
Dr. Z.’s Shortcut Methods for Solving Boundary Value Problems for PDEs

By Doron Zeilberger

Fourier Series (over (−π, π))

Every function defined on the interval (−π, π) can be written as a finite or (more often infinite)
linear combination of pure sine-waves and pure cosine-waves (and the constant function).

If it ain’t broke don’t fix it

If the function is given as either a pure sine-wave (sinnx for some integer n), or pure cosine-wave
(cos nx for some integer n), or is a constant function (e.g. 8), then: Its Fourier Series is Itself !.

Also if it is a finite combination of pure sine and/or cosine waves.

Examples: The Fourier series over (−π, π) of the following functions are themselves.

f(x) = 5 , f(x) = 11 cos 7x , f(x) = 11 sin 3x , f(x) = −6 sinx+10+11 sin 3x−cos 5x+3 cos 8x .

Non-Examples: The Fourier series over (−π, π) of the following functions are NOT themselves

f(x) = 5 sin(x/2) , f(x) = cos(7x/3) , f(x) = x , f(x) = x2 .

Only if the function f(x) is not a pure sine-waves or cosine-waves or a finite linear combination of
these, do you have to use the formula.

f(x) =
a0

2
+
∞∑

n=1

an cos nx +
∞∑

n=1

bn sinnx ,

where the number a0 is given

a0 :=
1
π

∫ π

−π

f(x) dx ,

and the numbers a1, a2, a3, . . . and b1, b2, b3, . . . are given by:

an =
1
π

∫ π

−π

f(x) cos nx dx ,

bn =
1
π

∫ π

−π

f(x) sinnx dx .

Fourier Series (over (−L,L)) find the function g(x) = f(xL/π), that is defined over (−π, π), and
then go back using f(x) = g(xπ/L).
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In this case the building blocks are sin((π/L)nx), cos((π/L)nx) and the constant functions. So if
you have to find the Fourier series of 3 sin((5/2)x)+11 cos((11/2)x) over (−2π, 2π), it would be the
same as the function. Even sin(5x) would be OK, since it has the right format sin((10/2)x). On
the other hand sin((11/4)x) would not be its own Fourier series, you have to do it the long way.

Half Range Fourier Cosine Series

The Fourier Cosine series of a function f(x) defined on the interval (0, π) is:

a0

2
+
∞∑

n=1

an cos nx ,

where

a0 =
2
π

∫ π

0

f(x) dx ,

an =
2
π

∫ π

0

f(x) cos nx dx .

But if the given function is a combination of cos nx (n integer) then its Fourier-Cosine series equals
itself. For example the Half-Range Fourier-Cosine Series of f(x) = 5 + 2 cos 4x − 11 cos 7x equals
itself! On the other hand if f(x) = sin x or f(x) = cos(7x/2) you would have to do it the long way,
using the formulas.

Half Range Fourier Sine Series

The Fourier Sine series of a function f(x) defined on the interval (0, π) is:

∞∑
n=1

bn sinnx ,

where

bn =
2
π

∫ π

0

f(x) sinnx dx .

But if the given function is a combination of sinnx (n integer) then its Half-Range Fourier-Sine
series equals itself. For example, the Half-Range Fourier-Sine Series of f(x) = 2 sin 4x − 11 sin 17x

equals itself! On the other hand if f(x) = cos x and even if f(x) = 1, you would have to do it the
long way, using the formulas.

Dr. Z.’s Way of Solving the Heat Equation

1. Both ends are at temperature 0: (General interval (0, L))

The solution of

k
∂2u

∂x2
=

∂u

∂t
, 0 < x < L , t > 0
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subject to
u(0, t) = 0 , u(L, t) = 0 , t > 0

u(x, 0) = f(x) , 0 < x < L .

Instead of using the stupid formula, remember that the building block solutions are u(x, t) =
e−k(n2π2/L2)t sin nπ

L x. For this function, u(x, 0) = sin nπ
L x so if you are lucky and the initial condi-

tion function f(x) is a multiple of sin nπ
L x, for some specific integer n, then all you have to do, to

get the solution u(x, t) is to stick e−k(n2π2/L2)t in front of it! If it is a combination of sin nπ
L x for

various n’s just stick the appropriate e−k(n2π2/L2)t (for the appropriate n) to each term.

Example: Solve the pde

5
∂2u

∂x2
=

∂u

∂t
, 0 < x < π , t > 0

subject to
u(0, t) = 0 , u(π, t) = 0 , t > 0 ,

u(x, 0) = 5 sin(3x) − 8 sin(7x) , 0 < x < π .

Sol. Here k = 5, we first copy-and-paste f(x), and leave some room, as follows:

u(x, t) = 5(ComingUpShortly1) sin(3x) − 8(ComingUpShortly2) sin(7x) (NotY etF inished)

ComingUpShortly1 is simply e−k(n2π2/L2)t with k = 5, n = 3 and L = π, i.e.

ComingUpShortly1 = e−5(32(π2/π2)t = e−45t .

Similarly ComingUpShortly2 is simply e−k(n2π2/L2)t with k = 5, n = 7 and L = π, i.e.

ComingUpShortly2 = e−5(72(π2/π2)t) = e−245t .

Going back to (NotY etF inished)

u(x, t) = 5e−45t sin(3x) − 8e−245t sin(7x) . (Finished)

If however, the f(x) of the problem is not a pure sine-wave or a finite combination of them, for
example u(x, 0) = x or u(x, 0) = cos x, then you have to find the Half-Range Fourier Sine Expansion,
as above, get a

∑
,

u(x, 0) = f(x) =
∞∑

n=1

An sin
nπ

L
x ,
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and do exactly the same procedure as above! Stick e−k(n2π2/L2)t between An and sin nπ
L x, to get

the answer:

u(x, t) =
∞∑

n=1

Ane−k(n2π2/L2)t sin
nπ

L
x .

Note that now n is a general symbol, so you leave it alone! You only plug-in the numerical values
of L (often L = π, the easiest case), and k.

2. Both ends are insulated

Things are exactly analogous, but now you use the Fourier-Cosine Half-Range expansion, and
stick the e−k(n2π2/L2)t between An and cos nπ

L x.

(Note, in many problems things simplify since L = π). Of course if the initial-condition function is
already a combination of pure-cosines, you leave it alone, and do the “sticking” as above.

Wave Equation (Special case: L = π)

To find the solution of the boundary value wave equation

a2uxx = utt , 0 < x < π , t > 0 ;

u(0, t) = 0 , u(π, t) = 0 , t > 0 ;

u(x, 0) = f(x) , ut(x, 0) = g(x) , 0 < x < π .

Step 1. Find the Fourier Sine Expansion of f(x) and the Fourier Sine Expansion of g(x), writing

f(x) =
∞∑

n=1

an sinnx ,

g(x) =
∞∑

n=1

bn sinnx .

For some numbers an and bn (or expressions in n).

Important note: If f(x) and g(x) are already in that format, but there are only finitely many
terms, leave them alone, you don’t have to do anything!

To get the answer u(x, t) you first write, tentatively

u(x, t) =
∞∑

n=1

an(ComingUpShortly1) sinnx +
∞∑

n=1

bn(ComingUpShortly2) sinnx ,

(NotY etDone)

Now for each n,
ComingUpShortly1 = cos(nat) ,
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ComingUpShortly2 =
sin(nat)

na
.

If you are lucky, and both f(x) and g(x) are finite combinations of pure sine-waves (or a single sine-
wave), then you do it to the finite expression. Much faster than blindly following formulas.

Example: Find the solution of the boundary value wave equation

36uxx = utt , 0 < x < π , t > 0 ;

u(0, t) = 0 , u(π, t) = 0 , t > 0 ;

u(x, 0) = sin 3x , ut(x, 0) = 2 sin 4x + 6 sin 7x , 0 < x < π .

Sol. Here a = 6.

u(x, t) = (ComingUpShortly1) sin 3x+2(CmoingUpShortly2a) sin 4x+6(CmoingUpShortly2b) sin 7x.

(NotY etDone)
ComingUpShortly1 = cos(3 · 6t) = cos 18t

(since now n = 3 and a = 6.)

ComingUpShortly2a =
sin(4 · 6t)

4 · 6
=

sin(24t)
24

.

(since now n = 4 and of course a = 6.)

ComingUpShortly2b =
sin(7 · 6t)

7 · 6
=

sin(42t)
42

.

(since now n = 7 and of course a = 6.) Going back to (NotY etDone), we get that the answer is:

u(x, t) = (cos 18t)(sin 3x) + 2(
sin(24t)

24
)(sin 4x) + 6(

sin(42t)
42

)(sin 7x). (AlmostDone)

Now you just clean up to get:

u(x, t) = cos 18t sin 3x +
sin 24t sin 4x

12
+

sin(42t) sin 7x

7
. (Done)

Laplace’s Equation in a Rectangle uxx + uyy = 0 (The Hardest Topic in this semester !)

The catalog of the building blocks obtained once and for all from the technique called sepa-
ration of variables are

cos λx cosh(λy) , cos λx sinh(λy) , sinλx cosh(λy) , sinλx sinh(λy) ,

and
coshλx cos(λy) , coshλx sin(λy) , sinhλx cos(λy) , sinhλx sin(λy) .
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Here λ is any real number.

Given a complicated boundary value problem, you use the boundary superposition principle
to break them up into easier problems, where three of the four sides are set to 0 and only one
side is non-zero. Then step-by-step you kick out those functions that do not meet the conditions
u(x, 0) = 0 and u(0, y) = 0. Then λ gets narrowed-down to integer n (or some multiple of n if the
x-side does not have length π). Then you write down the infinite linear combination for u(x, y),
and use the only non-zero boundary condition to plug-in, get some Fourier-Sine or Fourier-Cosine
Expansion, as the case may be, and compare it to the function given as the last side’s boundary
condition. If you are lucky and it is already expessible as a finite combination (or just a pure sine-
or cosine- wave), then you do the same trick as above. Otherwise, you find the Fourier-Sine or
Fourier-Cosine and do analogous things.

Laplace’s Equation in a Circle (in Polar) urr + 1
r ur + 1

r2 uθθ = 0. (A Piece Of Cake!)

To find the steady-state temperature in a circle of radius c where u(c, θ) = f(θ).

Step 1:

Find the full Fourier series of f(θ)

f(θ) =
a0

2
+
∞∑

n=1

an cos nθ +
∞∑

n=1

bn sinnθ .

Warning: If you are lucky and the given function f(θ) is a a pure sine-wave or a pure cosine-way,
or a finite linear combination of these, you do nothing! Leave it alone.

Step 2: Stick (r/c)n between an and cos nθ (if applicable) and Stick (r/c)n between bn and sinnθ

(if applicable). That’s it! Getting

u(r, θ) =
a0

2
+
∞∑

n=1

an(r/c)n cos nθ +
∞∑

n=1

bn(r/c)n sinnθ .

Example of the lucky case: Find the steady-state temperature in a circle of radius 5 if the
temperature in the circumference r = 5 is given by u(5, θ) = 5 + sin 3θ − 3 cos 8θ.

Sol.

u(r, θ) = 5 + (ComingUpShortly1) sin 3θ − 3(ComingUpShortly2) cos 8θ (NotY etDone)

ComingUpShorly1 is (r/5)3 and ComingUpShorly2 is (r/5)8 and the answer is:

u(r, θ) = 5 + (r/5)3 sin 3θ − 3(r/5)8 cos 8θ . (Done)

That’s it!
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WARNING: That’s it! The answer, u(r, θ), is a function of the variables r and θ. r is NOT
5, c is 5. Do not “simplify” the answer and plug-in at the end r = 5. You would get no credit,
since this is nonsense (or rather you would get f(θ) back, so it is a good check, but it is not the
answer).
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