# Contour Approximation of Spatial Data, with Applications 

Adi Ben-Israel

September 19, 2019
(9) Abstract

2 Harmony in the animal kingdom
(3) The harmonic mean
4. Inverse distance weighted interpolation
(5) Clusters

6 Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities
(10) Validation: How many clusters?
(11) References

## Outline

## (9) Abstract

(2) Harmony in the animal kingdom
(3) The harmonic mean
a Inverse distance weighted interpolation
(5) Clusters

6 Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities
(10) Validation: How many clusters?
(11) References

## Abstract

Contour Approximation
Given a set $S$ of points in $\mathbb{R}^{n}$, a contour approximation of $S$ is a function that captures most points of $S$ in its lower level sets.

> A concrete application is the home-range of an animal population, or the territory occupied by it, shown in 1980 by Dixon and Chapman to involve the harmonic mean of distances, a result since then confirmed for many species. The harmonic mean of distances, or resistances, also features in inverse distance weighted interpolation, clustering, parallel circuits and multi-facility location. This lecture gives an axiomatic framework, and a probabilistic optimization model that unifies the above results, a model applied successfully to clustering and classification.

> Joint work with Tsvetan Asamov and Cem lyigun.

## Abstract

## Contour Approximation

Given a set $S$ of points in $\mathbb{R}^{n}$, a contour approximation of $S$ is a function that captures most points of $S$ in its lower level sets.

A concrete application is the home-range of an animal population, or the territory occupied by it, shown in 1980 by Dixon and Chapman to involve the harmonic mean of distances, a result since then confirmed for many species.

$$
\begin{aligned}
& \text { resistances, also features in inverse distance weighted } \\
& \text { interpolation, clustering, parallel circuits and multi-facility } \\
& \text { location. This lecture gives an axiomatic framework, and a } \\
& \text { probabilistic optimization model that unifies the above results, a } \\
& \text { model applied successfully to clustering and classification. } \\
& \text { Joint work with Tsvetan Asamov and Cem Iyigun. }
\end{aligned}
$$

## Abstract

## Contour Approximation

Given a set $S$ of points in $\mathbb{R}^{n}$, a contour approximation of $S$ is a function that captures most points of $S$ in its lower level sets.

A concrete application is the home-range of an animal population, or the territory occupied by it, shown in 1980 by Dixon and Chapman to involve the harmonic mean of distances, a result since then confirmed for many species. The harmonic mean of distances, or resistances, also features in inverse distance weighted interpolation, clustering, parallel circuits and multi-facility location.
probabilistic optimization model that unifies the above results, a model applied successfully to clustering and classification.

Joint work with TSvetan Asamov and Cem lyigun.

## Abstract

## Contour Approximation

Given a set $S$ of points in $\mathbb{R}^{n}$, a contour approximation of $S$ is a function that captures most points of $S$ in its lower level sets.

A concrete application is the home-range of an animal population, or the territory occupied by it, shown in 1980 by Dixon and Chapman to involve the harmonic mean of distances, a result since then confirmed for many species. The harmonic mean of distances, or resistances, also features in inverse distance weighted interpolation, clustering, parallel circuits and multi-facility location. This lecture gives an axiomatic framework, and a probabilistic optimization model that unifies the above results, a model applied successfully to clustering and classification.
Joint work with Tsvetan Asamov and Cem lyigun.

## Outline

(1) Abstract
(2) Harmony in the animal kingdom
(3) The harmonic mean

4 Inverse distance weighted interpolation
(5) Clusters

6 Probabilities and distances
(7) Extremal principle
(8) Facility location
-. Territories of facilities
(10) Validation: How many clusters?
(4) Peferences

## Example: Home range of black bear (ID)

A home range is the area in which an animal lives and moves on a periodic basis.

M.D. Samuel, D.J. Pierce and E.O. Garton, Identifying areas of concentrated use within the home range, J. Animal Ecology 54(1985), 711-719

A new method of calculating centers and areas of animal activity is presented based on the harmonic mean of an areal distribution. The center of activity is located in the area of greatest activity; in fact more than one "center" may exist.

The calculation of home range allows for heterogeneity of any habitat and is illustrated with data collected near Corvallis, Oregon, on the brush rabbit (Sylvilagus bachmani)
K.R. Dixon and J.A. Chapman, Harmonic mean measure of animal activity areas, Ecology 61(1980), 1040-1044

## More black bears, [6, p. 76]

## Adult Female Black Bear 87 in 1985



Figure 3.2 Location estimates (circles) and contours for the probability density function for adult female black bear 87 studied in 1985. The lightly dotted black line marks the study area border.

## The bears are confused, [6, p. 88]



Figure 3.4 A complex, simulated home range. (A) True density contours. (B) Fixed kernel density estimate with cross-validated band width choice. (C) Adaptive kernel density estimate with crossvalidated band width choice. (D) Fixed kernel density estimate with ad hoc band width choice. (E) Adaptive kernel density estimate with ad hoc band width choice. (F) Harmonic mean estimate. Modified from Powell et al. (1997).

## Example: 2 centers



Two clusters with different "geometries".
10 numbers suffice to represent the data.

## Example: 3 centers



15 numbers suffice to represent the data.

## Outline

(9) Abstract
(3) 'Harmony in the animal kingdom
(3) The harmonic mean

4 Inverse distance weighted interpolation
(5) Clusters
6. Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities
(10) Validation: How many clusters?
(11) References

## The harmonic mean

The harmonic mean of $n$ positive numbers $x_{1}, \cdots, x_{n}$ is

$$
\begin{equation*}
H\left(x_{1}, \cdots, x_{n}\right)=\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \tag{1}
\end{equation*}
$$

The AGH inequality,
with equality iff $x_{1}=\cdots=x_{n}$
If $\left\{x_{1}, \cdots, x_{n}\right\}$ have weights $\left\{w_{1}, \cdots, w_{n}\right\}$, their weighted harmonic mean is
(1) is a special case of (2) for all weights $w_{i}=1$.

## The harmonic mean

The harmonic mean of $n$ positive numbers $x_{1}, \cdots, x_{n}$ is

$$
\begin{equation*}
H\left(x_{1}, \cdots, x_{n}\right)=\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \tag{1}
\end{equation*}
$$

The AGH inequality,

$$
A\left(x_{1}, \cdots, x_{n}\right) \geq G\left(x_{1}, \cdots, x_{n}\right) \geq H\left(x_{1}, \cdots, x_{n}\right)
$$

with equality iff $x_{1}=\cdots=x_{n}$

If $\left\{x_{1}, \cdots, x_{n}\right\}$ have weights $\left\{w_{1}, \cdots, w_{n}\right\}$, their weighted harmonic mean is


## The harmonic mean

The harmonic mean of $n$ positive numbers $x_{1}, \cdots, x_{n}$ is

$$
\begin{equation*}
H\left(x_{1}, \cdots, x_{n}\right)=\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \tag{1}
\end{equation*}
$$

The AGH inequality,

$$
A\left(x_{1}, \cdots, x_{n}\right) \geq G\left(x_{1}, \cdots, x_{n}\right) \geq H\left(x_{1}, \cdots, x_{n}\right)
$$

with equality iff $x_{1}=\cdots=x_{n}$
If $\left\{x_{1}, \cdots, x_{n}\right\}$ have weights $\left\{w_{1}, \cdots, w_{n}\right\}$, their weighted harmonic mean is

$$
\begin{equation*}
H\left(x_{1}, \cdots, x_{n} ; w_{1}, \cdots, w_{n}\right)=\frac{\sum_{i=1}^{n} w_{i}}{\sum_{i=1}^{n} \frac{w_{i}}{x_{i}}} \tag{2}
\end{equation*}
$$

(1) is a special case of (2) for all weights $w_{i}=1$.

## Example: Parallel circuit

Two resistances, $R_{1}$ and $R_{2}$, are connected in parallel. What is the resistance $R$ of the parallel circuit?


The conductance $C=1 / R$ of the parallel circuit is


## Example: Parallel circuit

Two resistances, $R_{1}$ and $R_{2}$, are connected in parallel. What is the resistance $R$ of the parallel circuit?


The conductance $C=1 / R$ of the parallel circuit is

$$
C=C_{1}+C_{2}=1 / R_{1}+1 / R_{2},
$$



## Example: Parallel circuit

Two resistances, $R_{1}$ and $R_{2}$, are connected in parallel. What is the resistance $R$ of the parallel circuit?


The conductance $C=1 / R$ of the parallel circuit is

$$
C=C_{1}+C_{2}=1 / R_{1}+1 / R_{2},
$$



$$
\therefore R=\frac{1}{1 / R_{1}+1 / R_{2}}
$$

## Example: Parallel circuit

Two resistances, $R_{1}$ and $R_{2}$, are connected in parallel. What is the resistance $R$ of the parallel circuit?


The conductance $C=1 / R$ of the parallel circuit is

$$
C=C_{1}+C_{2}=1 / R_{1}+1 / R_{2},
$$



$$
\therefore R=\frac{1}{1 / R_{1}+1 / R_{2}}=\frac{1}{2} H\left(R_{1}, R_{2}\right) .
$$

## Example: Working together

There are $n$ workers, and one job.
Worker $i$, working alone, can do the job in $D_{i}$ days, $i \in \overline{1, n}$.
Question: In how many days will the job be done by the $n$ workers working together?

Answer: The job will be done in

which is

$$
\frac{1}{n} H\left(D_{1}, \cdots, D_{n}\right) \quad \text { days. }
$$

If $D_{i}>0, i \in \overline{1, n}$, then
$\frac{1}{n} H\left(D_{1}, \cdots, D_{n}\right) \leq \min \left\{D_{1}, \cdots, D_{n}\right\} \leq H\left(D_{1}, \cdots, D_{n}\right)$
(3)

## Example: Working together

There are $n$ workers, and one job.
Worker $i$, working alone, can do the job in $D_{i}$ days, $i \in \overline{1, n}$.
Question: In how many days will the job be done by the $n$ workers working together?

Answer: The job will be done in

which is

If $D_{i}>0, i \in \overline{1, n}$, then

## Example: Working together

There are $n$ workers, and one job.
Worker $i$, working alone, can do the job in $D_{i}$ days, $i \in \overline{1, n}$.
Question: In how many days will the job be done by the $n$ workers working together?

Answer: The job will be done in

$$
\frac{1}{\sum_{i=1}^{n} \frac{1}{D_{i}}} \text { days, }
$$



## Example: Working together

There are $n$ workers, and one job.
Worker $i$, working alone, can do the job in $D_{i}$ days, $i \in \overline{1, n}$.
Question: In how many days will the job be done by the $n$ workers working together?

Answer: The job will be done in

$$
\frac{1}{\sum_{i=1}^{n} \frac{1}{D_{i}}} \text { days, }
$$

which is

$$
\frac{1}{n} H\left(D_{1}, \cdots, D_{n}\right) \quad \text { days. }
$$

If $D_{i}>0, i \in \overline{1, n}$, then

## Example: Working together

There are $n$ workers, and one job.
Worker $i$, working alone, can do the job in $D_{i}$ days, $i \in \overline{1, n}$.
Question: In how many days will the job be done by the $n$ workers working together?

Answer: The job will be done in

$$
\frac{1}{\sum_{i=1}^{n} \frac{1}{D_{i}}} \text { days, }
$$

which is

$$
\frac{1}{n} H\left(D_{1}, \cdots, D_{n}\right) \quad \text { days. }
$$

If $D_{i}>0, i \in \overline{1, n}$, then

$$
\begin{equation*}
\frac{1}{n} H\left(D_{1}, \cdots, D_{n}\right) \leq \min \left\{D_{1}, \cdots, D_{n}\right\} \leq H\left(D_{1}, \cdots, D_{n}\right) \tag{3}
\end{equation*}
$$

## Detour: A harmonic mean for matrices

For $a, b>0$,

$$
\frac{1}{2} H(a, b)=\frac{a b}{a+b}
$$

The parallel sum of matrices $A, B \in \mathbb{C}^{m \times n}$ is, [2],

$$
\begin{equation*}
A: B:=A(A+B)^{\dagger} B \tag{4}
\end{equation*}
$$

Let $L$ be a subspace of $\mathbb{C}^{n}$,
$P_{L}$ the orthogonal projection on $L$, i.e.

$$
P_{L}=P_{L}^{2}=P_{L}^{*}, R\left(P_{L}\right)=L .
$$

## Theorem (Anderson \& Duffin, [2])

Let $I, M$ be subspaces of $\mathbb{C} n$,
$P_{L}, P_{M}$ the corresponding orthogonal projections.
Then

$$
P_{L \cap M}=2 P_{L}\left(P_{L}+P_{M}\right)^{\dagger} P_{M}
$$

## Detour: A harmonic mean for matrices

For $a, b>0$,

$$
\frac{1}{2} H(a, b)=\frac{a b}{a+b}
$$

The parallel sum of matrices $A, B \in \mathbb{C}^{m \times n}$ is, [2],

$$
\begin{equation*}
A: B:=A(A+B)^{\dagger} B \tag{4}
\end{equation*}
$$

Let $L$ be a subspace of $\mathbb{C}^{n}$, $P_{L}$ the orthogonal projection on $L$, i.e.

$$
P_{L}=P_{L}^{2}=P_{L}^{*}, R\left(P_{L}\right)=L .
$$

## Theorem (Anderson \& Duffin, [2])

Let $L, M$ be subspaces of $\mathbb{C}^{n}$,
$P_{L}, P_{M}$ the corresponding orthogonal projections.
Then

$$
\begin{equation*}
P_{L \cap M}=2 P_{L}\left(P_{L}+P_{M}\right)^{\dagger} P_{M} \tag{5}
\end{equation*}
$$

## An extremal principle

## Theorem (Morley, [14])

If $A, B \in \mathbb{C}^{n \times n}$ are $P S D$, then for any $\mathbf{x} \in \mathbb{C}^{n}$,

$$
\begin{equation*}
\langle\mathbf{x}, A: B \mathbf{x}\rangle=\inf \{\langle\mathbf{y}, A \mathbf{y}\rangle+\langle\mathbf{z}, B \mathbf{z}\rangle: \mathbf{y}+\mathbf{z}=\mathbf{x}\} \tag{6}
\end{equation*}
$$

Example. If resistances $R_{1}, R_{2}$ are connected in parallel, the resulting resistance is

$$
R_{1}: R_{2}=\frac{1}{1 / R_{1}+1 / R_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

A current $I$ through $R_{1}: R_{2}$ splits into currents $I_{1}, I_{2}$ so as to minimize the dissipated power


## An extremal principle

## Theorem (Morley, [14])

If $A, B \in \mathbb{C}^{n \times n}$ are $P S D$, then for any $\mathbf{x} \in \mathbb{C}^{n}$,

$$
\begin{equation*}
\langle\mathbf{x}, A: B \mathbf{x}\rangle=\inf \{\langle\mathbf{y}, A \mathbf{y}\rangle+\langle\mathbf{z}, B \mathbf{z}\rangle: \mathbf{y}+\mathbf{z}=\mathbf{x}\} \tag{6}
\end{equation*}
$$

Example. If resistances $R_{1}, R_{2}$ are connected in parallel, the resulting resistance is

$$
R_{1}: R_{2}=\frac{1}{1 / R_{1}+1 / R_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

A current $I$ through $R_{1}: R_{2}$ splits into currents $I_{1}, I_{2}$ so as to minimize the dissipated power

## An extremal principle

## Theorem (Morley, [14])

If $A, B \in \mathbb{C}^{n \times n}$ are $P S D$, then for any $\mathbf{x} \in \mathbb{C}^{n}$,

$$
\begin{equation*}
\langle\mathbf{x}, A: B \mathbf{x}\rangle=\inf \{\langle\mathbf{y}, A \mathbf{y}\rangle+\langle\mathbf{z}, B \mathbf{z}\rangle: \mathbf{y}+\mathbf{z}=\mathbf{x}\} \tag{6}
\end{equation*}
$$

Example. If resistances $R_{1}, R_{2}$ are connected in parallel, the resulting resistance is

$$
R_{1}: R_{2}=\frac{1}{1 / R_{1}+1 / R_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

A current $I$ through $R_{1}: R_{2}$ splits into currents $I_{1}, I_{2}$ so as to minimize the dissipated power

## An extremal principle

## Theorem (Morley, [14])

If $A, B \in \mathbb{C}^{n \times n}$ are $P S D$, then for any $\mathbf{x} \in \mathbb{C}^{n}$,

$$
\begin{equation*}
\langle\mathbf{x}, A: B \mathbf{x}\rangle=\inf \{\langle\mathbf{y}, A \mathbf{y}\rangle+\langle\mathbf{z}, B \mathbf{z}\rangle: \mathbf{y}+\mathbf{z}=\mathbf{x}\} \tag{6}
\end{equation*}
$$

Example. If resistances $R_{1}, R_{2}$ are connected in parallel, the resulting resistance is

$$
R_{1}: R_{2}=\frac{1}{1 / R_{1}+1 / R_{2}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

A current $I$ through $R_{1}: R_{2}$ splits into currents $I_{1}, I_{2}$ so as to minimize the dissipated power

$$
\left(R_{1}: R_{2}\right) I^{2}=\min \left\{R_{1} I_{1}^{2}+R_{2} I_{2}^{2}: I_{1}+I_{2}=I\right\}
$$

## Maxwell's variational principle, [9]



The problem

$$
\min \left\{I_{1}^{2} R_{1}+I_{2}^{2} R_{2}: I_{1}+I_{2}=I\right\},
$$

has the Lagrangian,

$$
L\left(I_{1}, I_{2}, \lambda\right)=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}-\lambda\left(I_{1}+I_{2}-I\right)
$$

Differentiating $L$ w.r.t. $I_{1}, I_{2}$ results in Ohm's law
$I_{1} R_{1}=I_{2} R_{2}$,

## Maxwell's variational principle, [9]



The problem

$$
\min \left\{I_{1}^{2} R_{1}+I_{2}^{2} R_{2}: I_{1}+I_{2}=I\right\}
$$

has the Lagrangian,

$$
L\left(I_{1}, I_{2}, \lambda\right)=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}-\lambda\left(I_{1}+I_{2}-I\right) .
$$

## Maxwell's variational principle, [9]



The problem

$$
\min \left\{I_{1}^{2} R_{1}+I_{2}^{2} R_{2}: I_{1}+I_{2}=I\right\}
$$

has the Lagrangian,

$$
L\left(I_{1}, I_{2}, \lambda\right)=I_{1}^{2} R_{1}+I_{2}^{2} R_{2}-\lambda\left(I_{1}+I_{2}-I\right) .
$$

Differentiating $L$ w.r.t. $I_{1}, I_{2}$ results in Ohm's law

$$
I_{1} R_{1}=I_{2} R_{2}
$$

the voltage drop from $A$ to $B$.

## Outline

(9) Abstract
(2) Harmony in the animal kingdom
(3) The harmonic mean
4. Inverse distance weighted interpolation
(5) Clusters

6 Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities

10 Validation: How many clusters?
(11) References

## Inverse distance weighted (IDW) interpolation

Shepard (1968)
A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is evaluated at $K$ given points $\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$ in $\mathbb{R}^{n}$, giving the values $\left\{u_{k}: k \in \overline{1, K}\right\}$, respectively. It is required to

Shepard [15] estimated $u(\mathbf{x})$ as a convex combination,

with weights $\lambda_{k}(\mathbf{x})$ inversely proportional to distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$


## Inverse distance weighted (IDW) interpolation

Shepard (1968)
A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is evaluated at $K$ given points $\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$ in $\mathbb{R}^{n}$, giving the values $\left\{u_{k}: k \in \overline{1, K}\right\}$, respectively. It is required to estimate $u$ at a point $\mathbf{x} \in \operatorname{conv}\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$.

Shepard [15] estimated $u(\mathbf{x})$ as a convex combination,
with weights $\lambda_{k}(\mathbf{x})$ inversely proportional to distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$


## Inverse distance weighted (IDW) interpolation

## Shepard (1968)

A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is evaluated at $K$ given points $\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$ in $\mathbb{R}^{n}$, giving the values $\left\{u_{k}: k \in \overline{1, K}\right\}$, respectively. It is required to estimate $u$ at a point $\mathbf{x} \in \operatorname{conv}\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$.

Shepard [15] estimated $u(\mathbf{x})$ as a convex combination,

$$
\begin{equation*}
u(\mathbf{x})=\sum_{k=1}^{K} \lambda_{k}(\mathbf{x}) u_{k} \tag{7}
\end{equation*}
$$

with weights $\lambda_{k}(\mathbf{x})$ inversely proportional to distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$


## Inverse distance weighted (IDW) interpolation

## Shepard (1968)

A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is evaluated at $K$ given points $\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$ in $\mathbb{R}^{n}$, giving the values $\left\{u_{k}: k \in \overline{1, K}\right\}$, respectively. It is required to estimate $u$ at a point $\mathbf{x} \in \operatorname{conv}\left\{\mathbf{x}_{k}: k \in \overline{1, K}\right\}$.

Shepard [15] estimated $u(\mathbf{x})$ as a convex combination,

$$
\begin{equation*}
u(\mathbf{x})=\sum_{k=1}^{K} \lambda_{k}(\mathbf{x}) u_{k} \tag{7}
\end{equation*}
$$

with weights $\lambda_{k}(\mathbf{x})$ inversely proportional to distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$

$$
\begin{equation*}
u(\mathbf{x})=\sum_{k=1}^{K}\left(\frac{\frac{1}{d\left(\mathbf{x}, \mathbf{x}_{k}\right)}}{\sum_{j=1}^{K} \frac{1}{d\left(\mathbf{x}, \mathbf{x}_{j}\right)}}\right) u_{k} \tag{8}
\end{equation*}
$$

## IDW interpolation (cont'd)

The IDW interpolation at $\mathbf{x}$ of values $u_{k}$ given at $\mathbf{x}_{k}, k \in \overline{1, K}$,

$$
\begin{equation*}
u(\mathbf{x})=\sum_{k=1}^{K}\left(\frac{\frac{1}{d\left(\mathbf{x}, \mathbf{x}_{k}\right)}}{\sum_{j=1}^{K} \frac{1}{d\left(\mathbf{x}, \mathbf{x}_{j}\right)}}\right) u_{k} \tag{8}
\end{equation*}
$$

Interpolating the $K$ distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$, i.e. taking $u_{k}=d\left(\mathbf{x}, \mathbf{x}_{k}\right)$ in (8), gives


## IDW interpolation (cont’d)

The IDW interpolation at $\mathbf{x}$ of values $u_{k}$ given at $\mathbf{x}_{k}, k \in \overline{1, K}$,

$$
\begin{equation*}
u(\mathbf{x})=\sum_{k=1}^{K}\left(\frac{\frac{1}{d\left(\mathbf{x}, \mathbf{x}_{k}\right)}}{\sum_{j=1}^{K} \frac{1}{d\left(\mathbf{x}, \mathbf{x}_{j}\right)}}\right) u_{k} \tag{8}
\end{equation*}
$$

Interpolating the $K$ distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$, i.e. taking $u_{k}=d\left(\mathbf{x}, \mathbf{x}_{k}\right)$ in (8), gives

$$
\begin{equation*}
\frac{K}{\sum_{j=1}^{K} \frac{1}{d\left(\mathbf{x}, \mathbf{x}_{j}\right)}} \tag{9}
\end{equation*}
$$

the harmonic mean of the distances $\left\{d\left(\mathbf{x}, \mathbf{x}_{k}\right): k \in \overline{1, K}\right\}$, a measure of how far is x from the points

## IDW interpolation (cont’d)

The IDW interpolation at $\mathbf{x}$ of values $u_{k}$ given at $\mathbf{x}_{k}, k \in \overline{1, K}$,

$$
\begin{equation*}
u(\mathbf{x})=\sum_{k=1}^{K}\left(\frac{\frac{1}{d\left(\mathbf{x}, \mathbf{x}_{k}\right)}}{\sum_{j=1}^{K} \frac{1}{d\left(\mathbf{x}, \mathbf{x}_{j}\right)}}\right) u_{k} \tag{8}
\end{equation*}
$$

Interpolating the $K$ distances $d\left(\mathbf{x}, \mathbf{x}_{k}\right)$, i.e. taking $u_{k}=d\left(\mathbf{x}, \mathbf{x}_{k}\right)$ in (8), gives

$$
\begin{equation*}
\frac{K}{\sum_{j=1}^{K} \frac{1}{d\left(\mathbf{x}, \mathbf{x}_{j}\right)}} \tag{9}
\end{equation*}
$$

the harmonic mean of the distances $\left\{d\left(\mathbf{x}, \mathbf{x}_{k}\right): k \in \overline{1, K}\right\}$, a measure of how far is $\mathbf{x}$ from the points $\left\{\mathbf{x}_{k}\right\}$.

## Outline

（9）Abstract
2．Harmony in the animal kingdom
（3）The harmonic mean
4．Inverse distance weighted interpolation
（5）Clusters
（6）Probabilities and distances
（7）Extremal principle
8 Facility location
（9）Territories of facilities
（10）Validation：How many clusters？
（11）References

## Clusters and distances

Consider a data set $\mathscr{D}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$. We assume that $\mathscr{D}$ is partitioned into $K$ clusters $\mathscr{C}_{k}, 1<K<N$.

With each cluster $\mathscr{C}_{k}$, we associate:

- a distance function $d_{k}$, for example the Mahalanobis distance

$$
\begin{equation*}
d_{k}(\mathrm{x}, \mathrm{y})=\left\langle\mathrm{x}-\mathrm{y}, \Sigma_{k}^{1}(\mathrm{x}-\mathrm{y})\right\rangle \tag{10}
\end{equation*}
$$

where $\Sigma_{k}$ is the covariance-matrix of $\mathscr{C}_{k}$, and

- a center $\mathbf{c}_{k}$ minimizing the sum of distances to all points in the cluster


The distance between a point $\mathbf{x}$ and the cluster $\mathscr{C}_{k}$ is defined as

$$
\begin{equation*}
d\left(\mathrm{x}, \mathscr{C}_{k}\right):=d_{k}\left(\mathrm{x}, \mathrm{c}_{k}\right) \tag{12}
\end{equation*}
$$

The distance between clusters is not defined, and not needed.

## Clusters and distances

Consider a data set $\mathscr{D}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$. We assume that $\mathscr{D}$ is partitioned into $K$ clusters $\mathscr{C}_{k}, 1<K<N$.

With each cluster $\mathscr{C}_{k}$, we associate:

- a distance function $d_{k}$, for example the Mahalanobis distance

$$
\begin{equation*}
d_{k}(\mathbf{x}, \mathbf{y})=\left\langle\mathbf{x}-\mathbf{y}, \Sigma_{k}^{-1}(\mathbf{x}-\mathbf{y})\right\rangle \tag{10}
\end{equation*}
$$

where $\Sigma_{k}$ is the covariance-matrix of $\mathscr{C}_{k}$,

- a center $\mathrm{c}_{k}$ minimizing the sum of distances to all points in the cluster

The distance between a point $\mathbf{x}$ and the cluster $\mathscr{C}_{k}$ is defined as

The distance between clusters is not defined, and not needed.

## Clusters and distances

Consider a data set $\mathscr{D}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$. We assume that $\mathscr{D}$ is partitioned into $K$ clusters $\mathscr{C}_{k}, 1<K<N$.
With each cluster $\mathscr{C}_{k}$, we associate:

- a distance function $d_{k}$, for example the Mahalanobis distance

$$
\begin{equation*}
d_{k}(\mathbf{x}, \mathbf{y})=\left\langle\mathbf{x}-\mathbf{y}, \Sigma_{k}^{-1}(\mathbf{x}-\mathbf{y})\right\rangle \tag{10}
\end{equation*}
$$

where $\Sigma_{k}$ is the covariance-matrix of $\mathscr{C}_{k}$, and

- a center $\mathbf{c}_{k}$ minimizing the sum of distances to all points in the cluster

$$
\begin{equation*}
\mathbf{c}_{k}:=\arg \min _{\mathbf{c}} \sum_{\mathbf{x} \in \mathscr{C}_{k}} d_{k}(\mathbf{x}, \mathbf{c}) \tag{11}
\end{equation*}
$$

The distance between a point $x$ and the cluster $\mathscr{C}_{k}$ is defined as
$d\left(\mathbf{x}, \mathscr{C}_{k}\right):=d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right)$
The distance between clusters is not defined, and not needed.

## Clusters and distances

Consider a data set $\mathscr{D}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$. We assume that $\mathscr{D}$ is partitioned into $K$ clusters $\mathscr{C}_{k}, 1<K<N$.
With each cluster $\mathscr{C}_{k}$, we associate:

- a distance function $d_{k}$, for example the Mahalanobis distance

$$
\begin{equation*}
d_{k}(\mathbf{x}, \mathbf{y})=\left\langle\mathbf{x}-\mathbf{y}, \Sigma_{k}^{-1}(\mathbf{x}-\mathbf{y})\right\rangle \tag{10}
\end{equation*}
$$

where $\Sigma_{k}$ is the covariance-matrix of $\mathscr{C}_{k}$, and

- a center $\mathbf{c}_{k}$ minimizing the sum of distances to all points in the cluster

$$
\begin{equation*}
\mathbf{c}_{k}:=\arg \min _{\mathbf{c}} \sum_{\mathbf{x} \in \mathscr{C}_{k}} d_{k}(\mathbf{x}, \mathbf{c}) \tag{11}
\end{equation*}
$$

The distance between a point $\mathbf{x}$ and the cluster $\mathscr{C}_{k}$ is defined as

$$
\begin{equation*}
d\left(\mathbf{x}, \mathscr{C}_{k}\right):=d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right) \tag{12}
\end{equation*}
$$

The distance between clusters is not defined, and not needed.

## Clusters and distances

Consider a data set $\mathscr{D}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$. We assume that $\mathscr{D}$ is partitioned into $K$ clusters $\mathscr{C}_{k}, 1<K<N$.
With each cluster $\mathscr{C}_{k}$, we associate:

- a distance function $d_{k}$, for example the Mahalanobis distance

$$
\begin{equation*}
d_{k}(\mathbf{x}, \mathbf{y})=\left\langle\mathbf{x}-\mathbf{y}, \Sigma_{k}^{-1}(\mathbf{x}-\mathbf{y})\right\rangle \tag{10}
\end{equation*}
$$

where $\Sigma_{k}$ is the covariance-matrix of $\mathscr{C}_{k}$, and

- a center $\mathbf{c}_{k}$ minimizing the sum of distances to all points in the cluster

$$
\begin{equation*}
\mathbf{c}_{k}:=\arg \min _{\mathbf{c}} \sum_{\mathbf{x} \in \mathscr{C}_{k}} d_{k}(\mathbf{x}, \mathbf{c}) \tag{11}
\end{equation*}
$$

The distance between a point $\mathbf{x}$ and the cluster $\mathscr{C}_{k}$ is defined as

$$
\begin{equation*}
d\left(\mathbf{x}, \mathscr{C}_{k}\right):=d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right) \tag{12}
\end{equation*}
$$

The distance between clusters is not defined, and not needed.

## The quasi-linear mean, [1, Section 5.3.2]

Let $I=[a, b], f: I \rightarrow I$ continuous, strictly monotonic.
Let $w_{1}, w_{2} \geq 0 ; w_{1}+w_{2}>0$.
The quasi-linear mean of $x_{1}, x_{2} \in I$ is

$$
\begin{equation*}
F\left(x_{1}, x_{2} ; w_{1}, w_{2}\right):=f\left(\frac{w_{1} f^{-1}\left(x_{1}\right)+w_{2} f^{-1}\left(x_{2}\right)}{w_{1}+w_{2}}\right) . \tag{13}
\end{equation*}
$$

For $f(t)=t$, (13) gives the weighted arithmetic mean,

For $f(t)=t^{-1}, 0 \notin I$, (13) gives
the weighted harmonic mean of $x_{1}, x_{2}$.

## The quasi-linear mean, [1, Section 5.3.2]

Let $I=[a, b], f: I \rightarrow I$ continuous, strictly monotonic.
Let $w_{1}, w_{2} \geq 0 ; w_{1}+w_{2}>0$.
The quasi-linear mean of $x_{1}, x_{2} \in I$ is

$$
\begin{equation*}
F\left(x_{1}, x_{2} ; w_{1}, w_{2}\right):=f\left(\frac{w_{1} f^{-1}\left(x_{1}\right)+w_{2} f^{-1}\left(x_{2}\right)}{w_{1}+w_{2}}\right) \tag{13}
\end{equation*}
$$

For $f(t)=t$, (13) gives the weighted arithmetic mean,

$$
F\left(x_{1}, x_{2} ; w_{1}, w_{2}\right)=\frac{w_{1} x_{1}+w_{2} x_{2}}{w_{1}+w_{2}}
$$

the weighted harmonic mean of $x_{1}, x_{2}$

## The quasi-linear mean, [1, Section 5.3.2]

Let $I=[a, b], f: I \rightarrow I$ continuous, strictly monotonic.
Let $w_{1}, w_{2} \geq 0 ; w_{1}+w_{2}>0$.
The quasi-linear mean of $x_{1}, x_{2} \in I$ is

$$
\begin{equation*}
F\left(x_{1}, x_{2} ; w_{1}, w_{2}\right):=f\left(\frac{w_{1} f^{-1}\left(x_{1}\right)+w_{2} f^{-1}\left(x_{2}\right)}{w_{1}+w_{2}}\right) \tag{13}
\end{equation*}
$$

For $f(t)=t$, (13) gives the weighted arithmetic mean,

$$
F\left(x_{1}, x_{2} ; w_{1}, w_{2}\right)=\frac{w_{1} x_{1}+w_{2} x_{2}}{w_{1}+w_{2}}
$$

For $f(t)=t^{-1}, 0 \notin I$, (13) gives

$$
F\left(x_{1}, x_{2} ; w_{1}, w_{2}\right)=\frac{w_{1}+w_{2}}{\frac{w_{1}}{x_{1}}+\frac{w_{2}}{x_{2}}}
$$

the weighted harmonic mean of $x_{1}, x_{2}$.

## Contour approximation, [3], [10]

## Definition

Let $D(\mathbf{x})$ be a function of the $K$ distances $d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right)$ and cluster sizes $q_{k}$. Then $D(\cdot)$ is a contour approximation of $\mathscr{D}$ if

$$
\begin{equation*}
D(\mathbf{x}) \leq d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right), \forall \mathbf{x} \in \mathbb{R}^{n}, k \in \overline{1, K} \tag{14}
\end{equation*}
$$

be a quasi-linear mean of $d_{1}\left(\mathbf{x}, \mathrm{c}_{1}\right)$,

where $q_{k}$ is the size of the cluster $\mathscr{C}_{k}$. Arav [3] listed desirable properties for $F$ and proved

a weighted harmonic mean of the distances.

## Contour approximation, [3], [10]

## Definition

Let $D(\mathbf{x})$ be a function of the $K$ distances $d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right)$ and cluster sizes $q_{k}$. Then $D(\cdot)$ is a contour approximation of $\mathscr{D}$ if

$$
\begin{equation*}
D(\mathbf{x}) \leq d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right), \forall \mathbf{x} \in \mathbb{R}^{n}, k \in \overline{1, K} \tag{14}
\end{equation*}
$$

Let $F: \mathbb{R}^{2 k} \rightarrow \mathbb{R}_{+}$be a quasi-linear mean of $d_{1}\left(\mathbf{x}, \mathbf{c}_{1}\right), \cdots, d_{K}\left(\mathbf{x}, \mathbf{c}_{K}\right)$ and

$$
\begin{equation*}
D(\mathbf{x})=\frac{F\left(d_{1}\left(\mathbf{x}, \mathbf{c}_{1}\right), \cdots, d_{K}\left(\mathbf{x}, \mathbf{c}_{K}\right) ; q_{1}, \cdots, q_{K}\right)}{q_{1}+\cdots+q_{k}} \tag{15}
\end{equation*}
$$

where $q_{k}$ is the size of the cluster $\mathscr{C}_{k}$. Arav [3] listed desirable
properties for $F$ and proved

## Contour approximation, [3], [10]

## Definition

Let $D(\mathbf{x})$ be a function of the $K$ distances $d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right)$ and cluster sizes $q_{k}$. Then $D(\cdot)$ is a contour approximation of $\mathscr{D}$ if

$$
\begin{equation*}
D(\mathbf{x}) \leq d_{k}\left(\mathbf{x}, \mathbf{c}_{k}\right), \forall \mathbf{x} \in \mathbb{R}^{n}, k \in \overline{1, K} \tag{14}
\end{equation*}
$$

Let $F: \mathbb{R}^{2 k} \rightarrow \mathbb{R}_{+}$be a quasi-linear mean of $d_{1}\left(\mathbf{x}, \mathbf{c}_{1}\right), \cdots, d_{K}\left(\mathbf{x}, \mathbf{c}_{K}\right)$ and

$$
\begin{equation*}
D(\mathbf{x})=\frac{F\left(d_{1}\left(\mathbf{x}, \mathbf{c}_{1}\right), \cdots, d_{K}\left(\mathbf{x}, \mathbf{c}_{K}\right) ; q_{1}, \cdots, q_{K}\right)}{q_{1}+\cdots+q_{k}} \tag{15}
\end{equation*}
$$

where $q_{k}$ is the size of the cluster $\mathscr{C}_{k}$. $\operatorname{Arav}[3]$ listed desirable properties for $F$ and proved

$$
\begin{equation*}
F\left(d_{1}, \cdots, d_{K} ; q_{1}, \cdots, q_{K}\right)=\frac{q_{1}+\cdots+q_{k}}{q_{1} / d_{1}+\cdots+q_{k} / d_{k}} \tag{16}
\end{equation*}
$$

a weighted harmonic mean of the distances.

## Outline

(9) Abstract
(2) Harmony in the animal kingdom
(3) The harmonic mean
(4.) Inverse distance weighted interpolation
(5) Clusters

6 Probabilities and distances
(7) Extremal principle
(8) Facility location

- Territories of facilities
(10) Validation: How many clusters?
(4) References


## Probabilities and distances

Given $K$ facilities (stores, gyms, hospitals, etc.) to go to, denote by $(\mathbf{x} \rightarrow k)$ the event that a person at $\mathbf{x}$ goes to the $k_{\mathrm{th}}$ facility, and let

$$
p_{k}(\mathbf{x})=\text { probability of }(\mathbf{x} \rightarrow k), k \in \overline{1, K}
$$

Assume that at any point x these probabilities depend on $d_{k}(\mathbf{x})=$ the distance of $\mathbf{x}$ from the $k_{\mathrm{th}}$ facility,
as follows:
a facility is more likely to be chosen the closer it is.

Meaning that for any point $\mathbf{x}$, and any two facilities $i, j \in \overline{1, K}$,

$$
d_{i}(\mathrm{x})<d_{j}(\mathrm{x}) \Longrightarrow p_{i}(\mathrm{x})>p_{j}(\mathrm{x}) .
$$

## Probabilities and distances

Given $K$ facilities (stores, gyms, hospitals, etc.) to go to, denote by $(\mathbf{x} \rightarrow k)$ the event that a person at $\mathbf{x}$ goes to the $k_{\mathrm{th}}$ facility, and let

$$
p_{k}(\mathbf{x})=\text { probability of }(\mathbf{x} \rightarrow k), k \in \overline{1, K}
$$

Assume that at any point $\mathbf{x}$ these probabilities depend on

$$
d_{k}(\mathbf{x})=\text { the distance of } \mathbf{x} \text { from the } k_{\mathrm{th}} \text { facility },
$$

as follows:
a facility is more likely to be chosen the closer it is.

Meaning that for any point $\mathbf{x}$, and any two facilities $i, j \in \overline{1, K}$,

## Probabilities and distances

Given $K$ facilities (stores, gyms, hospitals, etc.) to go to, denote by $(\mathbf{x} \rightarrow k)$ the event that a person at $\mathbf{x}$ goes to the $k_{\mathrm{th}}$ facility, and let

$$
p_{k}(\mathbf{x})=\text { probability of }(\mathbf{x} \rightarrow k), k \in \overline{1, K}
$$

Assume that at any point $\mathbf{x}$ these probabilities depend on

$$
d_{k}(\mathbf{x})=\text { the distance of } \mathbf{x} \text { from the } k_{\mathrm{th}} \text { facility, }
$$

as follows:
a facility is more likely to be chosen the closer it is.

Meaning that for any point $\mathbf{x}$, and any two facilities $i, j \in \overline{1, K}$,

$$
\begin{equation*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}) . \tag{a}
\end{equation*}
$$

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,
$d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x})$,

$$
\mathbf{f}(\lambda \mathbf{d}(\mathbf{x}))=\mathbf{f}(\mathbf{d}(\mathbf{x})) \text {, for any } \lambda>0
$$

$$
Q \mathbf{p}(\mathbf{x})=\mathbf{f}(Q \mathbf{d}(\mathbf{x})),
$$

$\mathbf{f}$ is continuous,

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \quad \forall k \in S, \tag{e}
\end{equation*}
$$

where $p_{S}(\mathbf{x}):=\sum_{s \in S} p_{s}(\mathbf{x})$,

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,

$$
\begin{equation*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}), \tag{a}
\end{equation*}
$$

$\mathbf{f}(\lambda \mathbf{d}(\mathbf{x}))=\mathbf{f}(\mathbf{d}(\mathbf{x}))$, for any $\lambda>0$

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,

$$
\begin{align*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) & \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}),  \tag{a}\\
\mathbf{f}(\lambda \mathbf{d}(\mathbf{x})) & =\mathbf{f}(\mathbf{d}(\mathbf{x})), \text { for any } \lambda>0 \tag{b}
\end{align*}
$$

$Q \mathbf{p}(\mathbf{x})=\mathbf{f}(Q \mathbf{d}(\mathbf{x}))$,

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,

$$
\begin{align*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) & \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}),  \tag{a}\\
\mathbf{f}(\lambda \mathbf{d}(\mathbf{x})) & =\mathbf{f}(\mathbf{d}(\mathbf{x})), \text { for any } \lambda>0  \tag{b}\\
Q \mathbf{p}(\mathbf{x}) & =\mathbf{f}(Q \mathbf{d}(\mathbf{x})), \tag{c}
\end{align*}
$$

f is continuous,

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,

$$
\begin{align*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) & \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}),  \tag{a}\\
\mathbf{f}(\lambda \mathbf{d}(\mathbf{x})) & =\mathbf{f}(\mathbf{d}(\mathbf{x})), \text { for any } \lambda>0  \tag{b}\\
Q \mathbf{p}(\mathbf{x}) & =\mathbf{f}(Q \mathbf{d}(\mathbf{x})), \tag{c}
\end{align*}
$$

$f$ is continuous,

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,

$$
\begin{align*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) & \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}),  \tag{a}\\
\mathbf{f}(\lambda \mathbf{d}(\mathbf{x})) & =\mathbf{f}(\mathbf{d}(\mathbf{x})), \text { for any } \lambda>0  \tag{b}\\
Q \mathbf{p}(\mathbf{x}) & =\mathbf{f}(Q \mathbf{d}(\mathbf{x})), \tag{c}
\end{align*}
$$

$f$ is continuous,

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \forall k \in S, \tag{e}
\end{equation*}
$$

## Desirable properties of $\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x}))$

Let $\mathbf{f}: \mathbb{R}^{K} \rightarrow \mathbb{R}^{K}$ map distances $\mathbf{d}(\mathbf{x})=\left(d_{k}(\mathbf{x})\right)$ into probabilities $\mathbf{p}(\mathbf{x})=\left(p_{k}(\mathbf{x})\right.$,

$$
\begin{equation*}
\mathbf{p}(\mathbf{x})=\mathbf{f}(\mathbf{d}(\mathbf{x})) \tag{17}
\end{equation*}
$$

For any $\mathbf{x}, i, j \in \overline{1, K}$, permutation matrix $Q$, set $S \subset \overline{1, K}$,

$$
\begin{align*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) & \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}),  \tag{a}\\
\mathbf{f}(\lambda \mathbf{d}(\mathbf{x})) & =\mathbf{f}(\mathbf{d}(\mathbf{x})), \text { for any } \lambda>0  \tag{b}\\
Q \mathbf{p}(\mathbf{x}) & =\mathbf{f}(Q \mathbf{d}(\mathbf{x})), \tag{c}
\end{align*}
$$

$f$ is continuous,

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \forall k \in S, \tag{e}
\end{equation*}
$$

$$
\text { where } p_{S}(\mathbf{x}):=\sum_{s \in S} p_{s}(\mathbf{x}),
$$

and $p_{k}(\mathbf{x} \mid S)=$ conditional probability of $(\mathbf{x} \rightarrow k)$ given $(\mathbf{x} \rightarrow S)$.

## The choice axiom of Luce

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \forall k \in S \subset \overline{1, K} \tag{e}
\end{equation*}
$$

is the choice axiom of Luce [12], shown equivalent to
where $v_{k}(\mathbf{x})$ is a scale function, in particular,


Therefore, for all $k \in \overline{1, K}$,

$$
p_{k}^{\prime}(\mathbf{x}) v_{k}^{-1}(\mathbf{x})=D(\mathbf{x})
$$

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \forall k \in S \subset \overline{1, K} \tag{e}
\end{equation*}
$$

is the choice axiom of Luce [12], shown equivalent to

$$
\begin{equation*}
p_{k}(\mathbf{x} \mid S)=\frac{v_{k}(\mathbf{x})}{\sum_{s \in S} v_{s}(\mathbf{x})} \tag{18}
\end{equation*}
$$

where $v_{k}(\mathbf{x})$ is a scale function, in particular,

## The choice axiom of Luce

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \forall k \in S \subset \overline{1, K} \tag{e}
\end{equation*}
$$

is the choice axiom of Luce [12], shown equivalent to

$$
\begin{equation*}
p_{k}(\mathbf{x} \mid S)=\frac{v_{k}(\mathbf{x})}{\sum_{s \in S} v_{s}(\mathbf{x})}, \tag{18}
\end{equation*}
$$

where $v_{k}(\mathbf{x})$ is a scale function, in particular,

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{v_{k}(\mathbf{x})}{\sum_{s \in \overline{1}, \bar{K}} v_{s}(\mathbf{x})}, \forall k \in \overline{1, K} . \tag{19}
\end{equation*}
$$

Therefore, for all $k \in \overline{1, K}$,

$$
\begin{equation*}
p_{k}(\mathbf{x})=p_{k}(\mathbf{x} \mid S) p_{S}(\mathbf{x}), \forall k \in S \subset \overline{1, K} \tag{e}
\end{equation*}
$$

is the choice axiom of Luce [12], shown equivalent to

$$
\begin{equation*}
p_{k}(\mathbf{x} \mid S)=\frac{v_{k}(\mathbf{x})}{\sum_{s \in S} v_{s}(\mathbf{x})} \tag{18}
\end{equation*}
$$

where $v_{k}(\mathbf{x})$ is a scale function, in particular,

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{v_{k}(\mathbf{x})}{\sum_{s \in \overline{1, K}} v_{s}(\mathbf{x})}, \forall k \in \overline{1, K} \tag{19}
\end{equation*}
$$

Therefore, for all $k \in \overline{1, K}$,

$$
\begin{equation*}
p_{k}(\mathbf{x}) v_{k}^{-1}(\mathbf{x})=D(\mathbf{x}), \tag{20}
\end{equation*}
$$

a function of $\mathbf{x}$, independent of $k$.

## $p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k$

From

$$
\begin{equation*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{v_{k}(\mathbf{x})}{\sum_{s \in \overline{1, K}} v_{s}(\mathbf{x})} . \tag{19}
\end{equation*}
$$

it follows that $v_{k}(\mathbf{x})$ is a decreasing function of $d_{k}(\mathbf{x})$, in particular,
and

## $p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k$

From

$$
\begin{equation*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{v_{k}(\mathbf{x})}{\sum_{s \in \overline{1, K}} v_{s}(\mathbf{x})} \tag{19}
\end{equation*}
$$

it follows that $v_{k}(\mathbf{x})$ is a decreasing function of $d_{k}(\mathbf{x})$, in particular,

$$
v_{k}(\mathbf{x})=\frac{1}{d_{k}(\mathbf{x})}
$$

and
independent of $k$. This is our working principle.

## $p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k$

From

$$
\begin{equation*}
d_{i}(\mathbf{x})<d_{j}(\mathbf{x}) \Longrightarrow p_{i}(\mathbf{x})>p_{j}(\mathbf{x}) \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{v_{k}(\mathbf{x})}{\sum_{s \in \overline{1, K}} v_{s}(\mathbf{x})} \tag{19}
\end{equation*}
$$

it follows that $v_{k}(\mathbf{x})$ is a decreasing function of $d_{k}(\mathbf{x})$, in particular,

$$
v_{k}(\mathbf{x})=\frac{1}{d_{k}(\mathbf{x})}
$$

and

$$
\begin{equation*}
p_{k}(\mathbf{x}) v_{k}^{-1}(\mathbf{x})=D(\mathbf{x}) \tag{20}
\end{equation*}
$$

becomes

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}) \tag{A}
\end{equation*}
$$

independent of $k$. This is our working principle.

## Probabilities

From

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

and the fact that probabilities add to 1 , we get

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{1 / d_{k}(\mathbf{x})}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}, k \in \overline{1, K} . \tag{21}
\end{equation*}
$$

In particular, for $K=2$,

$$
p_{1}(\mathrm{x})=\frac{d_{2}(\mathrm{x})}{d_{1}(\mathrm{x})+d_{2}(\mathrm{x})}, p_{2}(\mathrm{x})=\frac{d_{1}(\mathrm{x})}{d_{1}(\mathrm{x})+d_{2}(\mathrm{x})},
$$

and for $K=3$,

$$
p_{1}(\mathbf{x})=\frac{d_{2}(\mathbf{x}) d_{3}(\mathbf{x})}{d_{1}(\mathbf{x}) d_{2}(\mathbf{x})+d_{1}(\mathbf{x}) d_{3}(\mathbf{x})+d_{2}(\mathbf{x}) d_{3}(\mathbf{x})}, \text { etc. }
$$

## Probabilities

From

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

and the fact that probabilities add to 1 , we get


In particular, for $K=2$,

and for $K=3$,


## Probabilities

From

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

and the fact that probabilities add to 1 , we get

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{1 / d_{k}(\mathbf{x})}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}, k \in \overline{1, K} . \tag{21}
\end{equation*}
$$

In particular, for $K=2$,


## Probabilities

From

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

and the fact that probabilities add to 1 , we get

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{1 / d_{k}(\mathbf{x})}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}, k \in \overline{1, K} . \tag{21}
\end{equation*}
$$

In particular, for $K=2$,

$$
p_{1}(\mathbf{x})=\frac{d_{2}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})}, p_{2}(\mathbf{x})=\frac{d_{1}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})},
$$

## Probabilities

From

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

and the fact that probabilities add to 1 , we get

$$
\begin{equation*}
p_{k}(\mathbf{x})=\frac{1 / d_{k}(\mathbf{x})}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}, k \in \overline{1, K} . \tag{21}
\end{equation*}
$$

In particular, for $K=2$,

$$
p_{1}(\mathbf{x})=\frac{d_{2}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})}, p_{2}(\mathbf{x})=\frac{d_{1}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})},
$$

and for $K=3$,

$$
p_{1}(\mathbf{x})=\frac{d_{2}(\mathbf{x}) d_{3}(\mathbf{x})}{d_{1}(\mathbf{x}) d_{2}(\mathbf{x})+d_{1}(\mathbf{x}) d_{3}(\mathbf{x})+d_{2}(\mathbf{x}) d_{3}(\mathbf{x})}, \text { etc. }
$$

## The joint distance function (JDF)

The function $D(\cdot)$ in

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

is called the Joint Distance Function (JDF).
From and (A) and (21) we get


In particular, for $K=2$,

and for $K=3$,


## The joint distance function (JDF)

The function $D(\cdot)$ in

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

is called the Joint Distance Function (JDF).
From and (A) and (21) we get

$$
\begin{equation*}
D(\mathbf{x})=\frac{1}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})} \tag{22}
\end{equation*}
$$

In particular, for $K=2$,

and for $K=3$,

## The joint distance function (JDF)

The function $D(\cdot)$ in

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

is called the Joint Distance Function (JDF).
From and (A) and (21) we get

$$
\begin{equation*}
D(\mathbf{x})=\frac{1}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}=\frac{1}{K} H\left(d_{1}(\mathbf{x}), \cdots, d_{K}(\mathbf{x})\right) . \tag{22}
\end{equation*}
$$

In particular, for $K=2$,


## The joint distance function (JDF)

The function $D(\cdot)$ in

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

is called the Joint Distance Function (JDF).
From and (A) and (21) we get

$$
\begin{equation*}
D(\mathbf{x})=\frac{1}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}=\frac{1}{K} H\left(d_{1}(\mathbf{x}), \cdots, d_{K}(\mathbf{x})\right) . \tag{22}
\end{equation*}
$$

In particular, for $K=2$,

$$
D(\mathbf{x})=\frac{d_{1}(\mathbf{x}) d_{2}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})}
$$

## The joint distance function (JDF)

The function $D(\cdot)$ in

$$
\begin{equation*}
p_{k}(\mathbf{x}) d_{k}(\mathbf{x})=D(\mathbf{x}), \forall k \in \overline{1, K}, \tag{A}
\end{equation*}
$$

is called the Joint Distance Function (JDF).
From and (A) and (21) we get

$$
\begin{equation*}
D(\mathbf{x})=\frac{1}{\sum_{i=1}^{K} 1 / d_{i}(\mathbf{x})}=\frac{1}{K} H\left(d_{1}(\mathbf{x}), \cdots, d_{K}(\mathbf{x})\right) . \tag{22}
\end{equation*}
$$

In particular, for $K=2$,

$$
D(\mathbf{x})=\frac{d_{1}(\mathbf{x}) d_{2}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})}
$$

and for $K=3$,

$$
D(\mathbf{x})=\frac{d_{1}(\mathbf{x}) d_{2}(\mathbf{x}) d_{3}(\mathbf{x})}{d_{1}(\mathbf{x}) d_{2}(\mathbf{x})+d_{1}(\mathbf{x}) d_{3}(\mathbf{x})+d_{2}(\mathbf{x}) d_{3}(\mathbf{x})}, \text { etc. }
$$

## Outline

(9) Abstract
(3) 'Harmony in the animal kingdom
(3) The harmonic mean
(4. Inverse distance weighted interpolation
(5) Clusters
(9) Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities
(40) Validation: How many clusters?
(11) References

## An extremal principle for probabilities

Let $K=2$, and let $d_{1}(\mathbf{x}), d_{2}(\mathbf{x})$ be given. The principle

$$
p_{1}(\mathbf{x}) d_{1}(\mathbf{x})=p_{2}(\mathbf{x}) d_{2}(\mathbf{x})
$$

is an optimality condition for the problem

$$
\begin{aligned}
\min & d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2} \\
\text { s.t. } & p_{1}+p_{2}=1 \\
& p_{1}, p_{2} \geq 0
\end{aligned}
$$

as shown by differentiating the Lagrangian,

$$
L\left(p_{1}, p_{2}, \lambda\right)=d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathrm{x}) p_{2}^{2}-\lambda\left(p_{1}+p_{2}-1\right)
$$

with respect to $p_{1}, p_{2}$,

$$
\frac{\partial L}{\partial p_{1}}=2 p_{1} d_{1}(\mathbf{x})-\lambda=0, \text { etc. }
$$

## An extremal principle for probabilities

Let $K=2$, and let $d_{1}(\mathbf{x}), d_{2}(\mathbf{x})$ be given. The principle

$$
\begin{equation*}
p_{1}(\mathbf{x}) d_{1}(\mathbf{x})=p_{2}(\mathbf{x}) d_{2}(\mathbf{x}), \tag{A}
\end{equation*}
$$

is an optimality condition for the problem

$$
\begin{align*}
\min & d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2}  \tag{P}\\
\text { s.t. } & p_{1}+p_{2}=1 \\
& p_{1}, p_{2} \geq 0
\end{align*}
$$

as shown by differentiating the Lagrangian,
with respect to $p_{1}, p_{2}$,


## An extremal principle for probabilities

Let $K=2$, and let $d_{1}(\mathbf{x}), d_{2}(\mathbf{x})$ be given. The principle

$$
\begin{equation*}
p_{1}(\mathbf{x}) d_{1}(\mathbf{x})=p_{2}(\mathbf{x}) d_{2}(\mathbf{x}) \tag{A}
\end{equation*}
$$

is an optimality condition for the problem

$$
\begin{align*}
\min & d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2}  \tag{P}\\
\mathrm{s.t.} & p_{1}+p_{2}=1 \\
& p_{1}, p_{2} \geq 0
\end{align*}
$$

as shown by differentiating the Lagrangian,

$$
L\left(p_{1}, p_{2}, \lambda\right)=d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2}-\lambda\left(p_{1}+p_{2}-1\right)
$$

with respect to $p_{1}, p_{2}$,

$$
\frac{\partial L}{\partial p_{1}}=2 p_{1} d_{1}(\mathbf{x})-\lambda=0, \text { etc. }
$$

## Did he say $p^{2}$ ? Yes

The problem

$$
\min \left\{p_{1}^{2} d_{1}+p_{2}^{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\}
$$

is a smoothed version of

$$
\min \left\{p_{1} d_{1}+p_{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\} \Longrightarrow \min \left\{d_{1}, d_{2}\right\}
$$

see Teboulle, [16].
Other schemes include entropic smoothing
resulting in the principle

$$
p_{k}(\mathbf{x}) e^{d_{k}(\mathrm{x})}=E(\mathrm{x}), k \in \overline{1, K}
$$

where $E(\mathbf{x})$ does not depend on $k$.

## Did he say $p^{2}$ ? Yes

The problem

$$
\min \left\{p_{1}^{2} d_{1}+p_{2}^{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\}
$$

is a smoothed version of

$$
\min \left\{p_{1} d_{1}+p_{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\} \Longrightarrow \min \left\{d_{1}, d_{2}\right\},
$$

see Teboulle, [16].
Other schemes include entropic smoothing

$$
\min \left\{p_{1} d_{1}+p_{2} d_{2}+p_{1} \log p_{1}+p_{2} \log p_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\}
$$

resulting in the principle

$$
p_{k}(\mathbf{x}) e^{d_{k}(\mathbf{x})}=E(\mathbf{x}), k \in \overline{1, K},
$$

where $E(\mathbf{x})$ does not depend on $k$.

## An electrical analogy: Parallel circuit

$$
\begin{gathered}
\min \left\{p_{1}^{2} d_{1}+p_{2}^{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\} \\
p_{1} d_{1}=p_{2} d_{2}
\end{gathered}
$$


$\min \left\{I_{1}^{2} R_{1}+I_{2}^{2} R_{2}: I_{1}+I_{2}=I\right\}$

## An electrical analogy: Parallel circuit

$$
\begin{gathered}
\min \left\{p_{1}^{2} d_{1}+p_{2}^{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\} \\
p_{1} d_{1}=p_{2} d_{2}
\end{gathered}
$$


$\min \left\{I_{1}^{2} R_{1}+I_{2}^{2} R_{2}: I_{1}+I_{2}=I\right\}$

## An electrical analogy: Parallel circuit

$$
\begin{gathered}
\min \left\{p_{1}^{2} d_{1}+p_{2}^{2} d_{2}: p_{1}+p_{2}=1, p_{1}, p_{2} \geq 0\right\} \\
p_{1} d_{1}=p_{2} d_{2}
\end{gathered}
$$


$\min \left\{I_{1}^{2} R_{1}+I_{2}^{2} R_{2}: I_{1}+I_{2}=I\right\}$
$I_{1} R_{1}=I_{2} R_{2}=$ voltage drop from $A$ to $B$

## The JDF as optimal value

Using

$$
\begin{equation*}
p_{k} d_{k}(\mathbf{x})=D(\mathbf{x}) \tag{A}
\end{equation*}
$$

rewrite

$$
\begin{align*}
\min & d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2}  \tag{P}\\
\mathrm{s.t.} & p_{1}+p_{2}=1 \\
& p_{1}, p_{2} \geq 0
\end{align*}
$$

$\min \quad D(\mathbf{x})\left(p_{1}+p_{2}\right)$, etc.

## Therefore the optimal value of $(\mathrm{P})$ is the JDF



## The JDF as optimal value

Using

$$
\begin{equation*}
p_{k} d_{k}(\mathbf{x})=D(\mathbf{x}) \tag{A}
\end{equation*}
$$

rewrite

$$
\begin{align*}
\min & d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2}  \tag{P}\\
\mathrm{s.t.} & p_{1}+p_{2}=1 \\
& p_{1}, p_{2} \geq 0
\end{align*}
$$

as
$\min \quad D(\mathbf{x})\left(p_{1}+p_{2}\right)$, etc.

## Therefore the optimal value of $(\mathrm{P})$ is the JDF



## The JDF as optimal value

Using

$$
\begin{equation*}
p_{k} d_{k}(\mathbf{x})=D(\mathbf{x}) \tag{A}
\end{equation*}
$$

rewrite

$$
\begin{align*}
\min & d_{1}(\mathbf{x}) p_{1}^{2}+d_{2}(\mathbf{x}) p_{2}^{2}  \tag{P}\\
\mathrm{s.t.} & p_{1}+p_{2}=1 \\
& p_{1}, p_{2} \geq 0
\end{align*}
$$

as
$\min D(\mathbf{x})\left(p_{1}+p_{2}\right)$, etc.

Therefore the optimal value of $(\mathrm{P})$ is the JDF

$$
D(\mathbf{x})=\frac{d_{1}(\mathbf{x}) d_{2}(\mathbf{x})}{d_{1}(\mathbf{x})+d_{2}(\mathbf{x})}
$$

## Outline

(9) Abstract
(3) 'Harmony in the animal kingdom
(3) The harmonic mean
(4. Inverse distance weighted interpolation
(5) Clusters
(6) Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities
(10) Validation: How many clusters?
(14) References

## The Fermat-Weber Location Problem

Given $\mathbf{X}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$ and weights $w_{i}>0$, find $\mathbf{c}$ minimizing

$$
f(\mathbf{c})=\sum_{i=1}^{N} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}\right\|, \quad\|\cdot\| \text { Euclidean } .
$$

The gradient (for $\mathrm{c} \notin \mathbf{X}$ )
the resultant of forces $w_{i}$, with direction from $\mathbf{c}$ to $\mathbf{x}_{i}$.

## The Fermat-Weber Location Problem

Given $\mathbf{X}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$ and weights $w_{i}>0$, find $\mathbf{c}$ minimizing

$$
f(\mathbf{c})=\sum_{i=1}^{N} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}\right\|, \quad\|\cdot\| \text { Euclidean } .
$$

The gradient (for $\mathbf{c} \notin \mathbf{X}$ )

$$
\nabla f(\mathbf{c})=-\sum_{i=1}^{N} w_{i} \frac{\mathbf{x}_{i}-\mathbf{c}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}
$$

the resultant of forces $w_{i}$, with direction from c to $\mathbf{x}_{i}$

## The Fermat-Weber Location Problem

Given $\mathbf{X}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$ and weights $w_{i}>0$, find $\mathbf{c}$ minimizing

$$
f(\mathbf{c})=\sum_{i=1}^{N} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}\right\|, \quad\|\cdot\| \text { Euclidean } .
$$

The gradient (for $\mathbf{c} \notin \mathbf{X}$ )

$$
\nabla f(\mathbf{c})=-\sum_{i=1}^{N} w_{i} \frac{\mathbf{x}_{i}-\mathbf{c}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}
$$

the resultant of forces $w_{i}$, with direction from $\mathbf{c}$ to $\mathbf{x}_{i}$.

## The Fermat-Weber Location Problem

Given $\mathbf{X}=\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$ and weights $w_{i}>0$, find $\mathbf{c}$ minimizing

$$
f(\mathbf{c})=\sum_{i=1}^{N} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}\right\|, \quad\|\cdot\| \text { Euclidean } .
$$

The gradient (for $\mathbf{c} \notin \mathbf{X}$ )

$$
\nabla f(\mathbf{c})=-\sum_{i=1}^{N} w_{i} \frac{\mathbf{x}_{i}-\mathbf{c}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}
$$

the resultant of forces $w_{i}$, with direction from $\mathbf{c}$ to $\mathbf{x}_{i}$.

$$
\nabla f(\mathbf{c})=0 \quad \Longrightarrow \quad \mathbf{c}=\sum_{i=1}^{N} \lambda_{i} \mathbf{x}_{i}, \lambda_{i}=\frac{\frac{w_{i}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}}{\sum_{j=1}^{N} \frac{w_{j}}{\left\|\mathbf{x}_{j}-\mathbf{c}\right\|}}
$$

expressing $\mathbf{c}$ as a convex combination of $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\}$.

## A mechanical solution

The point $\mathbf{c}$ is tied to the weights $w_{i}$ through holes in $\mathbf{x}_{i}$. $\mathbf{c}$ is free to move, will come to rest at the optimal center.


## What if c falls in one of the holes?

The point $\mathbf{c}$ may settle at one of the holes, say $\mathbf{c}=\mathbf{x}_{1}$, if the weight $w_{1}$ is greater than the resultant of the other weights.



Pierre Varignon (1654-1722)

## The Weiszfeld Method, [17]

$$
\nabla f(\mathbf{c})=0 \quad \Longrightarrow \quad \mathbf{c}=\sum_{i=1}^{N} \lambda_{i} \mathbf{x}_{i}, \lambda_{i}=\frac{\frac{w_{i}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}}{\sum_{j=1}^{N} \frac{w_{j}}{\left\|\mathbf{x}_{j}-\mathbf{c}\right\|}}
$$

The Weiszfeld method is the iterations

## The Weiszfeld Method, [17]

$$
\nabla f(\mathbf{c})=0 \quad \Longrightarrow \quad \mathbf{c}=\sum_{i=1}^{N} \lambda_{i} \mathbf{x}_{i}, \lambda_{i}=\frac{\frac{w_{i}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}}{\sum_{j=1}^{N} \frac{w_{j}}{\left\|\mathbf{x}_{j}-\mathbf{c}\right\|}}
$$

The Weiszfeld method is the iterations

$$
\mathbf{c}_{+}=T(\mathbf{c}):= \begin{cases}\sum_{i=1}^{N}\binom{\frac{w_{i}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}}{\sum_{j=1}^{N} \frac{w_{j}}{\left\|\mathbf{x}_{j}-\mathbf{c}\right\|}} \mathbf{x}_{i} & , \mathbf{c} \notin \mathbf{X} \\ \mathbf{c} & , \mathbf{c} \in \mathbf{X}\end{cases}
$$

## The Weiszfeld Method, [17]

$$
\nabla f(\mathbf{c})=0 \quad \Longrightarrow \quad \mathbf{c}=\sum_{i=1}^{N} \lambda_{i} \mathbf{x}_{i}, \lambda_{i}=\frac{\frac{w_{i}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}}{\sum_{j=1}^{N} \frac{w_{j}}{\left\|\mathbf{x}_{j}-\mathbf{c}\right\|}}
$$

The Weiszfeld method is the iterations

$$
\mathbf{c}_{+}=T(\mathbf{c}):= \begin{cases}\sum_{i=1}^{N}\binom{\frac{w_{i}}{\left\|\mathbf{x}_{i}-\mathbf{c}\right\|}}{\sum_{j=1}^{N} \frac{w_{j}}{\left\|\mathbf{x}_{j}-\mathbf{c}\right\|}} \mathbf{x}_{i} & , \mathbf{c} \notin \mathbf{X} \\ \mathbf{c} & , \mathbf{c} \in \mathbf{X}\end{cases}
$$

Endre Weiszfeld, Andrew Vazsonyi (1916-2003)

## A multi-facility location problem

Given $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$, weights $w_{i}>0$, integer $K, 1 \leq K<N$,

Locate facilities $\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}$ so as to
where $\mathscr{C}_{k}=\left\{\mathbf{x}: \mathbf{x}\right.$ assigned to $\left.\mathbf{c}_{k}\right\}$.

The Fermat-Weber problem is the special case (L.1).

For $K>1$, the problem (L.K) is NP hard, [13].

## A multi-facility location problem

Given $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$, weights $w_{i}>0$, integer $K, 1 \leq K<N$,

Locate facilities $\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}$ so as to

$$
\begin{equation*}
\operatorname{minimize} f\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{K}\right)=\sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\| \tag{L.K}
\end{equation*}
$$

where $\mathscr{C}_{k}=\left\{\mathbf{x}: \mathbf{x}\right.$ assigned to $\left.\mathbf{c}_{k}\right\}$.

The Fermat-Weber problem is the special case (L.1).

For $K>1$, the problem (L.K) is NP hard, [13].

## A multi-facility location problem

Given $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$, weights $w_{i}>0$, integer $K, 1 \leq K<N$,

Locate facilities $\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}$ so as to

$$
\begin{equation*}
\operatorname{minimize} f\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{K}\right)=\sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\| \tag{L.K}
\end{equation*}
$$

where $\mathscr{C}_{k}=\left\{\mathbf{x}: \mathbf{x}\right.$ assigned to $\left.\mathbf{c}_{k}\right\}$.

The Fermat-Weber problem is the special case (L.1).

For $K>1$, the problem (L.K) is NP hard, [13].

## A multi-facility location problem

Given $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\} \subset \mathbb{R}^{n}$, weights $w_{i}>0$, integer $K, 1 \leq K<N$,

Locate facilities $\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}$ so as to

$$
\begin{equation*}
\operatorname{minimize} f\left(\mathbf{c}_{1}, \ldots, \mathbf{c}_{K}\right)=\sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i}\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\| \tag{L.K}
\end{equation*}
$$

where $\mathscr{C}_{k}=\left\{\mathbf{x}: \mathbf{x}\right.$ assigned to $\left.\mathbf{c}_{k}\right\}$.

The Fermat-Weber problem is the special case (L.1).

For $K>1$, the problem (L. $K$ ) is NP hard, [13].

## Probabilistic assignments, [5], [11]

The multi-facility location problem

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i} d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{K}
\end{equation*}
$$

with $d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)=\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|$, is approximated by

$$
\min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right) d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)
$$


where $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$ are the cluster membership probabilities,

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathrm{x}_{i} \in \mathscr{C}_{k}\right\}, k \in \overline{1, K}, i \in \overline{1, N}
$$

The problem (P.K) has two sets of variables,
centers $\left\{c_{k}\right\}$, as hefore, and
probabilities $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$, corresponding to the assignments.

## Probabilistic assignments, [5], [11]

The multi-facility location problem

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i} d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{L.K}
\end{equation*}
$$

with $d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)=\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|$, is approximated by

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right) d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{Р.K}
\end{equation*}
$$

where $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$ are the cluster membership probabilities,

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathbf{x}_{i} \in \mathscr{C}_{k}\right\}, k \in \overline{1, K}, i \in \overline{1, N}
$$

The problem (P.K) has two sets of variables,
centers $\left\{c_{k}\right\}$, as hefore, and
probabilities $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$, corresponding to the assignments.

## Probabilistic assignments, [5], [11]

The multi-facility location problem

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i} d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{K}
\end{equation*}
$$

with $d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)=\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|$, is approximated by

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right) d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{P.K}
\end{equation*}
$$

where $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$ are the cluster membership probabilities,

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathbf{x}_{i} \in \mathscr{C}_{k}\right\}, k \in \overline{1, K}, i \in \overline{1, N}
$$

The problem (P.K) has two sets of variables,
centers $\left\{\mathbf{c}_{k}\right\}$, as before, and
probabilities $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$, corresponding to the assignments.

## Probabilistic assignments, [5], [11]

The multi-facility location problem

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i} d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{K}
\end{equation*}
$$

with $d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)=\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|$, is approximated by

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right) d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{P.K}
\end{equation*}
$$

where $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$ are the cluster membership probabilities,

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathbf{x}_{i} \in \mathscr{C}_{k}\right\}, k \in \overline{1, K}, i \in \overline{1, N}
$$

The problem (P.K) has two sets of variables, centers $\left\{\mathbf{c}_{k}\right\}$, as before, and

## Probabilistic assignments, [5], [11]

The multi-facility location problem

$$
\min \sum_{k=1}^{K} \sum_{\mathbf{x}_{i} \in \mathscr{C}_{k}} w_{i} d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)
$$

with $d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right)=\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|$, is approximated by

$$
\begin{equation*}
\min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right) d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right) \tag{P.K}
\end{equation*}
$$

where $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$ are the cluster membership probabilities,

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathbf{x}_{i} \in \mathscr{C}_{k}\right\}, k \in \overline{1, K}, i \in \overline{1, N}
$$

The problem (P.K) has two sets of variables, centers $\left\{\mathbf{c}_{k}\right\}$, as before, and probabilities $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$, corresponding to the assignments.

## The approximate problem (P.K)

$$
\begin{align*}
& \min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right)\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|  \tag{Р.K}\\
& \text { s.t. } \sum_{k=1}^{K} p_{k}\left(\mathbf{x}_{i}\right)=1, i \in \overline{1, N} \\
& \quad p_{k}\left(\mathbf{x}_{i}\right) \geq 0, k \in \overline{1, K}, i \in \overline{1, N}
\end{align*}
$$

with variables $\left\{\mathbf{c}_{k}\right\}$ and $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$.
Fix one set of variables, and minimize (P.K) with respect to the second set, then fix the second set, etc. We thus alternate between
(1) the probabilities problem, with given centers, and
(2) the centers problem, (P.K) with given probabilities.

## The approximate problem (P.K)

$$
\begin{align*}
& \min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right)\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|  \tag{P.K}\\
& \text { s.t. } \sum_{k=1}^{K} p_{k}\left(\mathbf{x}_{i}\right)=1, i \in \overline{1, N} \\
& \quad p_{k}\left(\mathbf{x}_{i}\right) \geq 0, k \in \overline{1, K}, i \in \overline{1, N}
\end{align*}
$$

with variables $\left\{\mathbf{c}_{k}\right\}$ and $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$.
Fix one set of variables, and minimize (P.K) with respect to the second set, then fix the second set, etc. We thus alternate between
(1) the probabilities problem, with given centers, and
(2) the centers problem, (P.K) with given probabilities.

## The approximate problem (P.K)

$$
\begin{align*}
& \min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right)\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|  \tag{P.K}\\
& \text { s.t. } \sum_{k=1}^{K} p_{k}\left(\mathbf{x}_{i}\right)=1, i \in \overline{1, N} \\
& \quad p_{k}\left(\mathbf{x}_{i}\right) \geq 0, k \in \overline{1, K}, i \in \overline{1, N}
\end{align*}
$$

with variables $\left\{\mathbf{c}_{k}\right\}$ and $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$.
Fix one set of variables, and minimize (P.K) with respect to the second set, then fix the second set, etc. We thus alternate between
(1) the probabilities problem, with given centers, and
(2) the centers problem, (P.K) with given probabilities.

## The approximate problem (P.K)

$$
\begin{align*}
& \min \sum_{k=1}^{K} \sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right)\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|  \tag{P.K}\\
& \text { s.t. } \sum_{k=1}^{K} p_{k}\left(\mathbf{x}_{i}\right)=1, i \in \overline{1, N} \\
& \quad p_{k}\left(\mathbf{x}_{i}\right) \geq 0, k \in \overline{1, K}, i \in \overline{1, N}
\end{align*}
$$

with variables $\left\{\mathbf{c}_{k}\right\}$ and $\left\{p_{k}\left(\mathbf{x}_{i}\right)\right\}$.
Fix one set of variables, and minimize (P.K) with respect to the second set, then fix the second set, etc. We thus alternate between
(1) the probabilities problem, with given centers, and
(2) the centers problem, (P.K) with given probabilities.

## The probabilities problem

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathbf{x}_{i} \in \mathscr{C}_{k}\right\}, i \in \overline{1, N}, k \in \overline{1, K} .
$$

Given
data points $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\}$, weights $\left\{w_{i}: i \in \overline{1, N}\right\}$,
centers $\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}$, distances $\left\{d_{k}\left(\mathbf{x}_{i}\right)=d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right): i \in \overline{1, N}, k \in \overline{1, K}\right\}$.

independent of the weights $w_{i}$.

## The probabilities problem

$$
p_{k}\left(\mathbf{x}_{i}\right)=\operatorname{Prob}\left\{\mathbf{x}_{i} \in \mathscr{C}_{k}\right\}, i \in \overline{1, N}, k \in \overline{1, K} .
$$

Given
data points $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\}$,
weights $\left\{w_{i}: i \in \overline{1, N}\right\}$,
centers $\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}$,
distances $\left\{d_{k}\left(\mathbf{x}_{i}\right)=d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right): i \in \overline{1, N}, k \in \overline{1, K}\right\}$.
For $\mathbf{x}_{i}, i \in \overline{1, N}$,

$$
p_{k}\left(\mathbf{x}_{i}\right)=\frac{1 / d_{k}\left(\mathbf{x}_{i}\right)}{\sum_{j=1}^{K} 1 / d_{j}\left(\mathbf{x}_{i}\right)}, k \in \overline{1, K},
$$

independent of the weights $w_{i}$.

## The centers problem

$$
\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}
$$

Given
data points $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\}$, weights $\left\{w_{i}: i \in \overline{1, N}\right\}$, distances $\left\{d_{k}\left(\mathbf{x}_{i}\right)=d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right): i \in \overline{1, N}, k \in \overline{1, K}\right\}$, probabilities $\left\{p_{k}\left(\mathbf{x}_{i}\right): i \in \overline{1, N}, k \in \overline{1, K}\right\}$

The $K$ centers $\mathrm{c}_{k}$ are computed separately


## The centers problem

$$
\left\{\mathbf{c}_{k}: k \in \overline{1, K}\right\}
$$

Given
data points $\left\{\mathbf{x}_{i}: i \in \overline{1, N}\right\}$, weights $\left\{w_{i}: i \in \overline{1, N}\right\}$, distances $\left\{d_{k}\left(\mathbf{x}_{i}\right)=d\left(\mathbf{x}_{i}, \mathbf{c}_{k}\right): i \in \overline{1, N}, k \in \overline{1, K}\right\}$, probabilities $\left\{p_{k}\left(\mathbf{x}_{i}\right): i \in \overline{1, N}, k \in \overline{1, K}\right\}$

The $K$ centers $\mathbf{c}_{k}$ are computed separately

$$
\begin{equation*}
\mathbf{c}_{k}=\arg \min _{\mathbf{c}}\left\{\sum_{i=1}^{N} w_{i} p_{k}\left(\mathbf{x}_{i}\right) d_{k}\left(\mathbf{x}_{i}, \mathbf{c}\right)\right\}, k \in \overline{1, K} \tag{23}
\end{equation*}
$$

Note: Each $\mathbf{c}_{k}$ is the center of all $N$ points $\mathbf{x}_{i}$, with "weights" $w_{i} p_{k}\left(\mathbf{x}_{i}\right)$.

## Example: $N=200, K=2$, iteration 0



## Example: $N=200, K=2$, iteration 1



## Example: $N=200, K=2$, iteration 2



## Example: $N=200, K=2$, iteration 3



## Example: $N=200, K=2$, iteration 4



## Example: $N=200, K=2$, iteration 5



## Example: $N=200, K=2$, iteration 6



## Example: $N=200, K=2$, iteration 7



## Example: $N=200, K=2$, iteration 8



## Example: $N=200, K=2$, iteration 9



## Example: $N=200, K=2$, iteration 10



## Example: $N=200, K=2$, iteration 11



## Example: $N=200, K=2$. Movements of centers



## Example: $N=300, K=3$, iteration 0



## Example: $N=300, K=3$, iteration 1



## Example: $N=300, K=3$, iteration 2



## Example: $N=300, K=3$, iteration 3



## Example: $N=300, K=3$, iteration 4



## Example: $N=300, K=3$, iteration 5



## Example: $N=300, K=3$, iteration 6



## Example: $N=300, K=3$, iteration 7



## Example: $N=300, K=3$, iteration 8



## Example: $N=300, K=3$, iteration 9



## Example: $N=300, K=3$, iteration 10



## Outline

(9) Abstract
(3) 'Harmony in the animal kingdom
(3) The harmonic mean
(4. Inverse distance weighted interpolation
(5) Clusters
(5. Probabilities and distances
(7) Extremal principle
(8) Facility location
(9) Territories of facilities
(10) Validation: How many clusters?
(11) References

## $N=15, K=3$ (Cooper, 1964)



## $N=15, K=3$ (Cooper, 1964)



## $N=50, K=5$ (Eilon, 1971)



## $N=50, K=5$ (Eilon, 1971)



## Outline

(9) Abstract
(3) 'Harmony in the animal kingdom
(3) The harmonic mean
(4) Inverse distance weighted interpolation
(5) Clusters
(6.) Probabilities and distances
(7) Extremal principle
(8) Facility location
-. Territories of facilities
(10) Validation: How many clusters?
(11) References

## The JDF of the dataset

The JDF of the dataset $\mathbf{X}$ is the sum of the JDF's of all $N$ data points $\mathbf{x} \in \mathbf{X}$,

$$
\begin{equation*}
D(\mathbf{X})=\sum_{\mathbf{x} \in \mathbf{X}} D(\mathbf{x}) \tag{24}
\end{equation*}
$$

a function of the cluster centers $\mathrm{c}_{k}$, and distance functions $d_{k}$


## The JDF of the dataset

The JDF of the dataset $\mathbf{X}$ is the sum of the JDF's of all $N$ data points $\mathbf{x} \in \mathbf{X}$,

$$
\begin{equation*}
D(\mathbf{X})=\sum_{\mathbf{x} \in \mathbf{X}} D(\mathbf{x}) \tag{24}
\end{equation*}
$$

a function of the cluster centers $\mathbf{c}_{k}$, and distance functions $d_{k}$


## Example: 2 clusters




## Example: 3 clusters



## Example: 4 clusters




## What if there is no structure?




## What is the correct number of clusters?




## Outline

(9) Abstract
2. Harmony in the animal kingdom
(3) The harmonic mean

4 Inverse distance weighted interpolation
(5. Clusters
(6) Probabilities and distances
(7) Extremal principle

8 Facility location
(9) Territories of facilities
(10) Validation: How many clusters?
(11) References
[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, 1966
[2] W.N. Anderson Jr. and R.J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26(1969), 576-594.
[3] M. Arav, Contour approximation of data, J. of Math. Inequalities 2(2008), 161-167
[4] A. Ben-Israel, Probabililistic clustering papers [Link]
[5] A. Ben-Isreal and C. Iyigun, Probabilistic distance clustering, J. Classification 25(2008), 5-26
[6] L. Boitani and T.K. Fuller, Research Techniques in Animal Ecology: Controversies and Consequences, Columbia University Press, 2000, xxxii + 442 pp.
[7] K.R. Dixon and J.A. Chapman, Harmonic mean measure of animal activity areas, Ecology 61(1980), 1040-1044
[8] R.J. Duffin, Network Models, Mathematical Aspects of Electrical Network Analysis, SIAM-AMS Proceedings, Vol III, 65-91, American Mathematical Society, 1971.
[9] N.R. Sree Harsha, A review of the variational methods for solving DC circuits, European J. Physics 40(2019)
[10] C. Iyigun and A. Ben-Israel, Contour approximation of data: A duality theory, Lin. Algeb. and Appl. 430(2009), 2771-2780
[11] C. Iyigun and A. Ben-Israel, A generalized Weiszfeld method for the multi-facility location problem, O.R. Letters 38(2010), 207-214
[12] R.D. Luce, Individual Choice Behavior, Wiley, New York, 1959
[13] N. Megiddo and K.J. Supowit, On the complexity of some common geometric location problems, SIAM Journal on Computing 13(1984), 182-196
[14] T.D. Morley, Parallel summation, Maxwell's principle and the infimum of projections, J. Math. Anal. Appl. 70(1979), 33-41
[15] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 ACM National Conference, pp. 517-524
[16] M. Teboulle, A unified continuous optimization framework for center-based clustering methods, J. of Machine Learning 8(2007), 65-102
[17] E. Weiszfeld, Sur le point par lequel la somme des distances de n points donnés est minimum, Tohoku Math. J. 43(1937) 355-386

