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Recurrence Relations

Definition

A recurrence relation (or recurrence) is an expression defining values
of a sequence of numbers (in this talk, integers) in terms of previous
values in the same sequence.

Example: F (n) = F (n − 1) + F (n − 2)

A solution to a recurrence is a sequence of numbers whose terms
eventually satisfy a recurrence relation.

The terms in a solution that don’t satisfy the recurrence are called
the initial condition.
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Linear Recurrences

Simplest type of recurrence relation

Terms defined as a fixed linear combination of previous terms

Prototypical example: Fibonacci numbers

Defined by F (1) = 1, F (2) = 1, F (n) = F (n − 1) + F (n − 2) for
n ≥ 2
First few terms (A000045):
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377

Sequence of integers eventually satisfying a linear recurrence called
linear recurrent

Closed forms for solutions, rational generating functions
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More Complicated Recurrences

Nonlinear recurrences: A(n) = A(n − 1) · A(n − 2)

Occur in many real-world phenomena
No general theory of solutions
Often highly sensitive to initial conditions

Nested recurrences: A(n) = A(A(n − 1))

Introduced by Douglas Hofstadter in 1963
Highly sensitive to initial conditions
Wide variety of behaviors, even for the same recurrence
Many open questions of the form “Does this sequence even exist?”
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The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963

Recurrence: Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2))

Initial Conditions: Q(1) = Q(2) = 1

Notation: 〈1, 1〉

Reminiscent of Fibonacci definition; known as meta-Fibonacci

Sample Calculation:

Q(3) = Q(3− Q(2)) + Q(3− Q(1))

= Q(3− 1) + Q (3− 1)

= Q(2) + Q(2)

= 1 + 1 = 2

First few terms (A005185):
1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12, 12, 16,
14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, 19, 20
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Plot of First 10000 Terms
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The Hofstadter Q-Sequence

What is known?

In general, very little

The pattern seen in the plot seems to continue

If limn→∞
Q(n)
n exists, it equals 1

2

Well-defined for the first 1010 terms

How could Q(n) be undefined?

What if Q(n − 1) ≥ n?

Then, Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)), but
Q(n − Q(n − 1)) is Q of a nonpositive number!

If this happens, we say the sequence dies at index n.

Open Question: Does the Hofstadter Q-sequence die?
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Then, Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)), but
Q(n − Q(n − 1)) is Q of a nonpositive number!

If this happens, we say the sequence dies at index n.

Open Question: Does the Hofstadter Q-sequence die?
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Cheating Death

Convention: If n ≤ 0, then Q(n) = 0

Definition

Sequence weakly dies at index n if nth term depends on a term from
before the initial condition

Sequence strongly dies at index n if nth term depends on itself or a
future term.

Why this definition?

Allows us to consider wider variety of solutions

Not really cheating:

Can still ask: “Does Q(n − 1) ever exceed n?”

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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Beyond the Hofstadter Q-sequence

In general, interested in solutions to nested recurrences

Often solutions to the Hofstadter Q-recurrence with different initial
conditions

Often solutions to other related recurrences
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Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow

Example: Conolly’s sequence (A046699)

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 11, 12, 12, 12, 13, . . .

Satisfies recurrence C (n) = C (n− C (n− 1)) + C (n− 1− C (n− 2))
with initial conditions 〈1, 1〉.

Slow solutions studied extensively by Tanny and others

Some, like Conolly’s sequence, have combinatorial interpretations in
terms of counting leaves in certain tree structures.

Others have no known such interpretations.
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Slow Solutions

Other Slow Solutions to Nested Recurrences

Hofstadter-Conway $10000 Sequence (A004001):
A(n) = A(A(n − 1)) + A(n − A(n − 1)),
I.C. 〈1, 1〉 [Conway, Mallows]

1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 12

Hofstadter V -sequence (A063882):
V (n) = V (n − V (n − 1)) + V (n − V (n − 4)),
I.C. 〈1, 1, 1, 1〉 [Balamohan, Kuznetsov, Tanny]

1, 1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 11, 12

B(n) = B(n − B(n − 1)) + B(n − B(n − 2)) + B(n − B(n − 3)),
I.C. 〈1, 2, 3, 4, 5〉 [F., A278055]

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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Golomb’s Solution

Golomb’s Sequence (1990)

Same recurrence as Hofstadter:
QG (n) = QG (n − QG (n − 1)) + QG (n − QG (n − 2))

Initial Conditions: 〈3, 2, 1〉

First few terms (A244477):
3, 2, 1, 3, 5, 4, 3, 8, 7, 3, 11, 10, 3, 14, 13, 3, 17, 16, 3, 20, 19, 3, 23,
22, 3, 26, 25, 3, 29, 28, 3, 32, 31, 3, 35, 34, 3, 38, 37

Formula

QG (3k) = 3k − 2

QG (3k + 1) = 3

QG (3k + 2) = 3k + 2
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Proof of Golomb’s Solution

QG (3k) = 3k − 2

QG (3k + 1) = 3

QG (3k + 2) = 3k + 2

QG (1) = 3

QG (2) = 2

QG (3) = 1

Proof.

Proof by induction

QG (3k) = QG (3k − QG (3k − 1)) + QG (3k − QG (3k − 2))

= QG (3k − QG (3 (k − 1) + 2)) + QG (3k − QG (3 (k − 1) + 1))

= QG (3k − (3 (k − 1) + 2)) + QG (3k − 3)

= QG (1) + QG (3 (k − 1))

= 3 + (3 (k − 1)− 2) =

3k − 2

Other two cases similar
Base case: Initial conditions
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QG (3k + 1) = 3

QG (3k + 2) = 3k + 2

QG (1) = 3

QG (2) = 2

QG (3) = 1

Proof.

Proof by induction

QG (3k) = QG (3k − QG (3k − 1)) + QG (3k − QG (3k − 2))

= QG (3k − QG (3 (k − 1) + 2)) + QG (3k − QG (3 (k − 1) + 1))

= QG (3k − (3 (k − 1) + 2)) + QG (3k − 3)

= QG (1) + QG (3 (k − 1)) = 3 + (3 (k − 1)− 2) =

3k − 2

Other two cases similar
Base case: Initial conditions
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Ruskey’s Solution

Ruskey’s Sequence (2011)

Same recurrence as Hofstadter:
QR(n) = QR(n − QR(n − 1)) + QR(n − QR(n − 2))

Initial Conditions: 〈3, 6, 5, 3, 6, 8〉 (and QR(n) = 0 if n ≤ 0)

First few terms (A188670):
3, 6, 5, 3, 6, 8, 3, 6, 13, 3, 6, 21, 3, 6, 34, 3, 6, 55, 3, 6, 89, 3, 6, 144, 3,
6, 233, 3, 6, 377, 3, 6, 610, 3, 6, 987, 3, 6, 1597

Formula

QR(3k) = F (k + 4), where F means Fibonacci

QR(3k + 1) = 3

QR(3k + 2) = 6
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1 Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions

3 Special Initial Conditions
1 through N
Other Initial Conditions
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General Framework

Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences

Try to generalize the proof of Golomb’s solution

Tedious and mechanical
Make a computer do it

Same method will also work for other recurrences

Relies heavily on symbolic computation
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Steps for Discovering Solutions

Steps (to be illustrated by example)

1 Decide how many sequences to interleave (we’ll call m)

2 Choose behaviors of subsequences (which introduces unknowns µr )

Constant: L(mk + r) = µr

Linear with slope 1: L(mk + r) = mk + µr

Faster-growing: lim
k→∞

L(mk+r)
mk

> 1

3 Inductively unpack the recurrence in terms of the unknowns

4 Check for structural consistency

5 Formulate constraints on values for unknowns

6 Try to satisfy the constraints

7 Find an initial condition
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First Two Steps

Running Example

We’ll discover another solution to the Q-recurrence with 3 interleaved
subsequences.

Step 1: Search for solutions with 3 interleaved sequences (m = 3)

Step 2: Specify the behaviors of the 3 interleaved sequences (µ0, µ1,
and µ2 are unknowns):

Linear with slope 1: Q̈(3k) = 3k + µ0

Constant: Q̈(3k + 1) = µ1

Constant: Q̈(3k + 2) = µ2
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Unpacking the Recurrence Inductively

Running Example

Linear with slope 1: Q̈(3k) = 3k + µ0

Constant: Q̈(3k + 1) = µ1

Constant: Q̈(3k + 2) = µ2

Step 3: Unpack the recurrence:

Q̈(3k) = Q̈(3k − Q̈(3k − 1)) + Q̈(3k − Q̈(3k − 2))

= Q̈(3k − µ2) + Q̈(3k − µ1)

Q̈(3k + 1) = Q̈(3k + 1− Q̈(3k)) + Q̈(3k + 1− Q̈(3k − 1))

= Q̈(3k + 1− (3k + µ0)) + Q̈(3k + 1− µ2)

= Q̈(1− µ0) + Q̈(3k + 1− µ2)

Q̈(3k + 2) = Q̈(3k + 2− Q̈(3k + 1)) + Q̈(3k + 2− Q̈(3k))

= Q̈(3k + 2− µ1) + Q̈(3k + 2− (3k + µ0))

= Q̈(3k + 2− µ1) + Q̈(2− µ0)
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Unpacking the Recurrence Inductively

What can we do with expressions like Q̈(3k − µ2), Q̈(1− µ0), etc.?

Q̈(1− µ0): constant; can now be treated as an unknown

Q̈(3k − µ2): congruence class of µ2 mod 3 determines which case
we are in.

Must decide congruence classes of µ1, and µ2.

Computer doesn’t know what we’re aiming for, so it tries all
possibilities and reports back.

We know what we’re aiming for, so we’ll suppose the computer is
checking:

µ1 ≡ 0 (mod 3)
µ2 ≡ 2 (mod 3)
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possibilities and reports back.

We know what we’re aiming for, so we’ll suppose the computer is
checking:

µ1 ≡ 0 (mod 3)
µ2 ≡ 2 (mod 3)
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Structural Consistency

Q̈(3k) = 3k + µ0

Q̈(3k + 1) = Q̈(1− µ0) + µ2

Q̈(3k + 2) = µ2 + Q̈(2− µ0)

Q̈(3k) = 3k + µ0

Q̈(3k + 1) = µ1

Q̈(3k) = µ2

Running Example

Step 4: Structural Consistency

Need the unpacked expression for each subsequence to have the
appropriate type

3k + µ0 is linear with slope 1
Q̈(1− µ0) + µ2 is constant
µ2 + Q̈(2− µ0) is constant
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Determining Constraints

Q̈(3k) = 3k + µ0

Q̈(3k + 1) = Q̈(1− µ0) + µ2

Q̈(3k + 2) = µ2 + Q̈(2− µ0)

Q̈(3k) = 3k + µ0

Q̈(3k + 1) = µ1

Q̈(3k) = µ2

Running Example

Step 5: Constraints

Need 3k + µ0 = 3k + µ0, so 0 = 0 (tautology)
Need µ1 = Q̈(1− µ0) + µ2

Need µ2 = µ2 + Q̈(2− µ0)
Need constraints enforcing congruences
Need constraints of the form 1− µ0 ≤ 0 =⇒ Q̈(1− µ0) = 0
Sometimes need a few other technical constraints
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Satisfying Constraints

µ1 = Q̈(1− µ0) + µ2

0 = Q̈(2− µ0)
µ0 ≡ 0 (mod 3)
µ0 ≡ 2 (mod 3)

Running Example

Step 6: Satisfy Constraints

More degrees of freedom than constraints, so there should either be
no solutions or infinitely many
Computer algebra systems can find a feasible point for a system of
constraints
One of many feasible solutions here:

µ0 = 0, µ1 = 3, µ2 = 2
Q̈(1 − µ0) = Q̈(1) = 1
Q̈(2 − µ0) = Q̈(2) = 0
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Running Example

Step 7: Find Initial Condition

When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.
Examining the unpacking carefully gives constraints on k for which
we are safe.
Check unsafe values of k separately as a base case.
This is the initial condition

In this case, k = 0 and k = 1 are unsafe, and the computer finds
initial condition 〈1, 0, 3, 3, 2〉.

1, 0, 3, 3, 2, 6, 3, 2, 9, 3, 2, 12, 3, 2, 15, 3, 2, 18, 3, 2, 21, 3, 2, 24, 3, 2, 27, . . .
(A264756)
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Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

Interleaved solutions are very common

There appear to be various symmetries among the solution families

Interleaved sequences can include any linear-recurrent subsequence
with the following properties:

Satisfies a homogeneous linear recurrence with positive coefficients
Grows exponentially

Interleaved sequences can be polynomials of arbitrary degree

For Q, can find a degree d polynomial if m = 3d
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Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

3 interleaved: 12 (4) families

4 interleaved: 12 (5) families

5 interleaved: 35 (7) families

6 interleaved: 294 (86) families

7 interleaved: 588 (84) families

8 interleaved: at least 3256 (610) families

9 interleaved: at least 15273 (2279) families
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1 Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions

3 Special Initial Conditions
1 through N
Other Initial Conditions
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Nested Recurrences with Special Initial Conditions

Goal: Explore the behavior of the nested recurrences when given
special initial conditions

To consider infinitely many initial conditions simultaneously, we
include unknowns in our initial conditions and use symbolic
computation

Can consider weak or strong death
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Nested Recurrences with Special Initial Conditions

General Method

Start with symbolic initial condition

Generate a bunch of terms

Did it die?

Look for a pattern

Try to automatically prove the pattern by induction

Determine how long the pattern lasts

Rinse and repeat

New initial condition: Old sequence through the end of the last
pattern
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Q-Recurrence

Primary exploration: Q-recurrence with I.C. 〈1, 2, 3, . . . ,N〉

Notation: QN

N = 2 and N = 3 are shifts of the Q-sequence

N = 8, N = 11 and N = 12 weakly die (check with computer)

N = 4, 5, 6, 7, 9, 10, 13 each persist for at least 30 million terms
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N = 3 (Q3, A005185)



Q4, A278056



Q5, A278057



Q6, A278058



Q7, A278059



Q9, A278061



Q10, A278062



Q13, A278065
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Q-Recurrence: Weak Death

Theorem

For all N ≥ 14, QN weakly dies.

Proof.

Assume N is sufficiently large. Compute the next terms, starting from
index N + 1.

QN(N + 1) = QN(N + 1− Q(N)) + QN(N + 1− Q(N − 1))

= QN(N + 1− N) + QN(N + 1− (N − 1))

= QN(1) + QN(2)

= 1 + 2 = 3
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Initial Condition 1 through N : Weak Death

Proof.

QN(N + 1) = 3

QN(N + 2) = N + 1

QN(N + 3) = N + 2

QN(N + 4) = 5

QN(N + 5) = N + 3

QN(N + 6) = 6

QN(N + 7) = 7

QN(N + 8) = N + 4

QN(N + 9) = N + 6

QN(N + 10) = 10

QN(N + 11) = 8

QN(N + 12) = N + 6

QN(N+13) = N+10

QN(N + 14) = 12

QN(N + 15) = N + 7

QN(N + 16) = 14

QN(N + 17) = 12

QN(N + 18) = 11

QN(N+19) = N+11

QN(N+20) = N+15

QN(N + 21) = 16

QN(N + 22) = 13

QN(N + 23) = 17

QN(N + 24) = 15

QN(N+25) = N+14

QN(N + 26) = 20

QN(N + 27) = 20

QN(N+28) = 2N+8

If N ≥ 21, QN weakly dies at index N + 29.
Check 14, 15, 16, 17, 18, 19, 20 separately. They all weakly die.

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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Q-Recurrence: Strong Death

What about QN under strong death?

Going forward, assume N sufficiently large (meaning N ≥ 118)

For N + 35 ≤ N + 5k + r ≤ 2N + 4:

QN(N + 5k) = (2N + 4) k − 11N − 22
QN(N + 5k + 1) = 5
QN(N + 5k + 2) = 2N + 4
QN(N + 5k + 3) = 3
QN(N + 5k + 4) = 5

After that, five possible behaviors, depends on N mod 5

N ≡ 0 (mod 5): Strong death after 2N + 18 terms
(QN(2N + 18) = 0)
N ≡ 1 (mod 5): Strong death after 2N + 164 terms
N ≡ 4 (mod 5): Strong death after 2N + 8 terms
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(QN(2N + 18) = 0)
N ≡ 1 (mod 5): Strong death after 2N + 164 terms
N ≡ 4 (mod 5): Strong death after 2N + 8 terms
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N ≡ 3 (mod 5) is Weird

N = 38

Every fifth term is 4
Rest of terms are poorly understood
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Another solution isolating these terms, A272610, Initial Condition
〈5, 9, 4, 6〉
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N ≡ 2 (mod 5) is Even Weirder

Recall that for N + 35 ≤ N + 5k + r ≤ 2N + 4:

QN(N + 5k) = (2N + 4) k − 11N − 22
QN(N + 5k + 1) = 5
QN(N + 5k + 2) = 2N + 4
QN(N + 5k + 3) = 3
QN(N + 5k + 4) = 5

If N ≡ 2 (mod 5), get another, much longer, similar piece

Then, cases depend on N mod 25

Can continue depending on N mod higher powers of 5
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Detailed Description of N ≡ 2 (mod 5)

A0 = N − 2, A1 = 2N + 4, B1 = −11N − 22

For i ≥ 2, Ai = Ai−1

(
Ai−1−Ai−2+2

5

)
+ Bi−1, Bi = Ai − Ai−1

Start with i = 1. From Ai + 7 through Ai+1:

QN(Ai + 5k) = 3
QN(Ai + 5k + 1) = 5
QN(Ai + 5k + 2) = Ai+1k + Bi+1

QN(Ai + 5k + 3) = 5
QN(Ai + 5k + 4) = Ai+1

After this, value of (Ai+1 + 2i + 3) mod 5 determines next behavior

0: Strong death after 160 more terms (like 1 mod 5)

1: Keep going with i + 1 (like 2 mod 5)

2: Fours and chaos forever (like 3 mod 5)

3: Strong death after 4 more terms (like 4 mod 5)

4: Strong death after 14 more terms (like 0 mod 5)

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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Q42, A274055



Q42, both axes log scale, A274055
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Tree of Behaviors of QN

Write N in base 5, read digits from right to left

432

4232

432

44323432

4343233432234321343203432

243214320432

332232132032

221202

10

Death 160 Go Deeper Fours and Chaos Death 4 Death 14
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Special Initial Conditions
References

1 through N
Other Initial Conditions

Three-Term Hofstadter-like Recurrence

BN(n) = BN(n−BN(n− 1)) + BN(n−BN(n− 2)) + BN(n−BN(n− 3)),
initial condition 〈1, 2, 3, . . . ,N〉

Structure Theorem for BN

N ≥ 74: BN does not strongly die before 2N terms; has period-7
quasilinear pattern from BN(N + 67) through roughly BN(2N).

N ≡ 0 (mod 7) and N ≥ 196: Strong death after 2N + 27 terms

N ≡ 1 (mod 7) and N ≥ 2087: Strong death after 2N + 254 terms

N ≡ 2 (mod 7) and N ≥ 3201: Strong death after 2N + 524 terms

N ≡ 3 (mod 7) and N ≥ 4315: Strong death after 2N + 560 terms

N ≡ 4 (mod 7) and N ≥ 200: Strong death after 2N + 20 terms

N ≡ 5 (mod 7) and N ≥ 32478: Strong death after 2N + 4547 terms

N ≡ 6 (mod 7) and N ≥ 118: Strong death after 2N + 9 terms
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N ≡ 1 (mod 7) and N ≥ 2087: Strong death after 2N + 254 terms

N ≡ 2 (mod 7) and N ≥ 3201: Strong death after 2N + 524 terms

N ≡ 3 (mod 7) and N ≥ 4315: Strong death after 2N + 560 terms

N ≡ 4 (mod 7) and N ≥ 200: Strong death after 2N + 20 terms

N ≡ 5 (mod 7) and N ≥ 32478: Strong death after 2N + 4547 terms

N ≡ 6 (mod 7) and N ≥ 118: Strong death after 2N + 9 terms
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First 64964 terms of B32478, A274058
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All 69503 terms of B32478, A274058



All 69503 terms of B32478, log plot, A274058
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Special Initial Conditions
References

1 through N
Other Initial Conditions

Sporadic N Values?

Facts

Previous theorem classifies all but 6079 values of N

N ∈ {5, 6}: BN does not weakly die.

N ∈ {7, 8, 9}: BN not known to weakly die.

N ≥ 14: BN weakly dies after N + 24 terms.

N ∈ {81, 182, 193, 429, 822, 1892, 2789, 3442, 7292, 23511, 25163}:
BN weakly dies, but does not strongly die.

N ∈ {4, 10, 11, 12, 13, 14, 15, 18}: BN weakly dies, but not known to
strongly die.

All other N: BN strongly dies.

Fun fact: B20830 strongly dies, but it has 84975 · 2560362 + 31 terms.
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More on Sporadic N Values

Facts

N ∈ {81, 182, 429, 822, 1892, 2789, 7292, 23511, 25163}:

Eventual alternation between 2 and M · 2k for some M
So, doesn’t strongly die for a “boring” reason

N ∈ {193, 3442}:

Built out of infinitely many period-5 sub-patterns
Each one six times longer than previous
So, doesn’t strongly die for an “interesting” reason

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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First 40000 terms of B193 (A283884)



First 200000 terms of B193, both axes log (A283884)
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Other Initial Conditions

Four-Plus-Term Hofstadter-like Recurrence

Gd,N(n) =
d∑

i=1

Gd,N(n − Gd,N(n − i))

Initial condition 〈1, 2, 3, . . . ,N〉

Really weird behavior; see for yourself!

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Nested Recurrences
Discovering More Golomb/Ruskey-Like Solutions

Special Initial Conditions
References

1 through N
Other Initial Conditions

Four-Plus-Term Hofstadter-like Recurrence

Gd,N(n) =
d∑

i=1

Gd,N(n − Gd,N(n − i))

Initial condition 〈1, 2, 3, . . . ,N〉

Really weird behavior; see for yourself!

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



First 40000 terms of G4,3000



First 40000 terms of G5,3000



First 40000 terms of G6,3000



First 40000 terms of G7,3000



First 50000 terms of G4,10000 (A283889)



First 50000 terms of G4,10001 (A283890)



First 70000 terms of G7,10000 (A283891)



First 70000 terms of G7,10001 (A283892)
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1 Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions

3 Special Initial Conditions
1 through N
Other Initial Conditions
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Other Interesting Initial Conditions

We Consider Q-Recurrence With:

〈N, 2〉

〈2,N〉
〈N, 4,N, 4〉
〈4,N, 4,N〉

Pretty much any other parametrized family of initial conditions that you
can think of is worth exploring!

Can also do all these same explorations with other recurrences

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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Nested Recurrences
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Special Initial Conditions
References

1 through N
Other Initial Conditions

〈N , 2〉 and 〈2,N〉

Facts

Most sequences quasilinear and easy to describe

〈N, 2〉, N ≥ 25, N ≡ 3 (mod 4): Strong death after 5N + 11 terms

〈N, 2〉, N ≥ 75, N ≡ 5 (mod 12): Strong death after 28N + 64 terms

〈N, 2〉, N ≥ 51, N ≡ 1, 9, 13, 21 (mod 12): Quasilinear, but not easy
to describe

〈N, 2〉: A few sporadic interesting cases for small N

Most notably N = 5, N = 17, N = 41
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Initial condition 〈5, 2〉, A278066



Initial condition 〈5, 2〉, log plot, A278066



Initial condition 〈5, 2〉, log-log plot, A278066



Initial condition 〈41, 2〉



Initial condition 〈57, 2〉, A278068



Initial condition 〈89, 2〉, A283896



Initial condition 〈91, 2〉, A283897
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Special Initial Conditions
References

1 through N
Other Initial Conditions

〈N , 4,N , 4〉

Facts

N ≥ 11 odd: Strong death after N + 13 terms

N ≥ 21, N ≡ 0 (mod 4): Strong death after 4
⌊
N+1+

√
2N−7

2

⌋
+ 9

terms, provided N 6= 2A2 + 2A

N ≥ 242, N ≡ 2, 18, 26 (mod 32): Strong death after 12N + 50
terms

N ≥ 242, N ≡ 10 (mod 32): Strong death after 12N + 58 terms

N ≥ 422, N ≡ 6 (mod 8): Strong death after 14N + 34 terms

N = 2A2 + 2A: Seems to strongly die eventually, but complicated

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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〈216, 4, 216, 4〉, all 481 terms (similar to A283899)



〈722, 4, 722, 4〉, all 8714 terms (similar to A283900)



〈722, 4, 722, 4〉, all 8714 terms, log plot (similar to A283900)



〈312, 4, 312, 4〉, all 6944 terms (A283898)



312, 4, 312, 4, all 6944 terms, log plot (A283898)
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1 through N
Other Initial Conditions

〈4,N , 4,N〉

Facts

N ≥ 26, N ≡ 1 (mod 4): Strong death after 2N + 28 terms

N ≥ 33, N ≡ 3 (mod 4): Strong death after 3N + 36 terms

N ≥ 19, N ≡ 0 (mod 4): Strong death after 4
⌊
N+1+

√
2N−13

2

⌋
+ 6

terms, provided N 6= 2A2 + 2A + 4

N = 2A2 + 2A + 4: Similar to 2A2 + 2A case of 〈N, 4,N, 4〉
N ≡ 2 (mod 4): Seems to strongly die eventually, but complicated
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〈4, 311, 4, 311〉, all 969 terms (A283901)



〈4, 922, 4, 922〉, all 16667 terms (similar to A283902)



〈4, 922, 4, 922〉, all 16667 terms, log plot (similar to A283902)



Nested Recurrences
Discovering More Golomb/Ruskey-Like Solutions

Special Initial Conditions
References

1 through N
Other Initial Conditions

Summary

We’ve seen a huge diversity of solutions to nested recurrences

My mantra when working with nested recurrences: “If you think it might
be possible, it probably is possible.”
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