An Exploration of Nested Recurrences Using Experimental Mathematics

Nathan Fox

March 30, 2017

Outline

(1) Nested Recurrences

- Slow Solutions
- Linear-Recurrent Solutions
(2) Discovering More Golomb/Ruskey-Like Solutions
(3) Special Initial Conditions
- 1 through N
- Other Initial Conditions
(1) Nested Recurrences
- Slow Solutions
- Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions
(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

Recurrence Relations

Definition

- A recurrence relation (or recurrence) is an expression defining values of a sequence of numbers (in this talk, integers) in terms of previous values in the same sequence.

Recurrence Relations

Definition

- A recurrence relation (or recurrence) is an expression defining values of a sequence of numbers (in this talk, integers) in terms of previous values in the same sequence.
- Example: $F(n)=F(n-1)+F(n-2)$

Recurrence Relations

Definition

- A recurrence relation (or recurrence) is an expression defining values of a sequence of numbers (in this talk, integers) in terms of previous values in the same sequence.
- Example: $F(n)=F(n-1)+F(n-2)$
- A solution to a recurrence is a sequence of numbers whose terms eventually satisfy a recurrence relation.

Recurrence Relations

Definition

- A recurrence relation (or recurrence) is an expression defining values of a sequence of numbers (in this talk, integers) in terms of previous values in the same sequence.
- Example: $F(n)=F(n-1)+F(n-2)$
- A solution to a recurrence is a sequence of numbers whose terms eventually satisfy a recurrence relation.
- The terms in a solution that don't satisfy the recurrence are called the initial condition.

Linear Recurrences

- Simplest type of recurrence relation

Linear Recurrences

- Simplest type of recurrence relation
- Terms defined as a fixed linear combination of previous terms

Linear Recurrences

- Simplest type of recurrence relation
- Terms defined as a fixed linear combination of previous terms
- Prototypical example: Fibonacci numbers

Linear Recurrences

- Simplest type of recurrence relation
- Terms defined as a fixed linear combination of previous terms
- Prototypical example: Fibonacci numbers
- Defined by $F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)$ for $n \geq 2$

Linear Recurrences

- Simplest type of recurrence relation
- Terms defined as a fixed linear combination of previous terms
- Prototypical example: Fibonacci numbers
- Defined by $F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)$ for $n \geq 2$
- First few terms (A000045):
$1,1,2,3,5,8,13,21,34,55,89,144,233,377$

Linear Recurrences

- Simplest type of recurrence relation
- Terms defined as a fixed linear combination of previous terms
- Prototypical example: Fibonacci numbers
- Defined by $F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)$ for $n \geq 2$
- First few terms (A000045): $1,1,2,3,5,8,13,21,34,55,89,144,233,377$
- Sequence of integers eventually satisfying a linear recurrence called linear recurrent

Linear Recurrences

- Simplest type of recurrence relation
- Terms defined as a fixed linear combination of previous terms
- Prototypical example: Fibonacci numbers
- Defined by $F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)$ for $n \geq 2$
- First few terms (A000045): $1,1,2,3,5,8,13,21,34,55,89,144,233,377$
- Sequence of integers eventually satisfying a linear recurrence called linear recurrent
- Closed forms for solutions, rational generating functions

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions
- Often highly sensitive to initial conditions

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions
- Often highly sensitive to initial conditions
- Nested recurrences: $A(n)=A(A(n-1))$

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions
- Often highly sensitive to initial conditions
- Nested recurrences: $A(n)=A(A(n-1))$
- Introduced by Douglas Hofstadter in 1963

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions
- Often highly sensitive to initial conditions
- Nested recurrences: $A(n)=A(A(n-1))$
- Introduced by Douglas Hofstadter in 1963
- Highly sensitive to initial conditions

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions
- Often highly sensitive to initial conditions
- Nested recurrences: $A(n)=A(A(n-1))$
- Introduced by Douglas Hofstadter in 1963
- Highly sensitive to initial conditions
- Wide variety of behaviors, even for the same recurrence

More Complicated Recurrences

- Nonlinear recurrences: $A(n)=A(n-1) \cdot A(n-2)$
- Occur in many real-world phenomena
- No general theory of solutions
- Often highly sensitive to initial conditions
- Nested recurrences: $A(n)=A(A(n-1))$
- Introduced by Douglas Hofstadter in 1963
- Highly sensitive to initial conditions
- Wide variety of behaviors, even for the same recurrence
- Many open questions of the form "Does this sequence even exist?"

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$
- Reminiscent of Fibonacci definition; known as meta-Fibonacci

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$
- Reminiscent of Fibonacci definition; known as meta-Fibonacci
- Sample Calculation:

$$
Q(3)=Q(3-Q(2))+Q(3-Q(1))
$$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$
- Reminiscent of Fibonacci definition; known as meta-Fibonacci
- Sample Calculation:

$$
\begin{aligned}
Q(3) & =Q(3-Q(2))+Q(3-Q(1)) \\
& =Q(3-1)+Q(3-1)
\end{aligned}
$$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$
- Reminiscent of Fibonacci definition; known as meta-Fibonacci
- Sample Calculation:

$$
\begin{aligned}
Q(3) & =Q(3-Q(2))+Q(3-Q(1)) \\
& =Q(3-1)+Q(3-1) \\
& =Q(2)+Q(2)
\end{aligned}
$$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$
- Reminiscent of Fibonacci definition; known as meta-Fibonacci
- Sample Calculation:

$$
\begin{aligned}
Q(3) & =Q(3-Q(2))+Q(3-Q(1)) \\
& =Q(3-1)+Q(3-1) \\
& =Q(2)+Q(2) \\
& =1+1=2
\end{aligned}
$$

The Hofstadter Q-Sequence

- Formulated by Douglas Hofstadter in 1963
- Recurrence: $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$
- Initial Conditions: $Q(1)=Q(2)=1$
- Notation: $\langle 1,1\rangle$
- Reminiscent of Fibonacci definition; known as meta-Fibonacci
- Sample Calculation:

$$
\begin{aligned}
Q(3) & =Q(3-Q(2))+Q(3-Q(1)) \\
& =Q(3-1)+Q(3-1) \\
& =Q(2)+Q(2) \\
& =1+1=2
\end{aligned}
$$

First few terms (A005185):
$1,1,2,3,3,4,5,5,6,6,6,8,8,8,10,9,10,11,11,12,12,12,12,16$, $14,14,16,16,16,16,20,17,17,20,21,19,20$

The Hofstadter Q-Sequence

Plot of First 10000 Terms

The Hofstadter Q-Sequence

What is known?

- In general, very little

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue
- If $\lim _{n \rightarrow \infty} \frac{Q(n)}{n}$ exists, it equals $\frac{1}{2}$

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue
- If $\lim _{n \rightarrow \infty} \frac{Q(n)}{n}$ exists, it equals $\frac{1}{2}$
- Well-defined for the first 10^{10} terms

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue
- If $\lim _{n \rightarrow \infty} \frac{Q(n)}{n}$ exists, it equals $\frac{1}{2}$
- Well-defined for the first 10^{10} terms

How could $Q(n)$ be undefined?

- What if $Q(n-1) \geq n$?

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue
- If $\lim _{n \rightarrow \infty} \frac{Q(n)}{n}$ exists, it equals $\frac{1}{2}$
- Well-defined for the first 10^{10} terms

How could $Q(n)$ be undefined?

- What if $Q(n-1) \geq n$?
- Then, $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$, but $Q(n-Q(n-1))$ is Q of a nonpositive number!

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue
- If $\lim _{n \rightarrow \infty} \frac{Q(n)}{n}$ exists, it equals $\frac{1}{2}$
- Well-defined for the first 10^{10} terms

How could $Q(n)$ be undefined?

- What if $Q(n-1) \geq n$?
- Then, $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$, but $Q(n-Q(n-1))$ is Q of a nonpositive number!
- If this happens, we say the sequence dies at index n.

The Hofstadter Q-Sequence

What is known?

- In general, very little
- The pattern seen in the plot seems to continue
- If $\lim _{n \rightarrow \infty} \frac{Q(n)}{n}$ exists, it equals $\frac{1}{2}$
- Well-defined for the first 10^{10} terms

How could $Q(n)$ be undefined?

- What if $Q(n-1) \geq n$?
- Then, $Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))$, but $Q(n-Q(n-1))$ is Q of a nonpositive number!
- If this happens, we say the sequence dies at index n.
- Open Question: Does the Hofstadter Q-sequence die?

Cheating Death

Convention: If $n \leq 0$, then $Q(n)=0$

Cheating Death

Convention: If $n \leq 0$, then $Q(n)=0$

Definition

- Sequence weakly dies at index n if $n^{\text {th }}$ term depends on a term from before the initial condition

Cheating Death

Convention: If $n \leq 0$, then $Q(n)=0$

Definition

- Sequence weakly dies at index n if $n^{\text {th }}$ term depends on a term from before the initial condition
- Sequence strongly dies at index n if $n^{\text {th }}$ term depends on itself or a future term.

Cheating Death

Convention: If $n \leq 0$, then $Q(n)=0$

Definition

- Sequence weakly dies at index n if $n^{\text {th }}$ term depends on a term from before the initial condition
- Sequence strongly dies at index n if $n^{\text {th }}$ term depends on itself or a future term.

Why this definition?

- Allows us to consider wider variety of solutions

Cheating Death

Convention: If $n \leq 0$, then $Q(n)=0$

Definition

- Sequence weakly dies at index n if $n^{\text {th }}$ term depends on a term from before the initial condition
- Sequence strongly dies at index n if $n^{\text {th }}$ term depends on itself or a future term.

Why this definition?

- Allows us to consider wider variety of solutions
- Not really cheating:

Cheating Death

Convention: If $n \leq 0$, then $Q(n)=0$

Definition

- Sequence weakly dies at index n if $n^{\text {th }}$ term depends on a term from before the initial condition
- Sequence strongly dies at index n if $n^{\text {th }}$ term depends on itself or a future term.

Why this definition?

- Allows us to consider wider variety of solutions
- Not really cheating:

Can still ask: "Does $Q(n-1)$ ever exceed n ?"

Beyond the Hofstadter Q-sequence

In general, interested in solutions to nested recurrences

Beyond the Hofstadter Q-sequence

In general, interested in solutions to nested recurrences

Often solutions to the Hofstadter Q-recurrence with different initial conditions

Beyond the Hofstadter Q-sequence

In general, interested in solutions to nested recurrences

Often solutions to the Hofstadter Q-recurrence with different initial conditions

Often solutions to other related recurrences
(1) Nested Recurrences

- Slow Solutions
- Linear-Recurrent Solutions

D Discovering More Golomb/Ruskey-Like Solutions
(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1.

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1 .

Some solutions to nested recurrences are also slow

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1 .

Some solutions to nested recurrences are also slow
Example: Conolly's sequence (A046699)

- $1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13, \ldots$

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1 .

Some solutions to nested recurrences are also slow
Example: Conolly's sequence (A046699)

- $1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13, \ldots$
- Satisfies recurrence $C(n)=C(n-C(n-1))+C(n-1-C(n-2))$ with initial conditions $\langle 1,1\rangle$.

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1 .

Some solutions to nested recurrences are also slow
Example: Conolly's sequence (A046699)

- $1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13, \ldots$
- Satisfies recurrence $C(n)=C(n-C(n-1))+C(n-1-C(n-2))$ with initial conditions $\langle 1,1\rangle$.
- Slow solutions studied extensively by Tanny and others

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1 .

Some solutions to nested recurrences are also slow
Example: Conolly's sequence (A046699)

- $1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13, \ldots$
- Satisfies recurrence $C(n)=C(n-C(n-1))+C(n-1-C(n-2))$ with initial conditions $\langle 1,1\rangle$.
- Slow solutions studied extensively by Tanny and others
- Some, like Conolly's sequence, have combinatorial interpretations in terms of counting leaves in certain tree structures.

Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and differences between successive terms are always 0 or 1 .

Some solutions to nested recurrences are also slow
Example: Conolly's sequence (A046699)

- $1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13, \ldots$
- Satisfies recurrence $C(n)=C(n-C(n-1))+C(n-1-C(n-2))$ with initial conditions $\langle 1,1\rangle$.
- Slow solutions studied extensively by Tanny and others
- Some, like Conolly's sequence, have combinatorial interpretations in terms of counting leaves in certain tree structures.
- Others have no known such interpretations.

Slow Solutions

Other Slow Solutions to Nested Recurrences

- Hofstadter-Conway $\$ 10000$ Sequence (A004001):
$A(n)=A(A(n-1))+A(n-A(n-1))$,
I.C. $\langle 1,1\rangle$ [Conway, Mallows]
$1,1,2,2,3,4,4,4,5,6,7,7,8,8,8,8,9,10,11,12,12$

Slow Solutions

Other Slow Solutions to Nested Recurrences

- Hofstadter-Conway $\$ 10000$ Sequence (A004001):
$A(n)=A(A(n-1))+A(n-A(n-1))$,
I.C. $\langle 1,1\rangle$ [Conway, Mallows]
$1,1,2,2,3,4,4,4,5,6,7,7,8,8,8,8,9,10,11,12,12$
- Hofstadter V-sequence (A063882):
$V(n)=V(n-V(n-1))+V(n-V(n-4))$,
I.C. $\langle 1,1,1,1\rangle$ [Balamohan, Kuznetsov, Tanny]
$1,1,1,1,2,3,4,5,5,6,6,7,8,8,9,9,10,11,11,11,12$

Slow Solutions

Other Slow Solutions to Nested Recurrences

- Hofstadter-Conway $\$ 10000$ Sequence (A004001):
$A(n)=A(A(n-1))+A(n-A(n-1))$,
I.C. $\langle 1,1\rangle$ [Conway, Mallows]
$1,1,2,2,3,4,4,4,5,6,7,7,8,8,8,8,9,10,11,12,12$
- Hofstadter V-sequence (A063882):
$V(n)=V(n-V(n-1))+V(n-V(n-4))$,
I.C. $\langle 1,1,1,1\rangle$ [Balamohan, Kuznetsov, Tanny]
$1,1,1,1,2,3,4,5,5,6,6,7,8,8,9,9,10,11,11,11,12$
- $B(n)=B(n-B(n-1))+B(n-B(n-2))+B(n-B(n-3))$,
I.C. $\langle 1,2,3,4,5\rangle$ [F., A278055]
$1,2,3,4,5,6,6,7,8,9,9,10,11,12,12,13,14,15,15$
(1) Nested Recurrences
- Slow Solutions
- Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions
(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

Golomb's Solution

Golomb's Sequence (1990)

- Same recurrence as Hofstadter:

$$
Q_{G}(n)=Q_{G}\left(n-Q_{G}(n-1)\right)+Q_{G}\left(n-Q_{G}(n-2)\right)
$$

Golomb's Solution

Golomb's Sequence (1990)

- Same recurrence as Hofstadter:

$$
Q_{G}(n)=Q_{G}\left(n-Q_{G}(n-1)\right)+Q_{G}\left(n-Q_{G}(n-2)\right)
$$

- Initial Conditions: $\langle 3,2,1\rangle$

Golomb's Solution

Golomb's Sequence (1990)

- Same recurrence as Hofstadter:

$$
Q_{G}(n)=Q_{G}\left(n-Q_{G}(n-1)\right)+Q_{G}\left(n-Q_{G}(n-2)\right)
$$

- Initial Conditions: $\langle 3,2,1\rangle$

First few terms (A244477):
$3,2,1,3,5,4,3,8,7,3,11,10,3,14,13,3,17,16,3,20,19,3,23$, $22,3,26,25,3,29,28,3,32,31,3,35,34,3,38,37$

Golomb's Solution

Golomb's Sequence (1990)

- Same recurrence as Hofstadter:

$$
Q_{G}(n)=Q_{G}\left(n-Q_{G}(n-1)\right)+Q_{G}\left(n-Q_{G}(n-2)\right)
$$

- Initial Conditions: $\langle 3,2,1\rangle$

First few terms (A244477):
$3,2,1,3,5,4,3,8,7,3,11,10,3,14,13,3,17,16,3,20,19,3,23$, $22,3,26,25,3,29,28,3,32,31,3,35,34,3,38,37$

Formula

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(3 k+2)=3 k+2$

Proof of Golomb's Solution

$$
\begin{aligned}
& \text { - } Q_{G}(3 k)=3 k-2 \\
& \text { - } Q_{G}(3 k+1)=3 \\
& \text { - } Q_{G}(3 k+2)=3 k+2
\end{aligned}
$$

- $Q_{G}(1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
Q_{G}(3 k)=Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right)
$$

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right)
\end{aligned}
$$

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right) \\
& =Q_{G}(3 k-(3(k-1)+2))+Q_{G}(3 k-3)
\end{aligned}
$$

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right) \\
& =Q_{G}(3 k-(3(k-1)+2))+Q_{G}(3 k-3) \\
& =Q_{G}(1)+Q_{G}(3(k-1))
\end{aligned}
$$

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right) \\
& =Q_{G}(3 k-(3(k-1)+2))+Q_{G}(3 k-3) \\
& =Q_{G}(1)+Q_{G}(3(k-1))=3+(3(k-1)-2)=
\end{aligned}
$$

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right) \\
& =Q_{G}(3 k-(3(k-1)+2))+Q_{G}(3 k-3) \\
& =Q_{G}(1)+Q_{G}(3(k-1))=3+(3(k-1)-2)=3 k-2
\end{aligned}
$$

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right) \\
& =Q_{G}(3 k-(3(k-1)+2))+Q_{G}(3 k-3) \\
& =Q_{G}(1)+Q_{G}(3(k-1))=3+(3(k-1)-2)=3 k-2
\end{aligned}
$$

Other two cases similar

Proof of Golomb's Solution

- $Q_{G}(3 k)=3 k-2$
- $Q_{G}(1)=3$
- $Q_{G}(3 k+1)=3$
- $Q_{G}(2)=2$
- $Q_{G}(3 k+2)=3 k+2$
- $Q_{G}(3)=1$

Proof.

Proof by induction

$$
\begin{aligned}
Q_{G}(3 k) & =Q_{G}\left(3 k-Q_{G}(3 k-1)\right)+Q_{G}\left(3 k-Q_{G}(3 k-2)\right) \\
& =Q_{G}\left(3 k-Q_{G}(3(k-1)+2)\right)+Q_{G}\left(3 k-Q_{G}(3(k-1)+1)\right) \\
& =Q_{G}(3 k-(3(k-1)+2))+Q_{G}(3 k-3) \\
& =Q_{G}(1)+Q_{G}(3(k-1))=3+(3(k-1)-2)=3 k-2
\end{aligned}
$$

Other two cases similar
Base case: Initial conditions

Ruskey's Solution

Ruskey's Sequence (2011)

- Same recurrence as Hofstadter:

$$
Q_{R}(n)=Q_{R}\left(n-Q_{R}(n-1)\right)+Q_{R}\left(n-Q_{R}(n-2)\right)
$$

Ruskey's Solution

Ruskey's Sequence (2011)

- Same recurrence as Hofstadter:

$$
Q_{R}(n)=Q_{R}\left(n-Q_{R}(n-1)\right)+Q_{R}\left(n-Q_{R}(n-2)\right)
$$

- Initial Conditions: $\langle 3,6,5,3,6,8\rangle$ (and $Q_{R}(n)=0$ if $n \leq 0$)

Ruskey's Solution

Ruskey's Sequence (2011)

- Same recurrence as Hofstadter:

$$
Q_{R}(n)=Q_{R}\left(n-Q_{R}(n-1)\right)+Q_{R}\left(n-Q_{R}(n-2)\right)
$$

- Initial Conditions: $\langle 3,6,5,3,6,8\rangle$ (and $Q_{R}(n)=0$ if $n \leq 0$)

First few terms (A188670):
$3,6,5,3,6,8,3,6,13,3,6,21,3,6,34,3,6,55,3,6,89,3,6,144,3$, $6,233,3,6,377,3,6,610,3,6,987,3,6,1597$

Ruskey's Solution

Ruskey's Sequence (2011)

- Same recurrence as Hofstadter:

$$
Q_{R}(n)=Q_{R}\left(n-Q_{R}(n-1)\right)+Q_{R}\left(n-Q_{R}(n-2)\right)
$$

- Initial Conditions: $\langle 3,6,5,3,6,8\rangle$ (and $Q_{R}(n)=0$ if $n \leq 0$)

First few terms (A188670):
$3,6,5,3,6,8,3,6,13,3,6,21,3,6,34,3,6,55,3,6,89,3,6,144,3$, $6,233,3,6,377,3,6,610,3,6,987,3,6,1597$

Formula

- $Q_{R}(3 k)=F(k+4)$, where F means Fibonacci
- $Q_{R}(3 k+1)=3$
- $Q_{R}(3 k+2)=6$

Nested Recurrences

- Slow Solutions
- Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions
(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

General Framework

- Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that are eventually interleavings of nice sequences

General Framework

- Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that are eventually interleavings of nice sequences
- Try to generalize the proof of Golomb's solution

General Framework

- Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that are eventually interleavings of nice sequences
- Try to generalize the proof of Golomb's solution
- Tedious and mechanical

General Framework

- Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that are eventually interleavings of nice sequences
- Try to generalize the proof of Golomb's solution
- Tedious and mechanical
- Make a computer do it

General Framework

- Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that are eventually interleavings of nice sequences
- Try to generalize the proof of Golomb's solution
- Tedious and mechanical
- Make a computer do it
- Same method will also work for other recurrences

General Framework

- Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that are eventually interleavings of nice sequences
- Try to generalize the proof of Golomb's solution
- Tedious and mechanical
- Make a computer do it
- Same method will also work for other recurrences
- Relies heavily on symbolic computation

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$
- Faster-growing: $\lim _{k \rightarrow \infty} \frac{L(m k+r)}{m k}>1$

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$
- Faster-growing: $\lim _{k \rightarrow \infty} \frac{L(m k+r)}{m k}>1$
(3) Inductively unpack the recurrence in terms of the unknowns

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$
- Faster-growing: $\lim _{k \rightarrow \infty} \frac{L(m k+r)}{m k}>1$
- Inductively unpack the recurrence in terms of the unknowns
- Check for structural consistency

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$
- Faster-growing: $\lim _{k \rightarrow \infty} \frac{L(m k+r)}{m k}>1$
(3) Inductively unpack the recurrence in terms of the unknowns
- Check for structural consistency
- Formulate constraints on values for unknowns

Steps for Discovering Solutions

Steps (to be illustrated by example)

(3) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$
- Faster-growing: $\lim _{k \rightarrow \infty} \frac{L(m k+r)}{m k}>1$
(3) Inductively unpack the recurrence in terms of the unknowns
- Check for structural consistency
- Formulate constraints on values for unknowns
- Try to satisfy the constraints

Steps for Discovering Solutions

Steps (to be illustrated by example)
(1) Decide how many sequences to interleave (we'll call m)
(2) Choose behaviors of subsequences (which introduces unknowns μ_{r})

- Constant: $L(m k+r)=\mu_{r}$
- Linear with slope $1: L(m k+r)=m k+\mu_{r}$
- Faster-growing: $\lim _{k \rightarrow \infty} \frac{L(m k+r)}{m k}>1$
(3) Inductively unpack the recurrence in terms of the unknowns
- Check for structural consistency
- Formulate constraints on values for unknowns
- Try to satisfy the constraints

0 Find an initial condition

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved subsequences.

- Step 1: Search for solutions with 3 interleaved sequences $(m=3)$

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved subsequences.

- Step 1: Search for solutions with 3 interleaved sequences $(m=3)$
- Step 2: Specify the behaviors of the 3 interleaved sequences (μ_{0}, μ_{1}, and μ_{2} are unknowns):

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved subsequences.

- Step 1: Search for solutions with 3 interleaved sequences $(m=3)$
- Step 2: Specify the behaviors of the 3 interleaved sequences (μ_{0}, μ_{1}, and μ_{2} are unknowns):
- Linear with slope $1: \ddot{Q}(3 k)=3 k+\mu_{0}$

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved subsequences.

- Step 1: Search for solutions with 3 interleaved sequences $(m=3)$
- Step 2: Specify the behaviors of the 3 interleaved sequences (μ_{0}, μ_{1}, and μ_{2} are unknowns):
- Linear with slope 1: $\ddot{Q}(3 k)=3 k+\mu_{0}$
- Constant: $\ddot{Q}(3 k+1)=\mu_{1}$

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved subsequences.

- Step 1: Search for solutions with 3 interleaved sequences $(m=3)$
- Step 2: Specify the behaviors of the 3 interleaved sequences (μ_{0}, μ_{1}, and μ_{2} are unknowns):
- Linear with slope 1: $\ddot{Q}(3 k)=3 k+\mu_{0}$
- Constant: $\ddot{Q}(3 k+1)=\mu_{1}$
- Constant: $\ddot{Q}(3 k+2)=\mu_{2}$

Unpacking the Recurrence Inductively

Running Example

- Linear with slope $1: \ddot{Q}(3 k)=3 k+\mu_{0}$
- Constant: $\ddot{Q}(3 k+1)=\mu_{1}$
- Constant: $\ddot{Q}(3 k+2)=\mu_{2}$
- Step 3: Unpack the recurrence:

$$
\begin{aligned}
\ddot{Q}(3 k) & =\ddot{Q}(3 k-\ddot{Q}(3 k-1))+\ddot{Q}(3 k-\ddot{Q}(3 k-2)) \\
& =\ddot{Q}\left(3 k-\mu_{2}\right)+\ddot{Q}\left(3 k-\mu_{1}\right)
\end{aligned}
$$

Unpacking the Recurrence Inductively

Running Example

- Linear with slope $1: \ddot{Q}(3 k)=3 k+\mu_{0}$
- Constant: $\ddot{Q}(3 k+1)=\mu_{1}$
- Constant: $\ddot{Q}(3 k+2)=\mu_{2}$
- Step 3: Unpack the recurrence:

$$
\begin{aligned}
\ddot{Q}(3 k) & =\ddot{Q}(3 k-\ddot{Q}(3 k-1))+\ddot{Q}(3 k-\ddot{Q}(3 k-2)) \\
& =\ddot{Q}\left(3 k-\mu_{2}\right)+\ddot{Q}\left(3 k-\mu_{1}\right) \\
\ddot{Q}(3 k+1) & =\ddot{Q}(3 k+1-\ddot{Q}(3 k))+\ddot{Q}(3 k+1-\ddot{Q}(3 k-1)) \\
& =\ddot{Q}\left(3 k+1-\left(3 k+\mu_{0}\right)\right)+\ddot{Q}\left(3 k+1-\mu_{2}\right) \\
& =\ddot{Q}\left(1-\mu_{0}\right)+\ddot{Q}\left(3 k+1-\mu_{2}\right)
\end{aligned}
$$

Unpacking the Recurrence Inductively

Running Example

- Linear with slope $1: \ddot{Q}(3 k)=3 k+\mu_{0}$
- Constant: $\ddot{Q}(3 k+1)=\mu_{1}$
- Constant: $\ddot{Q}(3 k+2)=\mu_{2}$
- Step 3: Unpack the recurrence:

$$
\begin{aligned}
\ddot{Q}(3 k) & =\ddot{Q}(3 k-\ddot{Q}(3 k-1))+\ddot{Q}(3 k-\ddot{Q}(3 k-2)) \\
& =\ddot{Q}\left(3 k-\mu_{2}\right)+\ddot{Q}\left(3 k-\mu_{1}\right) \\
\ddot{Q}(3 k+1) & =\ddot{Q}(3 k+1-\ddot{Q}(3 k))+\ddot{Q}(3 k+1-\ddot{Q}(3 k-1)) \\
& =\ddot{Q}\left(3 k+1-\left(3 k+\mu_{0}\right)\right)+\ddot{Q}\left(3 k+1-\mu_{2}\right) \\
& =\ddot{Q}\left(1-\mu_{0}\right)+\ddot{Q}\left(3 k+1-\mu_{2}\right) \\
\ddot{Q}(3 k+2) & =\ddot{Q}(3 k+2-\ddot{Q}(3 k+1))+\ddot{Q}(3 k+2-\ddot{Q}(3 k)) \\
& =\ddot{Q}\left(3 k+2-\mu_{1}\right)+\ddot{Q}\left(3 k+2-\left(3 k+\mu_{0}\right)\right) \\
& =\ddot{Q}\left(3 k+2-\mu_{1}\right)+\ddot{Q}\left(2-\mu_{0}\right)
\end{aligned}
$$

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown
- $\ddot{Q}\left(3 k-\mu_{2}\right)$: congruence class of $\mu_{2} \bmod 3$ determines which case we are in.

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown
- $\ddot{Q}\left(3 k-\mu_{2}\right)$: congruence class of $\mu_{2} \bmod 3$ determines which case we are in.
- Must decide congruence classes of μ_{1}, and μ_{2}.

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown
- $\ddot{Q}\left(3 k-\mu_{2}\right)$: congruence class of $\mu_{2} \bmod 3$ determines which case we are in.
- Must decide congruence classes of μ_{1}, and μ_{2}.
- Computer doesn't know what we're aiming for, so it tries all possibilities and reports back.

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown
- $\ddot{Q}\left(3 k-\mu_{2}\right)$: congruence class of $\mu_{2} \bmod 3$ determines which case we are in.
- Must decide congruence classes of μ_{1}, and μ_{2}.
- Computer doesn't know what we're aiming for, so it tries all possibilities and reports back.
- We know what we're aiming for, so we'll suppose the computer is checking:

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown
- $\ddot{Q}\left(3 k-\mu_{2}\right)$: congruence class of $\mu_{2} \bmod 3$ determines which case we are in.
- Must decide congruence classes of μ_{1}, and μ_{2}.
- Computer doesn't know what we're aiming for, so it tries all possibilities and reports back.
- We know what we're aiming for, so we'll suppose the computer is checking:
- $\mu_{1} \equiv 0(\bmod 3)$

Unpacking the Recurrence Inductively

- What can we do with expressions like $\ddot{Q}\left(3 k-\mu_{2}\right), \ddot{Q}\left(1-\mu_{0}\right)$, etc.?
- $\ddot{Q}\left(1-\mu_{0}\right)$: constant; can now be treated as an unknown
- $\ddot{Q}\left(3 k-\mu_{2}\right)$: congruence class of $\mu_{2} \bmod 3$ determines which case we are in.
- Must decide congruence classes of μ_{1}, and μ_{2}.
- Computer doesn't know what we're aiming for, so it tries all possibilities and reports back.
- We know what we're aiming for, so we'll suppose the computer is checking:
- $\mu_{1} \equiv 0(\bmod 3)$
- $\mu_{2} \equiv 2(\bmod 3)$

Unpacking the Recurrence Inductively

$$
\text { - } \mu_{1} \equiv 0(\bmod 3)
$$

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example: Continuing to Unpack

$$
\begin{aligned}
\ddot{Q}(3 k) & =\ddot{Q}\left(3 k-\mu_{2}\right)+\ddot{Q}\left(3 k-\mu_{1}\right) \\
& =\mu_{1}+3\left(k-\frac{\mu_{1}}{3}\right)+\mu_{0} \\
& =3 k+\mu_{0}
\end{aligned}
$$

Unpacking the Recurrence Inductively

$$
\text { - } \mu_{1} \equiv 0(\bmod 3)
$$

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example: Continuing to Unpack

$$
\begin{aligned}
\ddot{Q}(3 k) & =\ddot{Q}\left(3 k-\mu_{2}\right)+\ddot{Q}\left(3 k-\mu_{1}\right) \\
& =\mu_{1}+3\left(k-\frac{\mu_{1}}{3}\right)+\mu_{0} \\
& =3 k+\mu_{0} \\
\ddot{Q}(3 k+1) & =\ddot{Q}\left(1-\mu_{0}\right)+\ddot{Q}\left(3 k+1-\mu_{2}\right) \\
& =\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}
\end{aligned}
$$

Unpacking the Recurrence Inductively

$$
\text { - } \mu_{1} \equiv 0(\bmod 3)
$$

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example: Continuing to Unpack

$$
\begin{aligned}
\ddot{Q}(3 k) & =\ddot{Q}\left(3 k-\mu_{2}\right)+\ddot{Q}\left(3 k-\mu_{1}\right) \\
& =\mu_{1}+3\left(k-\frac{\mu_{1}}{3}\right)+\mu_{0} \\
& =3 k+\mu_{0} \\
\ddot{Q}(3 k+1) & =\ddot{Q}\left(1-\mu_{0}\right)+\ddot{Q}\left(3 k+1-\mu_{2}\right) \\
& =\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2} \\
\ddot{Q}(3 k+2) & =\ddot{Q}\left(3 k+2-\mu_{1}\right)+\ddot{Q}\left(2-\mu_{0}\right) \\
& =\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)
\end{aligned}
$$

Structural Consistency

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 4: Structural Consistency
- Need the unpacked expression for each subsequence to have the appropriate type

Structural Consistency

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 4: Structural Consistency
- Need the unpacked expression for each subsequence to have the appropriate type
- $3 k+\mu_{0}$ is linear with slope 1

Structural Consistency

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 4: Structural Consistency
- Need the unpacked expression for each subsequence to have the appropriate type
- $3 k+\mu_{0}$ is linear with slope 1
- $\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$ is constant

Structural Consistency

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 4: Structural Consistency
- Need the unpacked expression for each subsequence to have the appropriate type
- $3 k+\mu_{0}$ is linear with slope 1
- $\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$ is constant
- $\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$ is constant

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints
- Need $3 k+\mu_{0}=3 k+\mu_{0}$, so $0=0$ (tautology)

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints
- Need $3 k+\mu_{0}=3 k+\mu_{0}$, so $0=0$ (tautology)
- Need $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints
- Need $3 k+\mu_{0}=3 k+\mu_{0}$, so $0=0$ (tautology)
- Need $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- Need $\mu_{2}=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints
- Need $3 k+\mu_{0}=3 k+\mu_{0}$, so $0=0$ (tautology)
- Need $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- Need $\mu_{2}=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- Need constraints enforcing congruences

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints
- Need $3 k+\mu_{0}=3 k+\mu_{0}$, so $0=0$ (tautology)
- Need $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- Need $\mu_{2}=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- Need constraints enforcing congruences
- Need constraints of the form $1-\mu_{0} \leq 0 \Longrightarrow \ddot{Q}\left(1-\mu_{0}\right)=0$

Determining Constraints

- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\ddot{Q}(3 k+2)=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- $\ddot{Q}(3 k)=3 k+\mu_{0}$
- $\ddot{Q}(3 k+1)=\mu_{1}$
- $\ddot{Q}(3 k)=\mu_{2}$

Running Example

- Step 5: Constraints
- Need $3 k+\mu_{0}=3 k+\mu_{0}$, so $0=0$ (tautology)
- Need $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- Need $\mu_{2}=\mu_{2}+\ddot{Q}\left(2-\mu_{0}\right)$
- Need constraints enforcing congruences
- Need constraints of the form $1-\mu_{0} \leq 0 \Longrightarrow \ddot{Q}\left(1-\mu_{0}\right)=0$
- Sometimes need a few other technical constraints

Satisfying Constraints

$$
\begin{array}{ll}
\text { - } \mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2} & \text { - } \mu_{0} \equiv 0(\bmod 3) \\
\text { - } 0=\ddot{Q}\left(2-\mu_{0}\right) & \text { - } \mu_{0} \equiv 2(\bmod 3)
\end{array}
$$

Running Example

- Step 6: Satisfy Constraints

Satisfying Constraints

- $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\mu_{0} \equiv 0(\bmod 3)$
- $0=\ddot{Q}\left(2-\mu_{0}\right)$
- $\mu_{0} \equiv 2(\bmod 3)$

Running Example

- Step 6: Satisfy Constraints
- More degrees of freedom than constraints, so there should either be no solutions or infinitely many

Satisfying Constraints

- $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\mu_{0} \equiv 0(\bmod 3)$
- $0=\ddot{Q}\left(2-\mu_{0}\right)$
- $\mu_{0} \equiv 2(\bmod 3)$

Running Example

- Step 6: Satisfy Constraints
- More degrees of freedom than constraints, so there should either be no solutions or infinitely many
- Computer algebra systems can find a feasible point for a system of constraints

Satisfying Constraints

- $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\mu_{0} \equiv 0(\bmod 3)$
- $0=\ddot{Q}\left(2-\mu_{0}\right)$
- $\mu_{0} \equiv 2(\bmod 3)$

Running Example

- Step 6: Satisfy Constraints
- More degrees of freedom than constraints, so there should either be no solutions or infinitely many
- Computer algebra systems can find a feasible point for a system of constraints
- One of many feasible solutions here:

Satisfying Constraints

- $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\mu_{0} \equiv 0(\bmod 3)$
- $0=\ddot{Q}\left(2-\mu_{0}\right)$
- $\mu_{0} \equiv 2(\bmod 3)$

Running Example

- Step 6: Satisfy Constraints
- More degrees of freedom than constraints, so there should either be no solutions or infinitely many
- Computer algebra systems can find a feasible point for a system of constraints
- One of many feasible solutions here:

$$
\text { - } \mu_{0}=0, \mu_{1}=3, \mu_{2}=2
$$

Satisfying Constraints

- $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\mu_{0} \equiv 0(\bmod 3)$
- $0=\ddot{Q}\left(2-\mu_{0}\right)$
- $\mu_{0} \equiv 2(\bmod 3)$

Running Example

- Step 6: Satisfy Constraints
- More degrees of freedom than constraints, so there should either be no solutions or infinitely many
- Computer algebra systems can find a feasible point for a system of constraints
- One of many feasible solutions here:
- $\mu_{0}=0, \mu_{1}=3, \mu_{2}=2$
- $\ddot{Q}\left(1-\mu_{0}\right)=\ddot{Q}(1)=1$

Satisfying Constraints

- $\mu_{1}=\ddot{Q}\left(1-\mu_{0}\right)+\mu_{2}$
- $\mu_{0} \equiv 0(\bmod 3)$
- $0=\ddot{Q}\left(2-\mu_{0}\right)$
- $\mu_{0} \equiv 2(\bmod 3)$

Running Example

- Step 6: Satisfy Constraints
- More degrees of freedom than constraints, so there should either be no solutions or infinitely many
- Computer algebra systems can find a feasible point for a system of constraints
- One of many feasible solutions here:
- $\mu_{0}=0, \mu_{1}=3, \mu_{2}=2$
- $\ddot{Q}\left(1-\mu_{0}\right)=\ddot{Q}(1)=1$
- $\ddot{Q}\left(2-\mu_{0}\right)=\ddot{Q}(2)=0$

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition
- When unpacking the recurrence, we assumed inductively each step that we were never referring to an anomalous initial condition.

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition
- When unpacking the recurrence, we assumed inductively each step that we were never referring to an anomalous initial condition.
- Examining the unpacking carefully gives constraints on k for which we are safe.

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition
- When unpacking the recurrence, we assumed inductively each step that we were never referring to an anomalous initial condition.
- Examining the unpacking carefully gives constraints on k for which we are safe.
- Check unsafe values of k separately as a base case.

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition
- When unpacking the recurrence, we assumed inductively each step that we were never referring to an anomalous initial condition.
- Examining the unpacking carefully gives constraints on k for which we are safe.
- Check unsafe values of k separately as a base case.
- This is the initial condition

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition
- When unpacking the recurrence, we assumed inductively each step that we were never referring to an anomalous initial condition.
- Examining the unpacking carefully gives constraints on k for which we are safe.
- Check unsafe values of k separately as a base case.
- This is the initial condition
- In this case, $k=0$ and $k=1$ are unsafe, and the computer finds initial condition $\langle 1,0,3,3,2\rangle$.

Finding Initial Conditions

Running Example

- Step 7: Find Initial Condition
- When unpacking the recurrence, we assumed inductively each step that we were never referring to an anomalous initial condition.
- Examining the unpacking carefully gives constraints on k for which we are safe.
- Check unsafe values of k separately as a base case.
- This is the initial condition
- In this case, $k=0$ and $k=1$ are unsafe, and the computer finds initial condition $\langle 1,0,3,3,2\rangle$.
$1,0,3,3,2,6,3,2,9,3,2,12,3,2,15,3,2,18,3,2,21,3,2,24,3,2,27, \ldots$ (A264756)

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common
- There appear to be various symmetries among the solution families

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common
- There appear to be various symmetries among the solution families
- Interleaved sequences can include any linear-recurrent subsequence with the following properties:

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common
- There appear to be various symmetries among the solution families
- Interleaved sequences can include any linear-recurrent subsequence with the following properties:
- Satisfies a homogeneous linear recurrence with positive coefficients

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common
- There appear to be various symmetries among the solution families
- Interleaved sequences can include any linear-recurrent subsequence with the following properties:
- Satisfies a homogeneous linear recurrence with positive coefficients
- Grows exponentially

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common
- There appear to be various symmetries among the solution families
- Interleaved sequences can include any linear-recurrent subsequence with the following properties:
- Satisfies a homogeneous linear recurrence with positive coefficients
- Grows exponentially
- Interleaved sequences can be polynomials of arbitrary degree

Interleaved Solutions to the Hofstadter Q-Recurrence

Results of Exploration

- Interleaved solutions are very common
- There appear to be various symmetries among the solution families
- Interleaved sequences can include any linear-recurrent subsequence with the following properties:
- Satisfies a homogeneous linear recurrence with positive coefficients
- Grows exponentially
- Interleaved sequences can be polynomials of arbitrary degree
- For Q, can find a degree d polynomial if $m=3 d$

Sample solution，log plot，$m=9$ ，cubic subsequence（A264758）

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families
- 4 interleaved: 12 (5) families

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families
- 4 interleaved: 12 (5) families
- 5 interleaved: 35 (7) families

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families
- 4 interleaved: 12 (5) families
- 5 interleaved: 35 (7) families
- 6 interleaved: 294 (86) families

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families
- 4 interleaved: 12 (5) families
- 5 interleaved: 35 (7) families
- 6 interleaved: 294 (86) families
- 7 interleaved: 588 (84) families

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families
- 4 interleaved: 12 (5) families
- 5 interleaved: 35 (7) families
- 6 interleaved: 294 (86) families
- 7 interleaved: 588 (84) families
- 8 interleaved: at least 3256 (610) families

Interleaved Solutions to the Hofstadter Q-Recurrence

Note

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

- 2 interleaved sequences: 2 infinite families (1 if shifts considered equivalent)
- 3 interleaved: 12 (4) families
- 4 interleaved: 12 (5) families
- 5 interleaved: 35 (7) families
- 6 interleaved: 294 (86) families
- 7 interleaved: 588 (84) families
- 8 interleaved: at least 3256 (610) families
- 9 interleaved: at least 15273 (2279) families

Nested Recurrences

- Slow Solutions
- Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions

(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

Nested Recurrences with Special Initial Conditions

- Goal: Explore the behavior of the nested recurrences when given special initial conditions

Nested Recurrences with Special Initial Conditions

- Goal: Explore the behavior of the nested recurrences when given special initial conditions
- To consider infinitely many initial conditions simultaneously, we include unknowns in our initial conditions and use symbolic computation

Nested Recurrences with Special Initial Conditions

- Goal: Explore the behavior of the nested recurrences when given special initial conditions
- To consider infinitely many initial conditions simultaneously, we include unknowns in our initial conditions and use symbolic computation
- Can consider weak or strong death

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms
- Did it die?

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms
- Did it die?
- Look for a pattern

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms
- Did it die?
- Look for a pattern
- Try to automatically prove the pattern by induction

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms
- Did it die?
- Look for a pattern
- Try to automatically prove the pattern by induction
- Determine how long the pattern lasts

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms
- Did it die?
- Look for a pattern
- Try to automatically prove the pattern by induction
- Determine how long the pattern lasts
- Rinse and repeat

Nested Recurrences with Special Initial Conditions

General Method

- Start with symbolic initial condition
- Generate a bunch of terms
- Did it die?
- Look for a pattern
- Try to automatically prove the pattern by induction
- Determine how long the pattern lasts
- Rinse and repeat
- New initial condition: Old sequence through the end of the last pattern

Nested Recurrences

- Slow Solutions
- Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions
(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

Q-Recurrence

Primary exploration: Q-recurrence with I.C. $\langle 1,2,3, \ldots, N\rangle$

Q-Recurrence

Primary exploration: Q-recurrence with I.C. $\langle 1,2,3, \ldots, N\rangle$ Notation: Q_{N}

Q-Recurrence

Primary exploration: Q-recurrence with I.C. $\langle 1,2,3, \ldots, N\rangle$ Notation: Q_{N}

- $N=2$ and $N=3$ are shifts of the Q-sequence

Q-Recurrence

Primary exploration: Q-recurrence with I.C. $\langle 1,2,3, \ldots, N\rangle$ Notation: Q_{N}

- $N=2$ and $N=3$ are shifts of the Q-sequence
- $N=8, N=11$ and $N=12$ weakly die (check with computer)

Q-Recurrence

Primary exploration: Q-recurrence with I.C. $\langle 1,2,3, \ldots, N\rangle$ Notation: Q_{N}

- $N=2$ and $N=3$ are shifts of the Q-sequence
- $N=8, N=11$ and $N=12$ weakly die (check with computer)
- $N=4,5,6,7,9,10,13$ each persist for at least 30 million terms

$Q_{10}, \mathrm{~A} 278062$

Q-Recurrence: Weak Death

Theorem
 For all $N \geq 14, Q_{N}$ weakly dies.

Q-Recurrence: Weak Death

Theorem

For all $N \geq 14, Q_{N}$ weakly dies.

Proof.

Assume N is sufficiently large. Compute the next terms, starting from index $N+1$.

Q-Recurrence: Weak Death

Theorem

For all $N \geq 14, Q_{N}$ weakly dies.

Proof.

Assume N is sufficiently large. Compute the next terms, starting from index $N+1$.

$$
\begin{aligned}
Q_{N}(N+1) & =Q_{N}(N+1-Q(N))+Q_{N}(N+1-Q(N-1)) \\
& =Q_{N}(N+1-N)+Q_{N}(N+1-(N-1)) \\
& =Q_{N}(1)+Q_{N}(2) \\
& =1+2=3
\end{aligned}
$$

Initial Condition 1 through N : Weak Death

Proof.

- $Q_{N}(N+1)=3$
- $Q_{N}(N+11)=8$
- $Q_{N}(N+21)=16$
- $Q_{N}(N+2)=N+1$
- $Q_{N}(N+12)=N+6$
- $Q_{N}(N+22)=13$
- $Q_{N}(N+3)=N+2$
- $Q_{N}(N+4)=5$
- $Q_{N}(N+5)=N+3$
- $Q_{N}(N+13)=N+10$
- $Q_{N}(N+14)=12$
- $Q_{N}(N+23)=17$
- $Q_{N}(N+15)=N+7$
- $Q_{N}(N+24)=15$
- $Q_{N}(N+6)=6$
- $Q_{N}(N+16)=14$
- $Q_{N}(N+25)=N+14$
- $Q_{N}(N+17)=12$
- $Q_{N}(N+18)=11$
- $Q_{N}(N+19)=N+11$
- $Q_{N}(N+27)=20$
- $Q_{N}(N+9)=N+6$
- $Q_{N}(N+10)=10$
- $Q_{N}(N+20)=N+15$
- $Q_{N}(N+28)=2 N+8$

Initial Condition 1 through N : Weak Death

Proof.

- $Q_{N}(N+1)=3$
- $Q_{N}(N+11)=8$
- $Q_{N}(N+21)=16$
- $Q_{N}(N+2)=N+1$
- $Q_{N}(N+12)=N+6$
- $Q_{N}(N+22)=13$
- $Q_{N}(N+3)=N+2$
- $Q_{N}(N+13)=N+10$
- $Q_{N}(N+14)=12$
- $Q_{N}(N+23)=17$
- $Q_{N}(N+4)=5$
- $Q_{N}(N+15)=N+7$
- $Q_{N}(N+24)=15$
- $Q_{N}(N+5)=N+3$
- $Q_{N}(N+16)=14$
- $Q_{N}(N+17)=12$
- $Q_{N}(N+18)=11$
- $Q_{N}(N+9)=N+6$
- $Q_{N}(N+19)=N+11$
- $Q_{N}(N+27)=20$
- $Q_{N}(N+10)=10$
- $Q_{N}(N+20)=N+15$
- $Q_{N}(N+28)=2 N+8$

If $N \geq 21, Q_{N}$ weakly dies at index $N+29$.

Initial Condition 1 through N : Weak Death

Proof.

- $Q_{N}(N+1)=3$
- $Q_{N}(N+11)=8$
- $Q_{N}(N+21)=16$
- $Q_{N}(N+2)=N+1$
- $Q_{N}(N+12)=N+6$
- $Q_{N}(N+22)=13$
- $Q_{N}(N+3)=N+2$
- $Q_{N}(N+13)=N+10$
- $Q_{N}(N+14)=12$
- $Q_{N}(N+23)=17$
- $Q_{N}(N+4)=5$
- $Q_{N}(N+15)=N+7$
- $Q_{N}(N+24)=15$
- $Q_{N}(N+5)=N+3$
- $Q_{N}(N+16)=14$
- $Q_{N}(N+17)=12$
- $Q_{N}(N+18)=11$
- $Q_{N}(N+19)=N+11$
- $Q_{N}(N+27)=20$
- $Q_{N}(N+9)=N+6$
- $Q_{N}(N+20)=N+15$
- $Q_{N}(N+28)=2 N+8$

If $N \geq 21, Q_{N}$ weakly dies at index $N+29$.
Check 14, 15, 16, 17, 18, 19, 20 separately. They all weakly die.

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- After that, five possible behaviors, depends on $N \bmod 5$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- After that, five possible behaviors, depends on $N \bmod 5$
- $N \equiv 0(\bmod 5)$: Strong death after $2 N+18$ terms $\left(Q_{N}(2 N+18)=0\right)$

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- After that, five possible behaviors, depends on $N \bmod 5$
- $N \equiv 0(\bmod 5)$: Strong death after $2 N+18$ terms $\left(Q_{N}(2 N+18)=0\right)$
- $N \equiv 1(\bmod 5)$: Strong death after $2 N+164$ terms

Q-Recurrence: Strong Death

What about Q_{N} under strong death?

- Going forward, assume N sufficiently large (meaning $N \geq 118$)
- For $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- After that, five possible behaviors, depends on N mod 5
- $N \equiv 0(\bmod 5)$: Strong death after $2 N+18$ terms $\left(Q_{N}(2 N+18)=0\right)$
- $N \equiv 1(\bmod 5)$: Strong death after $2 N+164$ terms
- $N \equiv 4(\bmod 5)$: Strong death after $2 N+8$ terms

$N \equiv 3(\bmod 5)$ is Weird

$N=38$

$N \equiv 3(\bmod 5)$ is Weird

$N=38$
Every fifth term is 4

$N \equiv 3(\bmod 5)$ is Weird

$N=38$
Every fifth term is 4
Rest of terms are poorly understood

Another solution isolating these terms，A272610，Initial Condition $\langle 5,9,4,6\rangle$

$N \equiv 2(\bmod 5)$ is Even Weirder

- Recall that for $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$

$N \equiv 2(\bmod 5)$ is Even Weirder

- Recall that for $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- If $N \equiv 2(\bmod 5)$, get another, much longer, similar piece

$N \equiv 2(\bmod 5)$ is Even Weirder

- Recall that for $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- If $N \equiv 2(\bmod 5)$, get another, much longer, similar piece
- Then, cases depend on N mod 25

$N \equiv 2(\bmod 5)$ is Even Weirder

- Recall that for $N+35 \leq N+5 k+r \leq 2 N+4$:
- $Q_{N}(N+5 k)=(2 N+4) k-11 N-22$
- $Q_{N}(N+5 k+1)=5$
- $Q_{N}(N+5 k+2)=2 N+4$
- $Q_{N}(N+5 k+3)=3$
- $Q_{N}(N+5 k+4)=5$
- If $N \equiv 2(\bmod 5)$, get another, much longer, similar piece
- Then, cases depend on N mod 25
- Can continue depending on N mod higher powers of 5

Detailed Description of $N \equiv 2(\bmod 5)$

- $A_{0}=N-2, A_{1}=2 N+4, B_{1}=-11 N-22$

Detailed Description of $N \equiv 2(\bmod 5)$

- $A_{0}=N-2, A_{1}=2 N+4, B_{1}=-11 N-22$
- For $i \geq 2, A_{i}=A_{i-1}\left(\frac{A_{i-1}-A_{i-2}+2}{5}\right)+B_{i-1}, B_{i}=A_{i}-A_{i-1}$

Detailed Description of $N \equiv 2(\bmod 5)$

- $A_{0}=N-2, A_{1}=2 N+4, B_{1}=-11 N-22$
- For $i \geq 2, A_{i}=A_{i-1}\left(\frac{A_{i-1}-A_{i-2}+2}{5}\right)+B_{i-1}, B_{i}=A_{i}-A_{i-1}$
- Start with $i=1$. From $A_{i}+7$ through A_{i+1} :
- $Q_{N}\left(A_{i}+5 k\right)=3$
- $Q_{N}\left(A_{i}+5 k+1\right)=5$
- $Q_{N}\left(A_{i}+5 k+2\right)=A_{i+1} k+B_{i+1}$
- $Q_{N}\left(A_{i}+5 k+3\right)=5$
- $Q_{N}\left(A_{i}+5 k+4\right)=A_{i+1}$

Detailed Description of $N \equiv 2(\bmod 5)$

- $A_{0}=N-2, A_{1}=2 N+4, B_{1}=-11 N-22$
- For $i \geq 2, A_{i}=A_{i-1}\left(\frac{A_{i-1}-A_{i-2}+2}{5}\right)+B_{i-1}, B_{i}=A_{i}-A_{i-1}$
- Start with $i=1$. From $A_{i}+7$ through A_{i+1} :
- $Q_{N}\left(A_{i}+5 k\right)=3$
- $Q_{N}\left(A_{i}+5 k+1\right)=5$
- $Q_{N}\left(A_{i}+5 k+2\right)=A_{i+1} k+B_{i+1}$
- $Q_{N}\left(A_{i}+5 k+3\right)=5$
- $Q_{N}\left(A_{i}+5 k+4\right)=A_{i+1}$
- After this, value of $\left(A_{i+1}+2 i+3\right) \bmod 5$ determines next behavior

0 : Strong death after 160 more terms (like $1 \bmod 5)$
1: Keep going with $i+1($ like $2 \bmod 5)$
2: Fours and chaos forever (like $3 \bmod 5$)
3: Strong death after 4 more terms (like $4 \bmod 5$)
4: Strong death after 14 more terms (like $0 \bmod 5)$

Q_{42}, both axes \log scale, A274055

Tree of Behaviors of Q_{N}

Write N in base 5 , read digits from right to left

Death 160 Go Deeper Fours and Chaos

Death 4 Death 14

Tree of Behaviors of Q_{N}

Death 160 Go Deeper Fours and Chaos Death 4 Death 14

Tree of Behaviors of Q_{N}

Death 160 Go Deeper Fours and Chaos Death 4 Death 14

Tree of Behaviors of Q_{N}

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right),
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period-7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period-7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period- 7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms
- $N \equiv 1(\bmod 7)$ and $N \geq 2087$: Strong death after $2 N+254$ terms

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period- 7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms
- $N \equiv 1(\bmod 7)$ and $N \geq 2087$: Strong death after $2 N+254$ terms
- $N \equiv 2(\bmod 7)$ and $N \geq 3201$: Strong death after $2 N+524$ terms

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period- 7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms
- $N \equiv 1(\bmod 7)$ and $N \geq 2087$: Strong death after $2 N+254$ terms
- $N \equiv 2(\bmod 7)$ and $N \geq 3201$: Strong death after $2 N+524$ terms
- $N \equiv 3(\bmod 7)$ and $N \geq 4315$: Strong death after $2 N+560$ terms

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period- 7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms
- $N \equiv 1(\bmod 7)$ and $N \geq 2087$: Strong death after $2 N+254$ terms
- $N \equiv 2(\bmod 7)$ and $N \geq 3201$: Strong death after $2 N+524$ terms
- $N \equiv 3(\bmod 7)$ and $N \geq 4315$: Strong death after $2 N+560$ terms
- $N \equiv 4(\bmod 7)$ and $N \geq 200$: Strong death after $2 N+20$ terms

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period-7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms
- $N \equiv 1(\bmod 7)$ and $N \geq 2087$: Strong death after $2 N+254$ terms
- $N \equiv 2(\bmod 7)$ and $N \geq 3201$: Strong death after $2 N+524$ terms
- $N \equiv 3(\bmod 7)$ and $N \geq 4315$: Strong death after $2 N+560$ terms
- $N \equiv 4(\bmod 7)$ and $N \geq 200$: Strong death after $2 N+20$ terms
- $N \equiv 5(\bmod 7)$ and $N \geq 32478$: Strong death after $2 N+4547$ terms

Three-Term Hofstadter-like Recurrence

$$
B_{N}(n)=B_{N}\left(n-B_{N}(n-1)\right)+B_{N}\left(n-B_{N}(n-2)\right)+B_{N}\left(n-B_{N}(n-3)\right)
$$ initial condition $\langle 1,2,3, \ldots, N\rangle$

Structure Theorem for B_{N}

- $N \geq 74: B_{N}$ does not strongly die before $2 N$ terms; has period- 7 quasilinear pattern from $B_{N}(N+67)$ through roughly $B_{N}(2 N)$.
- $N \equiv 0(\bmod 7)$ and $N \geq 196$: Strong death after $2 N+27$ terms
- $N \equiv 1(\bmod 7)$ and $N \geq 2087$: Strong death after $2 N+254$ terms
- $N \equiv 2(\bmod 7)$ and $N \geq 3201$: Strong death after $2 N+524$ terms
- $N \equiv 3(\bmod 7)$ and $N \geq 4315$: Strong death after $2 N+560$ terms
- $N \equiv 4(\bmod 7)$ and $N \geq 200$: Strong death after $2 N+20$ terms
- $N \equiv 5(\bmod 7)$ and $N \geq 32478$: Strong death after $2 N+4547$ terms
- $N \equiv 6(\bmod 7)$ and $N \geq 118$: Strong death after $2 N+9$ terms

First 64964 terms of B_{32478} ，A274058

First 68814 terms of B_{32478} ，A274058

All 69503 terms of B_{32478}, A274058

All 69503 terms of B_{32478}, log plot, A274058

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}: B_{N}$ does not weakly die.

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}: B_{N}$ does not weakly die.
- $N \in\{7,8,9\}: B_{N}$ not known to weakly die.

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}: B_{N}$ does not weakly die.
- $N \in\{7,8,9\}: B_{N}$ not known to weakly die.
- $N \geq 14$: B_{N} weakly dies after $N+24$ terms.

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}$: B_{N} does not weakly die.
- $N \in\{7,8,9\}: B_{N}$ not known to weakly die.
- $N \geq 14: B_{N}$ weakly dies after $N+24$ terms.
- $N \in\{81,182,193,429,822,1892,2789,3442,7292,23511,25163\}:$ B_{N} weakly dies, but does not strongly die.

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}$: B_{N} does not weakly die.
- $N \in\{7,8,9\}: B_{N}$ not known to weakly die.
- $N \geq 14: B_{N}$ weakly dies after $N+24$ terms.
- $N \in\{81,182,193,429,822,1892,2789,3442,7292,23511,25163\}:$ B_{N} weakly dies, but does not strongly die.
- $N \in\{4,10,11,12,13,14,15,18\}: B_{N}$ weakly dies, but not known to strongly die.

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}$: B_{N} does not weakly die.
- $N \in\{7,8,9\}$: B_{N} not known to weakly die.
- $N \geq 14: B_{N}$ weakly dies after $N+24$ terms.
- $N \in\{81,182,193,429,822,1892,2789,3442,7292,23511,25163\}:$ B_{N} weakly dies, but does not strongly die.
- $N \in\{4,10,11,12,13,14,15,18\}: B_{N}$ weakly dies, but not known to strongly die.
- All other $N: B_{N}$ strongly dies.

Sporadic N Values?

Facts

- Previous theorem classifies all but 6079 values of N
- $N \in\{5,6\}$: B_{N} does not weakly die.
- $N \in\{7,8,9\}$: B_{N} not known to weakly die.
- $N \geq 14: B_{N}$ weakly dies after $N+24$ terms.
- $N \in\{81,182,193,429,822,1892,2789,3442,7292,23511,25163\}:$ B_{N} weakly dies, but does not strongly die.
- $N \in\{4,10,11,12,13,14,15,18\}: B_{N}$ weakly dies, but not known to strongly die.
- All other $N: B_{N}$ strongly dies.
- Fun fact: B_{20830} strongly dies, but it has $84975 \cdot 2^{560362}+31$ terms.

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$
- Eventual alternation between 2 and $M \cdot 2^{k}$ for some M

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$
- Eventual alternation between 2 and $M \cdot 2^{k}$ for some M
- So, doesn't strongly die for a "boring" reason

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$
- Eventual alternation between 2 and $M \cdot 2^{k}$ for some M
- So, doesn't strongly die for a "boring" reason
- $N \in\{193,3442\}$:

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$
- Eventual alternation between 2 and $M \cdot 2^{k}$ for some M
- So, doesn't strongly die for a "boring" reason
- $N \in\{193,3442\}$:
- Built out of infinitely many period-5 sub-patterns

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$
- Eventual alternation between 2 and $M \cdot 2^{k}$ for some M
- So, doesn't strongly die for a "boring" reason
- $N \in\{193,3442\}$:
- Built out of infinitely many period- 5 sub-patterns
- Each one six times longer than previous

More on Sporadic N Values

Facts

- $N \in\{81,182,429,822,1892,2789,7292,23511,25163\}:$
- Eventual alternation between 2 and $M \cdot 2^{k}$ for some M
- So, doesn't strongly die for a "boring" reason
- $N \in\{193,3442\}$:
- Built out of infinitely many period-5 sub-patterns
- Each one six times longer than previous
- So, doesn't strongly die for an "interesting" reason

First 40000 terms of B_{193} (A283884)

First 200000 terms of B_{193} ，both axes \log（A283884）

Four-Plus-Term Hofstadter-like Recurrence

$$
G_{d, N}(n)=\sum_{i=1}^{d} G_{d, N}\left(n-G_{d, N}(n-i)\right)
$$

Initial condition $\langle 1,2,3, \ldots, N\rangle$

Four-Plus-Term Hofstadter-like Recurrence

$$
G_{d, N}(n)=\sum_{i=1}^{d} G_{d, N}\left(n-G_{d, N}(n-i)\right)
$$

Initial condition $\langle 1,2,3, \ldots, N\rangle$

Really weird behavior; see for yourself!

First 40000 terms of $G_{4,3000}$

First 40000 terms of $G_{5,3000}$

First 40000 terms of $G_{6,3000}$

First 40000 terms of $G_{7,3000}$

First 50000 terms of $G_{4,10000}$ (A283889)

First 50000 terms of $G_{4,10001}$ (A283890)

First 70000 terms of $G_{7,10000}$ (A283891)

First 70000 terms of $G_{7,10001}$ (A283892)

Nested Recurrences

- Slow Solutions
- Linear-Recurrent Solutions

2 Discovering More Golomb/Ruskey-Like Solutions

(3) Special Initial Conditions

- 1 through N
- Other Initial Conditions

Other Interesting Initial Conditions

We Consider Q-Recurrence With:
 - $\langle N, 2\rangle$

Other Interesting Initial Conditions

We Consider Q-Recurrence With:
 - $\langle N, 2\rangle$
 - $\langle 2, N\rangle$

Other Interesting Initial Conditions

```
We Consider Q-Recurrence With:
- \(\langle N, 2\rangle\)
- \(\langle 2, N\rangle\)
- \(\langle N, 4, N, 4\rangle\)
```


Other Interesting Initial Conditions

```
We Consider Q-Recurrence With:
    - \langleN,2\rangle
    - \langle2,N\rangle
    - \langleN,4,N,4\rangle
    - \langle4,N,4,N\rangle
```


Other Interesting Initial Conditions

We Consider Q-Recurrence With:

- $\langle N, 2\rangle$
- $\langle 2, N\rangle$
- $\langle N, 4, N, 4\rangle$
- $\langle 4, N, 4, N\rangle$

Pretty much any other parametrized family of initial conditions that you can think of is worth exploring!

Other Interesting Initial Conditions

We Consider Q-Recurrence With:

- $\langle N, 2\rangle$
- $\langle 2, N\rangle$
- $\langle N, 4, N, 4\rangle$
- $\langle 4, N, 4, N\rangle$

Pretty much any other parametrized family of initial conditions that you can think of is worth exploring!

Can also do all these same explorations with other recurrences

$\langle N, 2\rangle$ and $\langle 2, N\rangle$

Facts

- Most sequences quasilinear and easy to describe

$\langle N, 2\rangle$ and $\langle 2, N\rangle$

Facts

- Most sequences quasilinear and easy to describe
- $\langle N, 2\rangle, N \geq 25, N \equiv 3(\bmod 4)$: Strong death after $5 N+11$ terms

$\langle N, 2\rangle$ and $\langle 2, N\rangle$

Facts

- Most sequences quasilinear and easy to describe
- $\langle N, 2\rangle, N \geq 25, N \equiv 3(\bmod 4)$: Strong death after $5 N+11$ terms
- $\langle N, 2\rangle, N \geq 75, N \equiv 5(\bmod 12)$: Strong death after $28 N+64$ terms

$\langle N, 2\rangle$ and $\langle 2, N\rangle$

Facts

- Most sequences quasilinear and easy to describe
- $\langle N, 2\rangle, N \geq 25, N \equiv 3(\bmod 4)$: Strong death after $5 N+11$ terms
- $\langle N, 2\rangle, N \geq 75, N \equiv 5(\bmod 12)$: Strong death after $28 N+64$ terms
- $\langle N, 2\rangle, N \geq 51, N \equiv 1,9,13,21(\bmod 12)$: Quasilinear, but not easy to describe

$\langle N, 2\rangle$ and $\langle 2, N\rangle$

Facts

- Most sequences quasilinear and easy to describe
- $\langle N, 2\rangle, N \geq 25, N \equiv 3(\bmod 4)$: Strong death after $5 N+11$ terms
- $\langle N, 2\rangle, N \geq 75, N \equiv 5(\bmod 12)$: Strong death after $28 N+64$ terms
- $\langle N, 2\rangle, N \geq 51, N \equiv 1,9,13,21(\bmod 12)$: Quasilinear, but not easy to describe
- $\langle N, 2\rangle$: A few sporadic interesting cases for small N

$\langle N, 2\rangle$ and $\langle 2, N\rangle$

Facts

- Most sequences quasilinear and easy to describe
- $\langle N, 2\rangle, N \geq 25, N \equiv 3(\bmod 4)$: Strong death after $5 N+11$ terms
- $\langle N, 2\rangle, N \geq 75, N \equiv 5(\bmod 12)$: Strong death after $28 N+64$ terms
- $\langle N, 2\rangle, N \geq 51, N \equiv 1,9,13,21(\bmod 12)$: Quasilinear, but not easy to describe
- $\langle N, 2\rangle$: A few sporadic interesting cases for small N
- Most notably $N=5, N=17, N=41$

Initial condition $\langle 5,2\rangle$, log-log plot, A278066

Initial condition $\langle 41,2\rangle$

$\langle N, 4, N, 4\rangle$

Facts

- $N \geq 11$ odd: Strong death after $N+13$ terms

$\langle N, 4, N, 4\rangle$

Facts

- $N \geq 11$ odd: Strong death after $N+13$ terms
- $N \geq 21, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-7}}{2}\right\rfloor+9$ terms, provided $N \neq 2 A^{2}+2 A$

$\langle N, 4, N, 4\rangle$

Facts

- $N \geq 11$ odd: Strong death after $N+13$ terms
- $N \geq 21, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-7}}{2}\right\rfloor+9$ terms, provided $N \neq 2 A^{2}+2 A$
- $N \geq 242, N \equiv 2,18,26(\bmod 32)$: Strong death after $12 N+50$ terms

$\langle N, 4, N, 4\rangle$

Facts

- $N \geq 11$ odd: Strong death after $N+13$ terms
- $N \geq 21, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-7}}{2}\right\rfloor+9$ terms, provided $N \neq 2 A^{2}+2 A$
- $N \geq 242, N \equiv 2,18,26(\bmod 32)$: Strong death after $12 N+50$ terms
- $N \geq 242, N \equiv 10(\bmod 32):$ Strong death after $12 N+58$ terms

$\langle N, 4, N, 4\rangle$

Facts

- $N \geq 11$ odd: Strong death after $N+13$ terms
- $N \geq 21, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-7}}{2}\right\rfloor+9$ terms, provided $N \neq 2 A^{2}+2 A$
- $N \geq 242, N \equiv 2,18,26(\bmod 32)$: Strong death after $12 N+50$ terms
- $N \geq 242, N \equiv 10(\bmod 32)$: Strong death after $12 N+58$ terms
- $N \geq 422, N \equiv 6(\bmod 8)$: Strong death after $14 N+34$ terms

$\langle N, 4, N, 4\rangle$

Facts

- $N \geq 11$ odd: Strong death after $N+13$ terms
- $N \geq 21, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-7}}{2}\right\rfloor+9$ terms, provided $N \neq 2 A^{2}+2 A$
- $N \geq 242, N \equiv 2,18,26(\bmod 32)$: Strong death after $12 N+50$ terms
- $N \geq 242, N \equiv 10(\bmod 32)$: Strong death after $12 N+58$ terms
- $N \geq 422, N \equiv 6(\bmod 8)$: Strong death after $14 N+34$ terms
- $N=2 A^{2}+2 A$: Seems to strongly die eventually, but complicated

$\langle 216,4,216,4\rangle$, all 481 terms (similar to A283899)

$\langle 722,4,722,4\rangle$, all 8714 terms, log plot (similar to A283900)

312, 4, 312, 4, all 6944 terms, log plot (A283898)

$\langle 4, N, 4, N\rangle$

Facts

- $N \geq 26, N \equiv 1(\bmod 4)$: Strong death after $2 N+28$ terms

$\langle 4, N, 4, N\rangle$

Facts

- $N \geq 26, N \equiv 1(\bmod 4)$: Strong death after $2 N+28$ terms
- $N \geq 33, N \equiv 3(\bmod 4)$: Strong death after $3 N+36$ terms

$\langle 4, N, 4, N\rangle$

Facts

- $N \geq 26, N \equiv 1(\bmod 4)$: Strong death after $2 N+28$ terms
- $N \geq 33, N \equiv 3(\bmod 4)$: Strong death after $3 N+36$ terms
- $N \geq 19, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-13}}{2}\right\rfloor+6$ terms, provided $N \neq 2 A^{2}+2 A+4$

$\langle 4, N, 4, N\rangle$

Facts

- $N \geq 26, N \equiv 1(\bmod 4)$: Strong death after $2 N+28$ terms
- $N \geq 33, N \equiv 3(\bmod 4)$: Strong death after $3 N+36$ terms
- $N \geq 19, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-13}}{2}\right\rfloor+6$ terms, provided $N \neq 2 A^{2}+2 A+4$
- $N=2 A^{2}+2 A+4$: Similar to $2 A^{2}+2 A$ case of $\langle N, 4, N, 4\rangle$

$\langle 4, N, 4, N\rangle$

Facts

- $N \geq 26, N \equiv 1(\bmod 4)$: Strong death after $2 N+28$ terms
- $N \geq 33, N \equiv 3(\bmod 4)$: Strong death after $3 N+36$ terms
- $N \geq 19, N \equiv 0(\bmod 4)$: Strong death after $4\left\lfloor\frac{N+1+\sqrt{2 N-13}}{2}\right\rfloor+6$ terms, provided $N \neq 2 A^{2}+2 A+4$
- $N=2 A^{2}+2 A+4$: Similar to $2 A^{2}+2 A$ case of $\langle N, 4, N, 4\rangle$
- $N \equiv 2(\bmod 4)$: Seems to strongly die eventually, but complicated

$\langle 4,922,4,922\rangle$, all 16667 terms (similar to A283902)

〈4，922，4，922〉，all 16667 terms，log plot（similar to A283902）

Summary

We've seen a huge diversity of solutions to nested recurrences

Summary

We've seen a huge diversity of solutions to nested recurrences

My mantra when working with nested recurrences: "If you think it might be possible, it probably is possible."

References I

[1] B. Balamohan, A. Kuznetsov, and Stephen Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Seq. 10 (2007), 29.
[2] B. W. Conolly, Meta-Fibonacci sequences, Fibonacci \& Lucas Numbers, and the Golden Section, 1989, pp. 127-138.
[3] Nathan Fox, Finding linear-recurrent solutions to Hofstadter-like recurrences using symbolic computation, arXiv preprint arXiv:1609.06342 (2016).
[4] __ Linear recurrent subsequences of generalized meta-Fibonacci sequences, J. Difference Equ. Appl. (2016).
[5] , Quasipolynomial solutions to the Hofstadter Q-recurrence, Integers 16 (2016), A68.
[6] , A slow relative of Hofstadter's Q-sequence, arXiv preprint arXiv:1611. 08244 (2016).
[7] S.W. Golomb, Discrete chaos: Sequences satisfying "Strange" recursions (1991).
[8] Douglas Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, New York, 1979.
[9] Abraham Isgur, David Reiss, and Stephen Tanny, Trees and meta-Fibonacci sequences, Electron. J. Combin. 16 (2009), no. R129, 1.
[10] Colin L Mallows, Conway's challenge sequence, Amer. Math. Monthly 98 (1991), no. 1, 5-20.

References II

[11] F. Ruskey, Fibonacci meets Hofstadter, Fibonacci Quart. 49 (2011), no. 3, 227-230.
[12] N.J.A. Sloane, OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2016. http://oeis.org/.
[13] Stephen M Tanny, A well-behaved cousin of the Hofstadter sequence, Discrete Math. 105 (1992), no. 1, 227-239.

Thank you!

