Math 251 Shaun Godel Section 23 WW \# 7 January February March April May June July August September October November December
15.1
9) $\int_{0}^{3} \int_{0}^{5}(15-3 x) d x d y \Rightarrow$

$$
\begin{aligned}
& \left|\frac{5 x}{2} 15 x-\frac{3 x^{2}}{2}\right|_{2}^{5}=\frac{75}{2} \\
& \int_{0}^{3} \frac{75}{2} d y=\left|\frac{75}{2} y\right|_{0}^{3}=\frac{225}{2}
\end{aligned}
$$

15) $\int_{0}^{5} \int_{-4}^{4}\left(x^{3}\right) d x d y \Rightarrow\left|\frac{x^{4}}{4}\right|_{-4}^{4}=0$ Integral of 0 is 0 answer is 0
16) $\int_{4}^{9} \int_{-3}^{8} 1 d x d z \Rightarrow|x|_{-3}^{8}=11 \int_{4}^{4} 11 d y=55$
17) $\int_{-1}^{1} \int_{0}^{\pi} x^{2} \sin z d z d x \Rightarrow\left(-\left.x^{2} \cos y\right|_{0} ^{\pi}=2 x^{2}\right.$

$$
\int_{-1}^{1} 2 x^{2} d x=\left|\frac{2 x^{3}}{3}\right|_{-1}^{1}=\left(\frac{2}{3}\right)+\left(\frac{2}{3}\right)=\frac{4}{3}
$$

25) $\int_{2}^{6} \int_{1}^{4} x^{2} d x d y \Rightarrow\left|\frac{x^{3}}{3}\right|_{1}^{4}=\left(\frac{64}{3}\right)-\left(\frac{1}{3}\right)=\left(\frac{63}{3}\right)=21$

$$
\int_{2}^{6} 21 d y=|21 \delta|_{2}^{6}=126-42=84
$$

31)

$$
\begin{aligned}
\int_{1}^{2} \int_{0}^{4} \frac{1}{x+\gamma} d \gamma d x \Rightarrow|\ln (x+8)|_{0}^{4} & =\ln (x+4)-\ln (x)=\ln \left(\frac{|x+4|}{|x|}\right) \\
\int_{1}^{2} \ln \left(\frac{x+4 \mid}{|x|}\right) d x & =\left|x \ln \left(\frac{x+4}{x}\right)+4 \ln (x+4)\right|_{1}^{2} \\
& \left.=\ln \left(\frac{11664}{3125}\right) \approx 1.317 \right\rvert\,
\end{aligned}
$$

35) $\int_{1}^{2} \int_{1}^{3} \frac{\ln (x y)}{y} d z d x \Rightarrow \int_{1}^{3} u d u=|\ln (x z)|_{1}^{3}=$

$$
\ln (x 8) \ln (3)
$$

$$
\begin{aligned}
u=\ln (x \delta) \quad \int_{1}^{2} \ln (x y) \ln (3) d x & =|\ln (x y) \ln (3) x|_{1}^{2} \\
& =\ln (x \delta) \cdot \ln (3)
\end{aligned}
$$

37)

$\int_{1}^{3} \int_{-2}^{4} \frac{x}{8} d x d y$

$$
\begin{aligned}
\Rightarrow & \left|\frac{x^{2}}{2 f}\right|_{-2}^{4}=\frac{8}{5}-\frac{2}{8}=\frac{6}{8} \\
& \int_{1}^{3} \frac{6}{\gamma} d z=|6 \ln (z)|_{1}^{3}=6 \ln 3-6 \ln 1 \approx 6.592
\end{aligned}
$$

41

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \int_{0}^{2}\left(e^{x} \sin y\right) d x d y \Rightarrow & \left(\left.e^{x} \sin z\right|_{0} ^{2}=e^{2} \sin z-\sin \gamma\right. \\
& \int_{0}^{\frac{\pi}{4}}\left(e^{2} \sin z-\sin z\right) d z=\left|-e^{2} \cos \gamma+\cos z\right|^{\frac{\pi}{4}} \\
& \left(-e^{2} \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)-\left(-e^{2}+1\right) \approx 1.871
\end{aligned}
$$

15.2:
3) Vertically simple region: $0 \leq x \leq 1,0 \leq y \leq 1-x^{2}$

Horizontally simple region: $0 \leq 5 \leq 1,0 \leq x \leq \sqrt{1-8}$

$$
\int_{0}^{1}\left(\int_{0}^{1-x^{2}}(x f) d y\right) d x=\left|\frac{x \delta^{2}}{2}\right|_{0}^{1-x^{2}}=-x j x^{2}
$$

$$
\int_{0}^{1}-x \delta x^{2} d x=\frac{-x y}{3}
$$

5)

$$
\begin{aligned}
\int_{0}^{2} \int_{-2 z+4}^{4}\left(x^{2} z\right) d x d z \Rightarrow\left|\frac{x^{3} z}{3}\right|_{-2 z+4}^{4} & =\left(\frac{64 y}{3}\right)-\left(\frac{(-2 z+4)^{3} z}{3}\right) \\
& =\left(8 z^{2}\left(z^{2}-6 z+12\right)\right) / 3 \\
& \int_{0}^{2}\left(8 y^{2}\left(z^{2}-6 z+12\right)\right) / 3 d \gamma=\frac{192}{5} \approx 38.4
\end{aligned}
$$

6) $\int_{0}^{2} \int_{28}^{4}\left(x^{2} z\right) d x d y=\frac{128}{5} \approx 25.6$
7) $\int_{0}^{2} \int_{g}^{4}\left(x^{2} \gamma\right) d x d y=\frac{608}{15} \approx 40.53$
ii) $\int_{0}^{\sqrt{4-1^{2}}} \int_{1}^{\sqrt{4-y^{2}}} \frac{y}{x} d x d y=2 \ln (2)-\frac{3}{4} \approx 0.636$

January February March April May June July August September October November December
19) $\left.\left.\int_{0}^{1} \int_{1}^{e^{x^{2}}} x d y d y\right|_{1} ^{x \delta}\right|^{e^{2}}=x e^{x^{2}}-x$

$$
\int_{0}^{1}\left(x e^{x^{2}}-x\right) d x=\left|\frac{e^{x^{2}}}{2}-\frac{x^{2}}{2}\right|_{0}^{1}
$$

$$
=\left(\frac{e}{2}-\frac{1}{2}\right)-\left(\frac{t}{2}\right)=\frac{e}{2}-1 \approx 0.359
$$

21) $\int_{0}^{1} \int_{0}^{\gamma} 2 x z d x d y-\int_{0}^{1} \int_{0}^{y^{2}} 2 x y d x d y=\frac{1}{12}$
use evall on maple.
22)

$$
\int_{0}^{4} \int_{0}^{\gamma} f(x, z) d x d z
$$

31) Range of $x \Rightarrow 0 \leq x \leq 1$

Range of $\gamma \Rightarrow 1 \leq \delta \leq e$
Must be integrated with dy first

$$
\begin{aligned}
& \int_{0}^{1} \int_{e^{x}}^{e} \frac{1}{\ln g} d z d x-\int_{0}^{1} \int_{e^{\sqrt{x}} \ln \gamma}^{e} \frac{1}{\ln } d y d x \\
& =(e-1)-(1)=e-2 \approx 0.718
\end{aligned}
$$

page 3

January February March April May June July August September October November December
35) 1

$$
\int_{0}^{1} \int_{0}^{8} x e^{\gamma^{3}} d x d y=\frac{e-1}{6} \approx 0.286
$$

$37)^{2}+2$
2
2

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{2} e^{x+8} d x d z-\int_{0}^{1} \int_{0}^{1} e^{x+z} d x d y \\
& =\left(e^{2}-1\right)^{2}-(e-1)^{2} \\
& =e^{4}-3 e^{2}+2 e \approx 37.868
\end{aligned}
$$

43) $\int_{1}^{2} \int_{\gamma}^{2 \gamma} \frac{\sin \gamma}{\gamma} d x d \gamma=-\cos (2)+\cos (1) \approx 0.956$
44) $-z-x^{2}-8^{2}=-8$

$$
j=\sqrt{x-x^{2}}
$$

$$
\begin{aligned}
& -z+x^{2}+y^{2}=0 \\
& -2 z^{2}=-8
\end{aligned}
$$

$$
-2 x^{2}-2 z^{2}=-8
$$

2 dent kaon how to solve thess problem..

