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Abstract

Contour Approximation

Given a set S of points in Rn, a contour approximation of S is a
function that captures most points of S in its lower level sets.

A concrete application is the home-range of an animal population, or
the territory occupied by it, shown in 1980 by Dixon and Chapman to
involve the harmonic mean of distances, a result since then
confirmed for many species. The harmonic mean of distances, or
resistances, also features in inverse distance weighted
interpolation , clustering , parallel circuits and multi–facility
location . This lecture gives an axiomatic framework, and a
probabilistic optimization model that unifies the above results, a
model applied successfully to clustering and classification.

Joint work with Tsvetan Asamov and Cem Iyigun.
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Example: Home range of black bear (ID)

A home range is the area in which an animal lives and moves on a
periodic basis.

M.D. Samuel, D.J. Pierce and E.O. Garton, Identifying areas of concentrated
use within the home range, J. Animal Ecology 54(1985), 711–719



The Home Range, Dixon & Chapman, [7]

A new method of calculating centers and areas of animal activity is
presented based on the harmonic mean of an areal distribution. The
center of activity is located in the area of greatest activity; in fact
more than one “center” may exist.

· · ·
The calculation of home range allows for heterogeneity of any
habitat and is illustrated with data collected near Corvallis, Oregon,
on the brush rabbit (Sylvilagus bachmani)

K.R. Dixon and J.A. Chapman, Harmonic mean measure of animal activity
areas, Ecology 61(1980), 1040–1044



More black bears, [6, p. 76]



The bears are confused, [6, p. 88]



Example: 2 centers
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Two clusters with different “geometries”.

10 numbers suffice to represent the data.



Example: 3 centers
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The harmonic mean

The harmonic mean of n positive numbers x1, · · · ,xn is

H(x1, · · · ,xn) =
n

1
x1
+ · · ·+ 1

xn

(1)

The AGH inequality,

A(x1, · · · ,xn)≥ G(x1, · · · ,xn)≥ H(x1, · · · ,xn)

with equality iff x1 = · · ·= xn

If {x1, · · · ,xn} have weights {w1, · · · ,wn}, their weighted harmonic
mean is

H(x1, · · · ,xn; w1, · · · ,wn) =

n
∑

i=1
wi

n
∑

i=1

wi
xi

(2)

(1) is a special case of (2) for all weights wi = 1.
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Example: Parallel circuit

Two resistances, R1 and R2, are connected in parallel. What is the
resistance R of the parallel circuit?

I IA B

R2

R1

The conductance C = 1/R of the parallel circuit is

C = C1+C2 = 1/R1+1/R2,

I IA B

1/R2

1/R1

∴ R =
1

1/R1+1/R2
= 1

2 H(R1,R2).
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Example: Working together

There are n workers, and one job.
Worker i, working alone, can do the job in Di days, i ∈ 1,n.

Question : In how many days will the job be done by the n workers
working together?

Answer : The job will be done in

1
n
∑

i=1

1
Di

days,

which is

1
n H(D1, · · · ,Dn) days.

If Di > 0, i ∈ 1,n, then

1
n H(D1, · · · ,Dn) ≤ min{D1, · · · ,Dn} ≤ H(D1, · · · ,Dn) (3)
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Detour: A harmonic mean for matrices

For a,b > 0,
1
2 H(a,b) =

ab
a+ b

The parallel sum of matrices A,B ∈ Cm×n is, [2],

A :B := A(A+B)†B (4)

Let L be a subspace of Cn,
PL the orthogonal projection on L, i.e.

PL = P2
L = P∗

L, R(PL) = L.

Theorem (Anderson & Duffin, [2])

Let L, M be subspaces of Cn,
PL, PM the corresponding orthogonal projections.
Then

PL
⋂

M = 2PL (PL +PM)†PM (5)
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An extremal principle

Theorem (Morley, [14])

If A,B ∈Cn×n are PSD, then for any x ∈Cn,

〈x,A :Bx〉= inf {〈y,Ay〉+ 〈z,Bz〉 : y+ z = x} (6)

Example . If resistances R1,R2 are connected in parallel, the resulting
resistance is

R1 :R2 =
1

1/R1+1/R2
=

R1 R2

R1+R2

A current I through R1 :R2 splits into currents I1, I2 so as to minimize
the dissipated power

(R1 :R2) I2 = min
{

R1 I2
1 +R2I2

2 : I1+ I2 = I
}
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Maxwell’s variational principle, [9]

I

I1

I2

I
A B

R2

R1

The problem

min{I2
1R1+ I2

2R2 : I1+ I2 = I},

has the Lagrangian ,

L(I1, I2,λ ) = I2
1R1+ I2

2R2−λ (I1+ I2− I).

Differentiating L w.r.t. I1, I2 results in Ohm’s law

I1R1 = I2R2,

the voltage drop from A to B.
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Inverse distance weighted (IDW) interpolation

Shepard (1968)

A function u : Rn → R is evaluated at K given points {xk : k ∈ 1,K} in
Rn, giving the values {uk : k ∈ 1,K}, respectively. It is required to
estimate u at a point x ∈ conv{xk : k ∈ 1,K}.

Shepard [15] estimated u(x) as a convex combination,

u(x) =
K

∑
k=1

λk(x)uk (7)

with weights λk(x) inversely proportional to distances d(x,xk)

u(x) =
K

∑
k=1











1
d(x,xk)

K
∑

j=1

1
d(x,xj)











uk (8)
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IDW interpolation (cont’d)

The IDW interpolation at x of values uk given at xk, k ∈ 1,K,

u(x) =
K

∑
k=1











1
d(x,xk)

K
∑

j=1

1
d(x,xj)











uk (8)

Interpolating the K distances d(x,xk), i.e. taking uk = d(x,xk) in (8),
gives

K
K
∑

j=1

1
d(x,xj)

(9)

the harmonic mean of the distances {d(x,xk) : k ∈ 1,K}, a measure
of how far is x from the points {xk}.
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Clusters and distances

Consider a data set D = {xi : i ∈ 1,N} ⊂ Rn. We assume that D is
partitioned into K clusters Ck, 1< K < N.

With each cluster Ck, we associate:
• a distance function dk, for example the Mahalanobis distance

dk(x,y) = 〈x− y,Σ−1
k (x− y)〉 (10)

where Σk is the covariance–matrix of Ck, and
• a center ck minimizing the sum of distances to all points in the
cluster

ck := argmin
c ∑

x∈Ck

dk(x,c) (11)

The distance between a point x and the cluster Ck is defined as

d(x,Ck) := dk(x,ck) (12)

The distance between clusters is not defined, and not needed.
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ck := argmin
c ∑

x∈Ck

dk(x,c) (11)

The distance between a point x and the cluster Ck is defined as

d(x,Ck) := dk(x,ck) (12)

The distance between clusters is not defined, and not needed.



The quasi–linear mean, [1, Section 5.3.2]

Let I = [a,b], f : I → I continuous, strictly monotonic.
Let w1,w2 ≥ 0; w1+w2 > 0.

The quasi–linear mean of x1,x2 ∈ I is

F(x1,x2; w1,w2) := f

(

w1 f−1(x1)+w2 f−1(x2)

w1+w2

)

. (13)

For f (t) = t, (13) gives the weighted arithmetic mean,

F(x1,x2; w1,w2) =
w1 x1+w2 x2

w1+w2

For f (t) = t−1, 0 6∈ I, (13) gives

F(x1,x2; w1,w2) =
w1+w2
w1
x1

+ w2
x2

the weighted harmonic mean of x1,x2.
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Contour approximation, [3], [10]

Definition

Let D(x) be a function of the K distances dk(x,ck) and cluster sizes qk.
Then D(·) is a contour approximation of D if

D(x)≤ dk(x,ck), ∀ x ∈R
n, k ∈ 1,K (14)

Let F : R2k →R+ be a quasi–linear mean of d1(x,c1), · · · ,dK(x,cK) and

D(x) =
F(d1(x,c1), · · · ,dK(x,cK);q1, · · · ,qK)

q1+ · · ·+ qk
(15)

where qk is the size of the cluster Ck. Arav [3] listed desirable
properties for F and proved

F(d1, · · · ,dK ;q1, · · · ,qK) =
q1+ · · ·+ qk

q1/d1+ · · ·+ qk/dk
(16)

a weighted harmonic mean of the distances.
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Probabilities and distances

Given K facilities (stores, gyms, hospitals, etc.) to go to, denote by

(x → k) the event that a person at x goes to the k th facility,

and let
pk(x) = probability of (x → k), k ∈ 1,K

Assume that at any point x these probabilities depend on

dk(x) = the distance of x from the k th facility,

as follows:

a facility is more likely to be chosen the closer it is.

Meaning that for any point x, and any two facilities i, j ∈ 1,K,

di(x)< dj(x) =⇒ pi(x)> pj(x). (a)
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Desirable properties of p(x) = f(d(x))

Let f : RK → R
K map distances d(x) = (dk(x)) into probabilities

p(x) = (pk(x),
p(x) = f(d(x)) (17)

For any x, i, j ∈ 1,K, permutation matrix Q, set S ⊂ 1,K,

di(x)< dj(x) =⇒ pi(x)> pj(x), (a)

f(λ d(x)) = f(d(x)), for any λ > 0 (b)

Qp(x) = f(Qd(x)), (c)

f is continuous, (d)

pk(x) = pk(x|S)pS(x), ∀ k ∈ S, (e)

where pS(x) := ∑
s∈S

ps(x),

and pk(x|S) = conditional probability of (x → k) given (x → S).
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The choice axiom of Luce

pk(x) = pk(x|S)pS(x), ∀ k ∈ S ⊂ 1,K (e)

is the choice axiom of Luce [12], shown equivalent to

pk(x|S) =
vk(x)

∑
s∈S

vs(x)
, (18)

where vk(x) is a scale function , in particular,

pk(x) =
vk(x)

∑
s∈1,K

vs(x)
, ∀ k ∈ 1,K. (19)

Therefore, for all k ∈ 1,K,

pk(x)v−1
k (x) = D(x), (20)

a function of x, independent of k.
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pk(x)dk(x) = D(x), ∀ k

From
di(x)< dj(x) =⇒ pi(x)> pj(x), (a)

and

pk(x) =
vk(x)

∑
s∈1,K

vs(x)
. (19)

it follows that vk(x) is a decreasing function of dk(x), in particular,

vk(x) =
1

dk(x)

and
pk(x)v−1

k (x) = D(x) (20)

becomes

pk(x)dk(x) = D(x) (A)

independent of k. This is our working principle.
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Probabilities

From
pk(x)dk(x) = D(x), ∀ k ∈ 1,K, (A)

and the fact that probabilities add to 1, we get

pk(x) =
1/dk(x)

K
∑

i=1
1/di(x)

, k ∈ 1,K. (21)

In particular, for K = 2,

p1(x) =
d2(x)

d1(x)+ d2(x)
, p2(x) =

d1(x)
d1(x)+ d2(x)

,

and for K = 3,

p1(x) =
d2(x)d3(x)

d1(x)d2(x)+ d1(x)d3(x)+ d2(x)d3(x)
, etc.
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The joint distance function (JDF)

The function D(·) in

pk(x)dk(x) = D(x), ∀ k ∈ 1,K, (A)

is called the Joint Distance Function (JDF).
From and (A) and (21) we get

D(x) =
1

K
∑

i=1
1/di(x)

=
1
K

H(d1(x), · · · ,dK(x)). (22)

In particular, for K = 2,

D(x) =
d1(x)d2(x)

d1(x)+ d2(x)
,

and for K = 3,

D(x) =
d1(x)d2(x)d3(x)

d1(x)d2(x)+ d1(x)d3(x)+ d2(x)d3(x)
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An extremal principle for probabilities

Let K = 2, and let d1(x),d2(x) be given. The principle

p1(x)d1(x) = p2(x)d2(x) , (A)

is an optimality condition for the problem

min d1(x)p2
1+ d2(x)p2

2 (P)

s.t. p1+ p2 = 1

p1, p2 ≥ 0

as shown by differentiating the Lagrangian ,

L(p1,p2,λ ) = d1(x)p2
1+ d2(x)p2

2−λ (p1+ p2−1)

with respect to p1, p2,

∂L
∂p1

= 2p1d1(x)−λ = 0 , etc.
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Did he say p2 ? Yes

The problem

min{p2
1d1+ p2

2d2 : p1+ p2 = 1 , p1,p2 ≥ 0}

is a smoothed version of

min{p1 d1+ p2d2 : p1+ p2 = 1 , p1,p2 ≥ 0}=⇒ min{d1,d2} ,

see Teboulle, [16].

Other schemes include entropic smoothing

min{p1d1+ p2d2+ p1 logp1+ p2 logp2 : p1+ p2 = 1 , p1,p2 ≥ 0}

resulting in the principle

pk(x)edk(x) = E(x), k ∈ 1,K,

where E(x) does not depend on k.
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The JDF as optimal value

Using
pk dk(x) = D(x) (A)

rewrite

min d1(x)p2
1+ d2(x)p2

2 (P)

s.t. p1+ p2 = 1

p1, p2 ≥ 0

as

min D(x)(p1+ p2), etc.

Therefore the optimal value of (P) is the JDF

D(x) =
d1(x)d2(x)

d1(x)+ d2(x)
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The Fermat–Weber Location Problem

Given X = {xi : i ∈ 1,N} ⊂ Rn and weights wi > 0, find c minimizing

f (c) =
N

∑
i=1

wi ‖xi − c‖, ‖ · ‖ Euclidean.

The gradient (for c 6∈ X)

∇f (c) =−
N

∑
i=1

wi
xi − c

‖xi − c‖

the resultant of forces wi, with direction from c to xi.

∇f (c) = 0 =⇒ c =
N

∑
i=1

λi xi , λi =

wi

‖xi − c‖
N
∑

j=1

wj

‖xj − c‖

expressing c as a convex combination of {xi : i ∈ 1,N}.
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A mechanical solution

The point c is tied to the weights wi through holes in xi.
c is free to move, will come to rest at the optimal center.

c
•

x1

w1

w2

x2

w3

x3

w4

x4

w5

x5

w6

x6



What if c falls in one of the holes?

The point c may settle at one of the holes, say c = x1, if the weight w1

is greater than the resultant of the other weights.

x1

w1

w2

x2

w3

x3

w4

x4

w5

x5

w6

x6



The Varignon frame

Pierre Varignon (1654–1722)



The Weiszfeld Method, [17]

∇f (c) = 0 =⇒ c =
N

∑
i=1

λi xi , λi =

wi

‖xi − c‖
N
∑

j=1

wj

‖xj − c‖

The Weiszfeld method is the iterations

c+ = T(c) :=



















N
∑

i=1







wi

‖xi − c‖
N
∑

j=1
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xi , c 6∈ X;

c , c ∈ X.

Endre Weiszfeld, Andrew Vazsonyi (1916–2003)
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A multi–facility location problem

Given {xi : i ∈ 1,N} ⊂ Rn, weights wi > 0, integer K, 1≤ K < N,

Locate facilities {ck : k ∈ 1,K} so as to

minimize f (c1, . . . ,cK) =
K

∑
k=1

∑
xi∈Ck

wi ‖xi − ck‖ (L.K)

where Ck = {x : x assigned to ck}.

The Fermat–Weber problem is the special case (L.1).

For K > 1, the problem (L.K) is NP hard, [13].
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Probabilistic assignments, [5], [11]

The multi–facility location problem

min
K

∑
k=1

∑
xi∈Ck

wi d(xi,ck) (L.K)

with d(xi,ck) = ‖xi − ck‖, is approximated by

min
K

∑
k=1

N

∑
i=1

wi pk(xi)d(xi,ck) (P.K)

where {pk(xi)} are the cluster membership probabilities ,

pk(xi) = Prob{xi ∈ Ck}, k ∈ 1,K, i ∈ 1,N

The problem (P.K) has two sets of variables,

centers {ck}, as before, and

probabilities {pk(xi)}, corresponding to the assignments .
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The approximate problem (P.K)

min
K

∑
k=1

N

∑
i=1

wi pk(xi)‖xi − ck‖ (P.K)

s.t.
K

∑
k=1

pk(xi) = 1, i ∈ 1,N,

pk(xi)≥ 0, k ∈ 1,K, i ∈ 1,N,

with variables {ck} and {pk(xi)}.

Fix one set of variables, and minimize (P.K) with respect to the
second set, then fix the second set, etc. We thus alternate between

(1) the probabilities problem , with given centers, and

(2) the centers problem , (P.K) with given probabilities.
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The probabilities problem

pk(xi) = Prob{xi ∈ Ck}, i ∈ 1,N, k ∈ 1,K.

Given

data points {xi : i ∈ 1,N},
weights {wi : i ∈ 1,N},
centers {ck : k ∈ 1,K},
distances {dk(xi) = d(xi,ck) : i ∈ 1,N, k ∈ 1,K}.

For xi, i ∈ 1,N,

pk(xi) =
1/dk(xi)

K
∑

j=1
1/dj(xi)

, k ∈ 1,K,

independent of the weights wi.
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The centers problem

{ck : k ∈ 1,K}

Given

data points {xi : i ∈ 1,N},
weights {wi : i ∈ 1,N},
distances {dk(xi) = d(xi,ck) : i ∈ 1,N, k ∈ 1,K},
probabilities {pk(xi) : i ∈ 1,N, k ∈ 1,K}

The K centers ck are computed separately

ck = argmin
c

{

N

∑
i=1

wi pk(xi)dk(xi,c)

}

, k ∈ 1,K. (23)

Note: Each ck is the center of all N points xi, with “weights” wi pk(xi).
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Example: N = 200, K = 2, iteration 2
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Example: N = 200, K = 2, iteration 4
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Example: N = 300, K = 3, iteration 7
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Example: N = 300, K = 3, iteration 8
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Example: N = 300, K = 3, iteration 9
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Example: N = 300, K = 3, iteration 10
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N = 15,K = 3 (Cooper, 1964)
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N = 15,K = 3 (Cooper, 1964)
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N = 50, K = 5 (Eilon, 1971)
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N = 50, K = 5 (Eilon, 1971)

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0.90.80.7

0.
6

0.6

0.5

0.5

0
.4

0.4

0.
4

0
.3

5

0.35

0
.3

5

0.9 0
.8

0
.7

0.6

0.6

0.5

0.50.4

0.4

0
.4

0.
35

0.35

0.
35

0.8
0.7

0.6

0.
5

0.5

0.4

0.4

0.3
5

0
.3

5

0.35

0.8
0.7

0.6

0.6

0.5

0.5

0.4
0.4

0.4

0.35

0.35

0.80.7

0.6

0
.6

0.
5

0
.5

0.4

0.4

0.4

0.35 0.35

0
.3

5

0.35

PROB. LEVEL SETS
   OF CLUSTER−1 

PROB. LEVEL SETS
   OF CLUSTER−2 

PROB. LEVEL SETS
   OF CLUSTER−3 

PROB. LEVEL SETS
   OF CLUSTER−4 

PROB. LEVEL SETS
   OF CLUSTER−5 



Outline

1 Abstract

2 Harmony in the animal kingdom

3 The harmonic mean

4 Inverse distance weighted interpolation

5 Clusters

6 Probabilities and distances

7 Extremal principle

8 Facility location

9 Territories of facilities

10 Validation: How many clusters?

11 References



The JDF of the dataset

The JDF of the dataset X is the sum of the JDF’s of all N data points
x ∈ X,

D(X) = ∑
x∈X

D(x) (24)

a function of the cluster centers ck, and distance functions dk
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The JDF of the dataset

The JDF of the dataset X is the sum of the JDF’s of all N data points
x ∈ X,

D(X) = ∑
x∈X

D(x) (24)

a function of the cluster centers ck, and distance functions dk
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Example: 2 clusters
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Example: 3 clusters
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Example: 4 clusters
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What if there is no structure?
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What is the correct number of clusters?
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