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MATH 251 (22,23,24 ) [Fall 2020], Dr. Z. , Final Exam , Tue., Dec. 15, 2020

Email the completed test, renamed as finalFirstLast.pdf to DrZcalc3@gmail.com no
later than 3:30pm, (or, in case of conflict, three and half hours after the start).
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Sign the following declaration:

I Hereby declare that all the work was done by myself. I was allowed to
use Maple (unless specifically told not to), calculators, the book, and all the material in
the web-page of this class but not other resources on the internet.

I only spent (at most) 3 hours on doing the exam. The last 30 minutes were spent in
checking and double-checking the answers.

I also understand that I may be subject to a random short chat to verify that I actually
did it all by myself.

Signed:

Possibly useful facts from school Geometry (that you are welcome to use) : (i) The
area of a circle radius r is πr2. (ii) The circumference of a circle radius r is 2πr (iii) The
parametric equation of an ellipse with axes a b and parallel to the x and y axes respectively
is x = a cos θ, y = b cos θ, 0 < θ < 2π. (iv) The area of an ellipse with axes a and b is πab
(v) The volume and surface area of a sphere radius R are 4

3πR
3 and 4πR2 respectively (vi)

The volume of a cone is the area of the base times the height over 3. (vii) The volume of
a pyramid is the area of the base times the height over 3. (viii) The area of a triangle is
base times height over 2.

Formula that you may (or may not) need

If the surface S is given in explicit notation z = g(x, y), above the region of the xy-plane
, D, then ∫ ∫

S

F · dS =∫ ∫
D

(
−P ∂g

∂x
−Q∂g

∂y
+R

)
dA .
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1. (12 pts.) Without using Maple (or any software) Compute the vector-field line
integral ∫

C

(cos (esin x) + 5y) dx + (sin (ecos y) + 11x ) dy ,

over the path consisiting of the five line segments (in that order)

(1, 0)→ (−1, 0)→ (−1, 1)→ (0, 2)→ (1, 1)→ (1, 0) .

Explain!

ans.
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2. (12 points) Change the order of integration

∫ 1

1
4

∫ √x
0

f(x, y) dy dx .

ans.
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3. (12 points) Find the equation of the tangent plane at the point (π6 ,
π
6 ,

π
6 ) to the surface

given implicitly by

2 cos(x+ y) + 4 cos(x+ z) + 8 cos(y + z) = 7 .

Express you answer in explicit form, i.e in the format z = ax+ by + c.

ans. z =
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4. (16 points) Let a,b, c be three vectors such that

a× b = i + j− k , b× c = i − j + k , a× c = 2i + j + 2k .

What is
(a + b + c)× (2a− b + 3c) ?

ans.
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5. (12 points) Find the three angles of the triangle ABC where

A = (0, 0, 0) , B = (1, 0, 1) , C = (1, 1, 0) .

ans. The angle at A is: radians ;

The angle at B is: radians ;

The angle at C is: radians ;
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6. (12 points) Find the directional derivative of

f(x, y, z) = x3 + y3 + z3 + xyz ,

at the point (1, 1, 1) in a direction pointing to the point (−1,−1,−1) .

ans.
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7. (12 points) Using the Chain Rule (no credit for other methods), find

∂g

∂u

at (u, v) = (0, 1), where
g(x, y) = 3x2 − 3y2 ,

and
x = eu cos v , y = eu sin v .

ans.
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8. (12 points) Without using Maple (or any other software), compute the vector-field
surface integral

∫
S

F.dS if

F = 〈 3x+ cos(y3 + yz) , −2y + ex+z
2

, 5z + sin(xy3 + ex) 〉 ,

and S is the closed surface in 3D space bounding the region

{(x, y, z) : x2 + y2 + z2 < 4 and x > 0 and y < 0 and z > 0} .

ans.
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9. (12 points) Compute the vector-field surface integral
∫ ∫

S
F.dS if

F = 〈 3z , 2x , y + z 〉 ,

and S is the oriented surface

z = 2x+ 3y , 0 < x < 1, 0 < y < 1 ,

with upward pointing normal.

ans.
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10. (12 points) Without using Maple or software, find the critical point(s) of

f(x, y) = 4x− y2 − ln(2x+ y) ,

and decide for each whether it is a local maximum, local minimum, or saddle point. Ex-
plain.

ans.
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11. (12 points) Without using Maple or software, using a Linearization around the point
(1, 1, 2), approximate f(1.001, 0.999, 2.001) if

f(x, y, z) =
√

2x2 + 3y2 + z2 .

ans.
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12. (12 points) Without using Maple (or any other software) and by using polar coordi-
nates (no credit for doing it directly) find

∫ √
2

2

0

∫ x

0

x dy dx +

∫ 1

√
2

2

∫ √1−x2

0

x dy dx .

Explain!

ans.
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13. (12 points) Convert the triple iterated integral

∫ 2

0

∫ √4−z2

0

∫ 0

−
√

4−z2−y2
x2 y z dx dy dz

to spherical coordinates. Do not evaluate.

ans.
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14. (12 points) Find the curvature of the curve

r(t) = 〈5, 3 sin t, 3 cos t〉

at the point where t = π
3 .

ans.
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15. (12 points) Set-up an iterated double integral, in type I format, but do not compute,
for the surface area of the surface given parameterically by

r(u, v) = 〈u2 , uv , v2〉 , 0 < u < v < 1 .

ans.

17



16. (12 points) Let
f(x, y, z) = xy2z3 ,

and let
g(x, y, z) = x+ y2 + z3 .

compute the dot-product
grad(f) . grad(g) .

at the point (1, 1, 1).

ans.
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17. (8 points) Decide whether the following limit exists. If it does ,find it. If it does not,
explain why it does not exist.

lim
(x,y,z,w)→(0,0,0,0)

(x+ y)2 − (z + w)2

x+ y − z − w
.

ans.

19


