

Identity Found by Proving Identities

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

16 October 2025

Experimental Mathematics Seminar
Rutgers University

Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

- ▶ 5 invited talks

FPSAC 1991 : Bordeaux (France)

- Pierre Cartier: Paris, France
- Philippe Flajolet: Rocquencourt, France
- Gaston Gonnet: Waterloo, Canada
- Gilbert Labelle: Montréal, Canada
- Doron Zeilberger: Philadelphia, USA

FPSAC 1990 : Paris (France)

FPSAC 1988 : Lille (France)

(taken from https://fpsac.org/invited_speakers)

Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

- ▶ 5 invited talks
- ▶ 32 articles (18 in French, 14 in English)

FPSAC 1991 : Bordeaux (France)

- Pierre Cartier: Paris, France
- Philippe Flajolet: Rocquencourt, France
- Gaston Gonnet: Waterloo, Canada
- Gilbert Labelle: Montréal, Canada
- Doron Zeilberger: Philadelphia, USA

FPSAC 1990 : Paris (France)

FPSAC 1988 : Lille (France)

(taken from https://fpsac.org/invited_speakers)

Early Days of FPSAC

3rd edition of FPSAC 1991 in Bordeaux:

- ▶ 5 invited talks
- ▶ 32 articles (18 in French, 14 in English)
- ▶ highlight: thesis defense of Mireille Bousquet-Mélou

FPSAC 1991 : Bordeaux (France)

- Pierre Cartier: Paris, France
- Philippe Flajolet: Rocquencourt, France
- Gaston Gonnet: Waterloo, Canada
- Gilbert Labelle: Montréal, Canada
- Doron Zeilberger: Philadelphia, USA

FPSAC 1990 : Paris (France)

FPSAC 1988 : Lille (France)

(taken from https://fpsac.org/invited_speakers)

Doron Zeilberger's Invited Talk 1991

IDENTITIES IN SEARCH OF IDENTITY

Doron ZEILBERGER

Department of Mathematical Sciences

Drexel University

Philadelphia

jd@prux.e.att.com

Abstract

The time is ripe to start a science of identities for their own sake, without paying lip-service to hight-brow mathematics. Although putting combinatorial, (abstract-) algebraic or analytic flesh and blood on identities did lead and will lead to considerable insight as well as new identities, there is also much to be gained in forgetting advanced mathematics, and starting a new sub-discipline of high-school mathematics called "the theory of identities".

Doron Zeilberger's Invited Talk 1991

Definition. A mathematical sentence that has “=” in its middle is called an *identity*.

The format of an identity is thus

SOMETHING = SOMETHING ELSE.

Trivial Example. $\operatorname{Re}(s) = \frac{1}{2}$, for every complex zero s of $\zeta(s)$.

Easy Example. ANALYTIC INDEX = TOPOLOGICAL INDEX.

Deep Example. $1 + 1 = 2$.

Abstract

The time is ripe to start a science of identities for their own sake, without paying lip-service to hight-brow mathematics. Although putting combinatorial, (abstract-) algebraic or analytic flesh and blood on identities did lead and will lead to considerable insight as well as new identities, there is also much to be gained in forgetting advanced mathematics, and starting a new sub-discipline of high-school mathematics called "the theory of identities".

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Alternatively: if $f(n)$ satisfies a first-order linear recurrence with polynomial coefficients:

$$p_1(n) \cdot f(n+1) - p_0(n) \cdot f(n) = 0.$$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Alternatively: if $f(n)$ satisfies a first-order linear recurrence with polynomial coefficients:

$$p_1(n) \cdot f(n+1) - p_0(n) \cdot f(n) = 0.$$

Remark: Generalize geometric sequences where $\frac{f(n+1)}{f(n)} = \text{const.}$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$\frac{f(n+1)}{f(n)} = \text{rational function in } n = \frac{p_0(n)}{p_1(n)}.$$

Alternatively: if $f(n)$ satisfies a first-order linear recurrence with polynomial coefficients:

$$p_1(n) \cdot f(n+1) - p_0(n) \cdot f(n) = 0.$$

Remark: Generalize geometric sequences where $\frac{f(n+1)}{f(n)} = \text{const.}$

Examples: $\text{rat}(n)$, x^n , $n!$, $(a)_n$, $\binom{2n}{n}$, $\Gamma(3n+1)$, etc.

Gosper's algorithm

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 1, pp. 40–42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)

R. WILLIAM GOSPER, JR.

Xerox Palo Alto Research Center, Palo Alto, California 94304

Communicated by Donald E. Knuth, September 26, 1977

ABSTRACT Given a summand a_n , we seek the “indefinite sum” $S(n)$ determined (within an additive constant) by

$$\sum_{n=1}^m a_n = S(m) - S(0) \quad [0]$$

or, equivalently, by

$$a_n = S(n) - S(n-1). \quad [1]$$

An algorithm is exhibited which, given a_n , finds those $S(n)$ with the property

$$\frac{S(n)}{S(n-1)} = \text{a rational function of } n. \quad [2]$$

erate case where a_n is identically zero.) Express this ratio as

$$\frac{a_n}{a_{n-1}} = \frac{p_n}{p_{n-1}} \frac{q_n}{r_n}, \quad [5]$$

where p_n , q_n , and r_n are polynomials in n subject to the following condition:

$$\gcd(q_n, r_{n+j}) = 1, \quad [6]$$

for all non-negative integers j .

It is always possible to put a rational function in this form, for if $\gcd(q_n, r_{n+j}) = g(n)$, then this common factor can be

Gosper's algorithm

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k + 1)$$

Gosper's algorithm

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^n f(k) = g(0) - g(n+1).$$

Gosper's algorithm

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^n f(k) = g(0) - g(n+1).$$

Examples:

►
$$\sum_{k=0}^n \frac{(4k+1)k!}{(2k+1)!} = \sum_{k=0}^n \left(\frac{2k!}{(2k)!} - \frac{2(k+1)!}{(2k+2)!} \right) = 2 - \frac{n!}{(2n+1)!}$$

Gosper's algorithm

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^n f(k) = g(0) - g(n+1).$$

Examples:

- ▶ $\sum_{k=0}^n \frac{(4k+1)k!}{(2k+1)!} = \sum_{k=0}^n \left(\frac{2k!}{(2k)!} - \frac{2(k+1)!}{(2k+2)!} \right) = 2 - \frac{n!}{(2n+1)!}$
- ▶ $\sum_{k=0}^n k!$ has no closed form (no hypergeometric $g(k)$ exists).

Gosper's algorithm

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^n f(k) = g(0) - g(n+1).$$

Examples:

- ▶ $\sum_{k=0}^n \frac{(4k+1)k!}{(2k+1)!} = \sum_{k=0}^n \left(\frac{2k!}{(2k)!} - \frac{2(k+1)!}{(2k+2)!} \right) = 2 - \frac{n!}{(2n+1)!}$
- ▶ $\sum_{k=0}^n k!$ has no closed form (no hypergeometric $g(k)$ exists).

Question: What about definite hypergeometric summation

$$\sum_{k=0}^n f(n, k) = ?$$

Gosper's algorithm

Purpose: decide and solve the indefinite hypergeometric summation problem:

$$f(k) = g(k) - g(k+1) \implies \sum_{k=0}^n f(k) = g(0) - g(n+1).$$

Examples:

- ▶ $\sum_{k=0}^n \frac{(4k+1)k!}{(2k+1)!} = \sum_{k=0}^n \left(\frac{2k!}{(2k)!} - \frac{2(k+1)!}{(2k+2)!} \right) = 2 - \frac{n!}{(2n+1)!}$
- ▶ $\sum_{k=0}^n k!$ has no closed form (no hypergeometric $g(k)$ exists).

Question: What about definite hypergeometric summation

$$\sum_{k=0}^n f(n, k) = ? \quad \text{Such as } \sum_{k=0}^n \binom{n}{k} = 2^n.$$

Fasenmyer's Algorithm

- ▶ aka “Sister Celine’s algorithm”
- ▶ developed in her doctoral thesis in 1945

SOME GENERALIZED HYPERGEOMETRIC POLYNOMIALS

SISTER MARY CELINE FASENMYER

1. Introduction. We shall obtain some basic formal properties of the hypergeometric polynomials

$$(1) \quad \begin{aligned} f_n(a_i; b_j; x) &\equiv f_n(a_1, a_2, \dots, a_p; b_1, b_2, \dots, b_q; x) \\ &\equiv {}_{p+2}F_{q+2} \left[\begin{matrix} -n, n+1, a_1, \dots, a_p; \\ 1/2, 1, b_1, \dots, b_q; \end{matrix} x \right] \end{aligned}$$

(n a non-negative integer) in an attempt to unify and to extend the study of certain sets of polynomials which have attracted considerable attention. Some special cases of the $f_n(a_i; b_j; x)$ are:¹

Sister Celine's Algorithm

Algorithm: given hg. $f(n, k)$, find recurrence for $\sum_{k=-\infty}^{\infty} f(n, k)$.

1. Choose $r, s \in \mathbb{N}$ (order in n , order in k).
2. Ansatz for a k -free recurrence: $\sum_{i=0}^r \sum_{j=0}^s c_{i,j} \cdot f(n+i, k+j)$.
3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k .
6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
7. Sum over the k -free recurrences and return the result.

Sister Celine's Algorithm

Algorithm: given hg. $f(n, k)$, find recurrence for $\sum_{k=-\infty}^{\infty} f(n, k)$.

1. Choose $r, s \in \mathbb{N}$ (order in n , order in k).
2. Ansatz for a k -free recurrence: $\sum_{i=0}^r \sum_{j=0}^s c_{i,j} \cdot f(n+i, k+j)$.
3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k .
6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
7. Sum over the k -free recurrences and return the result.

Example: $F(n) := \sum_{k=0}^n f(n, k) = \binom{2n}{n}$ with $f(n, k) := \binom{n}{k}^2$.

Sister Celine's Algorithm

Algorithm: given hg. $f(n, k)$, find recurrence for $\sum_{k=-\infty}^{\infty} f(n, k)$.

1. Choose $r, s \in \mathbb{N}$ (order in n , order in k).
2. Ansatz for a k -free recurrence: $\sum_{i=0}^r \sum_{j=0}^s c_{i,j} \cdot f(n+i, k+j)$.
3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k .
6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
7. Sum over the k -free recurrences and return the result.

Example: $F(n) := \sum_{k=0}^n f(n, k) = \binom{2n}{n}$ with $f(n, k) := \binom{n}{k}^2$.

With $r = s = 2$ we find the k -free recurrence

$$0 = -(n+1)f(n, k) + (2n+2)f(n, k+1) - (n+1)f(n, k+2) \\ + (2n+3)f(n+1, k+1) + (2n+3)f(n+1, k+2) - (n+2)f(n+2, k+2)$$

Sister Celine's Algorithm

Algorithm: given hg. $f(n, k)$, find recurrence for $\sum_{k=-\infty}^{\infty} f(n, k)$.

1. Choose $r, s \in \mathbb{N}$ (order in n , order in k).
2. Ansatz for a k -free recurrence: $\sum_{i=0}^r \sum_{j=0}^s c_{i,j} \cdot f(n+i, k+j)$.
3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k .
6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
7. Sum over the k -free recurrences and return the result.

Example: $F(n) := \sum_{k=0}^n f(n, k) = \binom{2n}{n}$ with $f(n, k) := \binom{n}{k}^2$.

With $r = s = 2$ we find the k -free recurrence. Summing yields

$$\begin{array}{lll} 0 = -(n+1)F(n) & + (2n+2)F(n) & - (n+1)F(n) \\ + (2n+3)F(n+1) & + (2n+3)F(n+1) & - (n+2)F(n+2) \end{array}$$

Sister Celine's Algorithm

Algorithm: given hg. $f(n, k)$, find recurrence for $\sum_{k=-\infty}^{\infty} f(n, k)$.

1. Choose $r, s \in \mathbb{N}$ (order in n , order in k).
2. Ansatz for a k -free recurrence: $\sum_{i=0}^r \sum_{j=0}^s c_{i,j} \cdot f(n+i, k+j)$.
3. Divide by $f(n, k)$ and simplify.
4. Multiply by the common denominator.
5. Perform coefficient comparison with respect to k .
6. Solve the linear system for the $c_{i,j} \in \mathbb{K}(n)$.
7. Sum over the k -free recurrences and return the result.

Example: $F(n) := \sum_{k=0}^n f(n, k) = \binom{2n}{n}$ with $f(n, k) := \binom{n}{k}^2$.

With $r = s = 2$ we find the k -free recurrence. Summing yields

$$\begin{array}{lll} 0 = -(n+1)F(n) & + (2n+2)F(n) & - (n+1)F(n) \\ + (2n+3)F(n+1) & + (2n+3)F(n+1) & - (n+2)F(n+2) \end{array}$$

Collecting terms: $(4n+6)F(n+1) - (n+2)F(n+2) = 0$.

Wilf–Zeilberger (WZ) Theory

Invent. math. 108: 575–633 (1992)

*Inventiones
mathematicae*
© Springer-Verlag 1992

An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities

Herbert S. Wilf* and Doron Zeilberger **

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

J. Symbolic Computation (1991) 11, 195–204

The Method of Creative Telescoping

DORON ZEILBERGER

Department of Mathematics and Computer Science, Temple University, Philadelphia, PA 19122,
USA

In memory of John Riordan, master of ars combinatorica

(Received 1 June 1989)

An algorithm for definite hypergeometric summation is given. It is based, in a non-obvious way, on Gosper's algorithm for definite hypergeometric summation, and its theoretical justification relies on Bernstein's theory of holonomic systems.

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions ($f(n, k)$ is a “proper” term), one can show that a recurrence for $F(n)$ exists.

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions ($f(n, k)$ is a “proper” term), one can show that a recurrence for $F(n)$ exists.

But one does not know it, neither its order nor its coefficients.

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions ($f(n, k)$ is a “proper” term), one can show that a recurrence for $F(n)$ exists.

But one does not know it, neither its order nor its coefficients.

- ▶ Try order $r = 0, 1, 2, \dots$ until success.

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions ($f(n, k)$ is a “proper” term), one can show that a recurrence for $F(n)$ exists.

But one does not know it, neither its order nor its coefficients.

- ▶ Try order $r = 0, 1, 2, \dots$ until success.
- ▶ Write recurrence with undetermined coefficients $p_i \in \mathbb{K}(n)$:

$$p_r(n)F(n + r) + \cdots + p_1(n)F(n + 1) + p_0(n)F(n) = 0.$$

Zeilberger's Fast Algorithm

Problem: given a hypergeometric $f(n, k)$, find a recurrence for

$$F(n) := \sum_k f(n, k)$$

(we assume natural boundaries, e.g., f has finite support w.r.t. k).

Under certain technical assumptions ($f(n, k)$ is a “proper” term), one can show that a recurrence for $F(n)$ exists.

But one does not know it, neither its order nor its coefficients.

- ▶ Try order $r = 0, 1, 2, \dots$ until success.
- ▶ Write recurrence with undetermined coefficients $p_i \in \mathbb{K}(n)$:

$$p_r(n)F(n + r) + \cdots + p_1(n)F(n + 1) + p_0(n)F(n) = 0.$$

- ▶ Apply a parametrized version of Gosper's algorithm to

$$p_r(n)f(n + r, k) + \cdots + p_1(n)f(n + 1, k) + p_0(n)f(n, k).$$

Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^b f(n, k)$

Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^b f(n, k)$

Telescoping: write $f(n, k) = g(n, k + 1) - g(n, k)$.

Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^b f(n, k)$

Telescoping: write $f(n, k) = g(n, k + 1) - g(n, k)$.

Then $F(n) = \sum_{k=a}^b (g(n, k + 1) - g(n, k)) = g(n, b + 1) - g(n, a)$.

Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^b f(n, k)$

Telescoping: write $f(n, k) = g(n, k + 1) - g(n, k)$.

Then $F(n) = \sum_{k=a}^b (g(n, k + 1) - g(n, k)) = g(n, b + 1) - g(n, a)$.

Creative Telescoping: write

$$c_r(n)f(n + r, k) + \cdots + c_0(n)f(n, k) = g(n, k + 1) - g(n, k).$$

Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n) := \sum_{k=a}^b f(n, k)$

Telescoping: write $f(n, k) = g(n, k + 1) - g(n, k)$.

Then $F(n) = \sum_{k=a}^b (g(n, k + 1) - g(n, k)) = g(n, b + 1) - g(n, a)$.

Creative Telescoping: write

$$c_r(n)f(n + r, k) + \cdots + c_0(n)f(n, k) = g(n, k + 1) - g(n, k).$$

Summing from a to b yields a recurrence for $F(n)$:

$$c_r(n)F(n + r) + \cdots + c_0(n)F(n) = g(n, b + 1) - g(n, a).$$

Creative Telescoping

Method for doing integrals and sums
(aka Feynman's differentiating under the integral sign)

Consider the following integration problem: $F(x) := \int_a^b f(x, y) dy$

Telescoping: write $f(x, y) = \frac{d}{dy} g(x, y)$.

$$\text{Then } F(n) = \int_a^b \left(\frac{d}{dy} g(x, y) \right) dy = g(x, b) - g(x, a).$$

Creative Telescoping: write

$$c_r(x) \frac{d^r}{dx^r} f(x, y) + \cdots + c_0(x) f(x, y) = \frac{d}{dy} g(x, y).$$

Integrating from a to b yields a differential equation for $F(x)$:

$$c_r(x) \frac{d^r}{dx^r} F(x) + \cdots + c_0(x) F(x) = g(x, b) - g(x, a)$$

Beyond Hypergeometric: Holonomic Functions

Definition: A sequence $f(n)$ is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \cdots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \quad (p_r \neq 0).$$

Beyond Hypergeometric: Holonomic Functions

Definition: A sequence $f(n)$ is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \cdots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \quad (p_r \neq 0).$$

Definition: A function $f(x)$ is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \cdots + p_1(x)f'(x) + p_0(x)f(x) = 0 \quad (p_r \neq 0).$$

Beyond Hypergeometric: Holonomic Functions

Definition: A sequence $f(n)$ is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \cdots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \quad (p_r \neq 0).$$

Definition: A function $f(x)$ is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \cdots + p_1(x)f'(x) + p_0(x)f(x) = 0 \quad (p_r \neq 0).$$

Remarks:

- ▶ Equivalently, such functions/sequences are called **holonomic**.

Beyond Hypergeometric: Holonomic Functions

Definition: A sequence $f(n)$ is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \cdots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \quad (p_r \neq 0).$$

Definition: A function $f(x)$ is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \cdots + p_1(x)f'(x) + p_0(x)f(x) = 0 \quad (p_r \neq 0).$$

Remarks:

- ▶ Equivalently, such functions/sequences are called **holonomic**.
- ▶ Generalizations to several variables and mixed cases exist.

Beyond Hypergeometric: Holonomic Functions

Definition: A sequence $f(n)$ is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \cdots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \quad (p_r \neq 0).$$

Definition: A function $f(x)$ is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \cdots + p_1(x)f'(x) + p_0(x)f(x) = 0 \quad (p_r \neq 0).$$

Remarks:

- ▶ Equivalently, such functions/sequences are called **holonomic**.
- ▶ Generalizations to several variables and mixed cases exist.
- ▶ In any case, one needs only finitely many initial conditions.

Beyond Hypergeometric: Holonomic Functions

Definition: A sequence $f(n)$ is called **P-recursive** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f(n+r) + \cdots + p_1(n)f(n+1) + p_0(n)f(n) = 0 \quad (p_r \neq 0).$$

Definition: A function $f(x)$ is called **D-finite** if it satisfies a linear ordinary differential equation with polynomial coefficients:

$$p_r(x)f^{(r)}(x) + \cdots + p_1(x)f'(x) + p_0(x)f(x) = 0 \quad (p_r \neq 0).$$

Remarks:

- ▶ Equivalently, such functions/sequences are called **holonomic**.
- ▶ Generalizations to several variables and mixed cases exist.
- ▶ In any case, one needs only finitely many initial conditions.
- ▶ The holonomic (finite!) data structure consists of a system of linear functional equations together with initial values.

Special Functions

- ▶ arise in physics (real-world) and mathematical analysis

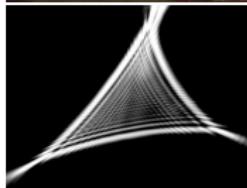
Special Functions

- ▶ arise in physics (real-world) and mathematical analysis

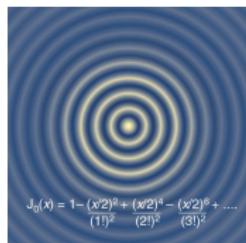
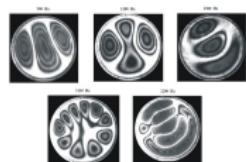
Airy function

Special Functions

- ▶ arise in physics (real-world) and mathematical analysis



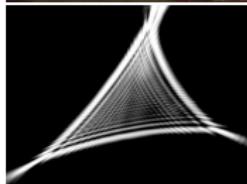
Airy function



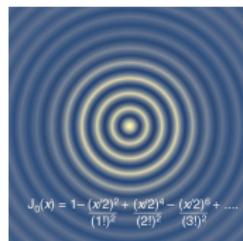
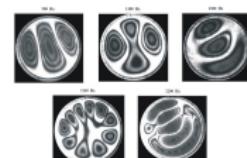
Bessel function

Special Functions

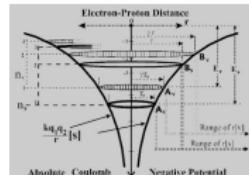
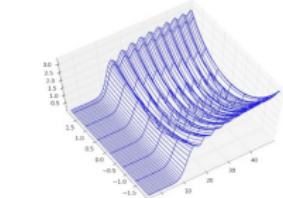
- arise in physics (real-world) and mathematical analysis



Airy function



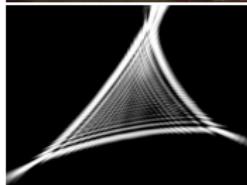
Bessel function



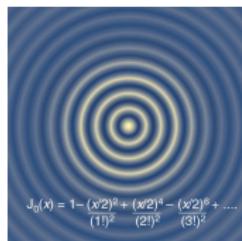
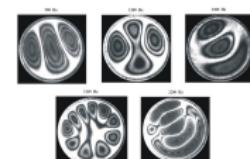
Coulomb function

Special Functions

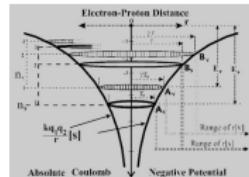
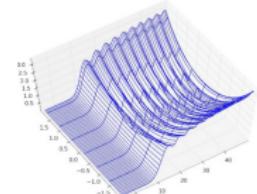
- ▶ arise in physics (real-world) and mathematical analysis
- ▶ are solutions to certain differential equations / recurrences



Airy function



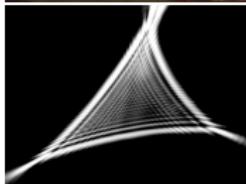
Bessel function



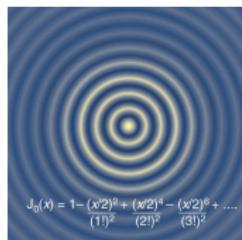
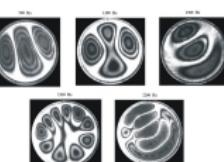
Coulomb function

Special Functions

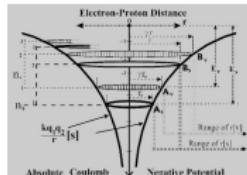
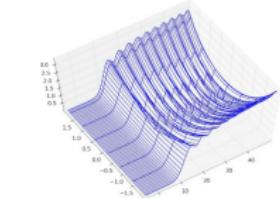
- ▶ arise in physics (real-world) and mathematical analysis
- ▶ are solutions to certain differential equations / recurrences
- ▶ cannot be expressed in terms of the usual elementary functions ($\sqrt{}$, \exp , \log , \sin , \cos , \dots)



Airy function



Bessel function



Coulomb function

The Holonomic Systems Approach

Journal of Computational and Applied Mathematics 32 (1990) 321–368
North-Holland

321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).

The Holonomic Systems Approach

Journal of Computational and Applied Mathematics 32 (1990) 321–368
North-Holland

321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.

The Holonomic Systems Approach

Journal of Computational and Applied Mathematics 32 (1990) 321–368
North-Holland

321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.
- ▶ The approach is similar to Sister Celine's algorithm.

The Holonomic Systems Approach

Journal of Computational and Applied Mathematics 32 (1990) 321–368
North-Holland

321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.
- ▶ The approach is similar to Sister Celine's algorithm.
- ▶ Not based on linear algebra, but on elimination techniques.

The Holonomic Systems Approach

Journal of Computational and Applied Mathematics 32 (1990) 321–368
North-Holland

321

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- ▶ This is the seminal paper by Doron Zeilberger (1990).
- ▶ The proposed algorithm applies to general holonomic functions.
- ▶ The approach is similar to Sister Celine's algorithm.
- ▶ Not based on linear algebra, but on elimination techniques.
- ▶ Therefore, it was named the “slow algorithm”.

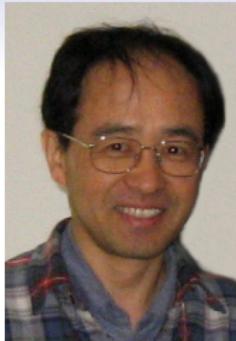


Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

*Department of Mathematics, Kobe University
Rokko, Kobe, 657, Japan*



Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

*Department of Mathematics, Kobe University
Rokko, Kobe, 657, Japan*

Recall: creative telescoping requires a relation of the form

- ▶ $c_r(n)f(n+r, k) + \cdots + c_0(n)f(n, k) = g(n, k+1) - g(n, k),$
- ▶ or $c_r(x)\frac{d^r}{dx^r}f(x, y) + \cdots + c_0(x)f(x, y) = \frac{d}{dy}g(x, y).$
- ▶ Left-hand side is called **telescopers**, g is called **certificate**.

Takayama's Algorithm

An algorithm of constructing the integral of a module
— an infinite dimensional analog of Gröbner basis

NOBUKI TAKAYAMA

*Department of Mathematics, Kobe University
Rokko, Kobe, 657, Japan*

Recall: creative telescoping requires a relation of the form

- ▶ $c_r(n)f(n+r, k) + \cdots + c_0(n)f(n, k) = g(n, k+1) - g(n, k),$
- ▶ or $c_r(x)\frac{d^r}{dx^r}f(x, y) + \cdots + c_0(x)f(x, y) = \frac{d}{dy}g(x, y).$
- ▶ Left-hand side is called **telescopers**, g is called **certificate**.

Ideas of the Algorithm:

- ▶ Work in the setting of Weyl algebra and D-modules.
- ▶ It is not necessary to eliminate k (resp. y) completely.
- ▶ Note that the certificate g is not needed in certain situations.
- ▶ Based on elimination, uses Gröbner bases over modules.

Chyzak's Algorithm

Discrete Mathematics 217 (2000) 115–134

DISCRETE
MATHEMATICS

www.elsevier.com/locate/disc

An extension of Zeilberger's fast algorithm to general holonomic functions[☆]

Frédéric Chyzak

INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Chyzak's Algorithm

Discrete Mathematics 217 (2000) 115–134

DISCRETE
MATHEMATICS

www.elsevier.com/locate/disc

An extension of Zeilberger's fast algorithm to general holonomic functions[☆]

Frédéric Chyzak

INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Ideas of the Algorithm:

- ▶ Employ Gröbner bases for normal forms, not for elimination.
- ▶ Ansatz with undetermined coeffs for telescoper and certificate.
- ▶ Coupled system of linear difference / differential equations.
- ▶ Solve it by uncoupling or by a direct method.

Chyzak's Algorithm

Discrete Mathematics 217 (2000) 115–134

DISCRETE
MATHEMATICS

www.elsevier.com/locate/disc

An extension of Zeilberger's fast algorithm to general holonomic functions[☆]

Frédéric Chyzak

INRIA-Rocquencourt, Project Algorithmes, B.P. 105, 78153 Le Chesnay Cedex, France

Received 3 November 1997; revised 28 September 1998; accepted 11 June 1999

Ideas of the Algorithm:

- ▶ Employ Gröbner bases for normal forms, not for elimination.
- ▶ Ansatz with undetermined coeffs for telescoper and certificate.
- ▶ Coupled system of linear difference / differential equations.
- ▶ Solve it by uncoupling or by a direct method.
- ▶ Variation: C.K. proposed a heuristic approach that avoids the expensive uncoupling step (caveat: may not terminate).

Reduction-Based Creative Telescoping

Motivation:

- ▶ Typically, the certificate is much larger than the telescopers.
- ▶ Often it is not needed (natural boundaries / closed contour).
- ▶ Compute the telescopers without computing the certificate.

Contributors: Alin Bostan, Hadrian Brochet, Shaoshi Chen, Frédéric Chyzak, Hao Du, Lixin Du, Louis Dumont, Hui Huang, Manuel Kauers, Christoph Koutschan, Pierre Lairez, Ziming Li, Bruno Salvy, Michael Singer, Joris van der Hoeven, Mark van Hoeij, Rong-Hua Wang, Guoce Xin, ...

Active Research Area: Google Scholar lists more than 1000 articles about creative telescoping.

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,
- ▶ $\rho(f) = 0$ if and only if f is integrable.

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,
- ▶ $\rho(f) = 0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,
- ▶ $\rho(f) = 0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescooper for $\int_a^b f(x, y) dy$, apply the reduction ρ to the successive derivatives of the integrand f :

$$f = g'_0 + \rho(f) = g'_0 + h_0,$$

$$\frac{d}{dx} f = g'_1 + \rho\left(\frac{d}{dx} f\right) = g'_1 + h_1,$$

$$\frac{d^2}{dx^2} f = g'_2 + \rho\left(\frac{d^2}{dx^2} f\right) = g'_2 + h_2, \dots$$

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,
- ▶ $\rho(f) = 0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescooper for $\int_a^b f(x, y) dy$, apply the reduction ρ to the successive derivatives of the integrand f :

$$f = g'_0 + \rho(f) = g'_0 + h_0,$$

$$\frac{d}{dx} f = g'_1 + \rho\left(\frac{d}{dx} f\right) = g'_1 + h_1,$$

$$\frac{d^2}{dx^2} f = g'_2 + \rho\left(\frac{d^2}{dx^2} f\right) = g'_2 + h_2, \dots$$

If the h_i live in a finite-dimensional $\mathbb{K}(x)$ -vector space, then there exists a nontrivial linear combination $p_0 h_0 + \dots + p_r h_r = 0$.

Reduction-Based Creative Telescoping

Reduction procedure (differential case): define $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- ▶ for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f - \rho(f) = g'$,
- ▶ $\rho(f) = 0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescopers for $\int_a^b f(x, y) dy$, apply the reduction ρ to the successive derivatives of the integrand f :

$$f = g'_0 + \rho(f) = g'_0 + h_0,$$

$$\frac{d}{dx} f = g'_1 + \rho\left(\frac{d}{dx} f\right) = g'_1 + h_1,$$

$$\frac{d^2}{dx^2} f = g'_2 + \rho\left(\frac{d^2}{dx^2} f\right) = g'_2 + h_2, \dots$$

If the h_i live in a finite-dimensional $\mathbb{K}(x)$ -vector space, then there exists a nontrivial linear combination $p_0 h_0 + \dots + p_r h_r = 0$.

→ Hence, the desired telescopers is $p_0 f + p_1 f' + \dots + p_r f^{(r)}$.

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

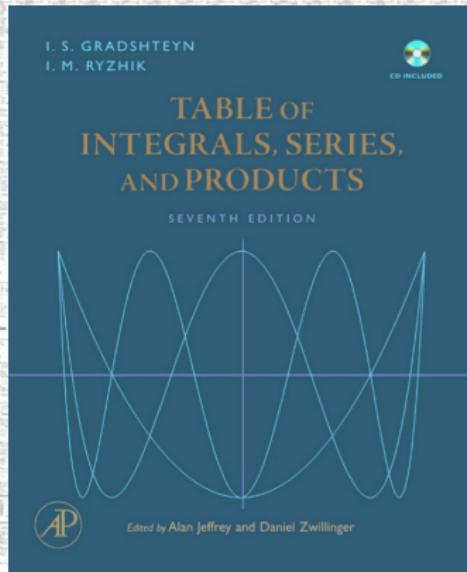


Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik	
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	34
35	36
37	38
39	40
41	42
43	44
45	46
47	48
49	50
51	52
53	54
55	56
57	58
59	60
61	62
63	64
65	66
67	68
69	70
71	72
73	74
75	76
77	78
79	80
81	82
83	84
85	86
87	88
89	90
91	92
93	94
95	96
97	98
99	100
101	102
103	104
105	106
107	108
109	110
111	112
113	114
115	116
117	118
119	120
121	122
123	124
125	126
127	128
129	130
131	132
133	134
135	136
137	138
139	140
141	142
143	144
145	146
147	148
149	150
151	152
153	154
155	156
157	158
159	160
161	162
163	164
165	166
167	168
169	170
171	172
173	174
175	176
177	178
179	180
181	182
183	184
185	186
187	188
189	190
191	192
193	194
195	196
197	198
199	200
201	202
203	204
205	206
207	208
209	210
211	212
213	214
215	216
217	218
219	220
221	222
223	224
225	226
227	228
229	230
231	232
233	234
235	236
237	238
239	240
241	242
243	244
245	246
247	248
249	250
251	252
253	254
255	256
257	258
259	260
261	262
263	264
265	266
267	268
269	270
271	272
273	274
275	276
277	278
279	280
281	282
283	284
285	286
287	288
289	290
291	292
293	294
295	296
297	298
299	300
301	302
303	304
305	306
307	308
309	310
311	312
313	314
315	316
317	318
319	320
321	322
323	324
325	326
327	328
329	330
331	332
333	334
335	336
337	338
339	340
341	342
343	344
345	346
347	348
349	350
351	352
353	354
355	356
357	358
359	360
361	362
363	364
365	366
367	368
369	370
371	372
373	374
375	376
377	378
379	380
381	382
383	384
385	386
387	388
389	390
391	392
393	394
395	396
397	398
399	400
401	402
403	404
405	406
407	408
409	410
411	412
413	414
415	416
417	418
419	420
421	422
423	424
425	426
427	428
429	430
431	432
433	434
435	436
437	438
439	440
441	442
443	444
445	446
447	448
449	450
451	452
453	454
455	456
457	458
459	460
461	462
463	464
465	466
467	468
469	470
471	472
473	474
475	476
477	478
479	480
481	482
483	484
485	486
487	488
489	490
491	492
493	494
495	496
497	498
499	500
501	502
503	504
505	506
507	508
509	510
511	512
513	514
515	516
517	518
519	520
521	522
523	524
525	526
527	528
529	530
531	532
533	534
535	536
537	538
539	540
541	542
543	544
545	546
547	548
549	550
551	552
553	554
555	556
557	558
559	560
561	562
563	564
565	566
567	568
569	570
571	572
573	574
575	576
577	578
579	580
581	582
583	584
585	586
587	588
589	590
591	592
593	594
595	596
597	598
599	600
601	602
603	604
605	606
607	608
609	610
611	612
613	614
615	616
617	618
619	620
621	622
623	624
625	626
627	628
629	630
631	632
633	634
635	636
637	638
639	640
641	642
643	644
645	646
647	648
649	650
651	652
653	654
655	656
657	658
659	660
661	662
663	664
665	666
667	668
669	670
671	672
673	674
675	676
677	678
679	680
681	682
683	684
685	686
687	688
689	690
691	692
693	694
695	696
697	698
699	700
701	702
703	704
705	706
707	708
709	710
711	712
713	714
715	716
717	718
719	720
721	722
723	724
725	726
727	728
729	730
731	732
733	734
735	736
737	738
739	740
741	742
743	744
745	746
747	748
749	750
751	752
753	754
755	756
757	758
759	760
761	762
763	764
765	766
767	768
769	770
771	772
773	774
775	776
777	778
779	780
781	782
783	784
785	786
787	788
789	790
791	792
793	794
795	796
797	798
799	800
801	802
803	804
805	806
807	808
809	810
811	812
813	814
815	816
817	818
819	820
821	822
823	824
825	826
827	828
829	830
831	832
833	834
835	836
837	838
839	840
841	842
843	844
845	846
847	848
849	850
851	852
853	854
855	856
857	858
859	860
861	862
863	864
865	866
867	868
869	870
871	872
873	874
875	876
877	878
879	880
881	882
883	884
885	886
887	888
889	890
891	892
893	894
895	896
897	898
899	900
901	902
903	904
905	906
907	908
909	910
911	912
913	914
915	916
917	918
919	920
921	922
923	924
925	926
927	928
929	930
931	932
933	934
935	936
937	938
939	940
941	942
943	944
945	946
947	948
949	950
951	952
953	954
955	956
957	958
959	960
961	962
963	964
965	966
967	968
969	970
971	972
973	974
975	976
977	978
979	980
981	982
983	984
985	986
987	988
989	990
991	992
993	994
995	996
997	998
999	1000

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

7.319

$$1. \int_0^1 (1-x)^{\mu-1} x^{\nu-1} C_{2n}^{\lambda} \left(\gamma x^{1/2} \right) dx = (-1)^n \frac{\Gamma(\lambda+n) \Gamma(\mu) \Gamma(\nu)}{n! \Gamma(\lambda) \Gamma(\mu+\nu)} {}_3F_2 \left(-n, n+\lambda, \nu; \frac{1}{2}, \mu+\nu; \gamma^2 \right) \\ [\operatorname{Re} \mu > 0, \operatorname{Re} \nu > 0] \quad \text{ET II 191(41)a}$$

$$2. \int_0^1 (1-x)^{\mu-1} x^{\nu-1} C_{2n+1}^{\lambda} \left(\gamma x^{1/2} \right) dx = \frac{(-1)^n 2\gamma \Gamma(\mu) \Gamma(\lambda+n+1) \Gamma(\nu + \frac{1}{2})}{n! \Gamma(\lambda) \Gamma(\mu+\nu+\frac{1}{2})} \\ \times {}_3F_2 \left(-n, n+\lambda+1, \nu + \frac{1}{2}; \frac{3}{2}, \mu+\nu+\frac{1}{2}; \gamma^2 \right) \\ [\operatorname{Re} \mu > 0, \operatorname{Re} \nu > -\frac{1}{2}] \quad \text{ET II 191(42)}$$

7.32 Combinations of Gegenbauer polynomials $C_n^{\nu}(x)$ and elementary functions

$$7.321 \quad \int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^{\nu}(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a) \\ [\operatorname{Re} \nu > -\frac{1}{2}] \quad \text{ET II 281(7), MO 99a}$$

$$7.322 \quad \int_0^{2a} [x(2a-x)]^{\nu-\frac{1}{2}} C_n^{\nu} \left(\frac{x}{a} - 1 \right) e^{-bx} dx = (-1)^n \frac{\pi \Gamma(2\nu+n)}{n! \Gamma(\nu)} \left(\frac{a}{2b} \right)^{\nu} e^{-ab} I_{\nu+n}(ab) \\ [\operatorname{Re} \nu > -\frac{1}{2}] \quad \text{ET I 171(9)}$$

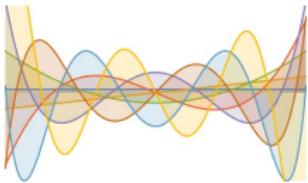
7.323

$$1. \int_0^{\pi} C_n^{\nu} (\cos \varphi) (\sin \varphi)^{2\nu} d\varphi = 0 \quad [n = 1, 2, 3, \dots] \quad 18 / 51$$

Table of Integrals by Gradshteyn and Ryzhik

$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{iax} C_n^\nu(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

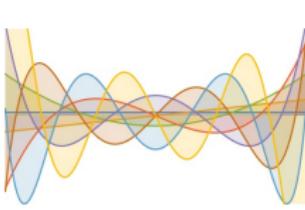
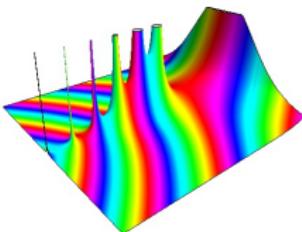
Table of Integrals by Gradshteyn and Ryzhik



Gegenbauer
polynomials $C_n^{(\alpha)}(x)$

$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^{\nu}(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

Table of Integrals by Gradshteyn and Ryzhik

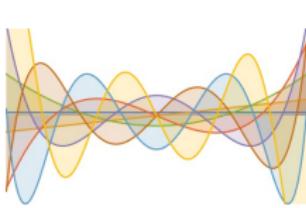


Gegenbauer
polynomials $C_n^{(\alpha)}(x)$

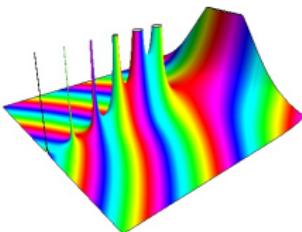
Gamma
function $\Gamma(x)$

$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^{\nu}(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

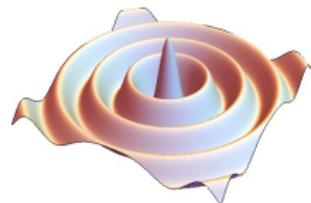
Table of Integrals by Gradshteyn and Ryzhik



Gegenbauer
polynomials $C_n^{(\alpha)}(x)$



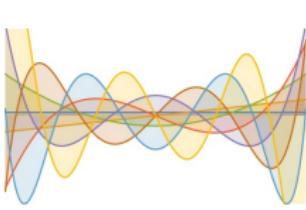
Gamma
function $\Gamma(x)$



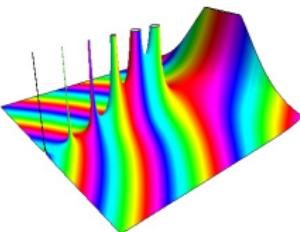
Bessel
function $J_\nu(x)$

$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^\nu(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

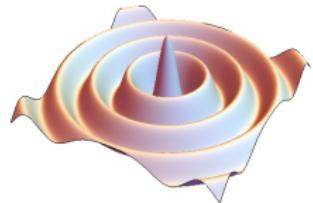
Table of Integrals by Gradshteyn and Ryzhik



Gegenbauer
polynomials $C_n^{(\alpha)}(x)$



Gamma
function $\Gamma(x)$

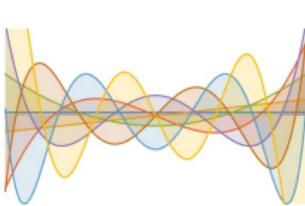


Bessel
function $J_\nu(x)$

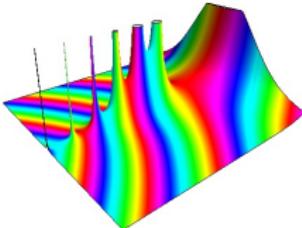
$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^\nu(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

- ▶ A large portion of such identities can be proven via the holonomic systems approach.

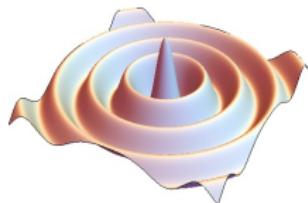
Table of Integrals by Gradshteyn and Ryzhik



Gegenbauer
polynomials $C_n^{(\alpha)}(x)$



Gamma
function $\Gamma(x)$

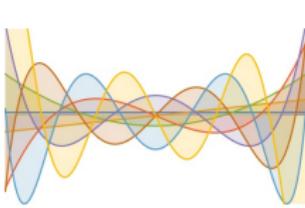


Bessel
function $J_\nu(x)$

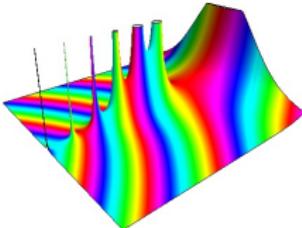
$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^\nu(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

- ▶ A large portion of such identities can be proven via the holonomic systems approach.
- ▶ Algorithms are implemented in the `HolonomicFunctions` package.

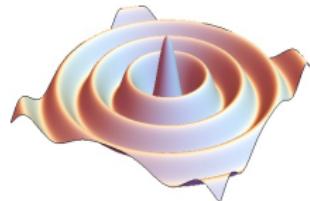
Table of Integrals by Gradshteyn and Ryzhik



Gegenbauer
polynomials $C_n^{(\alpha)}(x)$



Gamma
function $\Gamma(x)$



Bessel
function $J_\nu(x)$

$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^\nu(x) dx = \frac{\pi 2^{1-\nu} i^n \Gamma(2\nu+n)}{n! \Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)$$

Holonomic system, satisfied by both sides of the identity:

$$ia(n+2\nu)f'_n(a) + a(n+1)f_{n+1}(a) - in(n+2\nu)f_n(a) = 0,$$

$$a(n+1)(n+2)f_{n+2}(a) - 2i(n+1)(n+\nu+1)(n+2\nu+1)f_{n+1}(a)$$

$$-a(n+2\nu)(n+2\nu+1)f_n(a) = 0.$$

Random Walk Generating Functions

Study random walks on a lattice:

- ▶ d -dimensional integer lattice, or other
- ▶ certain set of allowed steps
- ▶ with or without restriction (positive quadrant or the like)
- ▶ univariate g.f. for excursions
- ▶ multivariate g.f. for walks with arbitrary endpoint

Random Walk Generating Functions

Study random walks on a lattice:

- ▶ d -dimensional integer lattice, or other
- ▶ certain set of allowed steps
- ▶ with or without restriction (positive quadrant or the like)
- ▶ univariate g.f. for excursions
- ▶ multivariate g.f. for walks with arbitrary endpoint

Many operations can be performed by creative telescoping:

- ▶ constant-term extraction
- ▶ positive part computation
- ▶ diagonals

Random Walk Generating Functions

Study random walks on a lattice:

- ▶ d -dimensional integer lattice, or other
- ▶ certain set of allowed steps
- ▶ with or without restriction (positive quadrant or the like)
- ▶ univariate g.f. for excursions
- ▶ multivariate g.f. for walks with arbitrary endpoint

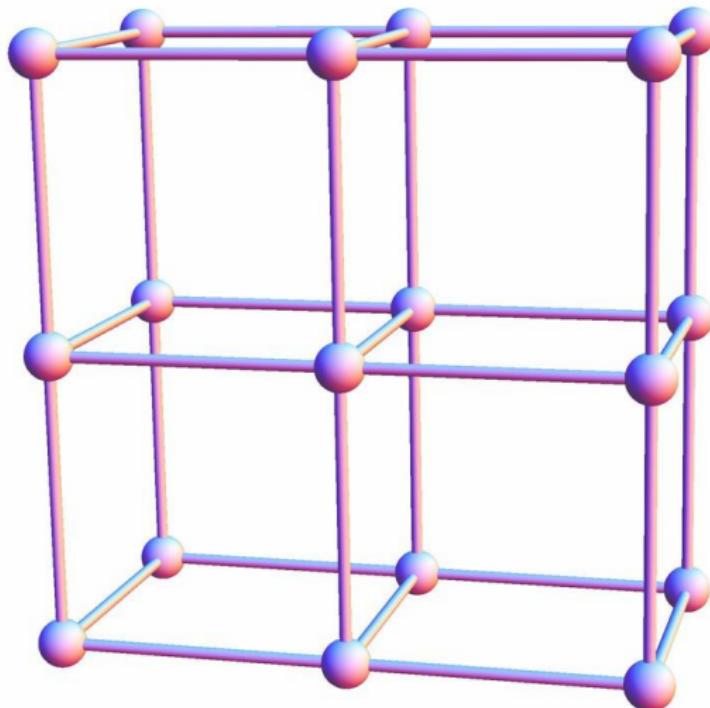
Many operations can be performed by creative telescoping:

- ▶ constant-term extraction
- ▶ positive part computation
- ▶ diagonals

Some Contributors: Axel Bacher, Olivier Bernardi, Alin Bostan, Mireille Bousquet-Mélou, Manfred Buchacher, Frédéric Chyzak, Julien Courtiel, Guy Fayolle, Éric Fusy, Anthony Guttmann, Manuel Kauers, Irina Kurkova, Jean-Marie Maillard, Stephen Melczer, Marni Mishna, Kilian Raschel, Andrew Rechnitzer, Bruno Salvy, Gilles Schaeffer, Amélie Trotignon, Michael Wallner, ...

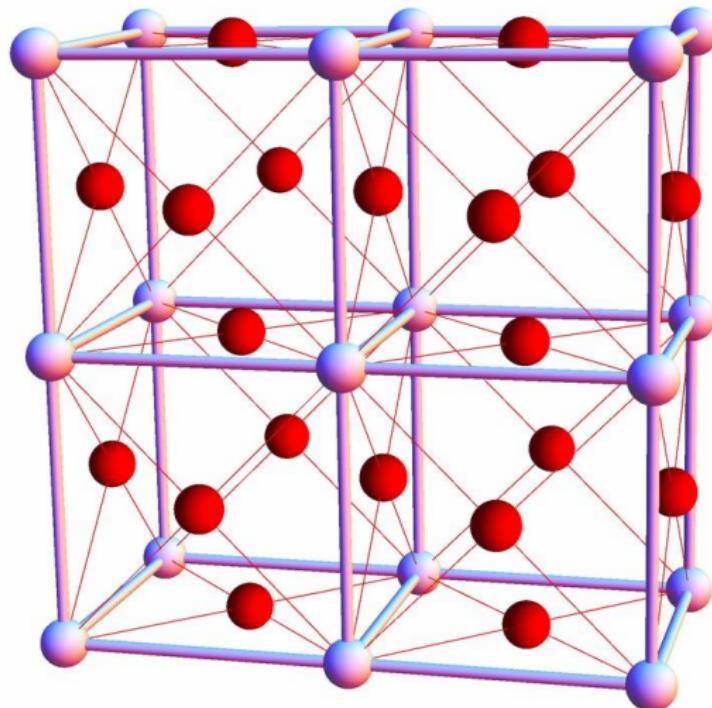
Face-centered cubic (fcc) lattice

Example: Construction in 3D



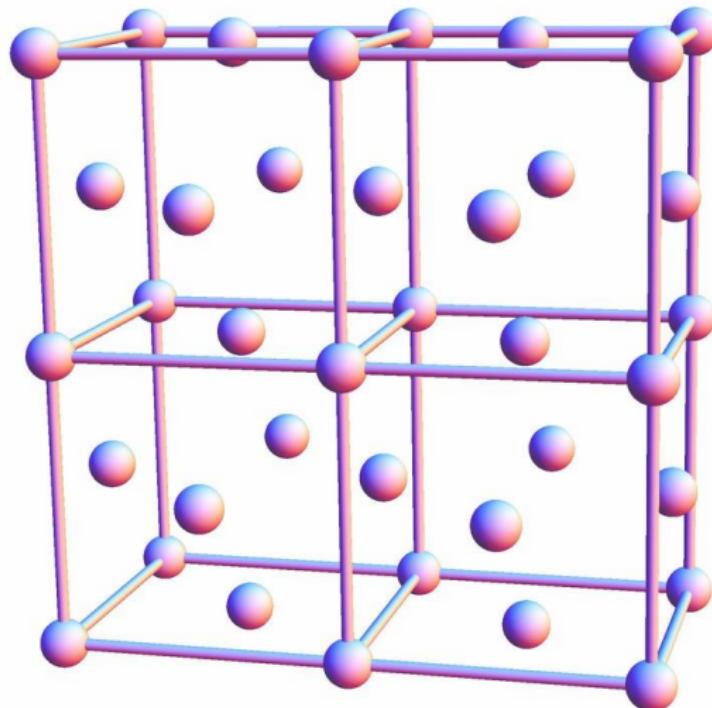
Face-centered cubic (fcc) lattice

Example: Construction in 3D



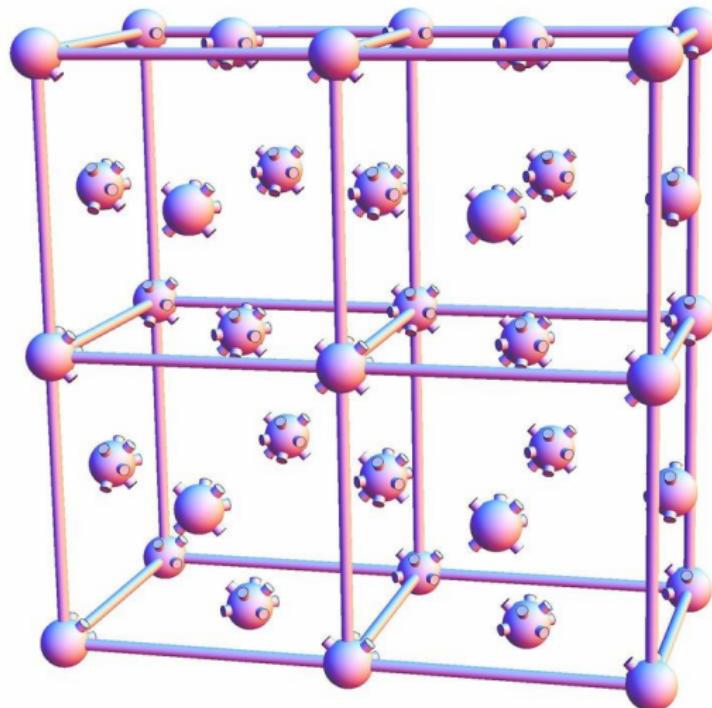
Face-centered cubic (fcc) lattice

Example: Construction in 3D



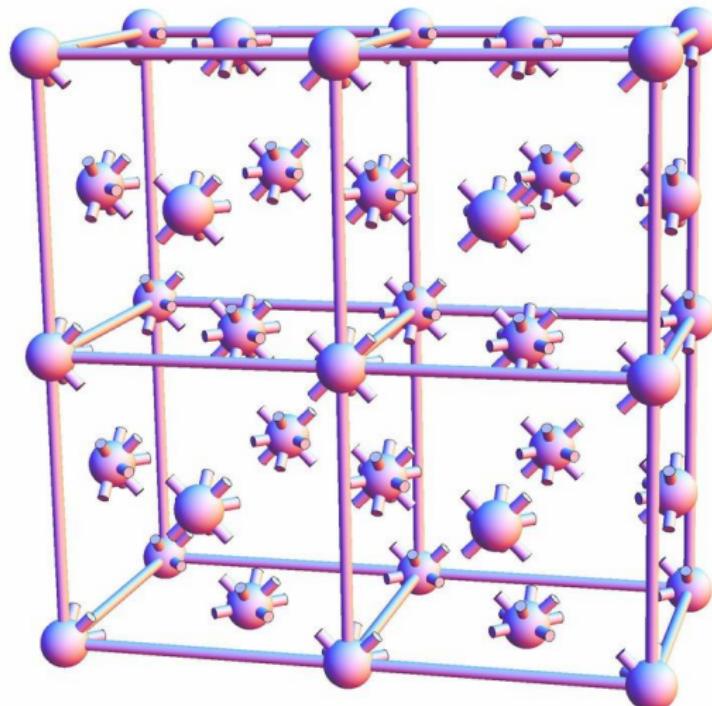
Face-centered cubic (fcc) lattice

Example: Construction in 3D



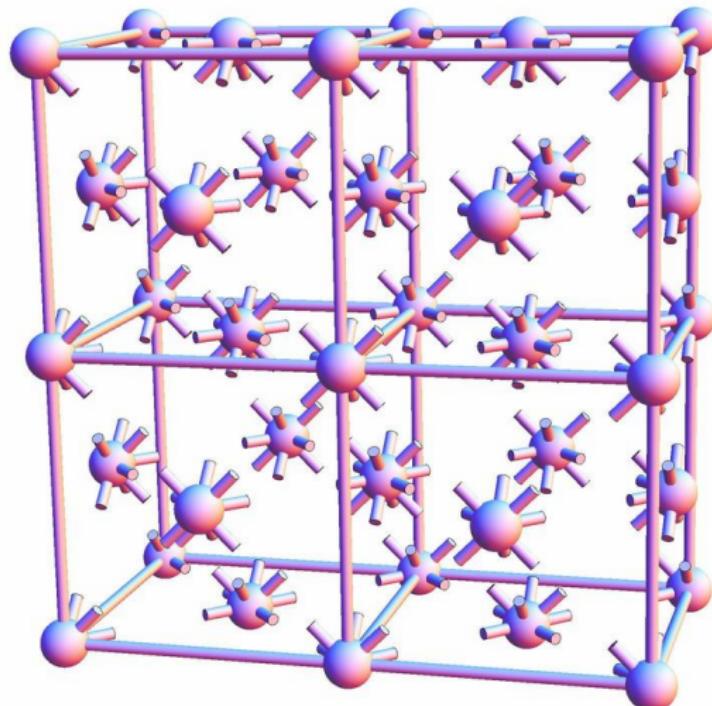
Face-centered cubic (fcc) lattice

Example: Construction in 3D



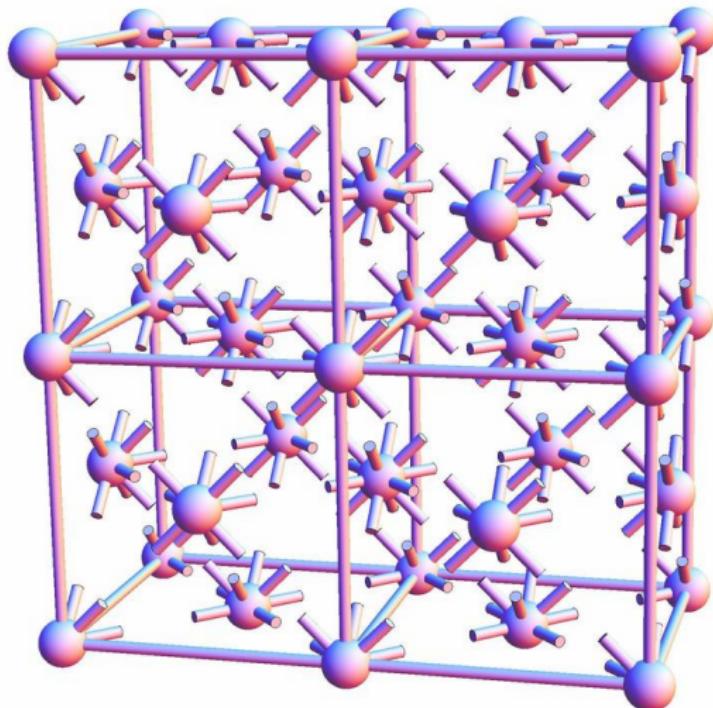
Face-centered cubic (fcc) lattice

Example: Construction in 3D



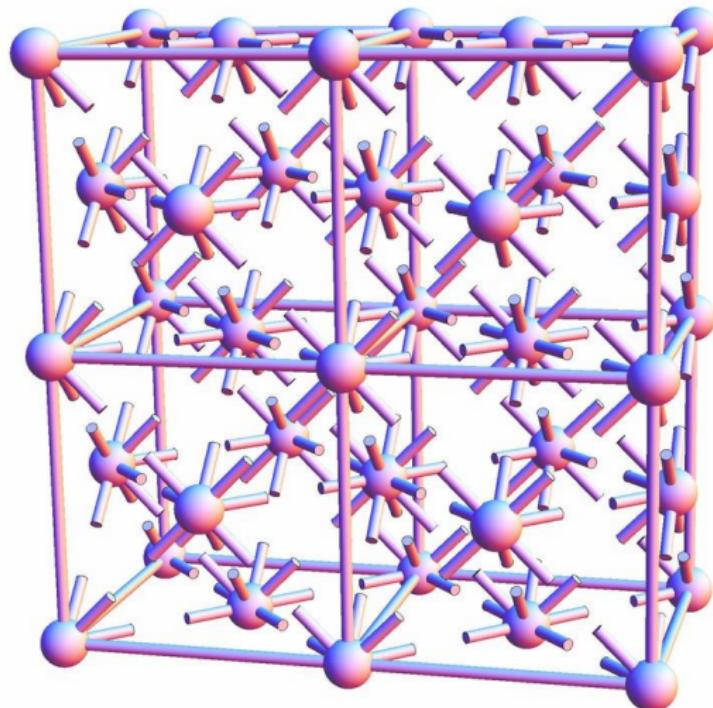
Face-centered cubic (fcc) lattice

Example: Construction in 3D



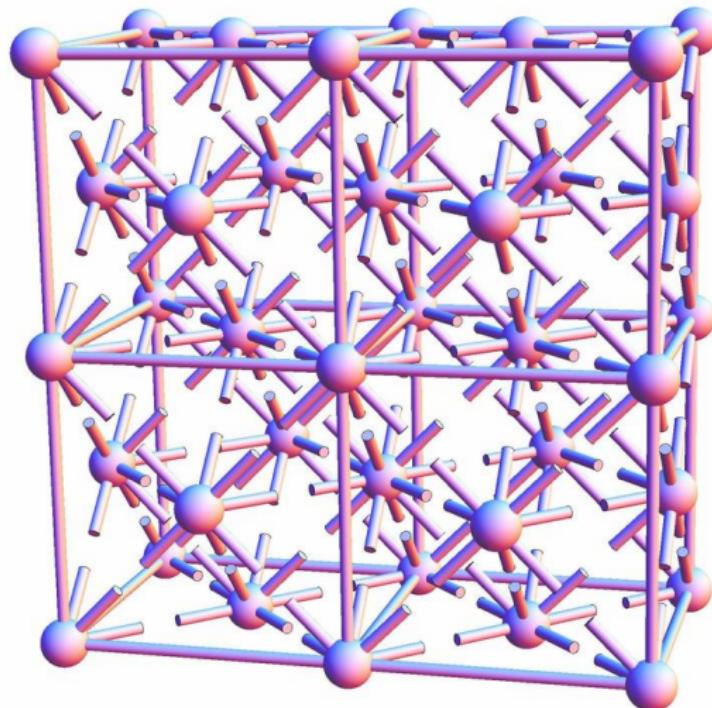
Face-centered cubic (fcc) lattice

Example: Construction in 3D



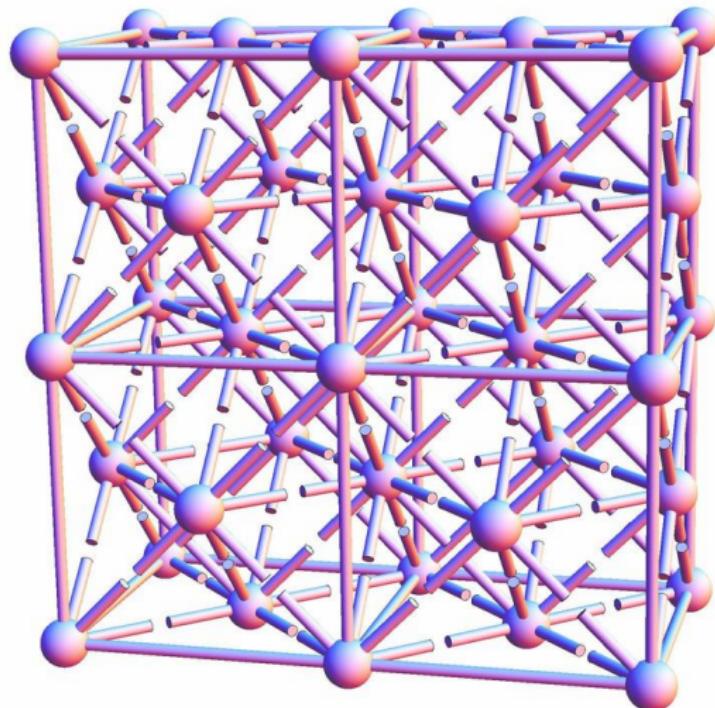
Face-centered cubic (fcc) lattice

Example: Construction in 3D



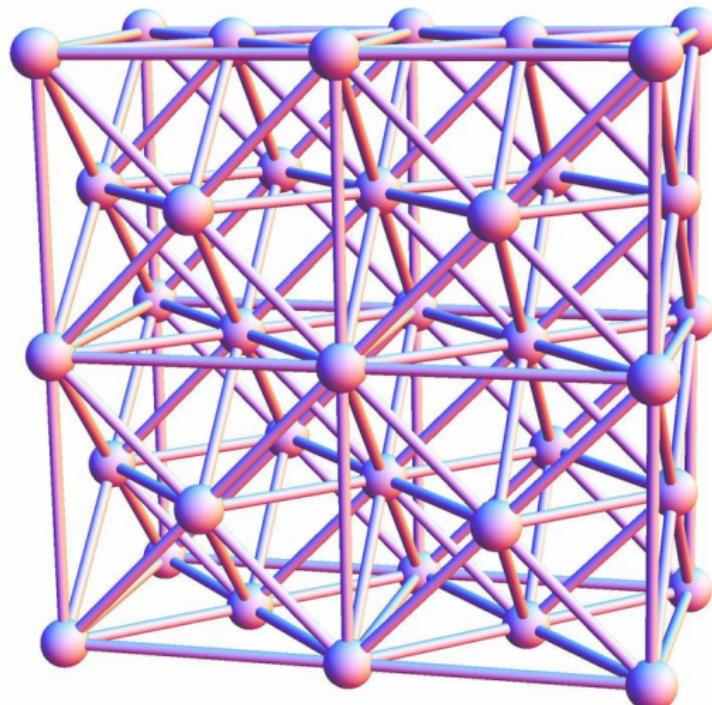
Face-centered cubic (fcc) lattice

Example: Construction in 3D



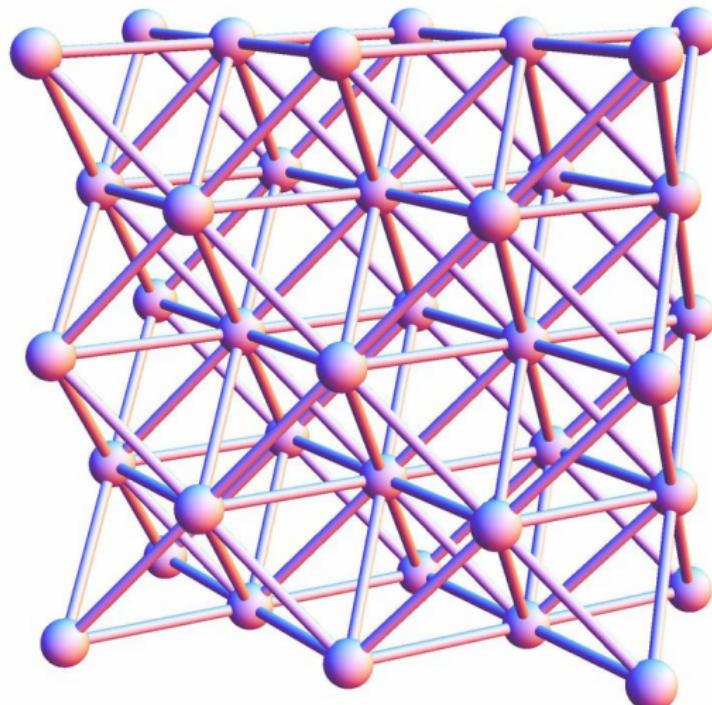
Face-centered cubic (fcc) lattice

Example: Construction in 3D



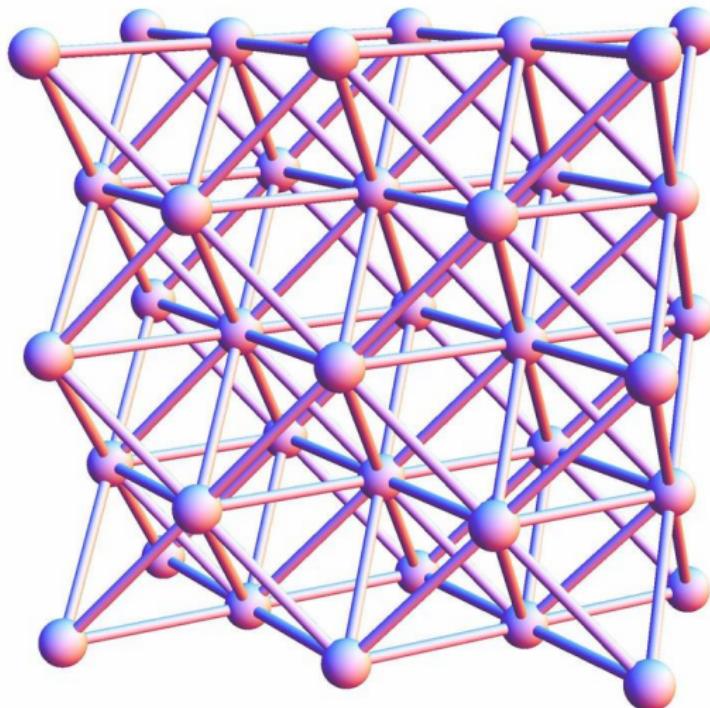
Face-centered cubic (fcc) lattice

Example: Construction in 3D



Face-centered cubic (fcc) lattice

Example: Construction in 3D



Generalization to higher dimensions is straight-forward.

Lattice Green's Function

The lattice Green's function is the probability generating function

$$P(\mathbf{x}; z) = \sum_{n=0}^{\infty} p_n(\mathbf{x}) z^n$$

where $p_n(\mathbf{x})$ is the probability of being at point \mathbf{x} after n steps.

Lattice Green's Function

The lattice Green's function is the probability generating function

$$P(\mathbf{x}; z) = \sum_{n=0}^{\infty} p_n(\mathbf{x}) z^n$$

where $p_n(\mathbf{x})$ is the probability of being at point \mathbf{x} after n steps.

Let $\lambda(\mathbf{k})$ denote the structure function of the lattice:

$$\lambda(\mathbf{k}) = \sum_{\mathbf{x} \in \mathbb{R}^d} p_1(\mathbf{x}) e^{i\mathbf{x} \cdot \mathbf{k}} = \binom{d}{2}^{-1} \sum_{1 \leq i < j \leq d} \cos(k_i) \cos(k_j).$$

Lattice Green's Function

The lattice Green's function is the probability generating function

$$P(\mathbf{x}; z) = \sum_{n=0}^{\infty} p_n(\mathbf{x}) z^n$$

where $p_n(\mathbf{x})$ is the probability of being at point \mathbf{x} after n steps.

Let $\lambda(\mathbf{k})$ denote the structure function of the lattice:

$$\lambda(\mathbf{k}) = \sum_{\mathbf{x} \in \mathbb{R}^d} p_1(\mathbf{x}) e^{i\mathbf{x} \cdot \mathbf{k}} = \binom{d}{2}^{-1} \sum_{1 \leq i < j \leq d} \cos(k_i) \cos(k_j).$$

One is particularly interested in

$$P(\mathbf{0}; z) = \sum_{n=0}^{\infty} p_n(\mathbf{0}) z^n = \frac{1}{\pi^d} \int_0^\pi \dots \int_0^\pi \frac{dk_1 \dots dk_d}{1 - z\lambda(\mathbf{k})}$$

that encodes the return probability. It is a D-finite function, and its differential equation can be computed by creative telescoping.

Return Probability

Definition: The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Return Probability

Definition: The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Fact: For $d = 3$, the return probability is one of Watson's integrals:

$$R_3 = 1 - \left(\frac{1}{\pi^3} \int_0^\pi \int_0^\pi \int_0^\pi \frac{dk_1 dk_2 dk_3}{1 - \frac{1}{3}(c_1 c_2 + c_1 c_3 + c_2 c_3)} \right)^{-1} = 1 - \frac{16 \sqrt[3]{4} \pi^4}{9(\Gamma(\frac{1}{3}))^6}$$
$$= 0.25631823650464877109503018063\dots \quad \text{where } c_i = \cos(k_i).$$

Return Probability

Definition: The return probability R (Pólya number) is given by

$$R = 1 - \frac{1}{\sum_{n=0}^{\infty} p_n(\mathbf{0})} = 1 - \frac{1}{P(\mathbf{0}; 1)}.$$

It is well known that in 2D the return is certain.

Fact: For $d = 3$, the return probability is one of Watson's integrals:

$$R_3 = 1 - \left(\frac{1}{\pi^3} \int_0^\pi \int_0^\pi \int_0^\pi \frac{dk_1 dk_2 dk_3}{1 - \frac{1}{3}(c_1 c_2 + c_1 c_3 + c_2 c_3)} \right)^{-1} = 1 - \frac{16 \sqrt[3]{4} \pi^4}{9(\Gamma(\frac{1}{3}))^6}$$
$$= 0.25631823650464877109503018063... \quad \text{where } c_i = \cos(k_i).$$

Results: for higher dimensions one approximates R using the ODE:

- ▶ $d = 4: R_4 = 0.095713154172562896735316764901210185\dots$
- ▶ $d = 5: R_5 = 0.046576957463848024193374420594803291\dots$
- ▶ $d = 6: R_6 = 0.026999878287956124269364175426196380\dots$

Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

- ▶ Automatability
- ▶ Generality
- ▶ Shift from ad hoc to algorithmic
- ▶ Algorithm replaces ingenuity (or augments it)
- ▶ Can handle a quite large class of functions (= holonomic), even those that do not have a name.

Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

- ▶ Automatability
- ▶ Generality
- ▶ Shift from ad hoc to algorithmic
- ▶ Algorithm replaces ingenuity (or augments it)
- ▶ Can handle a quite large class of functions (= holonomic), even those that do not have a name.

Key insight: one can prove many special function identities without insight — just via algorithm. This was Zeilberger's dream.

Intermediate Conclusion

Significance of WZ theory and holonomic systems approach:

- ▶ Automatability
- ▶ Generality
- ▶ Shift from ad hoc to algorithmic
- ▶ Algorithm replaces ingenuity (or augments it)
- ▶ Can handle a quite large class of functions (= holonomic), even those that do not have a name.

Key insight: one can prove many special function identities without insight — just via algorithm. This was Zeilberger's dream.

Drawbacks:

- ▶ Such proofs do not provide any “insight” (combinatorial interpretation, etc.).
- ▶ Not fully automated: certain technical details have to be checked manually (initial values, singularities, etc.).

Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17

5	4	1
3	2	1
1		

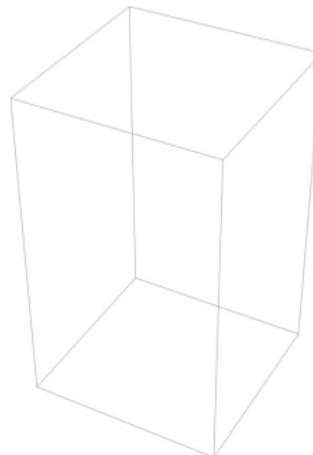
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



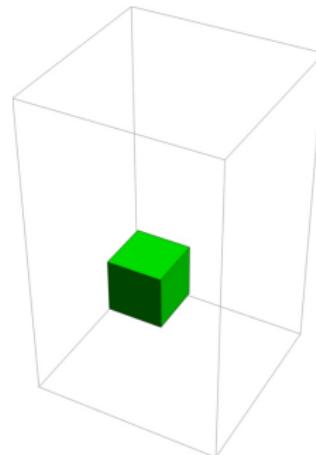
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



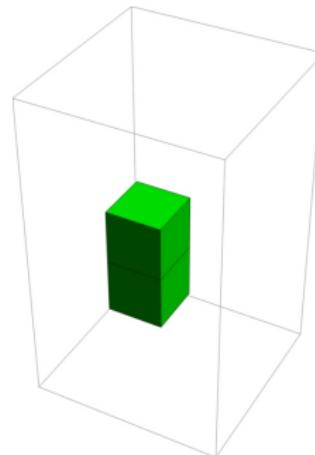
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



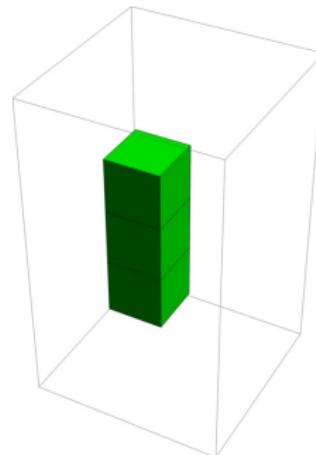
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



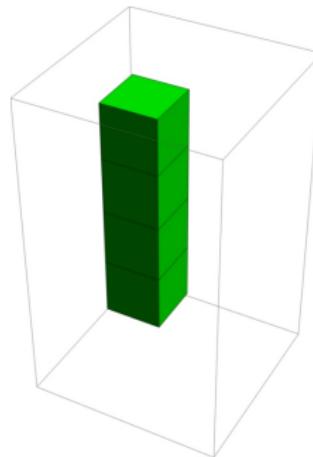
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



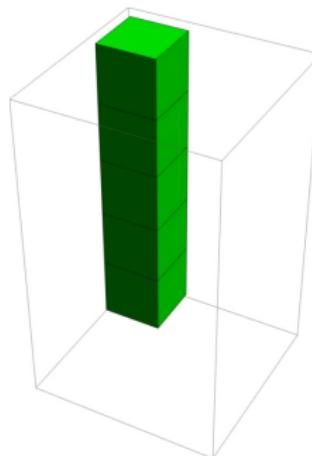
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



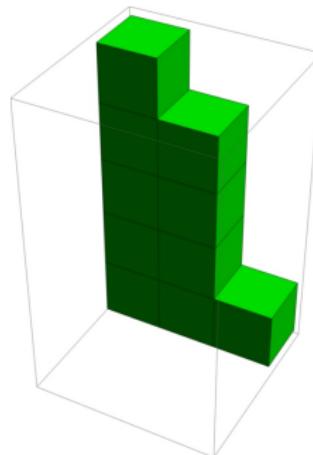
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



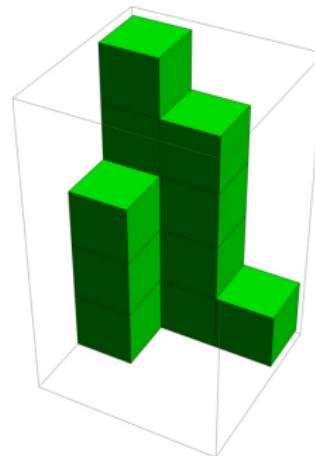
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



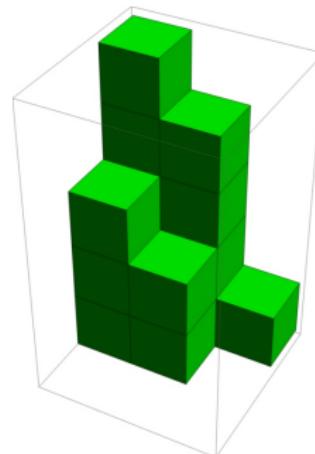
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



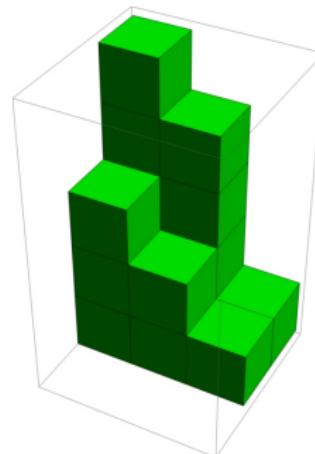
Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



Plane Partitions

Definition: A plane partition π of $n \in \mathbb{N}$ is

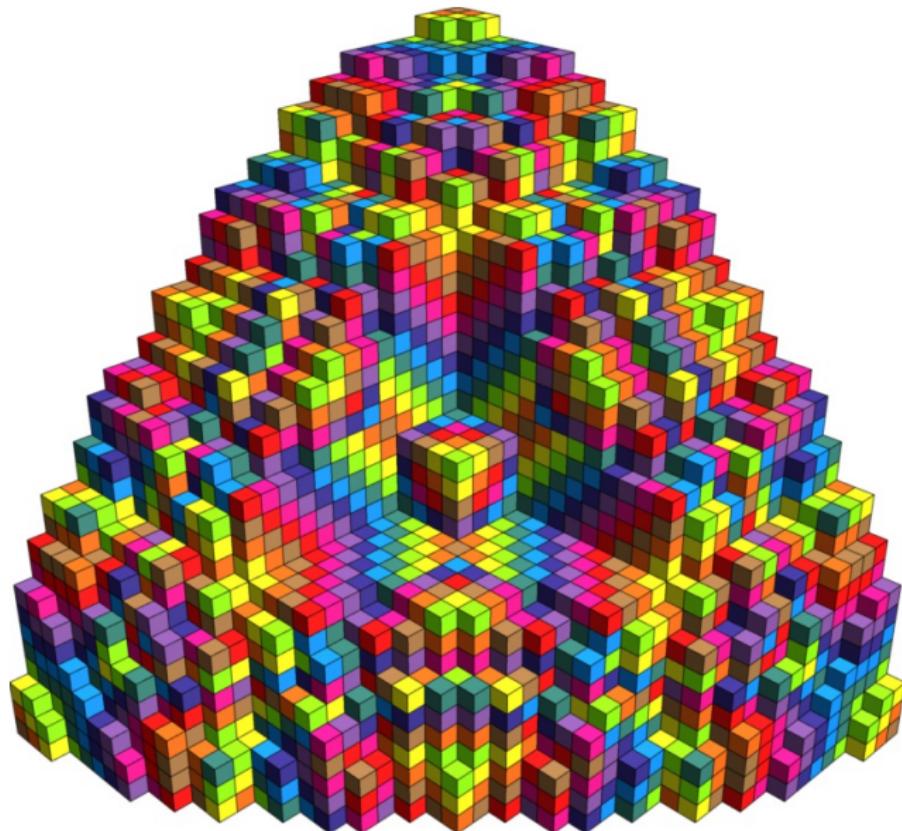
- ▶ a two-dimensional array $\pi = (\pi_{i,j})_{1 \leq i,j}$
- ▶ s.t. $\pi_{i,j} \in \mathbb{N}$ with finite sum $\sum \pi_{i,j} = n =: |\pi|$
- ▶ and $\pi_{i,j} \geq \pi_{i+1,j}$ and $\pi_{i,j} \geq \pi_{i,j+1}$ for all $i, j \geq 1$.

Example: A plane partition π of 17 and its 3D Ferrers diagram:

5	4	1
3	2	1
1		



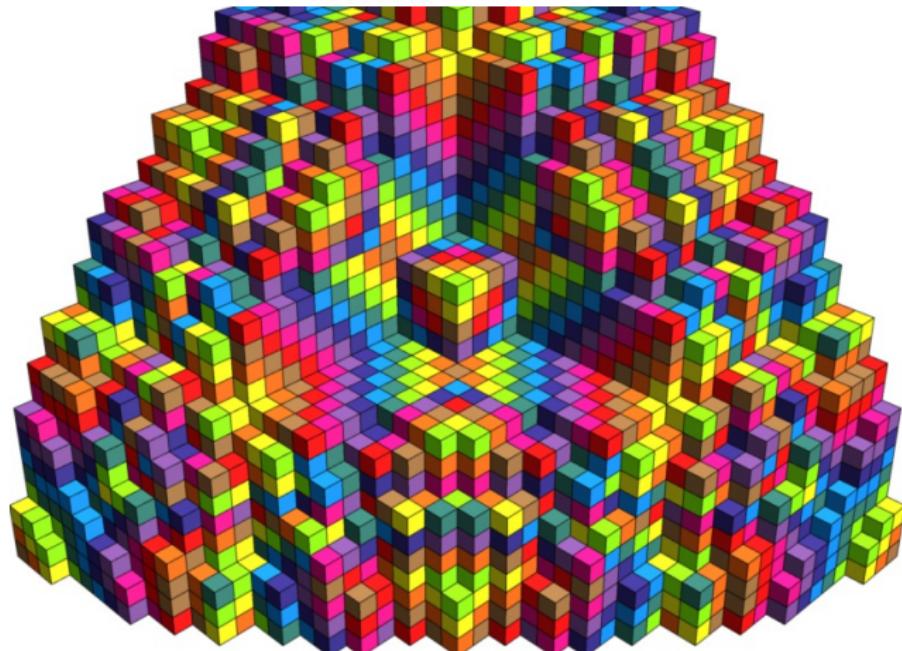
Totally Symmetric Plane Partitions



Totally Symmetric Plane Partitions

Conjecture 7. (see [11, Case 4]). The number of totally symmetric plane partitions with largest part $\leq n$ is equal to

$$T_n = \prod_{1 \leq i \leq j \leq k \leq n} \frac{i+j+k-1}{i+j+k-2}.$$



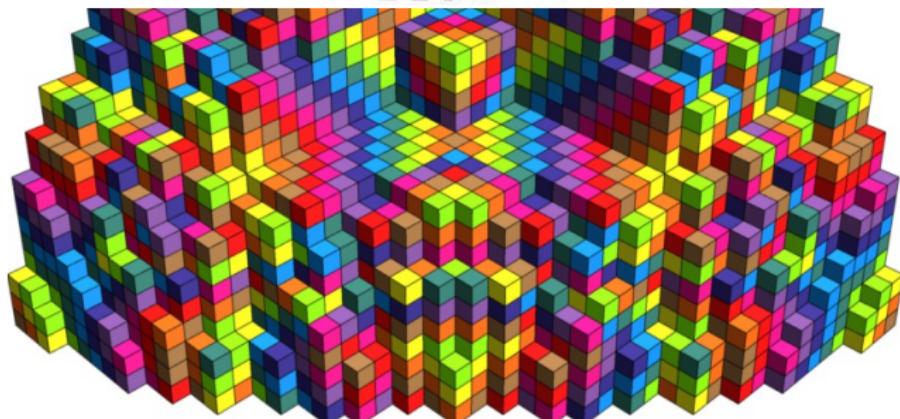
Totally Symmetric Plane Partitions

Conjecture 7. (see [11, Case 4]). The number of totally symmetric plane partitions with largest part $\leq n$ is equal to

$$T_n = \prod_{1 \leq i \leq j \leq k \leq n} \frac{i+j+k-1}{i+j+k-2}.$$

Note. All quantities arising in connection with Conjecture 7 have natural q -analogues. The q -analogue of T_n is

$$T_n(q) = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1-q^{i+j+k-1}}{1-q^{i+j+k-2}}$$



Orbit-Counting Generating Function for TSPPs

q-TSPP conjecture:
$$\sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

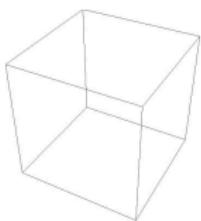
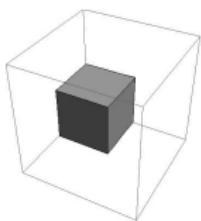
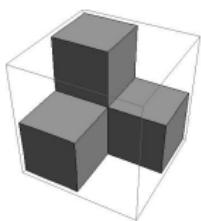
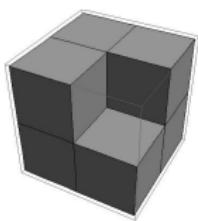
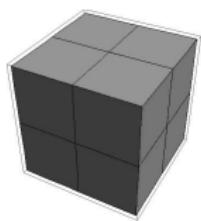
(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

Orbit-Counting Generating Function for TSPPs

$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

Example: For $n = 2$ there are five such TSPPs

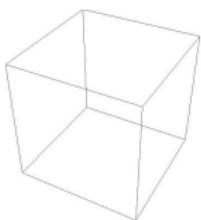
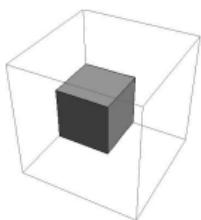
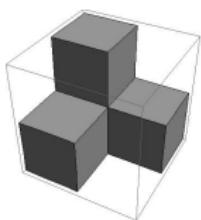
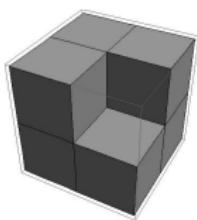
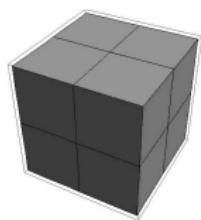


Orbit-Counting Generating Function for TSPPs

$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

Example: For $n = 2$ there are five such TSPPs



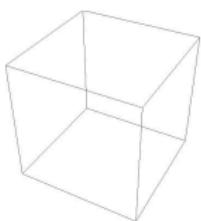
$$q^0$$

Orbit-Counting Generating Function for TSPPs

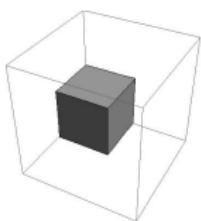
$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

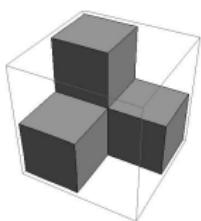
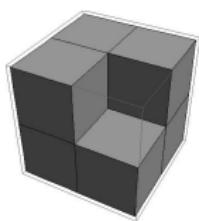
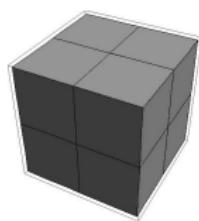
Example: For $n = 2$ there are five such TSPPs



q^0



q^1

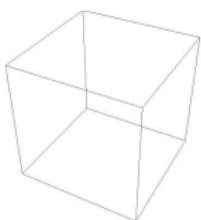


Orbit-Counting Generating Function for TSPPs

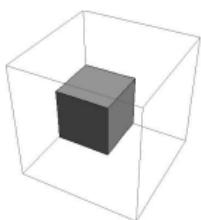
$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

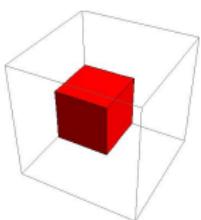
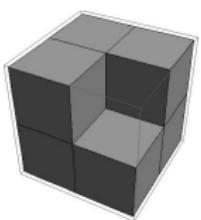
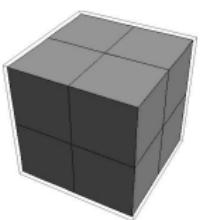
Example: For $n = 2$ there are five such TSPPs



q^0



q^1

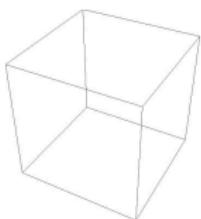


Orbit-Counting Generating Function for TSPPs

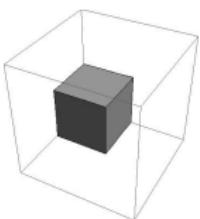
$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

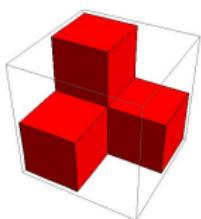
Example: For $n = 2$ there are five such TSPPs



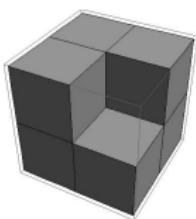
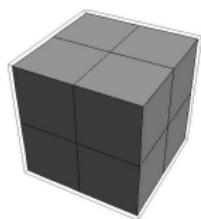
$$q^0$$



$$q^1$$



$$q^2$$

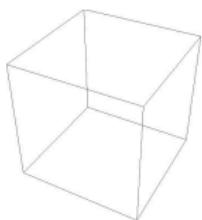


Orbit-Counting Generating Function for TSPPs

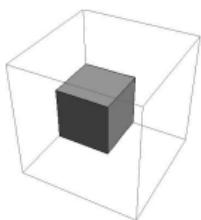
q-TSPP conjecture: $\sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

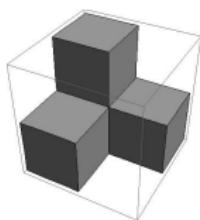
Example: For $n = 2$ there are five such TSPPs



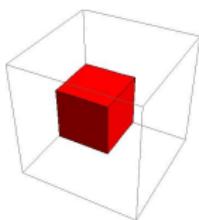
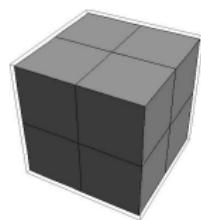
$$q^0$$



$$q^1$$



$$q^2$$

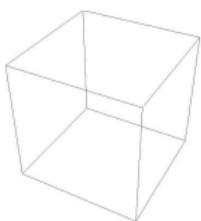


Orbit-Counting Generating Function for TSPPs

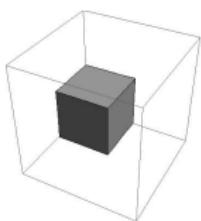
q-TSPP conjecture: $\sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

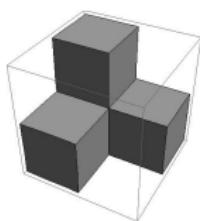
Example: For $n = 2$ there are five such TSPPs



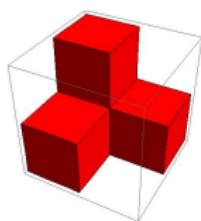
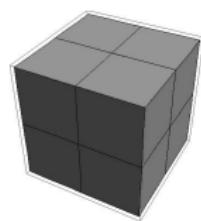
$$q^0$$



$$q^1$$



$$q^2$$

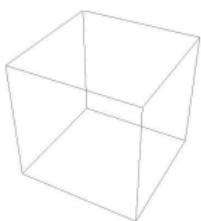


Orbit-Counting Generating Function for TSPPs

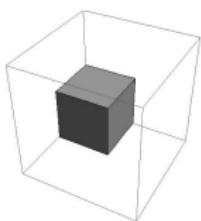
$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

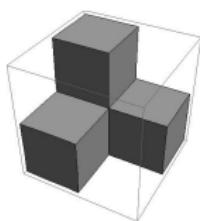
Example: For $n = 2$ there are five such TSPPs



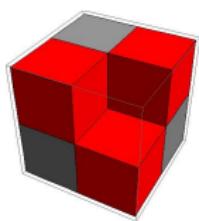
$$q^0$$



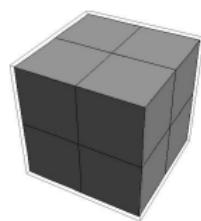
$$q^1$$



$$q^2$$



$$q^3$$

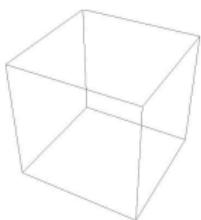


Orbit-Counting Generating Function for TSPPs

$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

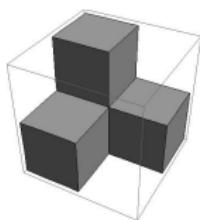
Example: For $n = 2$ there are five such TSPPs



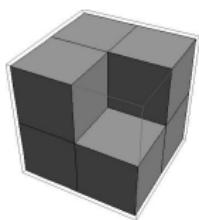
$$q^0$$



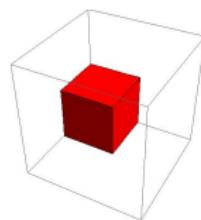
$$q^1$$



$$q^2$$



$$q^3$$

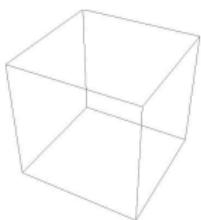


Orbit-Counting Generating Function for TSPPs

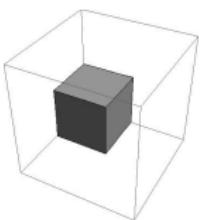
$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

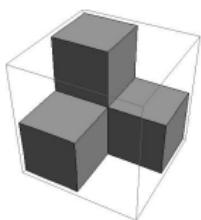
Example: For $n = 2$ there are five such TSPPs



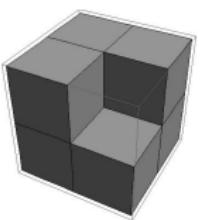
$$q^0$$



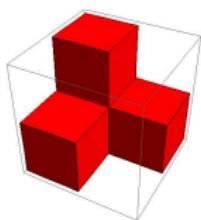
$$q^1$$



$$q^2$$



$$q^3$$

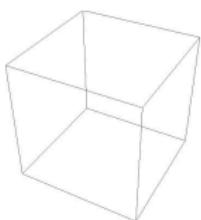


Orbit-Counting Generating Function for TSPPs

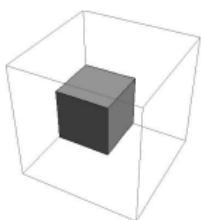
$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

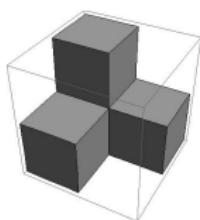
Example: For $n = 2$ there are five such TSPPs



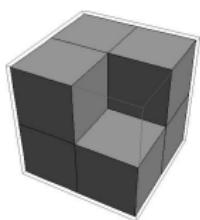
$$q^0$$



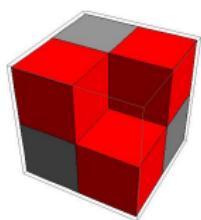
$$q^1$$



$$q^2$$



$$q^3$$

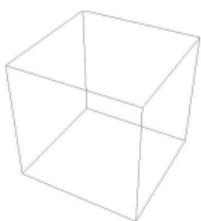


Orbit-Counting Generating Function for TSPPs

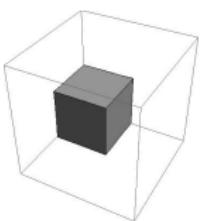
q-TSPP conjecture: $\sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

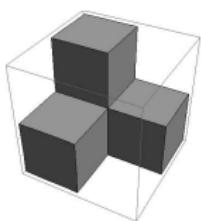
Example: For $n = 2$ there are five such TSPPs



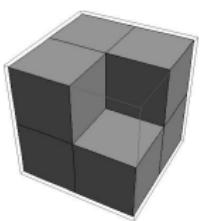
$$q^0$$



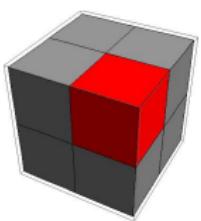
$$q^1$$



$$q^2$$



$$q^3$$



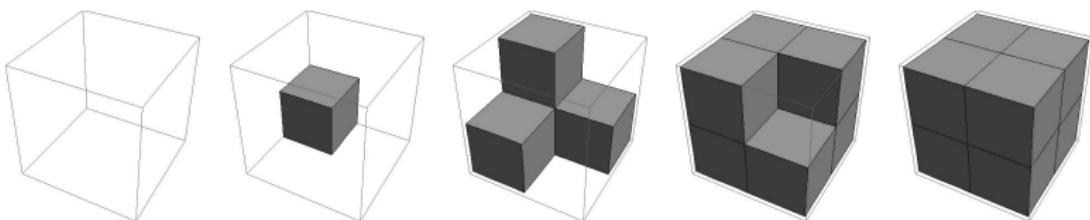
$$q^4$$

Orbit-Counting Generating Function for TSPPs

$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

Example: For $n = 2$ there are five such TSPPs



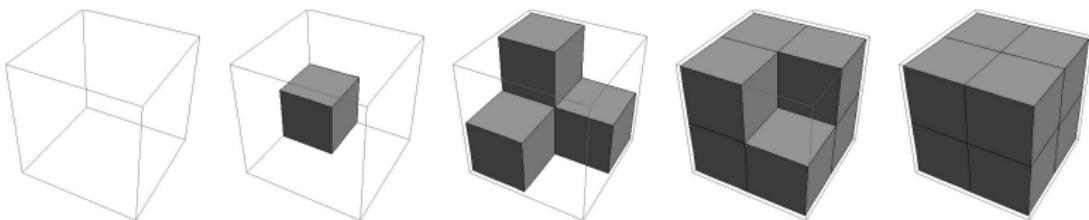
$$\begin{aligned} q^0 &+ q^1 &+ q^2 &+ q^3 &+ q^4 \\ &= \frac{1 - q^5}{1 - q} \end{aligned}$$

Orbit-Counting Generating Function for TSPPs

$$\text{q-TSPP conjecture: } \sum_{\pi \in \text{TSPP}(n)} q^{|\pi/S_3|} = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}$$

(where $\text{TSPP}(n)$ denotes the set of TSPPs with largest part $\leq n$).

Example: For $n = 2$ there are five such TSPPs



$$\begin{aligned} q^0 &+ q^1 &+ q^2 &+ q^3 &+ q^4 \\ = \frac{1 - q^5}{1 - q} &= \frac{1 - q^2}{1 - q} \cdot \frac{1 - q^3}{1 - q^2} \cdot \frac{1 - q^4}{1 - q^3} \cdot \frac{1 - q^5}{1 - q^4} \end{aligned}$$

Determinantal Formulation

On the Generating Functions for Certain Classes of Plane Partitions

SOICHI OKADA

*Department of Mathematics, University of Tokyo
Hongo, Tokyo, 113, Japan*

Communicated by George Andrews

Received November 2, 1987

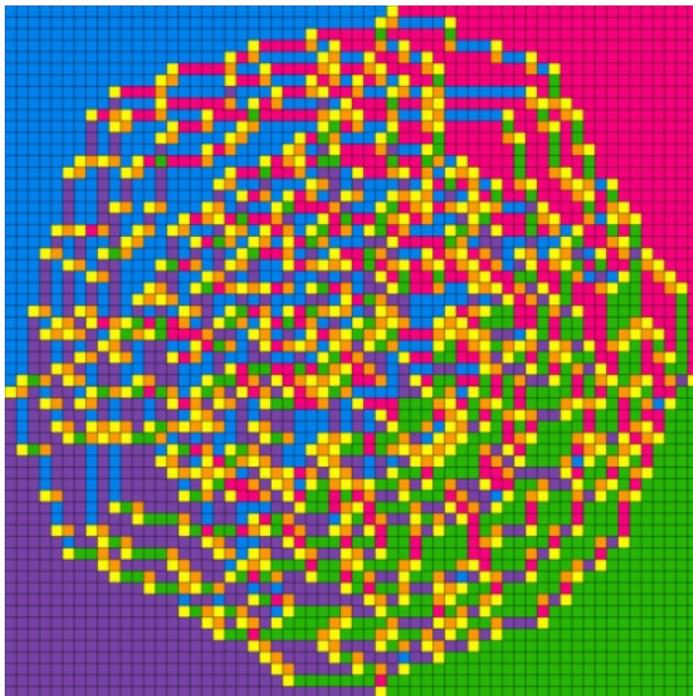
Okada's Theorem: The q -TSPP conjecture is true if

$$\det (a_{i,j})_{1 \leq i,j \leq n} = \prod_{1 \leq i \leq j \leq k \leq n} \left(\frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}} \right)^2, \quad \text{where}$$

$$a_{i,j} := q^{i+j-1} \left(\begin{bmatrix} i+j-2 \\ i-1 \end{bmatrix}_q + q \begin{bmatrix} i+j-1 \\ i \end{bmatrix}_q \right) + (1+q^i)\delta_{i,j} - \delta_{i,j+1}.$$

Results on DSASMs and OSASMs

(joint work with Roger Behrend and Ilse Fischer)



Alternating Sign Matrices

Definition:

- ▶ quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ▶ 1's and -1 's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Alternating Sign Matrices

Definition:

- ▶ quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ▶ 1's and -1 's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM,
QTSASM, DSASM, DASASM, TSASM, ...

Alternating Sign Matrices

Definition:

- ▶ quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ▶ 1's and -1 's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, DSASM, DASASM, TSASM, ...

Theorem: Zeilberger (1996), Kuperberg (1996)

$$\text{ASM}(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

Alternating Sign Matrices

Definition:

- ▶ quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ▶ 1's and -1 's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, DSASM, DASASM, TSASM, ...

Theorem: Zeilberger (1996), Kuperberg (1996)

$$\text{ASM}(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

Theorem: Behrend/Fischer/Konvalinka (2016)

$$\text{DASASM}(2n+1) = \prod_{i=0}^n \frac{(3i)!}{(n+i)!}$$

Alternating Sign Matrices

Definition:

- ▶ quadratic matrix $(n \times n)$ with entries 0, 1, and -1
- ▶ 1's and -1 's alternate along rows and along columns
- ▶ all row sums and all column sums equal 1

Symmetry classes: ASM, VSASM, VHSASM, HTSASM, QTSASM, **DSASM**, DASASM, TSASM, ...

Theorem: Zeilberger (1996), Kuperberg (1996)

$$\text{ASM}(n) = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

Theorem: Behrend/Fischer/Konvalinka (2016)

$$\text{DASASM}(2n+1) = \prod_{i=0}^n \frac{(3i)!}{(n+i)!}$$

DSASMs for $n = 1, 2, 3, 4$

$$(1)$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Number of ASMs

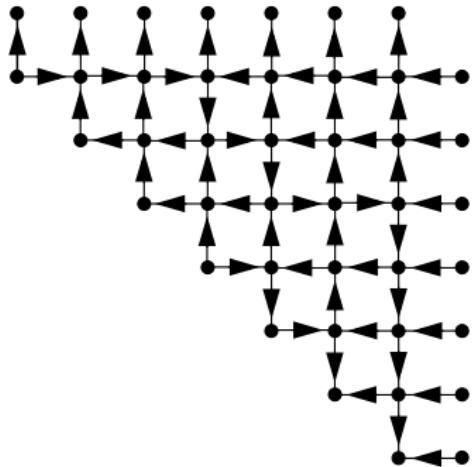
$n = 1$:	1	$= 1$
$n = 2$:	2	$= 2$
$n = 3$:	7	$= 7$
$n = 4$:	42	$= 2 \cdot 3 \cdot 7$
$n = 5$:	429	$= 3 \cdot 11 \cdot 13$
$n = 6$:	7436	$= 2^2 \cdot 11 \cdot 13^2$
$n = 7$:	218348	$= 2^2 \cdot 13^2 \cdot 17 \cdot 19$
$n = 8$:	10850216	$= 2^3 \cdot 13 \cdot 17^2 \cdot 19^2$
$n = 9$:	911835460	$= 2^2 \cdot 5 \cdot 17^2 \cdot 19^3 \cdot 23$
$n = 10$:	129534272700	$= 2^2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 17 \cdot 19^3 \cdot 23^2$
$n = 11$:	31095744852375	$= 3^2 \cdot 5^3 \cdot 7 \cdot 19^2 \cdot 23^3 \cdot 29 \cdot 31$
$n = 12$:	12611311859677500	$= 2^2 \cdot 3^3 \cdot 5^4 \cdot 19 \cdot 23^3 \cdot 29^2 \cdot 31^2$
$n = 13$:	8639383518297652500	$= 2^2 \cdot 3^5 \cdot 5^4 \cdot 23^2 \cdot 29^3 \cdot 31^3 \cdot 37$
$n = 14$:	9995541355448167482000	$= 2^4 \cdot 3^5 \cdot 5^3 \cdot 23 \cdot 29^4 \cdot 31^4 \cdot 37^2$
$n = 15$:	19529076234661277104897200	$= 2^4 \cdot 3^3 \cdot 5^2 \cdot 29^4 \cdot 31^5 \cdot 37^3 \cdot 41 \cdot 43$

Number of DSASMs

$n = 1$:	1	$= 1$
$n = 2$:	2	$= 2$
$n = 3$:	5	$= 5$
$n = 4$:	16	$= 2^4$
$n = 5$:	67	$= 67$
$n = 6$:	368	$= 2^4 \cdot 23$
$n = 7$:	2630	$= 2 \cdot 5 \cdot 263$
$n = 8$:	24376	$= 2^3 \cdot 11 \cdot 277$
$n = 9$:	293770	$= 2 \cdot 5 \cdot 29 \cdot 1013$
$n = 10$:	4610624	$= 2^6 \cdot 61 \cdot 1181$
$n = 11$:	94080653	$= 4679 \cdot 20107$
$n = 12$:	2492747656	$= 2^3 \cdot 7 \cdot 2063 \cdot 21577$
$n = 13$:	85827875506	$= 2 \cdot 29 \cdot 73 \cdot 20271109$
$n = 14$:	3842929319936	$= 2^{13} \cdot 7 \cdot 67015369$
$n = 15$:	223624506056156	$= 2^2 \cdot 67 \cdot 7547 \cdot 110563111$
$n = 16$:	16901839470598576	$= 2^4 \cdot 13 \cdot 12343 \cdot 6583394929$
$n = 17$:	1659776507866213636	$= 2^2 \cdot 263 \cdot 1577734323066743$
$n = 18$:	211853506422044996288	$= 2^6 \cdot 13 \cdot 254631618295727159$
$n = 19$:	35137231473111223912310	$= 2 \cdot 5 \cdot 1601 \cdot 2194705276271781631$
$n = 20$:	$7569998079873075147860464$	$= 2^4 \cdot 473124879992067196741279$

Six-vertex model

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$



- ▶ The degree-4 vertices have two incoming and two outgoing edges.
- ▶ The top vertical edges point up.
- ▶ The rightmost horizontal edges point to the left.

$$\uparrow\leftarrow, \downarrow\leftarrow \leftrightarrow 1,$$

$$\uparrow\leftarrow, \downarrow\uparrow \leftrightarrow -1,$$

$$\uparrow\leftarrow, \uparrow\uparrow, \downarrow\uparrow, \downarrow\leftarrow \leftrightarrow 0,$$

$$\downarrow\leftarrow, \downarrow\leftarrow \leftrightarrow 0.$$

Pfaffian formula for DSASMs

Theorem. The number of $(n \times n)$ -DSASMs is equal to

$$\text{Pf}_{\epsilon(n) \leq i < j \leq n-1} \left([u^i v^j] \frac{(v-u)(2+uv)}{(1-uv)(1-u-v)} \right),$$

where $\epsilon(n) = 0$ for even n and $\epsilon(n) = 1$ for odd n .

Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

$$|\text{OSASM}(2n)| = \prod_{i=1}^n \frac{(6i-2)!}{(2n+2i)!}.$$

Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

$$|\text{OSASM}(2n)| = \prod_{i=1}^n \frac{(6i-2)!}{(2n+2i)!}.$$

Conjecture:

$$|\text{OSASM}(2n+1)| = \frac{2^{n-1} (3n+2)!}{(2n+1)!} \prod_{i=1}^n \frac{(6i-2)!}{(2n+2i+1)!}$$

Off-Diagonally Symmetric Alternating Sign Matrices

Theorem (Kuperberg):

$$|\text{OSASM}(2n)| = \prod_{i=1}^n \frac{(6i-2)!}{(2n+2i)!}.$$

Conjecture:

$$|\text{OSASM}(2n+1)| = \frac{2^{n-1} (3n+2)!}{(2n+1)!} \prod_{i=1}^n \frac{(6i-2)!}{(2n+2i+1)!}$$

Theorem: The number of off-diagonally symmetric alternating sign matrices, $|\text{OSASM}(n)|$, is given by

$$\text{Pf}_{0 \leq i < j \leq n - \chi_{\text{even}}(n)} \left(\begin{cases} [u^i v^j] \frac{v-u}{(1-uv)(1-u-v)}, & j \leq n-1 \\ (-1)^i, & j = n \end{cases} \right).$$

Request by Zeilberger (dated June 23, 2021)

Von Doron Zeilberger

An Christoph Koutschan (RICAM)

Kopie (CC) Di Francesco, Philippe

Betreff **challenge**

Dear Christoph,

Philippe Di Francesco just gave a great talk at the Lattice path conference mentioning, inter alia, a certain conjectured determinant.

It is

Conj. 8.1 (combined with Th. 8.2) in
<https://arxiv.org/pdf/2102.02920.pdf>

I am curious if you can prove it by the Koutschan-Zeilberger-Aek holonomic ansatz method.

If you can do it before Friday, June 25, 2021, 17:00 Paris time, I will mention it in my talk in that conference.

Best wishes

Doron

Request by Zeilberger (dated June 23, 2021)

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Philippe Di Francesco just gave a great talk at the Lattice path conference mentioning, inter alia, a certain conjectured determinant.

It is

Conj. 8.1 (combined with Th. 8.2) in
<https://arxiv.org/pdf/2102.02920.pdf>

I am curious if you can prove it by the Koutschan-Zeilberger-Aek holonomic ansatz method.

If you can do it before Friday, June 25, 2021, 17:00 Paris time, I will mention it in my talk in that conference.

Best wishes

Doron

Determinants and Pfaffians

Who you gonna call?

Determinants and Pfaffians

Who you gonna call?

ADVANCED DETERMINANT CALCULUS

C. KRATTENTHALER[†]

Institut für Mathematik der Universität Wien,
Strudlhofgasse 4, A-1090 Wien, Austria.

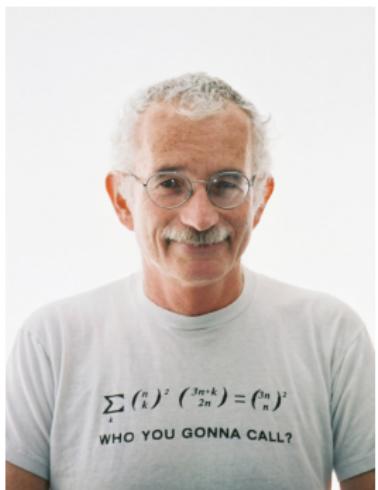
E-mail: kratt@pap.univie.ac.at

WWW: <http://radon.mat.univie.ac.at/People/kratt>

*Dedicated to the pioneer of determinant evaluations (among many other things),
George Andrews*

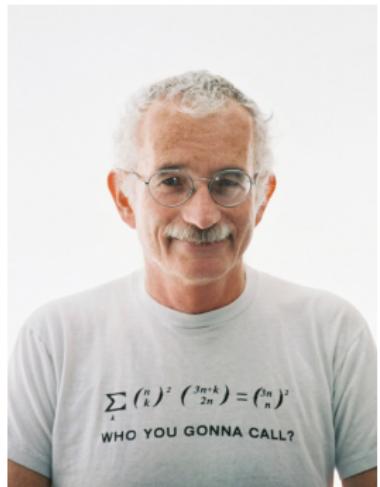
The Holonomic Ansatz

The Holonomic Ansatz



The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$



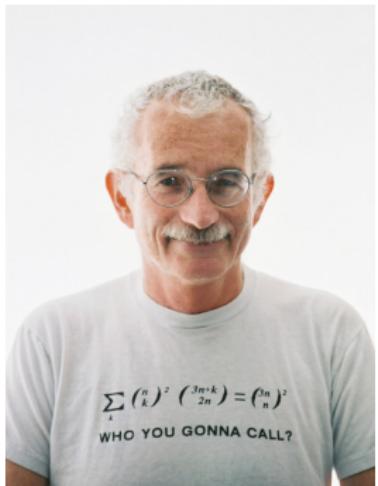
$$\sum_k \binom{n}{k}^2 \binom{3n+k}{2n} = \binom{3n}{n}^2$$

WHO YOU GONNA CALL?

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence



$$\sum_k \binom{n}{k}^2 \binom{3n+k}{2n} = \binom{3n}{n}^2$$

WHO YOU GONNA CALL?

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
- ▶ that does not depend on n



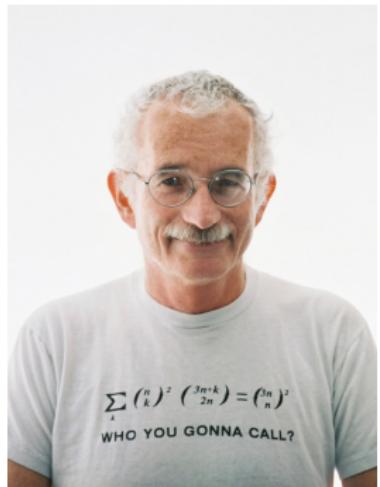
$$\sum_k \binom{n}{k}^2 \binom{3n+k}{2n} = \binom{3n}{n}^2$$

WHO YOU GONNA CALL?

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
- ▶ that does not depend on n , and
- ▶ b_n is a closed form ($b_n \neq 0$ for all n).



$$\sum_k \binom{n}{k}^2 \binom{3n+k}{2n} = \binom{3n}{n}^2$$

WHO YOU GONNA CALL?

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
 - ▶ that does not depend on n , and
 - ▶ b_n is a closed form ($b_n \neq 0$ for all n).

$$\mathcal{A}_n = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \mathcal{A}_{n-1} & & & & & & & \\ \hline & & & & & & & \\ a_{n,1} & \cdots & a_{n,n-1} & | & a_{n,n} & & & \\ & & & & & & & \end{pmatrix}$$

Laplace expansion:

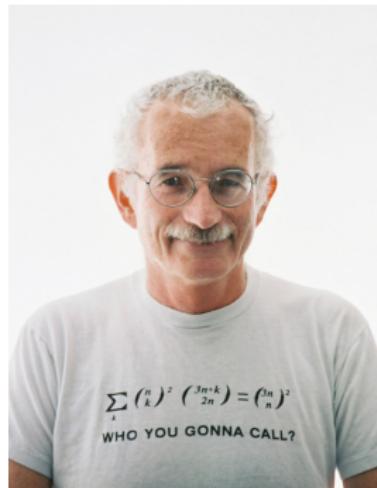
$$\det(\mathcal{A}_n) = a_{n,1}\text{Cof}_{n,1} + \cdots + a_{n,n-1}\text{Cof}_{n,n-1} + a_{n,n}\det(\mathcal{A}_{n-1})$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
 - ▶ that does not depend on n , and
 - ▶ b_n is a closed form ($b_n \neq 0$ for all n).

$$\mathcal{A}_n = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \mathcal{A}_{n-1} & & & & & & & \\ \hline & & & & & & & \\ a_{n,1} & \cdots & a_{n,n-1} & | & a_{n,n} & & & \\ & & & & & & & \end{pmatrix}$$



Laplace expansion:

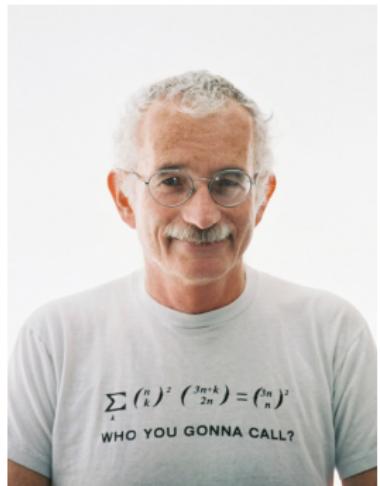
$$\frac{\det(\mathcal{A}_n)}{\det(\mathcal{A}_{n-1})} = a_{n,1} \frac{\text{Cof}_{n,1}}{\det(\mathcal{A}_{n-1})} + \cdots + a_{n,n-1} \frac{\text{Cof}_{n,n-1}}{\det(\mathcal{A}_{n-1})} + a_{n,n}$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
 - ▶ that does not depend on n , and
 - ▶ b_n is a closed form ($b_n \neq 0$ for all n).

$$\mathcal{A}_n = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \mathcal{A}_{n-1} & & & & & & & \\ \hline & & & & & & & \\ a_{n,1} & \cdots & a_{n,n-1} & | & a_{n,n} & & & \\ & & & & & & & \end{pmatrix}$$



Laplace expansion:

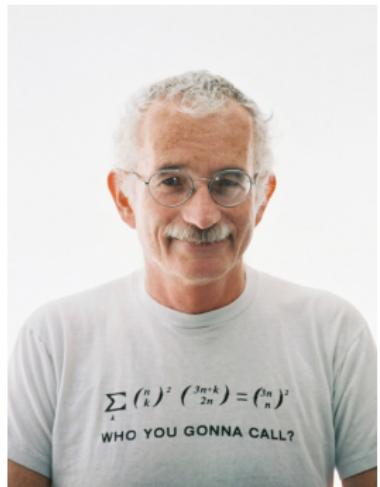
$$\frac{\det(\mathcal{A}_n)}{\det(\mathcal{A}_{n-1})} = a_{n,1}c_{n,1} + \cdots + a_{n,n-1}c_{n,n-1} + a_{n,n}c_{n,n}$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
- ▶ that does not depend on n , and
- ▶ b_n is a closed form ($b_n \neq 0$ for all n).

$$\mathcal{A}_n = \begin{pmatrix} & & & & & & & | & \\ & \mathcal{A}_{n-1} & & & & & & | & \\ & & & & & & & | & \\ & & & & & & & | & \\ & & & & & & & | & \\ a_{n,1} & \cdots & & a_{n,n-1} & | & a_{n,n} & & & \end{pmatrix}$$



$$\sum_k \binom{n}{k}^2 \binom{3n+k}{2n} = \binom{3n}{n}^2$$

WHO YOU GONNA CALL?

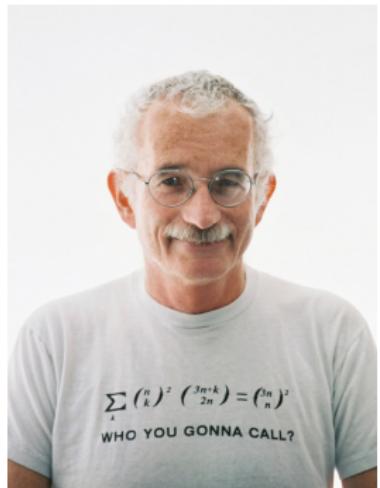
Laplace expansion:

$$\frac{\det(\mathcal{A}_n)}{\det(\mathcal{A}_{n-1})} = \sum_{j=1}^n a_{n,j} c_{n,j}$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
 - ▶ that does not depend on n , and
 - ▶ b_n is a closed form ($b_n \neq 0$ for all n).



Laplace expansion:

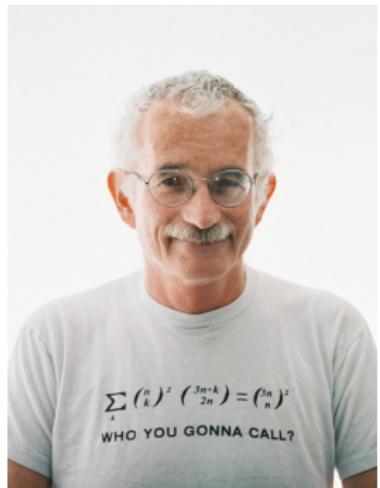
$$0 = \sum_{j=1}^n a_{1,j} c_{n,j}$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
 - ▶ that does not depend on n , and
 - ▶ b_n is a closed form ($b_n \neq 0$ for all n).

$$\mathcal{A}_n = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \mathcal{A}_{n-1} & & & & & & & \\ \hline & & & & & & & \\ a_{n,1} & \cdots & a_{n,n-1} & | & a_{n,n} & & & \\ & & & & & & & \end{pmatrix}$$



Laplace expansion:

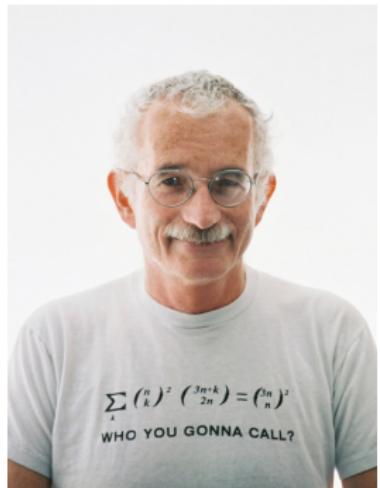
$$0 = \sum_{j=1}^n a_{i,j} c_{n,j} \quad (1 \leq i < n)$$

The Holonomic Ansatz

Problem: Prove a determinantal identity of the form $\det_{1 \leq i, j \leq n} (a_{i,j}) = b_n$, where

- ▶ $a_{i,j}$ is a holonomic sequence
 - ▶ that does not depend on n , and
 - ▶ b_n is a closed form ($b_n \neq 0$ for all n).

$$\mathcal{A}_n = \begin{pmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \mathcal{A}_{n-1} & & & & & & & \\ \hline & & & & & & & \\ a_{n,1} & \cdots & a_{n,n-1} & | & a_{n,n} & & & \\ & & & & & & & \end{pmatrix}$$



Laplace expansion:

$$0 = \sum_{j=1}^n a_{i,j} c_{n,j} \quad (1 \leq i < n), \quad c_{n,n} = 1$$

Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.

Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \quad (1 \leq n) \quad (1)$$

$$\sum_{j=1}^n a_{i,j} c_{n,j} = 0 \quad (1 \leq i < n) \quad (2)$$

$$\sum_{j=1}^n a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \quad (1 \leq n) \quad (3)$$

Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \quad (1 \leq n) \quad (1)$$

$$\sum_{j=1}^n a_{i,j} c_{n,j} = 0 \quad (1 \leq i < n) \quad (2)$$

$$\sum_{j=1}^n a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \quad (1 \leq n) \quad (3)$$

Justification:

- Invertibility of \mathcal{A}_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).

Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \quad (1 \leq n) \quad (1)$$

$$\sum_{j=1}^n a_{i,j} c_{n,j} = 0 \quad (1 \leq i < n) \quad (2)$$

$$\sum_{j=1}^n a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \quad (1 \leq n) \quad (3)$$

Justification:

- ▶ Invertibility of \mathcal{A}_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).
- ▶ (1) + (2) prove that the solution of the guessed recurrences equals indeed the normalized cofactors.

Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \quad (1 \leq n) \quad (1)$$

$$\sum_{j=1}^n a_{i,j} c_{n,j} = 0 \quad (1 \leq i < n) \quad (2)$$

$$\sum_{j=1}^n a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \quad (1 \leq n) \quad (3)$$

Justification:

- ▶ Invertibility of \mathcal{A}_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).
- ▶ (1) + (2) prove that the solution of the guessed recurrences equals indeed the normalized cofactors.
- ▶ (3) establishes the conjectured determinant evaluation.

Recipe for the Holonomic Ansatz

1. Guess a set of recurrences (holonomic description) for the normalized cofactors $c_{n,j}$.
2. Use it to prove, via creative telescoping, the three identities

$$c_{n,n} = 1 \quad (1 \leq n) \quad (1)$$

$$\sum_{j=1}^n a_{i,j} c_{n,j} = 0 \quad (1 \leq i < n) \quad (2)$$

$$\sum_{j=1}^n a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} \quad (1 \leq n) \quad (3)$$

Justification: Identity Found by Proving Identities!

- ▶ Invertibility of \mathcal{A}_n (can be argued by an inductive argument) guarantees a unique solution of the linear system (1) + (2).
- ▶ (1) + (2) prove that the solution of the guessed recurrences equals indeed the normalized cofactors.
- ▶ (3) establishes the conjectured determinant evaluation.

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \leq j < n \leq 30$

1								
-1	1							
1	-2	1						
<u>16</u>	<u>47</u>	<u>-46</u>		1				
-15	15	15						
<u>16</u>	<u>-60</u>	<u>85</u>	<u>-54</u>		1			
13	13	13	13					
<u>-20</u>	<u>88</u>	<u>-633</u>	<u>291</u>	<u>-21</u>		1		
13	13	52	26	4				
<u>2008</u>	<u>-9808</u>	<u>2441</u>	<u>-8107</u>	<u>33115</u>	<u>-362</u>		1	
969	969	114	323	1938	57			
<u>-10592</u>	<u>55360</u>	<u>-7712</u>	<u>16567</u>	<u>-159022</u>	<u>5062</u>	<u>-82</u>		1
3553	3553	209	323	3553	209	11		
<u>2608</u>	<u>-2848</u>	<u>36496</u>	<u>-57388</u>	<u>59828</u>	<u>-41696</u>	<u>18739</u>	<u>-214</u>	
575	115	575	575	575	575	575	25	
<u>32432</u>	<u>182176</u>	<u>-12656</u>	<u>849728</u>	<u>-1011076</u>	<u>56467</u>	<u>-492191</u>	<u>8228</u>	<u>-29</u>
4485	4485	115	4485	4485	299	4485	195	3
<u>161632</u>	<u>924992</u>	<u>2606624</u>	<u>4799104</u>	<u>1262497</u>	<u>6078586</u>	<u>4266601</u>	<u>-425608</u>	<u>47679</u>
13485	13485	13485	13485	2697	13485	13485	2697	31

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leqslant i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \leq j < n \leq 30$
 - ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \leq j < n \leq 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \leq j < n \leq 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.
- ▶ Proving (2) by creative telescoping takes about 45 minutes.

Di Francesco's Determinant

Conjecture (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \leq j < n \leq 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.
- ▶ Proving (2) by creative telescoping takes about 45 minutes.
- ▶ Proving (3) by creative telescoping takes about 30 minutes.

Di Francesco's Determinant

Theorem (Di Francesco's determinant for 20V configurations):

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$

Proof:

- ▶ Compute data for $c_{n,j}$ for $0 \leq j < n \leq 30$
- ▶ Guess recurrences for $c_{n,j}$ (using Manuel Kauers' Guess.m):
- ▶ Derive diagonal recurrence for $c_{n,n}$; it implies $c_{n,n} = 1$.
- ▶ Proving (2) by creative telescoping takes about 45 minutes.
- ▶ Proving (3) by creative telescoping takes about 30 minutes.

Zeilberger's Talk at the Lattice Path Conference

Lattice Paths, Combinatorics and Interactions | 02:41

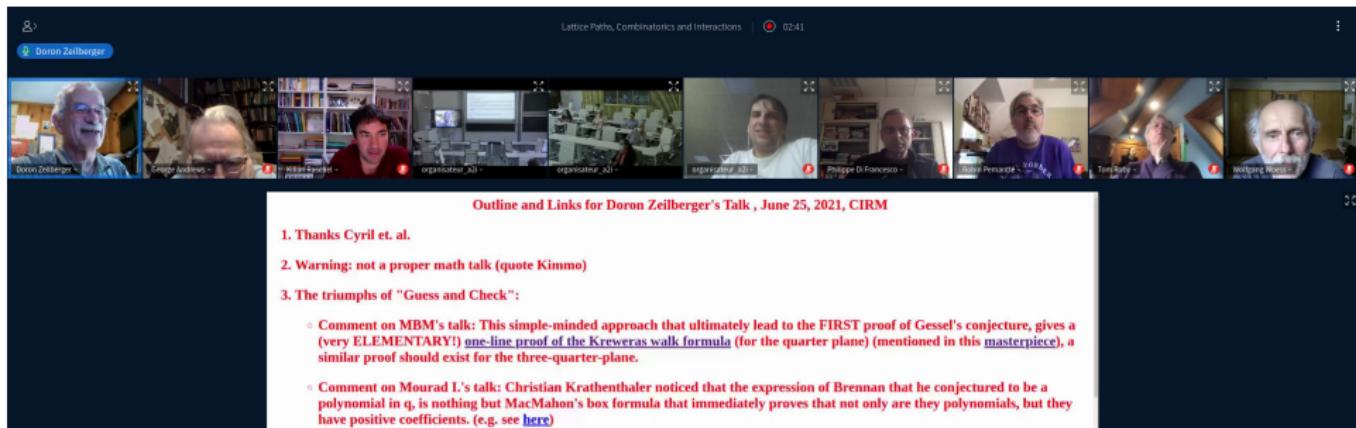
Doron Zeilberger

Outline and Links for Doron Zeilberger's Talk , June 25, 2021, CIRM

1. Thanks Cyril et. al.
2. Warning: not a proper math talk (quote Kimmo)
3. The triumphs of "Guess and Check":
 - Comment on MBM's talk: This simple-minded approach that ultimately lead to the FIRST proof of Gessel's conjecture, gives a (very ELEMENTARY!) one-line proof of the Kreweras walk formula (for the quarter plane) (mentioned in this [masterpiece](#)), a similar proof should exist for the three-quarter-plane.
 - Comment on Mourad L's talk: Christian Krattenthaler noticed that the expression of Brennan that he conjectured to be a polynomial in q , is nothing but MacMahon's box formula that immediately proves that not only are they polynomials, but they have positive coefficients. (e.g. see [here](#))
 - Comment on Philippe Di-F's great talk. Using this [nice experimental-yet-rigorous approach](#) (that ultimately lead to the proof of the qTSPP conjecture) Christoph Koutschan [proved](#) Philippe Di-F's determinant conjecture! (that another CK could not do) (see [certificate](#))
4. Congratulate MBM, implicit honors
5. Memory Lane: FPSAC 1991 (show proceedings), MBM's defense (the one who laughed, show thesis)
6. [my report](#)
7. [shocking shortcut](#)

61 128

Zeilberger's Talk at the Lattice Path Conference



Lattice Paths, Combinatorics and Interactions | 02:41

Doron Zeilberger

Outline and Links for Doron Zeilberger's Talk , June 25, 2021, CIRM

1. Thanks Cyril et. al.
2. Warning: not a proper math talk (quote Kimmo)
3. The triumphs of "Guess and Check":
 - Comment on MBM's talk: This simple-minded approach that ultimately lead to the FIRST proof of Gessel's conjecture, gives a (very ELEMENTARY) one-line proof of the Kreweras walk formula (for the quarter plane) (mentioned in this masterpiece), a similar proof should exist for the three-quarter-plane.
 - Comment on Mourad L's talk: Christian Krattenthaler noticed that the expression of Brennan that he conjectured to be a polynomial in q , is nothing but MacMahon's box formula that immediately proves that not only are they polynomials, but they have positive coefficients. (e.g. see [here](#))

Comment on Philippe Di-F's great talk. Using this nice experimental-yet-rigorous approach (that ultimately lead to the proof of the qTSP conjecture) Christoph Koutschan proved Philippe Di-F's determinant conjecture! (that another CK could not do) (see certificate)

5. Memory Lane: FPSAC 1991 (show proceedings), MBM's defense (the one who laughed, show thesis)

6. [my report](#)

7. [shocking shortcut](#)

Ternary Variations of Di Francesco's Determinant

(joint work with Christian Krattenthaler and Michael Schlosser)

$$\det_{0 \leq i, j \leq n-1} \left(3^i \begin{pmatrix} i+3j \\ 3j \end{pmatrix} + \begin{pmatrix} -i+3j \\ 3j \end{pmatrix} \right) \\ = \begin{cases} 2^{9\binom{m}{2}+3m+1} 3^{9\binom{m}{2}+3m} \frac{\left(\frac{1}{6}\right)_m}{\left(\frac{7}{12}\right)_m} \prod_{i=1}^{3m-1} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i-2)!}{(12i-8)!}, & \text{for } n = 3m, \\ 2^{9\binom{m}{2}+6m+1} 3^{9\binom{m}{2}+6m} \frac{\left(\frac{1}{2}\right)_m}{\left(\frac{11}{12}\right)_m} \prod_{i=1}^{3m} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i-1)!}{(12i-4)!}, & \text{for } n = 3m+1, \\ 2^{9\binom{m}{2}+9m+2} 3^{9\binom{m}{2}+9m} \frac{\left(\frac{5}{6}\right)_m}{\left(\frac{15}{12}\right)_{m+1}} \prod_{i=1}^{3m+1} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i)!}{(12i)!}, & \text{for } n = 3m+2, \end{cases}$$

Ternary Variations of Di Francesco's Determinant

(joint work with Christian Krattenthaler and Michael Schlosser)

$$\begin{aligned}
 & \det_{0 \leq i, j \leq n-1} \left(3^i \begin{pmatrix} i+3j+1 \\ 3j+1 \end{pmatrix} + \begin{pmatrix} -i+3j+1 \\ 3j+1 \end{pmatrix} \right) \\
 &= \begin{cases} 2^{9\binom{m}{2}-6m+1} 3^{9\binom{m}{2}+6m} \frac{(\frac{2}{3})_{3m}}{(\frac{11}{12})_m (\frac{1}{2})_{2m}} \prod_{i=1}^{3m} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i-1)!}{(12i-4)!}, & \text{for } n = 3m, \\ 2^{9\binom{m}{2}-3m-1} 3^{9\binom{m}{2}+9m} \frac{(\frac{5}{3})_{3m}}{(\frac{15}{12})_m (\frac{7}{6})_{2m}} \prod_{i=1}^{3m+1} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i)!}{(12i)!}, & \text{for } n = 3m+1, \\ 2^{9\binom{m}{2}-6} 3^{9\binom{m}{2}+12m+1} \frac{(\frac{8}{3})_{3m}}{(\frac{7}{12})_{m+1} (\frac{11}{6})_{2m}} \prod_{i=1}^{3m+2} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i+1)!}{(12i+4)!}, & \text{for } n = 3m+2, \end{cases}
 \end{aligned}$$

Ternary Variations of Di Francesco's Determinant

(joint work with Christian Krattenthaler and Michael Schlosser)

$$\begin{aligned} & \det_{0 \leq i, j \leq n-1} \left(3^i \begin{pmatrix} i+3j+2 \\ 3j+2 \end{pmatrix} + \begin{pmatrix} -i+3j+2 \\ 3j+2 \end{pmatrix} \right) \\ &= \begin{cases} 2^{9\binom{m}{2}-3m+1} 3^{9\binom{m}{2}+6m} \frac{\left(\frac{1}{2}\right)_m}{\left(\frac{11}{12}\right)_m} \prod_{i=1}^{3m} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i-1)!}{(12i-4)!}, & \text{for } n = 3m, \\ 2^{9\binom{m}{2}-1} 3^{9\binom{m}{2}+9m} \frac{\left(\frac{5}{6}\right)_m}{\left(\frac{15}{12}\right)_m} \prod_{i=1}^{3m+1} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i)!}{(12i)!}, & \text{for } n = 3m+1, \\ 2^{9\binom{m}{2}+3m-5} 3^{9\binom{m}{2}+12m+1} \frac{\left(\frac{13}{6}\right)_{m-1}}{\left(\frac{19}{12}\right)_m} \prod_{i=1}^{3m+2} \frac{(4i)!}{(3i)!} \prod_{i=1}^m \frac{(3i+1)!}{(12i+4)!}, & \text{for } n = 3m+2, \end{cases} \end{aligned}$$

Ternary Variations of Di Francesco's Determinant

Theorem: For $n \geq 1$ we have

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

Ternary Variations of Di Francesco's Determinant

Theorem: For $n \geq 1$ we have

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

Ternary Variations of Di Francesco's Determinant

Theorem: For $n \geq 1$ we have

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^n \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

Ternary Variations of Di Francesco's Determinant

Theorem: For $n \geq 1$ we have

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^n \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^{i+1} \binom{i+3j+1}{3j} + \binom{-i+3j-1}{3j} \right) = \prod_{i=1}^n \frac{2^{i+1} \Gamma(4i-2) \Gamma\left(\frac{i+2}{3}\right)}{i \Gamma(3i-2) \Gamma\left(\frac{4i-1}{3}\right)}$$

Ternary Variations of Di Francesco's Determinant

Theorem: For $n \geq 1$ we have

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^n \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^{i+1} \binom{i+3j+1}{3j} + \binom{-i+3j-1}{3j} \right) = \prod_{i=1}^n \frac{2^{i+1} \Gamma(4i-2) \Gamma\left(\frac{i+2}{3}\right)}{i \Gamma(3i-2) \Gamma\left(\frac{4i-1}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^{i+1} \binom{i+3j+2}{3j+1} + \binom{-i+3j}{3j+1} \right) = \prod_{i=1}^n \frac{2^i \Gamma(4i) \Gamma\left(\frac{i+1}{3}\right)}{3i \Gamma(3i-1) \Gamma\left(\frac{4i+1}{3}\right)}$$

Ternary Variations of Di Francesco's Determinant

Theorem: For $n \geq 1$ we have

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j}{3j} + \binom{-i+3j}{3j} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+1}{3j+1} + \binom{-i+3j+1}{3j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^i \binom{i+3j+2}{3j+2} + \binom{-i+3j+2}{3j+2} \right) = 2 \prod_{i=1}^n \frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i+1) \Gamma\left(\frac{4i+2}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^{i+1} \binom{i+3j+1}{3j} + \binom{-i+3j-1}{3j} \right) = \prod_{i=1}^n \frac{2^{i+1} \Gamma(4i-2) \Gamma\left(\frac{i+2}{3}\right)}{i \Gamma(3i-2) \Gamma\left(\frac{4i-1}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^{i+1} \binom{i+3j+2}{3j+1} + \binom{-i+3j}{3j+1} \right) = \prod_{i=1}^n \frac{2^i \Gamma(4i) \Gamma\left(\frac{i+1}{3}\right)}{3i \Gamma(3i-1) \Gamma\left(\frac{4i+1}{3}\right)}$$

$$\det_{0 \leq i, j < n} \left(3^{i+1} \binom{i+3j+1}{3j+2} + \binom{-i+3j-1}{3j+2} \right) = \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-1) \Gamma\left(\frac{i+2}{3}\right)}{\Gamma(3i) \Gamma\left(\frac{4i-1}{3}\right)}$$

Three Infinite Families

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}$, $n \geq x$, we have

$$\det_{0 \leq i, j < n} \left(3^{i+x} \begin{pmatrix} i+3j-x \\ 3j \end{pmatrix} + \begin{pmatrix} -i+3j-3x \\ 3j \end{pmatrix} \right) =$$

Three Infinite Families

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geq x$, we have

$$\det_{0 \leq i, j < n} \left(3^{i+x} \begin{pmatrix} i+3j-x \\ 3j \end{pmatrix} + \begin{pmatrix} -i+3j-3x \\ 3j \end{pmatrix} \right) =$$
$$2\mu_1(x)\Xi(x)(-1)^{\lfloor \frac{x}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

Three Infinite Families

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geq x$, we have

$$\det_{0 \leq i, j < n} \left(3^{i+x} \begin{pmatrix} i+3j-x \\ 3j \end{pmatrix} + \begin{pmatrix} -i+3j-3x \\ 3j \end{pmatrix} \right) = 2\mu_1(x) \Xi(x) (-1)^{\lfloor \frac{x}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)}$$

where

$$\Xi(x) := \prod_{i=2}^x \frac{3 \Gamma(i) \Gamma(4i-3) \Gamma(4i-2)}{2 \Gamma(3i-2)^2 \Gamma(3i-1)}$$

$$\mu_m(x) := \begin{cases} 2, & \text{if } 3 \mid (x-m) \\ 1, & \text{otherwise.} \end{cases}$$

Three Infinite Families

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geq x$, we have

$$\det_{0 \leq i, j < n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j} \right) =$$
$$2\mu_1(x) \Xi(x) (-1)^{\lfloor \frac{x}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-1} \Gamma(4i-3) \Gamma(\frac{i+1}{3})}{\Gamma(3i-2) \Gamma(\frac{4i-2}{3})}$$

$$\det_{0 \leq i, j < n} \left(3^{i+x} \binom{i+3j-x+1}{3j+1} + \binom{-i+3j-3x+1}{3j+1} \right) =$$
$$2\mu_2(x) \Xi(x) (-1)^{\lfloor \frac{x+2}{3} \rfloor} \prod_{i=1}^n \frac{2^{i-2} \Gamma(4i-1) \Gamma(\frac{i}{3})}{3 \Gamma(3i-1) \Gamma(\frac{4i}{3})}$$

Three Infinite Families

Conjecture: for all $x \in \mathbb{N}_0$ and for all $n \in \mathbb{N}, n \geq x$, we have

$$\begin{aligned} \det_{0 \leq i, j < n} \left(3^{i+x} \binom{i+3j-x}{3j} + \binom{-i+3j-3x}{3j} \right) &= \\ 2\mu_1(x) \Xi(x) (-1)^{\lfloor \frac{x}{3} \rfloor} \prod_{i=1}^n &\frac{2^{i-1} \Gamma(4i-3) \Gamma\left(\frac{i+1}{3}\right)}{\Gamma(3i-2) \Gamma\left(\frac{4i-2}{3}\right)} \\ \det_{0 \leq i, j < n} \left(3^{i+x} \binom{i+3j-x+1}{3j+1} + \binom{-i+3j-3x+1}{3j+1} \right) &= \\ 2\mu_2(x) \Xi(x) (-1)^{\lfloor \frac{x+2}{3} \rfloor} \prod_{i=1}^n &\frac{2^{i-2} \Gamma(4i-1) \Gamma\left(\frac{i}{3}\right)}{3 \Gamma(3i-1) \Gamma\left(\frac{4i}{3}\right)} \\ \det_{0 \leq i, j < n} \left(3^{i+x} \binom{i+3j-x+2}{3j+2} + \binom{-i+3j-3x+2}{3j+2} \right) &= \\ \frac{\mu_0(x)}{n} \Xi(x) (-1)^{\lfloor \frac{x+1}{3} \rfloor} \prod_{i=2}^n &\frac{2^{i-3} \Gamma(4i+1) \Gamma\left(\frac{i-1}{3}\right)}{9 \Gamma(3i) \Gamma\left(\frac{4i+2}{3}\right)} \end{aligned}$$

Recent Progress on Some Conjectures

DOMINO TILINGS, NONINTERSECTING LATTICE PATHS AND SUBCLASSES OF KOUTSCHAN–KRATTENTHALER–SCHLOSSER DETERMINANTS

QIPIN CHEN, SHANE CHERN, AND ATSURO YOSHIDA

ABSTRACT. Koutschan, Krattenthaler and Schlosser recently considered a family of binomial determinants. In this work, we give combinatorial interpretations of two subclasses of these determinants in terms of domino tilings and nonintersecting lattice paths, thereby partially answering a question of theirs. Furthermore, the determinant evaluations established by Koutschan, Krattenthaler and Schlosser produce many product formulas for our weighted enumerations of domino tilings and nonintersecting lattice paths. However, there are still two enumerations left corresponding to conjectural formulas made by the three. We hereby prove the two conjectures using the principle of holonomic Ansatz plus the approach of modular reduction for creative telescoping, and hence fill the gap.

Families of Binomial Determinants

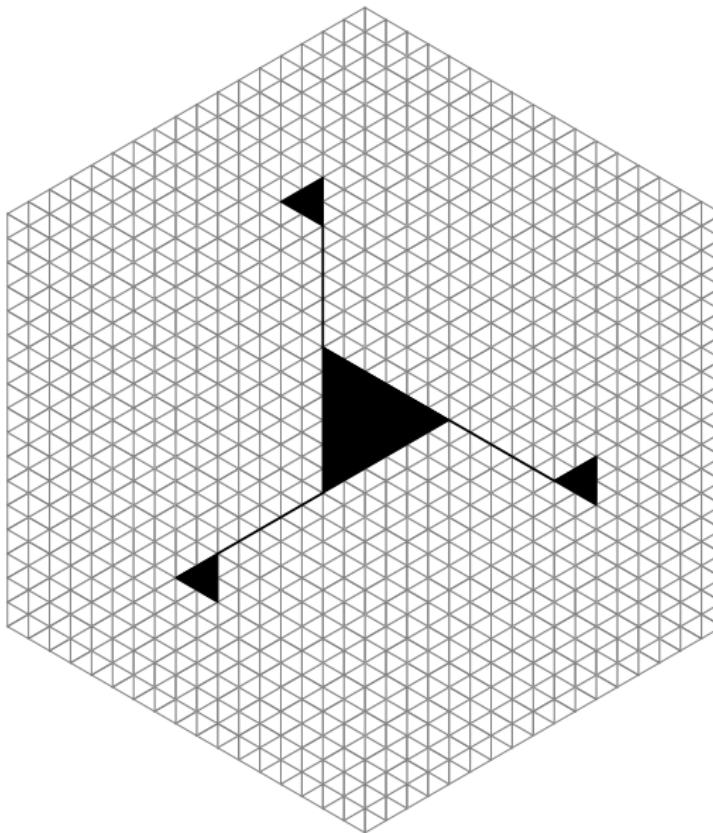
(joint work with Hao Du, Thotsaporn Thanatipanonda, and Elaine Wong)

Inspired by some conjectures in Christian Krattenthaler's
"Advanced Determinant Calculus: A Complement".

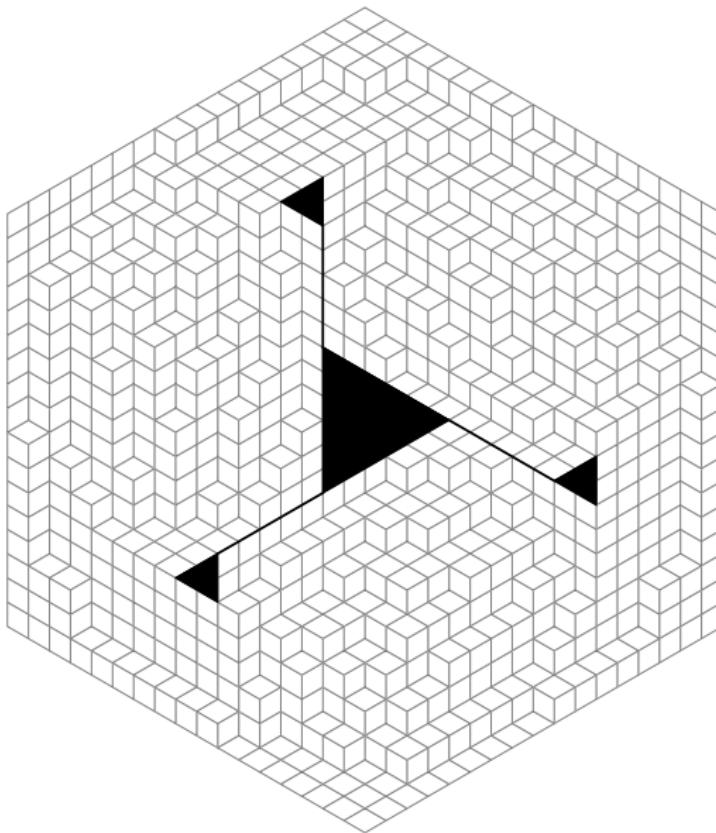
Theorem: Let μ be an indeterminate and let $m, r \in \mathbb{Z}$.
If $m \geq r \geq 1$, then

$$\begin{aligned} & \det_{1 \leq i, j \leq 2m+1} \left[\binom{\mu + i + j + 2r}{j + 2r - 2} - \delta_{i, j+2r} \right] \\ &= \frac{(-1)^{m-r+1} (\mu + 3) (m + r + 1)_{m-r}}{2^{2m-2r+1} \left(\frac{\mu}{2} + r + \frac{3}{2}\right)_{m-r+1}} \cdot \prod_{i=1}^{2m} \frac{(\mu + i + 3)_{2r}}{(i)_{2r}} \\ & \quad \times \prod_{i=1}^{m-r} \frac{\left(\mu + 2i + 6r + 3\right)_i^2 \left(\frac{\mu}{2} + 2i + 3r + 2\right)_{i-1}^2}{(i)_i^2 \left(\frac{\mu}{2} + i + 3r + 2\right)_{i-1}^2}. \end{aligned}$$

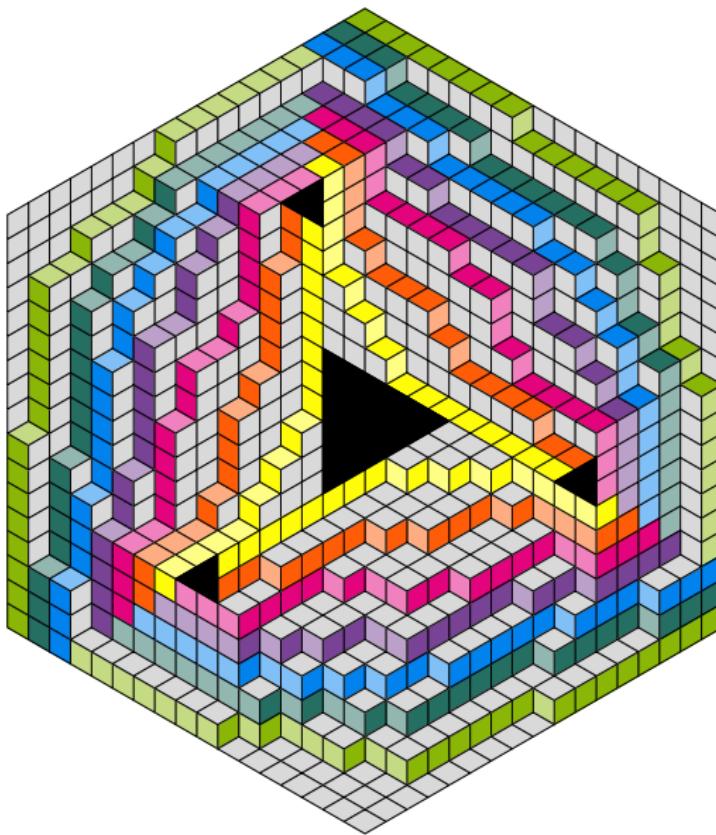
Combinatorial Interpretation: Holey Hexagon



Combinatorial Interpretation: Holey Hexagon



Combinatorial Interpretation: Holey Hexagon



The q -Case

Consider q -difference equations involving the q -shift operation

$$x \mapsto qx, \quad \text{resp. } q^n \mapsto q^{n+1}.$$

The q -Case

Consider q -difference equations involving the q -shift operation

$$x \mapsto qx, \quad \text{resp. } q^n \mapsto q^{n+1}.$$

That is, nontrivial linear functional equations of the form

$$p_r(q, q^n)f(n+r) + \cdots + p_1(q, q^n)f(n+1) + p_0(q, q^n)f(n) = 0.$$

The q -Case

Consider q -difference equations involving the q -shift operation

$$x \mapsto qx, \quad \text{resp. } q^n \mapsto q^{n+1}.$$

That is, nontrivial linear functional equations of the form

$$p_r(q, q^n)f(n+r) + \cdots + p_1(q, q^n)f(n+1) + p_0(q, q^n)f(n) = 0.$$

Examples:

- ▶ $(a; q)_n := \prod_{i=0}^{n-1} (1 - aq^i)$, the q -Pochhammer symbol

The q -Case

Consider q -difference equations involving the q -shift operation

$$x \mapsto qx, \quad \text{resp. } q^n \mapsto q^{n+1}.$$

That is, nontrivial linear functional equations of the form

$$p_r(q, q^n)f(n+r) + \cdots + p_1(q, q^n)f(n+1) + p_0(q, q^n)f(n) = 0.$$

Examples:

- ▶ $(a; q)_n := \prod_{i=0}^{n-1} (1 - aq^i)$, the q -Pochhammer symbol
- ▶ the q -binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}$

The q -Case

Consider q -difference equations involving the q -shift operation

$$x \mapsto qx, \quad \text{resp. } q^n \mapsto q^{n+1}.$$

That is, nontrivial linear functional equations of the form

$$p_r(q, q^n)f(n+r) + \cdots + p_1(q, q^n)f(n+1) + p_0(q, q^n)f(n) = 0.$$

Examples:

- ▶ $(a; q)_n := \prod_{i=0}^{n-1} (1 - aq^i)$, the q -Pochhammer symbol
- ▶ the q -binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}$
- ▶ q -trigonometric functions: $\sin_q(x)$, $\text{Sin}_q(x)$, $\cos_q(x)$, $\text{Cos}_q(x)$

The q -Case

Consider q -difference equations involving the q -shift operation

$$x \mapsto qx, \quad \text{resp. } q^n \mapsto q^{n+1}.$$

That is, nontrivial linear functional equations of the form

$$p_r(q, q^n)f(n+r) + \cdots + p_1(q, q^n)f(n+1) + p_0(q, q^n)f(n) = 0.$$

Examples:

- ▶ $(a; q)_n := \prod_{i=0}^{n-1} (1 - aq^i)$, the q -Pochhammer symbol
- ▶ the q -binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}$
- ▶ q -trigonometric functions: $\sin_q(x)$, $\text{Sin}_q(x)$, $\cos_q(x)$, $\text{Cos}_q(x)$
- ▶ q -special functions: q -Bessel functions, q -Legendre polynomials, q -Gegenbauer polynomials, etc.

q-TSPP: Holonomic Description of the Cofactors

The recurrences have the form

$$\bigcirc \cdot c_{n,j+4} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+1,j+3} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+2,j+2} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+3,j+1} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+4,j} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

q-TSPP: Holonomic Description of the Cofactors

The recurrences have the form

$$\bigcirc \cdot c_{n,j+4} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+1,j+3} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+2,j+2} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+3,j+1} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} + \\ \bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \\ \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+4,j} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \\ \bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

q-TSPP: Holonomic Description of the Cofactors

The recurrences have the form

$$\bigcirc \cdot c_{n,j+4} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} +$$

$$\bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+1,j+3} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} +$$

$$\bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} +$$

$$\bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+2,j+2} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} +$$

$$\bigcirc \cdot c_{n,j} - 5778 q^{23} qj^6 qn^{15} - 5626 q^{24} qj^6 qn^{15} + \boxed{\bigcirc \cdot c_{n,j+1}}$$

$$qj^7 qn^{15} - 53 q^{38} qj^7 qn^{15} - 24 q^{39} qj^{15}$$

$$\bigcirc \cdot c_{n+3,j+1} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} +$$

$$\bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} + \bigcirc \cdot c_{n+1,j+3} +$$

$$\bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j} +$$

$$\bigcirc \cdot c_{n+3,j} + 158 q^{37} qj^{12} qn^{15} + 90 q^{38} qj^{12} qn^{15} + 9 q^{39} qj^{15} qn^{15} + 9 q^{40} qj^{15} qn^{15} + 9 q^{41} qj^{15} qn^{15} + 4 q^{42} qj^{10} qn^{15} + 3 q^{43} qj^{15}$$

$$\bigcirc \cdot c_{n+4,j} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} +$$

$$\bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

q-TSPP: Holonomic Description of the Cofactors

The recurrences have the form

$$\bigcirc \cdot c_{n,j+4} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} +$$

$$\bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

$$\bigcirc \cdot c_{n+1,j+3} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} + \bigcirc \cdot c_{n,j+3} +$$

$$\bigcirc \cdot c_{n+1,j} + \bigcirc \cdot c_{n+1,j+1} + \bigcirc \cdot c_{n+1,j+2} +$$

$$\bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1} + \bigcirc \cdot c_{n+3,j}$$

$$\bigcirc \cdot c_{n+2,j+2} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} +$$

$$\bigcirc \cdot c_{n,j} - 5778 q^{23} qj^6 qn^{15} - 5626 q^{24} qj^6 qn$$

$$qj^7 qn^{15} - 53 q^{38} qj^7 qn^{15} - 24 q^{39} qj$$

$$\bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+3} +$$

$$q^{41} qj^9 qn^{15} - 271 q^{25} qj^9 qn^{15} + 189 q^{21}$$

$$qj^{10} qn^{15} + 4 q^{42} qj^{10} qn^{15} + 3 q^{43} q$$

$$\bigcirc \cdot c_{n+1,j+1} + 158 q^{37} qj^{12} qn^{15} + 90 q^{38} qj^{12}$$

$$qn^{15} + 9 q^{30} qj^{15} qn^{15} + 9 q^{31} qj^{15} qn^{15} + 8 q^{32}$$

$$\bigcirc \cdot c_{n+1,j+2} + 119 q^{11} qj^2 qn^{16} - 191 q^{12} qj^2 qn^{16}$$

$$\bigcirc \cdot c_{n+4,j} = \bigcirc \cdot c_{n,j} + \bigcirc \cdot c_{n,j+1} + \bigcirc \cdot c_{n,j+2} +$$

$$\bigcirc \cdot c_{n,j+3} + \bigcirc \cdot c_{n+2,j} + \bigcirc \cdot c_{n+2,j+1}$$

The total size is 244MB (several 1000 pages of paper)!

Solution of the q-TSPP Conjecture

(joint work with Manuel Kauers and Doron Zeilberger)

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)

Solution of the q-TSPP Conjecture

(joint work with Manuel Kauers and Doron Zeilberger)

David P. Robbins Prize at the AMS Joint Meeting (Seattle, 2016)

Identity Found by Proving Identities

Identity proving is now a whole branch of symbolic computation:

- ▶ Binomial sums and other combinatorial identities, e.g.,

$$\sum_{k=0}^n \binom{n}{k}^2 \binom{k+n}{k} = \sum_{k=0}^n \binom{n}{k} \binom{k+n}{k} \sum_{j=0}^k \binom{k}{j}^3$$

- ▶ Special function identities (integrals or sums), e.g.,

$$\int_{-1}^1 (1-x^2)^{\nu-\frac{1}{2}} e^{i a x} C_n^{(\nu)}(x) \, dx = \frac{\pi i^n \Gamma(n+2\nu) J_{n+\nu}(a)}{2^{\nu-1} a^\nu n! \Gamma(\nu)}$$

- ▶ Evaluations of symbolic determinants, e.g.,

$$\det_{0 \leq i, j < n} \left(2^i \binom{i+2j+1}{2j+1} - \binom{i-1}{2j+1} \right) = 2 \prod_{i=1}^n \frac{2^{i-1} (4i-2)!}{(n+2i-1)!}$$