%begin macros %\magnification=\magstephalf \magnification=\magstep1 \def\g{\bigtriangledown} \def\L{{\cal L}} %\baselineskip=14pt %\parskip=10pt \def\Tilde{\char126\relax} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \def\P{{\cal P}} \def\Q{{\cal Q}} \parindent=0pt \overfullrule=0in \def\frac#1#2{{#1 \over #2}} %end macros \medskip {\bf NAME: (print!)} Dr. Z. \quad\quad {\bf RUID: (print!)} None \bigskip {\bf SSC:} (circle) None / I / II / I and II \bigskip \bigskip MATH 251 (22,23,24 ) [Fall 2020], Dr. Z. , Final Exam , Tue., Dec. 15, 2020 \bigskip Email the completed test, renamed as {\tt finalFirstLast.pdf } to DrZcalc3@gmail.com no later than 3:30pm, (or, in case of conflict, three and half hours after the start). \bigskip \hrule \bigskip WRITE YOUR FINAL ANSWERS BELOW \medskip \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \bigskip 1. $-18$ \bigskip 2. $\int_0^{\frac{1}{2}} \,\int_{\frac{1}{4}}^1 \, f(x,y) \, dx \, dy \, + \,\int_{\frac{1}{2}}^{1} \,\int_{y^2}^1 \, f(x,y) \, dx \, dy \, + \,$ \bigskip 3. $z=-\frac{1}{2} x - \frac{5}{6} y + \frac{7}{18} \pi$ \bigskip 4. $3{\bf i} -6{\bf j} +9 {\bf k}$ OR $\langle 3, -6,9 \rangle$ \bigskip 5. $\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3}$ \bigskip 6. $-4\, \sqrt{3}$ \bigskip 7. $6 \cos 2$ OR $-2.496881019$ \bigskip 8. $8\pi$ \bigskip 9. $-15$ \bigskip 10. $(\frac{3}{4}, -1)$, saddle point. \bigskip 11. $3 \frac{1}{3000}$ OR $\frac{9001}{3000}$ OR $3.0003333\dots$ . \bigskip 12. $\frac{\sqrt{2}}{6}$ \bigskip 13. $\int_0^2 \, \int_{\frac{\pi}{2}}^{\pi} \, \int_0^{\frac{\pi}{2}} \, \rho^6 \sin^4 \phi \, \sin^2 \theta \, \cos^2 \theta \, d\rho d\theta d\phi$ \bigskip 14. $\frac{1}{3}$ \bigskip 15. $\int_0^1 \, \int_0^u \, 2 \sqrt{u^4+4u^2v^2+v^4} \,dv \, du$ \bigskip 16. $14$ \bigskip 17. $0$ \hfill\eject Sign the following declaration: \bigskip I \quad \quad \quad \quad \quad \quad \quad \quad Hereby declare that all the work was done by myself. I was allowed to use Maple (unless specifically told not to), calculators, the book, and all the material in the web-page of this class but {\bf not} other resources on the internet. \bigskip I only spent (at most) $3$ hours on doing the exam. The last 30 minutes were spent in checking and double-checking the answers. \bigskip I also understand that I may be subject to a random short chat to verify that I actually did it all by myself. \bigskip Signed: \bigskip {\bf Possibly useful facts from school Geometry} (that you are welcome to use) : (i) The area of a circle radius $r$ is $\pi r^2$. (ii) The circumference of a circle radius $r$ is $2\pi r$ (iii) The parametric equation of an ellipse with axes $a$ $b$ and parallel to the $x$ and $y$ axes respectively is $x=a \cos \theta$, $y=b\cos \theta$, $0<\theta<2\pi$. (iv) The area of an ellipse with axes $a$ and $b$ is $\pi a b$ (v) The volume and surface area of a sphere radius $R$ are $\frac{4}{3} \pi R^3$ and $4\pi R^2$ respectively (vi) The volume of a cone is the area of the base times the height over $3$. (vii) The volume of a pyramid is the area of the base times the height over $3$. (viii) The area of a triangle is base times height over $2$. \bigskip {\bf Formula that you may (or may not) need} \bigskip If the surface $S$ is given in {\bf explicit} notation $z=g(x,y)$, above the region of the $xy$-plane , $D$, then $$ \int\int_S {\bf F} \cdot d {\bf S}= $$ $$ \int\int_D \left ( -P {{\partial g} \over {\partial x}} -Q {{\partial g} \over {\partial y}} +R \right ) \, dA \quad . $$ \vfill\eject \medskip {\bf 1}. (12 pts.) {\bf Without using Maple (or any software)} Compute the {\bf vector-field line integral} $$ \int_C \, (cos\, ( e^{\sin x}) +5y) \, dx \, + \, ( sin\, ( e^{\cos y} ) \,+ \, 11 x\,)\, dy \, \quad, $$ over the path consisiting of the five line segments (in that order) $$ (1,0) \rightarrow (-1,0) \rightarrow (-1,1) \rightarrow (0,2) \rightarrow (1,1) \rightarrow (1,0) \quad . $$ Explain! \bigskip \hrule \bigskip {\bf ans.} $-18$ \bigskip \hrule \bigskip Since this is a {\bf closed} path, we should use {\bf Green's Theorem}. $Q_x-P_y=11-5=6$ and we need to integrate it over the region inside the curve. Since the integrand is constant, i.e. $6$, the area-integral is simply $6$ times the area. This is a "house" where the roof is the triangle with vertices $(-1,1),(1,1), (0,2)$ whose area is $ 2 \cdot 1 /2=1$, and the main part of the "house" is the rectangle with vertices $(1,0),(-1,0),(-1,1),(1,1)$ whose area is $2 \cdot 1=$, so the total area of the region is $3$. So Green's theorem tells you that the answer is $18$. {\bf But} notice the {\bf orientation} it is {\bf clockwise}, so we have to multiply by $-1$, getting that the final answer is $-18$. \vfill\eject {\bf 2.} (12 points) Change the order of integration $$ \int_{\frac{1}{4}}^{1} \int_{0}^{\sqrt{x}} \, f(x,y)\, dy \, dx \quad \quad . $$ \bigskip \hrule \bigskip \bigskip \bigskip {\bf ans.} $\int_0^{\frac{1}{2}} \,\int_{\frac{1}{4}}^1 \, f(x,y) \, dx \, dy \, + \,\int_{\frac{1}{2}}^{1} \,\int_{y^2}^1 \, f(x,y) \, dx \, dy \, + \,$ \bigskip \bigskip \bigskip \hrule \bigskip The region in Type I format is $$ \{(x,y): \frac{1}{4}$ . The vector $AC$ is $\langle 1, 1,0 \rangle>$ So $$ \cos \theta_A \, = \, \frac{2}{\sqrt{2}\sqrt{2}}= \frac{1}{2} \quad, $$ and $\theta_A=\frac{\pi}{6}$. Similarly for $\theta_B$ and $\theta_C$. \vfill\eject {\bf 6.} (12 points) Find the directional derivative of $$ f(x,y,z)=x^3+y^3+z^3+xyz \quad , $$ at the point $(1,1,1)$ in a direction pointing to the point $(-1,-1,-1)$ \quad . \bigskip \hrule \bigskip {\bf ans.} $-4 \sqrt{3}$ \bigskip \hrule \bigskip $$ grad(f)= \langle \,f_x \, , \, f_y \, , \, f_z \,\rangle $$ $$ \langle 3x^2+yz \,, \, 3y^2+xz \,, \, 3z^2+xy \rangle $$ Plugging-in $x=1,y=1,z=1$, we get $$ grad(f)(1,1,1)= \langle 4,4,4 \rangle $$ The {\bf direction} is $\langle -1,-1,-1 \rangle - \langle 1,1,1 \rangle =\langle -2,-2,-2 \rangle$. The {\bf unit direction} ${\bf u}$ is $\langle -1,-1,-1 \rangle /\sqrt{3}$. Hence the {\bf directional derivative} $grad(f). {\bf u}$ is $$ \langle 4,4,4 \rangle , \langle -1,-1, -1\rangle /\sqrt{3} = -3 \cdot 4/\sqrt{3}= -4\,\sqrt{3} \, \quad , $$ \vfill\eject {\bf 7.} (12 points) Using the Chain Rule (no credit for other methods), find $$ \frac{\partial g}{\partial u} $$ at $(u,v)=(0,1)$, where $$ g(x,y)=3x^2-3y^2 \quad , $$ and $$ x=e^u \cos v \quad, \quad y=e^u \sin v \quad . $$ \bigskip \hrule \bigskip {\bf ans.} $6\, \cos \, 2$ \bigskip \hrule \bigskip The chain rule says: $$ g_u = g_x \cdot x_u \, + \, g_y \cdot y_u \quad $$ In this problem $$ g_x = 6x \quad, \quad g_y = -6y $$ $$ x_u = e^u \cos v \quad, \quad y_u= e^u \sin v $$ At $u=0$, $v=1$, $x=\cos 1$, $y=\sin 1$, so $$ g_x = 6\cos\, 1 \quad, \quad g_y = -6\sin \, 1 $$ $$ x_u = \cos \,1 \quad, \quad y_u= \sin\, 1 $$ So at this point $$ g_u = 6 \cos \, 1 \cdot \cos \, 1 \, -6 \sin 1 \cdot \sin\, 1 = 6 (\cos^2 1 - \sin^2 1)= 6 \cos\, 2 \quad. $$ (Here we used the famous trig identity $\cos^2 \theta - \sin^2 \theta=\cos \, 2\theta$.) \vfill\eject {\bf 8.} (12 points) Without using Maple (or any other software), compute the vector-field surface integral $\int_S {\bf F}.d{\bf S}$ if $$ {\bf F}= \langle \, 3x +cos(y^3+yz) \, , \, -2y+ e^{x+z^2} \, , \, 5z+\sin(xy^3+e^x) \, \rangle \quad \quad , $$ and $S$ is the closed surface in 3D space bounding the region $$ \{(x,y,z): x^2+y^2+z^2<4 \quad and \quad x>0 \quad and \quad y<0 \quad and \quad z>0 \} \quad . $$ \bigskip \hrule \hrule \bigskip {\bf ans.} $8 \pi$ \bigskip \hrule \bigskip This calls for the {\bf divergence theorem}. $$ div({\bf F})=3-2+5=6 \quad. $$ So the value that we need is the integral of $6$ over the region. But taking $6$ out, it is $6$ times the volume of the region. The region is one-eighth of a sphere radius $2$, so the volume is $$ \frac{1}{8} \frac{4}{3} \cdot 2^3 = \frac{4}{3} \pi \quad. $$ Multipying by $6$ gives the answer, $8 \pi$. \vfill\eject {\bf 9.} (12 points) Compute the vector-field surface integral $\int \int_S {\bf F}.d{\bf S}$ if $$ {\bf F} \, = \, \langle \, 3z \, , \, 2x \, , \, y+z \, \rangle \quad, $$ and $S$ is the oriented surface $$ z=2x+3y \quad, \quad 0