17.1 1. x=cos(t) y=sin(t) dx=-sin(t) dy=cos(t) Int(Int(cos(t)*sin(t)*(-sin(t))+sin(t)*cos(t),r=0..1),t=0..2Pi) =0 P=xy, Q=y Qx=0, Py=x Qx-Py=-x Int(Int(-x,y=-sqrt(1-x)..sqrt(1-x)),x=-1..1) =0 0=0 Therefore the Green theorem exist. 3. P=y^2 Q=x^2 Qx=2x Py=2y Qx-Py=2x-2y Int(Int(2x-2y,x=0..1),y=0..1) =0 5. P=x^2y Q=0 Qx=0 Py=x^2 Qx-Py=-x^2 Int(Int(-x^2,y=-sqrt(1-x^2)..sqrt(1-x^2)),x=-1..1) =-Pi/4 7. Qx=2x Py=0 Qx-Py=2x Int(Int(2x,y=x^2..x),x=0..1) =1/6 9. Qx=e^(x-y) Py=e^(x+y) Qx-Py=e^(x-y)-e^(x+y) (-1)Int(Int(e^(x-y)-e^(x+y),y=0..x),x=0..2)+Int(Int(e^(x-y)-e^(x+y),y=x-2..2),x=2..4) =e^6/2-e^4/2-5e^2/2+5/2 13. Qx=3 Py=1 Qx-Py=2 Closed ABCD=2*8*2/2=16 DA=Int(y,y=6..0)=-18 nonclosed ABCD=16-(-18)=34 17.2 1. x=cos(t) y=sin(t) z=0 F=<2cos(t)sin(t), cos(t), sin(t)> Fdr=(2cos(t)sin(t)(-sin(t))+cos^2(t))dt Int(Fdr,t=0..2Pi) =Pi z=1-x^2-y^2 curl=<1,0,1-2x> Int(Int(-2x+1-2x,y=-sqrt(1-x^2)..sqrt(1-x^2)),x=-1..1) =Pi Pi=Pi Therefore the Stokes' Theorem exists. 3. z=1 curl=<0,e^(y-z),-e^(y-z)> =<0,e^(y-1),-e^(y-1)> Int(-e^(y-1),y=0..1),x=0..1 =(e-1)*e^(-1) Py=e^(y-z) Qx=0 Qx-Py=-e^(y-z)=-e^(y-1) Int(-e^(y-1),y=0..1),x=0..1 =(e-1)*e^(-1) (e-1)*e^(-1)=(e-1)*e^(-1) 5. curl=<-3ze^z^3,2ze^z^2+zsin(xz),2> x=cos(t) y=sin(t) z=0 F=<1-sin(t), 1+cos(t), 1> Fdr=((1-sin(t))*(-sin(t)+(1+cos(t))*cos(t))dt Int(Fdr,t=0..2Pi) =2Pi 9. curl=<0,0,0> Since F is conservative vector field, the answer is 0 11. curl=<3,0,-5> z=2 Int(Int(-5,y=-sqrt(3-x)..sqrt(3-x)),x=-3..3) =-Pi/45 13. plane: z=y curl=<-1,-1,-1> Fds=0dA Int(Fds,dA)=0