1.
$$F = \langle ysin(yz), xsin(yz) + xyzcos(yz), xy^2 cos(yz) \rangle$$

 $P_y = Q_x = \sin(yz) + yzcos(yz)$
 $P_z = R_x = y^2 \cos(yz)$
 $Q_z = R_y = 2ycos(yz) - xy^2zsin(yz)$

So, F is conservative and
$$\int_C Fdr = f(1,1,\pi) - f(0,0,0) = 0$$

3.
$$\nabla f = \langle f_x, f_y \rangle = \langle 3.6y \rangle \int_C F dr = f(r(4)) - f(r(1)) = -\frac{9}{4}$$

5.
$$\nabla f = (f_x, f_y, f_z) = (ye^z, xe^z, xye^z) \int F dr = f(r(2)) - f(r(1)) = 32e - 1$$

9.
$$P_y = Q_x = 2y P_z = R_x = 0 R_z = Q_y = e^z$$

 $f = xy^2 + ye^z$

13.
$$P_y = Q_x = 0$$
 $P_z = R_x = \sec^2 x$ $R_z = Q_y = 1$

$$f = ztan(x) + yz$$

15.
$$P_y = Q_x = 2x P_z = R_x = 0 Q_z = R_y = -4$$

 $f = x^2y + 5x - 4yz$

17.
$$P_y = Q_x = 2xz P_z = R_x = 2xy Q_z = R_y = 0$$
, the vector field is conservative

$$f = x^2yz$$
, the intergral equals $f(4,1,1) - f(0,\frac{\sqrt{2}}{2},1) = 16$

19.
$$f(1,1,0) - f(0,0,0) = 1$$

$$\int F dr_1 = \int_0^1 3t^2 dt = 1$$

$$\int F dr_2 = \int_0^1 4t^3 dt = 1$$