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Doron Zeilberger's Invited Talk 1991

IDENTITIES IN SEARCH OF IDENTITY

Doron ZEILBERGER

Department of Mathematical Sciences
Drexel University
Philadelphia
jdi@pruxe.att.com

Abstract

The time is ripe to start a science of identities for their own sake, without paying lip-
service to hight-brow mathematics. Although putting combinatorial, (abstract-) algebraic or
analytic flesh and blood on identities did lead and will lead to considerable insight as well as
new identities, there is also much to be gained in forgetting advanced mathematics, and starting
a new sub-discipline of high-school mathematics called "the theory of identities".
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Doron Zeilberger's Invited Talk 1991

Definition. A mathematical sentence that has “=" in its middle is called an identity.
The format of an identity is thus
SOMETHING = SOMETHING ELSE.

Trivial Example. Re(s)=3, for every complex zero s of {(s).
Easy Example. ANALYTIC INDEX = TOPOLOGICAL INDEX.
Deep Example. 1+1=2.

Abstract

The time is ripe to start a science of identities for their own sake, without paying lip-
service to hight-brow mathematics. Although putting combinatorial, (abstract-) algebraic or
analytic flesh and blood on identities did lead and will lead to considerable insight as well as
new identities, there is also much to be gained in forgetting advanced mathematics, and starting
anew sub-discipline of high-school mathematics called "the theory of identities".
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Hypergeometric Terms

Definition: A term f(n) is called hypergeometric if

1
M = rational function in n =

fn) pi(n)
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Hypergeometric Terms

Definition: A term f(n) is called hypergeometric if

1
M = rational function in n =

fn) pi(n)

Alternatively: if f(n) satisfies a first-order linear recurrence with
polynomial coefficients:

pi(n) - f(n+1) —po(n) - f(n) = 0.

: : +1
Remark: Generalize geometric sequences where “———= = const.

2
Examples: rat(n), 2", n!, (a)n, < n> I'(3n+ 1), etc.
n
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Gosper's algorithm

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

Igorithm /bi I coefficient identities/closed form/symboli /linear
R. WILLIAM GOSPER, JR.
Xerox Palo Alto Research Center, Palo Alto, California 94304
Communicated by Donald E. Knuth, September 26, 1977
ABSTRACI‘ leen a summand aq, We seek the “indefinite erate case where a, is identically zero.) Express this ratio as
sum” $(n) d ined (within an add ) by
n_ _ Pn Gn (5]
£ 2= S(m) - 50 (0 1 Poei Tn’
or, equivalently, by where py, g, and r,, are polynomials in n subject to the fol-
lowing condition:
4y = $(n) - S(n = 1). m ¢
An algorithm is exhibited which, given ap, finds those S(n) with 8cd(@n, tnss) =1, 6]
the property ) for all non-negative integers j.
_AB) __ . rational function of n. 2 It is always possible to put a rational function in this form,
Sn—1) 2 rationaliunctionofn (21 for if ged(gn, ra+5) = g(n), then this common factor can be
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Gosper's algorithm
Purpose: decide and solve the indefinite hypergeometric
summation problem:

f(k) = g(k) —g(k +1)
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Fasenmyer's Algorithm

» aka “Sister Celine's algorithm”

P developed in her doctoral thesis in 1945

i

SOME GENERALIZED HYPERGEOMETRIC POLYNOMIALS
SISTER MARY CELINE FASENMYER

1. Introduction. We shall obtain some basic formal properties of
the hypergeometric polynomials

fn(ai; bi; x) = fn(aly Qgy * v * y Qp, bl, b'b 28ty bq; x)
(1 7 [—n,n+1,ax,~-,%; ]
= X
et 1/21 11 blr ] bg;

(7 a non-negative integer) in an attempt to unify and to extend the
study of certain sets of polynomials which have attracted consider-
able attention. Some special cases of the f.(a;; b;; x) are:!
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Sister Celine's Algorithm

Algorithm: given hg. f(n, k), find recurrence for >-72 _ f(n, k).
1. Choose r,s € N (order in n, order in k).
Ansatz for a k-free recurrence: >0 >0 gcij - f(n+ ik + j).

No ok W

Divide by f(n, k) and simplify.

Multiply by the common denominator.

Perform coefficient comparison with respect to k.
Solve the linear system for the ¢; ; € K(n).

Sum over the k-free recurrences and return the result.
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E le: F(n):= k) = ith k) := .
cample: F(n) =3 11,4 (2) witn st = ()
With r = s = 2 we find the k-free recurrence. Summing yields
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Divide by f(n, k) and simplify.
Multiply by the common denominator.
Perform coefficient comparison with respect to k.
Solve the linear system for the ¢; ; € K(n).

No ok W

Sum over the k-free recurrences and return the result.

Example: F(n) = kszo F(n, k) = <2:> with f(n, k) = <Z>2

With r = s = 2 we find the k-free recurrence. Summing yields
0=—(n+1)F(n) + (2n +2)F(n) —(n+1)F(n)
+2n+3)F(n+1) +2n+3)F(n+1) —(n+2)F(n+2)

Collecting terms: (4n+6)F(n+1) — (n+2)F(n+2) = 0.
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Wilf-Zeilberger (WZ) Theory

Invent. math. 108: 575-633 (1992)

Inventiones
mathematicae

© Springer-Verlag 1992

An algorithmic proof theory for hypergeometric
(ordinary and *“¢”’) multisum/integral identities

Herbert S. Wilf* and Doron Zeilberger **

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

J. Symbolic Computation (1991) 11, 195-204

The Method of Creative Telescoping

DORON ZEILBERGER
Department of Mathematics and Computer Science, Temple University, Philadelphia, PA 19122,
USA

In memory of John Riordan, master of ars combinatorica

{ Received 1 June 1989)

= G) Ci)=6)

[P E An algorithm for definite i ion is given. It is based, in a non-obvious
p PRy way, on Gosper’s algotithm for defimite h i ion, and its i
Jjustification relies on Bernstein’s theory of heolonomic systems.
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Zeilberger's Fast Algorithm

Problem: given a hypergeometric f(n, k), find a recurrence for

F(n):=7)_ f(nk)
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Leilberger's Fast Algorithm

Problem: given a hypergeometric f(n, k), find a recurrence for

F(n) =Y f(n.k)
(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n, k) is a “proper” term),
one can show that a recurrence for F'(n) exists.
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Leilberger's Fast Algorithm

Problem: given a hypergeometric f(n, k), find a recurrence for

F(n) =Y f(n.k)
(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions (f(n, k) is a “proper” term),
one can show that a recurrence for F'(n) exists.

But one does not know it, neither its order nor its coefficients.
» Try order r = 0,1,2,... until success.
» Write recurrence with undetermined coefficients p; € IK(n):

pr(n)Fn+7r)+--+p1(n)F(n+1) 4+ po(n)F(n) =0.
» Apply a parametrized version of Gosper's algorithm to

pr(n)f(n +r, k) +- —|—p1(n)f(n +1, k) +p0(n)f(n, k)
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Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

b
Consider the following summation problem: F(n) := Z f(n, k)
k=a
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Telescoping: write f(n,k) = g(n,k+ 1) — g(n, k).
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Creative Telescoping
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(aka Feynman's differentiating under the integral sign)

b
Consider the following summation problem: F(n) := Z f(n, k)
k=a

Telescoping: write f(n,k) = g(n,k+ 1) — g(n, k).
b

Then F(n) = Z (9(n,k+1) — g(n,k)) = g(n,b+1) — g(n,a).

k=a
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Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

b
Consider the following summation problem: F(n) := Z f(n, k)
k=a

Telescoping: write f(n,k) = g(n,k+ 1) — g(n, k).
b

Then F(n) = Z (9(n,k+1) — g(n,k)) = g(n,b+1) — g(n,a).
k=a

Creative Telescoping: write
) f(n+rk)+---+co(n)f(n k) =g(n,k+1)—g(n,k).
Summing from a to b yields a recurrence for F'(n):
e(n)Fn+r)+---+co(n)F(n) =gn,b+1) —g(n,a).
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Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following integration problem: F'(x / f(z,y)dy
Telescoping: write f(z,y) = & g(:v Y).

b
Then F(n) = [ (foen)ds = g(a.b) - o)

Creative Telescoping: write
cr(@) s f(y) + -+ co(@) f(w,y) = o(x,y).
Integrating from a to b yields a differential equation for F'(x):
(@) F(z)+ -+ co(z)F(z) = g(x,b) — g(z,a)
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Beyond Hypergeometric: Holonomic Functions

Definition: A sequence f(n) is called P-recursive if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)f(n+r)+---+pi(n)f(n+1)+po(n)f(n) =0 (pr # 0).
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Beyond Hypergeometric: Holonomic Functions

Definition: A sequence f(n) is called P-recursive if it satisfies a
linear recurrence equation with polynomial coefficients:

pr(n)f(n+r)+---+pi(n)f(n+1)+po(n)f(n) =0 (pr # 0).

Definition: A function f(x) is called D-finite if it satisfies a linear
ordinary differential equation with polynomial coefficients:

pr(@)f @)+ +p1(@) f' (@) +po(z) f(z) =0 (pr #0).

Remarks:
» Equivalently, such functions/sequences are called holonomic.
» Generalizations to several variables and mixed cases exist.
» In any case, one needs only finitely many initial conditions.

» The holonomic (finite!) data structure consists of a system of

linear functional equations together with initial values.
11 /51



Special Functions

» arise in physics (real-world) and mathematical analysis
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Special Functions

» arise in physics (real-world) and mathematical analysis

> are solutions to certain differential equations / recurrences

Jo(X) = 1= (¥2)24 (x/2)" - (x/2)5 +
@z @2 @)

RE

Airy function Bessel function Coulomb function
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Special Functions

» arise in physics (real-world) and mathematical analysis

> are solutions to certain differential equations / recurrences

» cannot be expressed in terms of the usual elementary functions
(v/, exp, log, sin, cos, ...)

Airy function Bessel function Coulomb function
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The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Depariment of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these
special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scries identities, and that is given both in English and in MAPLE.

y

u

\

=) =)=

WHO YOU GONNA CALLy

» This is the seminal paper by Doron Zeilberger (1990).

13 /51



The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Depariment of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these
special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scries identities, and that is given both in English and in MAPLE.

ml

=) =)=

WHO YOU GONNA CALLy

» This is the seminal paper by Doron Zeilberger (1990).

» The proposed algorithm applies to general holonomic functions.

13 /51



The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Depariment of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these
special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scries identities, and that is given both in English and in MAPLE.

y

|
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» The proposed algorithm applies to general holonomic functions.

» The approach is similar to Sister Celine's algorithm.
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Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these
special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scries identities, and that is given both in English and in MAPLE.

£6) (5 =0y
i, o roiammica A

» This is the seminal paper by Doron Zeilberger (1990).

» The proposed algorithm applies to general holonomic functions.

» The approach is similar to Sister Celine's algorithm.

> Not based on linear algebra, but on elimination techniques.
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The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Depariment of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory ) 5=y
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these \ Z 2= B
special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves | wHO YOU GONNA caLLy
terminating hypergeometric series identities, and that is given both in English and in MAPLE. d 1

This is the seminal paper by Doron Zeilberger (1990).

The proposed algorithm applies to general holonomic functions.

>

>

» The approach is similar to Sister Celine's algorithm.

> Not based on linear algebra, but on elimination techniques.
>

Therefore, it was named the “slow algorithm.
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Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Grébner basis

NOBUKI TAKAYAMA

Deparitment of Mathematics, Kobe Universily
Rokko, Kobe, 657, Japan

Recall: creative telescoping requires a relation of the form

» c.(n)f(n+rk)+- -+ co(n)f(n, k) :g(n kE+1)—g(n,k),

> or cr(2) g f(@,y) + - + col2) f(z,y) = f-9(2,y).
» Left-hand side is called telescoper, g is caIIed certificate.

Ideas of the Algorithm:
» Work in the setting of Weyl algebra and D-modules.
» It is not necessary to eliminate k (resp. y) completely.
> Note that the certificate g is not needed in certain situations.

» Based on elimination, uses Grobner bases over modules.
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» Coupled system of linear difference / differential equations.
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Chyzak’s Algorithm

DISCRETE
MATHEMATICS

Discrete Mathematics 217 (2000) 115-134 —————————
www.elsevier.com/locate/disc

An extension of Zeilberger’s fast algorithm to
general holonomic functions™

Frédéric Chyzak
INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Ideas of the Algorithm:
» Employ Grobner bases for normal forms, not for elimination.
» Ansatz with undetermined coeffs for telescoper and certificate.
» Coupled system of linear difference / differential equations.
» Solve it by uncoupling or by a direct method.
» Variation: C.K. proposed a heuristic approach that avoids the

expensive uncoupling step (caveat: may not terminate).
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Reduction-Based Creative Telescoping

Motivation:
> Typically, the certificate is much larger than the telescoper.
» Often it is not needed (natural boundaries / closed contour).

» Compute the telescoper without computing the certificate.

Contributors: Alin Bostan, Hadrian Brochet, Shaoshi Chen,
Frédéric Chyzak, Hao Du, Lixin Du, Louis Dumont, Hui Huang,
Manuel Kauers, Christoph Koutschan, Pierre Lairez, Ziming Li,
Bruno Salvy, Michael Singer, Joris van der Hoeven,

Mark van Hoeij, Rong-Hua Wang, Guoce Xin, ...

Active Research Area: Google Scholar lists more than 1000
articles about creative telescoping.
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Reduction procedure (differential case): define p: F — F s.t.
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» for each f € F thereis g € F such that f — p(f) = ¢/,

» p(f) =0if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for f: f(z,y) dy, apply the reduction p
to the successive derivatives of the integrand f:

f=g+p(f) =go+ ho,
Lf=di+p(Lf) =91 +Mn,
(f%fzgﬁp(%f):g?rhz?--.
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» p(f) =0if and only if f is integrable.
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to the successive derivatives of the integrand f:
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% :Qi“‘P(%f) =g} + h,
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If the h; live in a finite-dimensional IK(x)-vector space, then there
exists a nontrivial linear combination pohg + - - - 4+ p-h, = 0.
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» for each f € F thereis g € F such that f — p(f) = ¢/,
» p(f) =0if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for f: f(z,y) dy, apply the reduction p
to the successive derivatives of the integrand f:

f=a+p(f) =go+ho,
% :Qi“‘P(%f) =g} + h,

2 2
Lf=09+po(Lf)=dh+ho, ...

If the h; live in a finite-dimensional IK(x)-vector space, then there
exists a nontrivial linear combination pohg + - - - 4+ p-h, = 0.

— Hence, the desired telescoper is pof + p1f + -+ prf).
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Table of Integrals by Gradshteyn and Ryzhik
7.319

1
i s T(A+n)T(p) T(v)
1. 1 — g)p-lgr-1 g2 1/2) ge = (—1}*
/0( o) tart 63, (1e?) do = (1) AT T 1 )
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0 T (p+ v+ 3)
i
X 3F2 fn,n+)\+l,u+%;%,u+v+§;72)

[Rep >0, Rew>-—1] ETII191(42)

1
3F2 (fm n A vig kot V;"YZ)

7.32 Combinations of Gegenbauer polynomials C¥(x) and elementary functions

1 I S 1-v;n
7.321 / (1—22)"" 2 e C%(2) dz = %((2)”%&7” Jv4n(a)
1 n! (v
[Rer > —1] ET Il 281(7), MO 99a
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Table of Integrals by Gradshteyn and Ryzhik

%%ﬁ%%

Gegenbauer Gamma
polynomials C’,(La)(a:) function T'(x)

l

1 1, 21—V T I\(2 i )
_ 2\ z iax o - w L4 Vo)
-[1 (1-2% €' CY (z) dw S a ¥ Jugn(a)
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Gegenbauer Gamma Bessel
polynomials C{*(z) ~ function T'(z) function J,(z)

l

s = 21 D(2v 4 n)
_ 2\VTz iax ~w - 1 4 —v
[1 (1-2% €' CY (z) dw T () a ¥ Jugn(a)
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: T 21" D(2v + n)
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> A large portion of such identities can be proven via the
holonomic systems approach.
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Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer Gamma Bessel
polynomials C{*(z) ~ function T'(z) function J,(z)
2 gt w2V T (2w 4n) _,
[ -y oy = BT T g )

> A large portion of such identities can be proven via the
holonomic systems approach.

P Algorithms are implemented in the HolonomicFunctions package.

18 / 51



Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer Gamma Bessel
polynomials C{*(z) ~ function T'(z) function J,(z)

l

1 1, 21—V 1 I\(2 i )
_ 2\ z iax o - w L4 Vo)
-[1 (1-2% €' CY (z) dw S a ¥ Jugn(a)

Holonomic system, satisfied by both sides of the identity:
ia(n + 20) f1(@) + a(n + 1) fs1(a) — in(n + 20) fa(a) = 0,

a(n+1)(n+2) fni2(a) =2in+1)(n+v+1)(n+2v+1) fri1(a)
—a(n+2v)(n+2v+1)fu(a) =0. 18/5



Random Walk Generating Functions
Study random walks on a lattice:
» d-dimensional integer lattice, or other
certain set of allowed steps
with or without restriction (positive quadrant or the like)
univariate g.f. for excursions

>
>
>
> multivariate g.f. for walks with arbitrary endpoint
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Random Walk Generating Functions
Study random walks on a lattice:
» d-dimensional integer lattice, or other
P certain set of allowed steps
» with or without restriction (positive quadrant or the like)
» univariate g.f. for excursions
> multivariate g.f. for walks with arbitrary endpoint

Many operations can be performed by creative telescoping:
P constant-term extraction
» positive part computation
» diagonals

Some Contributors: Axel Bacher, Olivier Bernardi, Alin Bostan,

Mireille Bousquet-Mélou, Mar)fred Buchacher, Frédéric Chyzak,
Julien Courtiel, Guy Fayolle, Eric Fusy, Anthony Guttmann,

Manuel Kauers, Irina Kurkova, Jean-Marie Maillard, Stephen Melczer,

Marni Mishna, Kilian Raschel, Andrew Rechnitzer, Bruno Salvy,
Gilles Schaeffer, Amélie Trotignon, Michael Wallner, ...
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Face-centered cubic (fcc) lattice
Example: Construction in 3D
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Example: Construction in
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Face-centered cubic (fcc) lattice
Example: Construction in 3D

Generalization to higher dimensions is straight-forward.



Lattice Green's Function
The lattice Green's function is the probability generating function

P(x;2) = Z pn(x)2"
n=0

where p, () is the probability of being at point x after n steps.
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P(x;2) = Z pn(x)2"
n=0

where p, () is the probability of being at point x after n steps.

Let A(k) denote the structure function of the lattice:

-1
)\(k}) — Z pl(m)eimk — (g) Z COS(ki) COS(IC]')-

zeRd 1<i<j<d
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Lattice Green's Function
The lattice Green's function is the probability generating function

z) = an(:v)z"
n=0

where p, () is the probability of being at point x after n steps.
Let A(k) denote the structure function of the lattice:
. A\t
= Z pi(z)e™k = <2> Z cos(k;) cos(k;).
zeRY 1<i<j<d

One is particularly interested in

A

that encodes the return probability. It is a D-finite function, and its
differential equation can be computed by creative telescoping.
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Return Probability

Definition: The return probability R (Pdlya number) is given by
1 1
2 n=oPn(0) P(0;1)

It is well known that in 2D the return is certain.
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Return Probability
Definition: The return probability R (Pdlya number) is given by

1 1
R=1- =1 —
2_n=0Pn(0) P(0;1)

It is well known that in 2D the return is certain.

Fact: For d = 3, the return probability is one of Watson's integrals:

1 [T dky dky dks -1 16 /474
Ry =1-{— T =l-crne
7 Jo JoJo 1 — 3(c1ca + cie3 + cac3) 9(I'(3))

= 0.25631823650464877109503018063... where ¢; = cos(k;).
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Return Probability
Definition: The return probability R (Pdlya number) is given by

1 1
R=1- =1 —
2_n=0Pn(0) P(0;1)

It is well known that in 2D the return is certain.

Fact: For d = 3, the return probability is one of Watson's integrals:

1 [T dkq dks dks -1 16 /4n*
Ry=1-{— I =1- e
7 Jo JoJo 1 — 3(c1ca + cie3 + cac3) 9(I'(3))

= 0.25631823650464877109503018063... where ¢; = cos(k;).

Results: for higher dimensions one approximates R using the ODE:
> d=4: Ry =0.095713154172562896735316764901210185...
> d =5 Rs=0.046576957463848024193374420594803291...
> d=06: Rg=0.026999878287956124269364175426196380...
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Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

> Automatability

» Generality

» Shift from ad hoc to algorithmic

» Algorithm replaces ingenuity (or augments it)

» Can handle a quite large class of functions (= holonomic),
even those that do not have a name.
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Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

> Automatability

» Generality

» Shift from ad hoc to algorithmic

» Algorithm replaces ingenuity (or augments it)

» Can handle a quite large class of functions (= holonomic),
even those that do not have a name.

Key insight: one can prove many special function identities
without insight — just via algorithm. This was Zeilberger's dream.

Drawbacks:
» Such proofs do not provide any “insight” (combinatorial
interpretation, etc.).
> Not fully automated: certain technical details have to be

checked manually (initial values, singularities, etc.).
23/ 51



Plane Partitions

Definition: A plane partition m of n € N is

> a two-dimensional array m = (m; j)1<i j
» s.t. m;; € N with finite sum Y m; ; =n =: |7

> and T, 5 > Ti+1,5 and Ti,j5 > Ti,j+1 for all i,j > 1.
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Totally Symmetric Plane Partitions

The number of totally symmetric

(see [11, Case 4]).

plane partitions with largest part < n is equal to

Conjecture 7.

n
1<i<j<k<n i+j+k-
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Totally Symmetric Plane Partitions

Conjecture 7. (see [11, Case 4]). The number of totally symmetric
plane partitions with largest part < n is equal to

T S . 2 i S
n 1<i<j<ksn i+j+k-2

Note. All quantities arising in conmection with Conjecture 7 have
natural g-analogues. The q-analogue of Tn is
iviek-1
1+j+k-2

1
1<i<j<k<n 1-q

T (@) =

25 / 51



Orbit-Counting Generating Function for TSPPs

/S5l 1— gitith=1

H . e 3 . - 4

g-TSPP conjecture: Z q = H =
w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

TE€TSPP(n) 1<i<i<k<sn

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

TE€TSPP(n) 1<i<i<k<sn

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

TE€TSPP(n) 1<i<i<k<sn

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

7T€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi+j+k—1
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi+j+k—1
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi+j+k—1
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi+j+k—1
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

w€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

7T€TSPP(n) 1<i<j<k<n

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

TE€TSPP(n) 1<i<i<k<sn

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

26 / 51



Orbit-Counting Generating Function for TSPPs

1— qi—i-j-l—k—l
g-TSPP conjecture: Z q™/%sl = H

1 — gitith-2

TE€TSPP(n) 1<i<i<k<sn

(where TSPP(n) denotes the set of TSPPs with largest part < n).

Example: For n = 2 there are five such TSPPs

=y

¢ + ¢ o+ f o+ ¢+ ¢
_1_q5 1_q2 1_q3 1_q4 1_q5
Cl-q @ 1-q 1—-¢* 1-¢® 1—¢*

26 / 51



Determinantal Formulation
On the Generating Functions
for Certain Classes of Plane Partitions
SoicHI OKADA

Department of Mathematics, University of Tokyo
Hongo, Tokyo, 113, Japan

Communicated by George Andrews

Received November 2, 1987

r

Okada’s Theorem: The ¢-TSPP conjecture is true if

1 — gititk-1 2
det (i )i<ijen = ][ <l_q+y+k—z> where

1<i<j<h<n

i [P +J—2 i+7—1 ;
aij = q"" 1([ i1 ]Jrq[ ]Z }>+(1+ql)5i,j—5i,j+1-
q q
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Results on DSASMs and OSASMs

(joint work with Roger Behrend and llse Fischer)
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Alternating Sign Matrices
Definition:
» quadratic matrix (n x n) with entries 0, 1, and —1
> 1's and —1's alternate along rows and along columns
» all row sums and all column sums equal 1
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DSASMs for n = 1,2, 3,4
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n=1:
n=2:
n=3:
n =

n=>5:
n==~06:
n="7:
n=3~8:
n=29
n = 10:
n =11:
n=12:
n=13:
n = 14:
n = 15:

Number of ASMs

1 =1
2 =2
7 =7
42 =2.3.7
429 =3.11-13
7436 =22.11.13%
218348 =22.13%2.17-19
10850216 =23.13.17%2.192

: 911835460 =22.5.172.19%.23
129534272700 =22.3.52.7.17-19%. 232
31095744852375 =32.5%.7.19%.23%.29.31
12611311859677500 =2%2.3%.5%.19.23%.292.312
8639383518297652500 =2%2.3%.54.232.29%.31%.37
9995541355448167482000 =2%.35.53.23.20%.31%.372
19529076234661277104897200 = 2% - 3% . 52 . 29 . 315 . 373 . 41 - 43
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n=1:
n=2:
n=3:
n=4:
n=>5:
n==6
n="7T:
n=2~8:
n=9:
n = 10:
n=11:
n=12:
n=13:
n = 14:
n = 15:
n = 16:
n=17:
n = 18:
n=19:
n = 20:

Number of DSASMs

1 =1
2 =2
5 =5
16 =24
67 =67

: 368 =2%.23
2630 =2.5-263
24376 =2%.11.277
293770 =2-5-29-1013
4610624 =2%.61-1181
94080653 = 4679 - 20107
2492747656 =2%.7.2063- 21577
85827875506 =2.29-73-20271109
3842929319936 =213.7.67015369
223624506056156 =22.67-7547 - 110563111
16901839470598576 =2%.13.12343 - 6583394929
1659776507866213636 = 22.263 - 1577734323066743
211853506422044996288 =2%.13.254631618295727159

35137231473111223912310 =2-5-1601 - 2194705276271781631

7569998079873075147860464 = 2* - 473124879992067196741279
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[N elNellSE = Nelw)

Six-vertex model

0 0 1 0 0
1 0 -1 1 00
0 1 0 -1 0 1
-1 0 O 1 00
1 -1 1 -1 10
0 0 O 1 00
0 1 0 0 0

The degree-4 vertices have two
incoming and two outgoing
edges.

The top vertical edges point up.

The rightmost horizontal edges
point to the left.
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Pfaffian formula for DSASMs

Theorem. The number of (n x n)-DSASMs is equal to
(v —u)(2+uv)
) Y

1—w)(l—u—wv

Pfe(n) <i<j<n—1 <[uivj] (

where €(n) = 0 for even n and €(n) = 1 for odd n.
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Off-Diagonally Symmetric Alternating Sign Matrices
Theorem (Kuperberg):

| OSASM(2n)] H (6 —2):

z=1 2n + 22
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Off-Diagonally Symmetric Alternating Sign Matrices
Theorem (Kuperberg):

n

(61 — 2)!
| OSASM(2 H (2n + 21)!
z:l

Conjecture:

L Bn4+2) p (60— 2)!
[OSASMEZn + )| = —5 =55 1_11(2n+2i+1)!
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Off-Diagonally Symmetric Alternating Sign Matrices
Theorem (Kuperberg):

n

(67 —2)!
ASM(2
|OSAS Z[[l 2n + 2i)!
Conjecture:
21 (B3n 4+ 2)! (60 —2)!
[OSASMEZn + )| = —5 =55 Hl (2n +2i+ 1))

Theorem: The number of off-diagonally symmetric alternating
sign matrices, | OSASM(n)|, is given by

[ulv]] i , j<n-—1
Pfocicj<n—xeen(n) (I —uw)(l —u—v) :

(_1)Z> Jj=n
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Request by Zeilberger (dated June 23, 2021)

Von Doron Zeilberger &
An Christoph Koutschan (RICAM) &
Kopie (CC) Di Francesco, Philippe @

Betreff challenge
Dear Christoph,

Philippe Di Francesco just gave a great talk at the Lattice path conference
mentioning, inter alia, a certain conjectured determinant.

Itis

Conj. 8.1 (combined with Th. 8.2) in
https:/farxiv.org/pdfi2102.02920.pdf

| am curious if you can prove it by the Koutschan-Zeilberger-Aek holonomic ansatz
method.

If you can do it before Friday, June 25, 2021, 17:00 Paris time, I will mention it
in my talk in that conference.

Best wishes

Doron
36 / 51
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Determinants and Pfaffians
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Determinants and Pfaffians

Who you gonna call?
ADVANCED DETERMINANT CALCULUS

C. KRATTENTHALERT

Institut fiir Mathematik der Universitdt Wien,
Strudlhofgasse 4, A-1090 Wien, Austria.
E-mail: kratt@pap.univie.ac.at
WWW: http://radon.mat.univie.ac.at/People/kratt

Dedicated to the pioneer of determinant evaluations (among many other things),
George Andrews

37 /51



The Holonomic Ansatz

38 /51



The Holonomic Ansatz

38/ 51



The Holonomic Ansatz

Problem: Prove a determinantal identity of
the form det (a;;) = bn

1\7'7.7 X

38/ 51



The Holonomic Ansatz

Problem: Prove a determinantal identity of
the form det (a; ;) = by, where

1\7/7.7 X

» a;; is a holonomic sequence

38 /51



The Holonomic Ansatz

Problem: Prove a determinantal identity of

the form det (a; ;) = by, where
1< j<n 7

» a;; is a holonomic sequence

» that does not depend on n

38 /51



The Holonomic Ansatz

Problem: Prove a determinantal identity of

the form det (a; ;) = by, where
1<, j<n

» a;; is a holonomic sequence
» that does not depend on n, and
» b, is a closed form (b, # 0 for all n).

38 /51



The Holonomic Ansatz

Problem: Prove a determinantal identity of

the form det (a; ;) = by, where
1<i,j<n

» a;; is a holonomic sequence
» that does not depend on n, and
» b, is a closed form (b, # 0 for all n).

_________________ Il =orc=ery
Gn,1 Gnp n—1 1 Qn n & w”omunim o

Laplace expansion:
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Problem: Prove a determinantal identity of

the form det (a; ;) = by, where
1<i,j<n

» a;; is a holonomic sequence
» that does not depend on n, and
» b, is a closed form (b, # 0 for all n).

S Il =orc=ery
n,n S wHo YOU GOMNA CaL
) ¥ L

n
0= Zai,jcn,j (1<i<n), cpn=1
j=1

Laplace expansion:
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Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the
normalized cofactors ¢y, ;.
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Justification: Identity Found by Proving ldentities!
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Di Francesco’s Determinant
Conjecture (Di Francesco's determinant for 20V configurations):

get (o Z—i-‘j-l— B z' :21—[2 (4? 2)
0<i,j<n 2j+1 2j+1 (n+2i—1)!

i=1
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Di Francesco's Determinant
Conjecture (Di Francesco's determinant for 20V configurations):
(i+2j+1 —1 m2il (44— 2)!
0<i,j<n 2j+1 2j+1 (n+2i—1)!
Proof:
» Compute data for ¢, j for 0 < j <n <30

i=1

1
-1 1
1 -2 1
_ 16 47 46 1
15 15 15
1 e s s 5
13 13 13 13
20 88 633 291 21 1
s s 52 2 R
2008 _ 80 2841 _ 07 sau1s . 1
. . 1s 23 1935 s
_lese2 530 T LEC) _asoo2 s = 1
3553 3553 209 323 3553 209 1
2608 e ss 0 _sTsse ses2s _sem B 1
575 11s 575 575 575 575 25
- w 182176 s m 849728 » 1011076 w % - g 3
aass aass 115 e aass 209 . s
Ielen w49 2esee a7l 162497 GoT8sss _asss ey 3w
13485 13485 13485 13485 2697 13485 2697 899 31




Di Francesco’s Determinant
Conjecture (Di Francesco's determinant for 20V configurations):

der (2(1FH L)L (1Y) oy 22
0<i,j<n 25 +1 2j+1 Pl (n+2i—1)!
Proof:

» Compute data for ¢, j for 0 < j <n <30

» Guess recurrences for ¢, ; (using Manuel Kauers' Guess.m):
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Di Francesco’s Determinant
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» Guess recurrences for ¢, ; (using Manuel Kauers' Guess.m):

» Derive diagonal recurrence for ¢y, p,; it implies ¢, , = 1.

» Proving (2) by creative telescoping takes about 45 minutes.
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Di Francesco’s Determinant
Theorem (Di Francesco's determinant for 20V configurations):

(425 +1 i —1 S 207 (44— 2)!
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Zeilberger's Talk at the Lattice Path Conference

@ Doron Zelberper

S
N e ol ; , =
Outline and Links for Doron Zeilberger's Talk , June 25, 2021, CIRM
1. Thanks Cyril et. al.
2. Warning; not a proper math talk (quote Kimmo)
3. The triumphs of "Guess and Check

Comment on MBM's talk: This simple-minded approach that ultimately lead to the FIRST proof of Gessel's conjecture, gives a

(very ELEMENTARY?) one-line proof of the Kreweras walk formula (for the quarter plane) (mentioned in this masterpiece), a
similar proof should exist for the three-quarter-plane.

Comment on Mourad I's talk: Christian Krathenthaler noticed that the expression of Brennan that he conjectured to be a
polynomial in g, is nothing but MacMahon's box formula that immediately proves that not only are they polynomials, but they
have positive coefficients. (e.g. see here)
Comment on Philippe Di- Fs great talk. Using this nice experimental-yet-rigorous approach (that ultimately lead to the proof of
the qTSPP conjecture) Christoph Koutschan proved Philippe Di-F's determinant conjecture! (that another CK could not do) (see
certificate)

4. Congratulate MBM, implicit honors

5. Memory Lane: FPSAC 1991 (show proceedings), MBM's defense (the one who laughed, show thesis)

6. my_report

7. shocking shortcut
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Ternary Variations of Di Francesco’'s Determinant

det

0<ij<n—1

(5 (5)

(joint work with Christian Krattenthaler and Michael Schlosser)

3m—1 . m
m m m 41)' (32 _ 2)
29(2)+3m+139(2)+3m (3) ( - i JE S -
(%)m £[1 (31)' 11;[ (121 8)'
1 3m K m )
m m 3)m 41,)' (31 — 1)|
99(%)+6m+139(’3)+6m (3) (4i)! . 1
2 37\ 2 (%—l)m 2 (37, 'H (121';4)'7 orn 3m + ,
=1 i=1
m - 5 3m+1 Ny m 5
99(3)+om+239(3) +om _(g)m (#a)! 11 G) o amaa
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Ternary Variations of Di Francesco’'s Determinant
(joint work with Christian Krattenthaler and Michael Schlosser)

i3+ | [(—i+3i+1
det (3
09,;‘271( < 35 +1 )+( 3541

Bet®
N———

. . - (g 3m (41)' m (371_1)'
99(%)~6m+139(3)+6 (}1)1 %)ngmpl (i = 4)
9("3)—3m—199("3)+9m (2)37" R OIS (30)!

2 s @ O L iy L a2y
o(p)-sgo(p)rams___ (B Fr* @il (@i 1)!
g ) (15)mt1 (gam 1 (30)! 1;[(12%+4)"

for n = 3m,

forn=3m+1,

forn =3m+ 2,
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Ternary Variations of Di Francesco’'s Determinant
(joint work with Christian Krattenthaler and Michael Schlosser)

N € e T e
0<i,j<n—1 3j+2 3j+2

il 3m . m y
99(3)~3m+1g9(3) +6m (3)m TT (40)! 11 Bi—1)! for n = 3m,

forn =3m+1,

m+2 . m
m—1 (44)! (3i+1)!

I | Rra | | ————— forn= 2
(%)m e (1)12:1 (12i + 4)!” or n = 3m + 2,
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Ternary Variations of Di Francesco’'s Determinant

Theorem: For n > 1 we have
21 1F 4i — (131)

i (1+3] ’L+3j
0<(32t<n(3 ( 3j ) ) 2H ['(3i —2) ( 132)
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Ternary Variations of Di Francesco’'s Determinant
Theorem: For n > 1 we have

i1
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det (3z(z+3g+1 z+3j+1 ) _ 21 2F 41 — )F(%)
O<igj<n\ \ 3IH S+l 30(3i—1)T'(%)
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0<ij<n\  * 37+2 Sy+2 ._1 I(3i+ 1) (42)
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Three Infinite Families

Conjecture: for all x € Ny and for all n € N, n > x, we have
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h.CO] 21 Jul 2025

Recent Progress on Some Conjectures

DOMINO TILINGS, NONINTERSECTING LATTICE PATHS
AND SUBCLASSES OF
KOUTSCHAN-KRATTENTHALER-SCHLOSSER
DETERMINANTS

QIPIN CHEN, SHANE CHERN, AND ATSURO YOSHIDA

ABsTRACT. Koutschan, Krattenthaler and Schlosser recently considered a fam-
ily of binomial determinants. In this work, we give combinatorial interpretations
of two subclasses of these determinants in terms of domino tilings and nonin-
tersecting lattice paths, thereby partially answering a question of theirs. Fur-
thermore, the determinant evaluations established by Koutschan, Krattenthaler
and Schlosser produce many product formulas for our weighted enumerations
of domino tilings and nonintersecting lattice paths. However, there are still two
enumerations left corresponding to conjectural formulas made by the three. We
hereby prove the two conjectures using the principle of holonomic Ansatz plus
the approach of modular reduction for creative telescoping, and hence fill the
gap.
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Families of Binomial Determinants
(joint work with Hao Du, Thotsaporn Thanatipanonda, and Elaine Wong)

Inspired by some conjectures in Christian Krattenthaler's
“Advanced Determinant Calculus: A Complement”.

Theorem: Let i be an indeterminate and let m,r € Z.
If m>r>1, then

S
det [(M-ﬁ-l—l—] + r) _5i:j+27“}

1<i,j<2m+1 J+2r—2
)T (e 3) (A Dy ﬁ (1 +i+3)or
A %)me»l i=1 (@)ar

M (4204 6r 4 3)7 (B 4204 3r +2)°

X 2 n 2
i=1 (Z)z (5 +Z+3T+2)¢—1
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Combinatorial Interpretation: Holey Hexagon
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The g-Case

Consider ¢-difference equations involving the ¢-shift operation

x> qr, resp. q"— ¢"TL
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i " (@9)

» the ¢g-binomial coefficient [ } = . \&%9Dn

kl,” (60K (@ Dn—rk

> g-trigonometric functions: sing(x), Sing(z), cosq(x), Cosy(z)

» g-special functions: g-Bessel functions, g-Legendre polynomials,

g-Gegenbauer polynomials, etc.
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g-TSPP: Holonomic Description of the Cofactors

The recurrences have the form
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The recurrences have the form
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The total size is 244MB (several 1000 pages of paper)! 49/ 51
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Solution of the g-TSPP Conjecture

(joint work with Manuel Kauers and Doron Zeilberger)

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)
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Solution of the g-TSPP Conjecture

(joint work with Manuel Kauers and Doron Zeilberger)

The a-TSPP Theorem

1, 2, 5, 16, 66, 352 5.
2431, 21760,
252586, ...

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)
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Identity Found by Proving ldentities
Identity proving is now a whole branch of symbolic computation:

» Binomial sums and other combinatorial identities, e.g.,
Zn: n2k:—|—n2_zn: n\ (k+n Zk: E\?
k k - k k ‘ 7
k=0 k=0 7=0

» Special function identities (integrals or sums), e.g.,

1 1 "T'(n 4 2v) Jpiw(a)
1 — 2\V—3 Jiax (V) do = m n+v
/_1 ( v ) O (w) du 2v=lgvn! T'(v)

» Evaluations of symbolic determinants, e.g.,

(i+25+1 j— 1 cr 2071 (4 — 2)!
det [ 9f Z+.]+ B Z' :21—[ (Z )
0<i,j<n 25 +1 25+ 1 Ll (n+42i—1)!

=1
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