
Problems in (CM) Celestial Mechanics

H.Gingold

(2017-1687=330 years). Given N mass points that
obey Newton’s equations.

Siegel 1955 & Siegel and Moser 1971 (Lectures CM):
“Despite efforts by outstanding mathematicians for over 200
years, the problem forN > 2 remains unsolved to this day”.
“Complete behavior of solutions”. Based on initial positions
and velocities. Which solutions of Newton’s equations are:
bounded? unbounded? Periodic? Have Collisions? Among
which Particles? Nature of singularities? I will discuss:

Total Collapse. All N particles Collide at one point. A
second opposite scenario →

Total Escape. An expanding universe. All N particles
escape to infinity without collisions or other singularities.

Language: CM=N body problem=Newton’s or Gravi-
tational Equations.
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Harry Pollard, CM, Carus Monographs, 1966, (cor-
rected) 1976. A 3 chapters introduction to CM. Accessible
text with exercises→ The N=2 body problem is still open.
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Newton’s Equations of the N body
problem

Notation: Transposition of a Matrix=†, Euclidean
Norm: ‖y‖2 = y†y, y ∈ Rm, ẏ = dy

dt , ÿ = d2y
dt2

.

The differential equations governing the position 3-

D vectors qi :=

 xi
yi
zi‘

 , of N point-masses mi, i =

1, . . . , N moving in R3 under the influence of their mutual
gravitation is

miq̈i =
∑
j 6=i

mimj(qj − qi)
‖qi − qj‖3

, mi > 0. (1)

(above:i fixed j varies) . What is mimj(qj−qi)
‖qi−qj‖3

?∑
j 6=i

mimj(qj−qi)
‖qi−qj‖3

? miq̈i ? Where is G?

Newton: “preposterous”, Feynman’s bewilderment.
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Initial conditions that we may not know!

qi(t0) = αi, q̇i(t0) = βi, αi 6= αj, i 6= j, αi, βi ∈ R3.
(2)

How many unknowns? 6N . (1) Is an equation for

q =
(
q†1, . . . , q

†
N

)†
∈ R3N of second order. q̇i(t) :=

dqi
dt , q̇ =

(
q̇†1, . . . , q̇

†
N

)†
∈ R3N is also an unknown (1).

If written as a first order system then y :=

 q

q̇

 ∈
R6N , ẏ = some f(y) ∈ R6N .

Notation: (tinf , tsup) =maximal interval of existence
of a solution to an IVP of (1) . σ = tsup or tinf

Example: 1 · ẏ = −1
y, y(0) = 1. y = 0 is a

singular point for the normalized differential equation.
y =

√
1− 2t is the unique solution. y

(
1
2

)
= 0, and

ẏ
(
1
2

)
= −∞, so (tinf = −∞, tsup = σ = 1/2).
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Theorem 1. The IVP (1),(2) possesses a unique solu-
tion on some [a, b] ⊂ (tinf , tsup).

Theorem. The system of equations has no critical
points in R6N . Hint: Use homogeneity.

∑
j 6=i

mj(qj−qi)
‖qi−qj‖3

6=
0.
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Singularities I. Collision and Non
collision

Given

q̇i(t) :=
dqi
dt
, q̈i =

∑
j 6=i

mj(qj − qi)
‖qi − qj‖3

, q =
(
q†1, . . . , q

†
N

)†
∈ R3N .

(3)

The equations of motion (1) are real analytic every-
where except where two or more of the particles occupy
the same point in R3. For i 6= j, let

∆ij = {q|qi = qj} , ∆ =
⋃

1≤i<j≤N

∆ij. (4)

4 is called the collision set.

Remark: Singularities of an ODE do not necessarily
coincide with Singularities of the Solutions. Singularities of
the NORMALIZED N body:
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1) The “invisible” t = ∞ , 2) The “Collision Set”
∆ . These may or may not coincide with singularities of a
particular solution.

Example: Singularities of the (normalized) ode 1 · ẏ =
y
t ,@ t = 0. However, the solutions to the IVP with y(0) =
0, are y(t) = kt, k ∈ R, (tinf = −∞, tsup =∞).

Definition. Consider (tinf , tsup = σ). If σ < ∞,
then q(t) is said to experience a singularity at σ.

Singularity of a solution at a finite point tsup = σ means:
limt→σ−q(t) or limt→σ−q̇(t) or both do not exist and
may be unbounded.

Definition. We say that σ is a Collision singularity of a
solution of (3) if

limt→σ−qi(t) = limt→σ−qj(t) ∈ 4ij, i 6= j.

Theorem 2. [Painlevé 1897] . i) If q(t) is singular
at σ, then q(t)→ ∆, as t→ σ−.

ii) For N = 2, 3, all singularities are Collision Singular-
ities.
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Definition. If q experiences a singularity at σ, but q(t)
does not approach a specific point q̂ ∈ ∆, then q has a
non-collision singularity.

Theorem 3. [von Zeipel, 1908],[H. Sper-
ling,1970], [McGehee ,1986] . A non-collision singularity
can only occur if the system of particles becomes unbounded
in finite time.

Wintner (1941) and Pollard and Saari (1968) distrusted
von Zeipel proof. McGehee (1986) showed that the initial
argument had been correct.

[Poincare, Painleve]: Are there solutions with non-
collision singularities? Solutions in Rd, d = 1, 2, 3:

Theorem 4. i) [Mather and McGehee 1975], Yes for
N = 4, d = 1, COLLINEAR motion.

ii) [J. Gerver,1991], Yes, for a 3N body motion in a
plane with N very Large,d = 2.

iii) [Z. Xia, 1992] , Yes for N = 5, d = 3.
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10 Integrals of motion

Example of an “integral” of a scalar differential equation

2z̈ + 4z3 = 0⇒ 2z̈ż + 4z3ż = 0 =⇒ (5)

g(z(t), t) := ż2(t) + z4(t) = h.

g(z, t) is an “integral” .

Let q†k =< xk, yk, zk > . 1 “integral” , for the total
energy

T =

N∑
j=1

mj

2
‖q̇j(t)‖2 , U =

∑
j<k

mjmk

‖qj − qk‖
> 0, T−U = h.

(6)

T is the kinetic energy and U =
∑
j<k

mjmk

‖qj−qk‖
> 0 is

the negative of the potential energy. The gradient notation

– Typeset by FoilTEX – 9



for U := U(q)

∇qkU :=<
∂U

∂xk
,
∂U

∂yk
,
∂U

∂zk
>†= Uqk = Uk = ∇kU

satisfies

mkq̈k = Uk =
∑
j 6=k

mkmj(qj − qk)
‖qk − qj‖3

=⇒ (7)

N∑
k=1

mkq̈k =

N∑
k=1

Uk = 0 =⇒ (8)

One vector equation of Conservation of Linear
Momentum=⇒ 3 scalar equations of conservation of Linear
Momentum

N∑
k=1

mkq̇k = a =⇒ (9)

N∑
k=1

mkqk = at+ b, a, b ∈ R3 ⇒

6 scalar integrals of motion.
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Proposition 1. The center of mass qc of the N bodies
travels along a straight line.

Proof. Indeed

qc :=

∑N
k=1mkqk∑N
k=1mk

=
a∑N

k=1mk

t+
b∑N

k=1mk

. (10)

2

Yet another vector equation =⇒ 3 scalar equations of the
total angular momentum

N∑
k=1

(qk ×mkq̇k) = c. (11)

All together 10 scalar algebraic equations in the 6N

variables

 q

q̇

 ∈ R6N .

What use? i) Simplification. Reduce the number of
6N scalar differential equations of N body problem by
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10 to solve only 6N − 10 scalar ODE’s. In principle
algebraic equations are simpler than ODE’s. ii) Information
on trajectories and SINGULARITIES for N = 1, 2 .

Theorem 5. Bruns, (1887-1888) :No additional alge-
braic integrals of CM equations exist that are independent
of the 10 above.

Definition 1. A continuously differentiable (non con-
stant) scalar function g(q, q̇, t) ∈ C1(R6N r4,R) of the
6N + 1 variables (q, q̇, t) is said to be an “integral” of (1)
if g(q(t), q̇(t), t) = Constant for a solution (q(t), q̇(t))
of (1).
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The power of T-U=h.

Singularities of the N - body Equations=Collision set
∆ij = {q|qi − qj = 0} , ∆ =

⋃
1≤i<j≤N ∆ij , coin-

cide with singularities of solutions.

Theorem 6. [Painlevé 1897] . i) If q(t) is singular
at σ, then q(t)→ ∆, as t→ σ−.

Proof. A reoccuring argument

N∑
j=1

mj

2
‖q̇j(t)‖2 −

∑
j<k

mjmk

‖qj(t)− qk(t)‖
=

T (q̇(t))− U(q(t)) = h.

T ≥ 0, U > 0, As t → σ− , inft, j 6=k ‖qj(t) −
qk(t)‖ = 0 iff sup

∑N
j=1

mj

2 ‖q̇j(t)‖
2

=∞. 2
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Oscar King of Sweden and
Norway∩Weierstrass∩Mittag

Leffler∩Poincare∩Sundman∩Wang
Qiu-Dong

Construct a series solution to the IVP of the N body
problem VALID for ALL TIME.

See F. Diacu, “The Solution of the n-body Problem,”
Mathematical Intelligencer, 18 (1996) 66-70.

Weierstrass=⇒ Mittag Leffler=⇒Oscar King of Swe-
den and Norway=⇒Prize=⇒Poincare (1889) for original
and valuable ideas (Poincare did not solve the problem)

K. Sundman, 1913, ‘Mémoire sur le problème des trois
corps’, Acta Math. 36, 105–179. N=3, Power series
solution for

AngularMomentum =

3∑
j=1

qj(t)×mjq̇j(t) 6= 0.

(12)
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Wang Qiu-Dong, (1991). The global solution of the
N-Body problem, Celestial Mechanics and Dynamical As-
tronomy. (Stays away from singularities).

Some tools and ingredients:

a) Construct a 1-1 continuously differentiable mapping
from t ∈ (tinf , tsup) onto τ ∈ (−∞,∞).

b) Consider the solutions as complex valued analytic
solutions of the complex variable τ in a strip about the
real τ axis in the complex plane and construct a conformal

map of the strip onto the open Unit Disk:= w

∣∣∣∣ |w| < 1 .

Summary of the arguments:

q(t), t = t(τ) , τ = τ(w) =⇒ Q(w) := q(t(τ(w)))
is analytic in the unit disk and has a converging power
series in w.

Advantages: Solution of an old famous problem.

Disadvantages: i) may have very slow convergence
ii) Does not inform on the mechanism of collision or non
collision singularities iii) Does not inform about asymptotics
on semi infinite intervals of existence say t ∈ (0,∞).
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Should we look for analogous results for any real analytic
differential system?
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Expanding Universe=Total Escape as
t→∞.

Definition. The universe is expanding if the N body
problem possesses solutions qi(t), i = 1, . . . , N that
exist on a semi-infinite interval [t0,∞), that satisfy
limt→∞ ‖qi(t)− qj(t)‖ =∞, i 6= j.

Lemaître, (1927), appears to have been the first to notice
that the Einstein field equations of General Relativity admit
solutions that expand forever.

Hubble’s observation, (1929): many galaxies are speed-
ing away from us in the milky way, and from each other.⇒
we are living in an expanding universe.

Do Newton’s gravitational equations support an ex-
panding universe? All N bodies receding from each other
(FREE of SINGULARITIES)?

Theorem 7. [Bohlin, 1908]. The N = 3 body problem
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has for t large FORMAL solutions of the form

qi(t) = ait+ bilog t+ ci + Pi(
1

t
,
log t

t
), i = 1, 2, 3.

Pi(z, w) formal power series in two variables z and w,
Pi(0, 0) = 0.

Next

Theorem 8. [Chazy, 1922]. Assume: CI) Energy =
T − U = h > 0, CII) Solutions of the N = 3 body
problem exists on some semi infinite interval FREE OF
SINGULARITIES,

Then, I) the N=3 body problem has solutions of the
form

qi = ait+bi log t+ci+δi(t), i = 1, 2, 3, limt→∞δi(t) = 0.
(13)

II) ‖aj − ai‖ 6= 0, i 6= j.

III) bi = −
∑
j 6=i

mj(aj−ai)

‖aj−ai‖3
, i = 1, 2, 3.
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Remarks: For t large. IF there are NO SINGULARITIES
then the N bodies separate like II). Positions qi ∼ ait are
distinct and so are velocities q̇i ∼ ai.

According to Chazy, Poincare missed the term bi log t.

Theorem 9. [Myself & Solomon, JDE, 2017]. Given
any set of constant ai , ci ∈ R3, i = 1, . . . , N , satisfying
II). Then, the N body problem possesses unique vector
solutions

i) of the form

qi = ait+bi log t+ci+δi(t) i = 1, . . . , N, limt→∞δi(t) = 0,

on a semi infinite interval [t5, ∞) where t5 > 0 and
qi ∈ C∞[t5,∞).

ii) (FREE OF SINGULARITIES)

iii) Energy = T − U = h > 0.

iv) The 3N coefficients bi are uniquely determined by
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the 3N coefficients ai as follows

bi = −
∑
j 6=i

mj (aj − ai)
‖aj − ai‖3

, i = 1, . . . , N.

Proof. Integration of the N -body eq. by very fast
converging series. 2

Remark: e.g. Birkhoff, text 1966, Pollard,1967, Saari
1971, Marchal & Saari,1976, Mingarelli’s 2005 assumed
CII). Saari et al extended in various manners [Chazy, 1922]
to the N body problem ASSUMING existence of solutions
on a semi infinite interval FREE of SINGULARITIES rather
than proving that.

– Typeset by FoilTEX – 20



Collisions and Total Collapse

Assume throughout given the IVP

q̇i(t) :=
dqi
dt
, q̈i =

∑
j 6=i

mj(qj − qi)
‖qi − qj‖3

, (14)

qi(t0) = αi, q̇i(t0) = βi, αi 6= αj, i 6= j, αi, βi ∈ R3.
(15)

Definition 2. We say that a singularity of the solution
of the IVP is due to a collision at time σ if there exist two in-
dices j 6= k such that limt→σ+qj(t) = limt→σ+qk(t) =
F ∈ 4. (or σ−).

We say that total Collapse occurs if limt→σ−qk(t) =
F ∈ 4, k = 1, 2, · · · , N .

Theorem. Sundman (1906, 1907 & 1913).

i) If total Collapse is to occur it will not take forever to
happen.
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ii) Total collapse cannot occur unless the angular mo-
mentum is zero.

Later we have

Theorem. (Pollard & Saari (1968)). i) A singularity as
t → σ = 0+ is due to a collision if and only if for some
positive constant α

U(t) =
∑
j<k

mjmk

‖qj(t)− qk(t)‖
∼ αt−2

3, as t→ 0+.

ii) A singularity as t→ 0+ is due to a collision if and only
if (the moment of inertia)

I(t) :=
1

2

N∑
k=1

mk ‖qk(t)‖2 = O(1), as t→ 0+.
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Tools

Sundman, Chazy, Pollard, Pollard and Saari, Saari &
Marchal,...

10 integrals of motion. Conservation of: momentum,
angular momentum and Energy.

Fix origin of coordinate system at center of mass

qc :=

∑N
k=1mkqk∑N
k=1mk

⇒ q̂k = qk−qc ⇐⇒ {q̂k = 0⇔ qk = qc}.

The 1
2 moment of inertia I(t) := 1

2

∑N
k=1mk ‖q̂k(t)‖2.

After relabeling I(t) := 1
2

∑N
k=1mk ‖qk(t)‖2 .

Total Collapse⇐⇒ all point masses converge on the
center of mass

⇐⇒ I(t)→ 0, as t→ σ− ⇐⇒ qk(t)→ 0, k = 1, 2, · · · , N.
(16)
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Lagrange -Jacobi Identity

Ï = 2T − U = T + h = U + 2h. (17)

Sundman inequality with c =
∑N
k=1(qk ×mkq̇k)

‖c‖2 ≤ 4I(Ï − h). (18)

Tauberian Theorems.

McGehee (1974) Coordinates. An integration of the
N -Body problem via new coordinates. ⇐ Wang-(series
solutions), Zia-(Existence of Non Collision singularities).
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Simplest: The central force problem
N=1.

Any hints for the very complicated N body problem?

q :=

 x
y
z

 ∈ R3, ‖q‖ :=
√
qtq =√

x2 + y2 + z2, f(‖q‖) > 0 is a scalar function

q̈ = −f(‖q‖)[‖q‖−1 q], e.g. f(‖q‖) =
µ

‖q‖θ
, µ, θ ∈ R.

(19)

CM has a special central force

q̈ = − µq

‖q‖3
, µ > 0, f(‖q‖) =

µ

‖q‖2
. (20)

Assume the center of the coordinates system is at (0, 0, 0).
How much do we know?
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i) Conservation of Kinetic+Potential=h a constant.

q̇tq̇

2
− µ√

qtq
= h. (21)

Exist two constant vectors of the motion, c and e that
play a fundamental role in description of the trajectory of
a particle in the central force problem.

ii) c the angular momentum vector that is conserved

q × q̇ = c = constant vector

iii) If c 6= 0 then the motion of the particle with point
mass m takes place in a plane passing through (0, 0, 0)
and ⊥ to c.

Assume c 6= 0 .

iv) If the position P of the particle on its trajectory is
given in polar coordinates (r = ‖q‖ , θ) then upon proper
choice of coordinates q = (‖q‖ cos(θ), ‖q‖ sin(θ), z =
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0), c = ‖c‖ (0, 0, 1) , such that the motion takes place
say in the xy plane and the vector c and the z coordinate
has the same direction , then the rate at which the area is
swept out by a radius vector emanating from (0, 0, 0) is

Kepler’s Second Law.

1

2
‖q‖ (θ̇)2 =

1

2
‖c‖ . (22)

v) The other constant vector of integration e (with
e”eccentric axis”) satisfies

µ(e+
q

‖q‖
) = q̇ × c, e · q + ‖q‖ =

‖c‖2

µ
.

vi) The trajectory of a particle in a central field of grav-
itation is given in polar coordinates (with ω a constant)
by

r = ‖q‖ =

‖c‖2
µ

1 + ‖e‖ cos(θ − ω)
.

vii) Kepler’s First Law extended. The motion takes
place in a plane and the trajectories are conic sections.
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‖e‖ = 0⇒ r = ‖q‖ = ‖c‖2
µ =⇒ a circle.

0 < ‖e‖ < 1 =⇒ ellipse.

‖e‖ = 1⇒ a parabola

‖e‖ > 1⇒ a branch of hyperbola.

A focus of the conic coincides with (0, 0, 0) . Non of
the cases in vii) coincides with a collision. Are collisions
rare?

viii) Kepler’s Third law. If a denotes the length of the
semi major axis of the conic then

Area Ellipse = πa2(1− ‖e‖2)1
2, P eriod = (

2π
√
µ

)
3
2.

Remark: The impact of physical quantities like
c=angular momentum and e =eccentric axis on the shape
of a trajectory.

iv) If c = 0 then the motion of the particle takes place
along a fixed straight line passing (0, 0, 0) . Degenerate
motion. the only possibility for collision.
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Most motion is singularities and/or collision free. What
if N > 1 ?

Theorem 10. Saari (1973) : Collision singularities in
the N body problem are improbable. The set of initial
conditions leading to collision has measure zero.
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Classification of Motion by h. Recall
q̇tq̇
2 −

µ√
qtq

= h.

When combining the above (where c 6= 0) with

µ2(‖e‖2 − 1) = 2h ‖c‖2 =⇒ (23)

0 ≤ ‖e‖ < 1 Ellipse or circle. By (23) ⇐⇒ h < 0.

‖e‖ = 1⇒ a parabola. By (23) ⇐⇒ h = 0.

‖e‖ > 1⇒ a hyperbola. By (23) ⇐⇒ h > 0.

In the N body problem some researchers continue to
classify motion by the sign of h.

– Typeset by FoilTEX – 30



Solutions in Rd, d = 1, 2, 3.

A goal: “Explicit” e.g. ẏ = y ⇒ y(t) = µet. Reduc-
tion to algebraic equations

Euler (1767), d = 1, N = 3 bodies moving along a
straight line.

Lagrange (1772), d = 2, N = 3 bodies k = 1, 2, 3
rotating in a plane with same constant angular velocity ω
such that

xk(t) = ξkcos ωt−ηksinωt, yk(t) = ξksinωt+ηkcos ωt.
(24)

A configuration where the 3 bodies are positioned at
the vertices of an equilateral triangle.
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Central Configurations=CC

A central configuration is a special arrangement of the
N point masses interacting by Newton’s law of gravitation
with the following property:

Ui = −λmi(qi− s), λ ∈ R, s, qi ∈ Rd, d = 1, 2, 3, · · · ,
(25)

Ui =
∑
j 6=i

mimj(qj − qi)
‖qi − qj‖3

.

An ALGEBRAIC EQUATION!

Proposition 2. If (25) holds then s=“weighted average
of position vectors”=center of mass is

s = qc =

N∑
k=1

(
mk∑N
k=1mk

)qk, λ =
U

J
,
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where

U =
∑
j<k

mjmk

‖qj − qk‖
> 0, J =

N∑
k=1

mk ‖qk(t)− qc‖2 .

(26)
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Open problem. Finite # Equivalence
Classes of CC?

Call two configurations qi, q̃i ∈ Rd, d = 1, 2, 3 equiv-
alent if there are constants α ∈ R, b ∈ Rd and an dxd
orthogonal matrix Q such that

q̃i = αQqi + b, i = 1, . . . , N. (27)

.

Proposition 3. If q satisfies

∑
j 6=i

mj(qj − qi)
‖qi − qj‖3

= −λ(qi − s) (28)

with constants λ, s then q̃ satisfies

∑
j 6=i

mj(q̃j − q̃i)
‖q̃i − q̃j‖3

= −λ̃(q̃i − s̃). (29)
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with constants λ̃ = |α|3 λ, s̃ = s+ b . (28) and (29) have
the same form. Therefore, we say that (28) is invariant
under (27). Under Dilation α, Rotation Q and translation
b.

For the CC equations, this is sometimes called the Chazy-
Wintner-Smale problem: given N positive masses, is the
number of Equivalence classes of CC finite? [Smale singled
out the planar case d = 2 as the 6-th of his problems for
the twenty-first century. ]
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