \beta) \in[0, \pi]^{2} \cap\{\alpha+\beta \leq \pi\}$ (\leftarrow this is the projection of the fundamental triangle into the (α, β) plane. Note that this projected illustration somewhat distorts the three-fold symmetry of Hilbert's Monkey Saddle.)

The Figure shows the contour lines of $\left\langle V_{-4}\right\rangle(\alpha, \beta, \gamma)$ in the fundamental triangle in (α, β, γ) space.

BIBLIOGRAPHY

- Rachele Nerattini, Johann S. Brauchart, and M.K.: Optimal N-point configurations on the sphere: "Magic" numbers and Smale's 7th problem, J. Stat. Phys. 157:1138-1206 (2014).

Hilbert's Monkey Saddle and other Curiosities Preprint, Rutgers 2017.

- D. Hilbert and S. Cohn-Vossen, "Geometry and the Imagination" (2nd ed.), Chelsea, N.Y. (1952).

BIBLIOGRAPHY

- Rachele Nerattini, Johann S. Brauchart, and M.K.: Optimal N-point configurations on the sphere: "Magic" numbers and Smale's 7th problem, J. Stat. Phys. 157:1138-1206 (2014).
- M.K. and Renna Yi: Hilbert's Monkey Saddle and other Curiosities ...", Preprint, Rutgers 2017.
- D. Hilbert and S. Cohn-Vossen, "Geometry and the Imagination" (2nd ed.), Chelsea, N.Y. (1952),

BIBLIOGRAPHY

- Rachele Nerattini, Johann S. Brauchart, and M.K.: Optimal N-point configurations on the sphere: "Magic" numbers and Smale's 7th problem, J. Stat. Phys. 157:1138-1206 (2014).
- M.K. and Renna Yi: Hilbert's Monkey Saddle and other Curiosities ...", Preprint, Rutgers 2017.
- D. Hilbert and S. Cohn-Vossen, "Geometry and the Imagination" (2nd ed.), Chelsea, N.Y. (1952).

Acknowledgements MANY THANKS GO TO:

- Rob Wommersley - for his fantastic webpage: http://web.maths.unsw.edu.au/ rsw/
- NASA - for taking GREAT snapshots of EARTH!
- Renna Yi - for her collaboration!
- Johann Brauchart - for his comments!
 ALL OF YOU FOR LISTENING!

Acknowledgements MANY THANKS GO TO:

- Rob Wommersley - for his fantastic webpage: http://web.maths.unsw.edu.au/ rsw/
- NASA - for taking GREAT snapshots of EARTH!
- Renna Yi - for her collaboration!
- Johann Brauchart - for his comments!
- Dr. Z. - for inviting me to present this material! ALL OF YOU FOR LISTENING!

Acknowledgements MANY THANKS GO TO:

- Rob Wommersley - for his fantastic webpage: http://web.maths.unsw.edu.au/ rsw/
- NASA - for taking GREAT snapshots of EARTH!
- Renna Yi - for her collaboration!
- Johann Brauchart - for his comments!
 ALL OF YOU FOR LISTENING!

Acknowledgements MANY THANKS GO TO:

- Rob Wommersley - for his fantastic webpage: http://web.maths.unsw.edu.au/ rsw/
- NASA - for taking GREAT snapshots of EARTH!
- Renna Yi - for her collaboration!
- Johann Brauchart - for his comments!
- Dr. Z. - for inviting me to present this material! ALL OF YOU FOR LISTENING!

Acknowledgements MANY THANKS GO TO:

- Rob Wommersley - for his fantastic webpage: http://web.maths.unsw.edu.au/ rsw/
- NASA - for taking GREAT snapshots of EARTH!
- Renna Yi - for her collaboration!
- Johann Brauchart - for his comments!
- Dr. Z. - for inviting me to present this material!

Acknowledgements MANY THANKS GO TO:

- Rob Wommersley - for his fantastic webpage: http://web.maths.unsw.edu.au/ rsw/
- NASA - for taking GREAT snapshots of EARTH!
- Renna Yi - for her collaboration!
- Johann Brauchart — for his comments!
- Dr. Z. - for inviting me to present this material!
ALL OF YOU FOR LISTENING!

