Math 251 Shaun Coda Section 23 WW\# 12
January February March April May June July August September October November December
17.1:

1) $\oint_{C} x y d x+y d y=-\iint_{D}\binom{0}{x} d x d y$
for circle

$$
=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}(x) d y d x=\iint_{d}\left(\frac{\partial}{\partial x} y-\frac{\partial}{\partial y}(x z)\right) d A
$$

3)

$$
\begin{aligned}
\oint_{c} \delta^{2} d x+x^{2} d y= & -\iint_{0}(2 x-2 \delta) d x d z=-\int_{0}^{1} \int_{0}^{1}(2 x-2 y) d x d z \\
& \Rightarrow \int_{0}^{1}(2 x-2 z) d x=\left|x^{2}-2 y x\right|_{0}^{1}=0 \\
& \int_{0}^{1} 0 d y=0
\end{aligned}
$$

5)

$$
\begin{aligned}
\oint_{c} x^{2} y d x & =\oint_{c} x^{2} y d x+o d y=-\iint_{D}\left(0-x^{2}\right) d x d y \\
& =-\int_{-1}^{1} \int_{\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(-x^{2}\right) d y d x \Rightarrow \int_{-\sqrt{1-x^{2}}}^{1-x^{2}}\left(-x^{2}\right) d y=\int_{-\sqrt{3}}^{\sqrt{1-x^{2}}} \\
& =-2 x^{2} \sqrt{1-x^{2}} \Rightarrow-\int_{-1}^{1}\left(-2 x^{2} \sqrt{1-x^{2}}\right) d x=-\frac{\pi}{4}
\end{aligned}
$$

7)

$$
\begin{aligned}
& \oint_{C} F \cdot d r=\int_{C} x^{2} d x+x^{2} d y=-\iint_{D}(2 x-0) d y d x=\int_{0}^{1} \int_{x^{2}}^{x^{*}}(2 x) d y d x \\
&=\int_{0}^{1} 2 x d z=|2 x y|_{x^{2}}^{x}=2 x^{2}-2 x^{3} \\
& \sim \int_{0}^{1}\left(2 x^{2}-2 x^{3}\right) d x=-\frac{x^{2}}{0}=x \frac{2 x^{3}}{3}-\left.\frac{x^{4}}{2}\right|_{0} ^{1}=-\left(\frac{x^{4}}{3}-\frac{x^{3}}{7}\right)
\end{aligned}
$$

9)

$$
\begin{aligned}
\oint_{c} F d r & =\int_{0}^{0} e^{x+y} d x+e^{x-y} d y=\iint_{D}\left(e^{x-8}-e^{x+y}\right) d x d y \\
& =\int_{0}^{2} \int_{0}^{2}\left(e^{x-\gamma}-e^{x+y}\right) d x d y \\
& =\int_{0}^{2}\left(e^{x-y}-e^{x+z}\right) d x=\left|-2 e^{x} \cdot \sinh (y)\right|_{0}^{2} \\
& =\int_{0}^{2} \text { ans } d y x-35,291
\end{aligned}
$$

13)

$$
\begin{aligned}
& \int_{C}(\sin x+y) d x+(3 x+y) d y=\int_{D}(3-\cos x+y) d x d y \\
& \int_{0}^{2} \int_{0}^{2}(3-\cos x+y) d x d y=\cos (4)-2 \cos (2)+13 \\
& \int_{2}^{4} \int_{-2}^{2}(3-\cos (x+y)) d x d y=0 \\
& \int_{4}^{6} \int_{2}^{0}(3-\cos x+y) d x d y=-\cos (8)+2 \cos (6)-\cos (4)-12 \\
& \int_{6}^{0} \int_{0}^{0}(3-\cos x+y) d x d y=0 \\
& \text { sum }=-\cos (8)+2 \cos (6)-2 \cos (2)+1 \text { z3.898 }
\end{aligned}
$$

$17.2:$

1) $r(t)=\cos t i+\sin t j+k$ for $0 \leq t \leq 2 \pi$

$$
\begin{aligned}
& F(r(t))=\langle 2 \cos (t) \sin (t), \cos t, \sin t+1\rangle \\
& r^{\prime}(t)=-\sin ^{\prime} t i+\cos (t) j+0 k \\
& F(r(t)) \cdot r^{2}(t)=-2 \cos t \sin ^{2} t+\cos ^{2} t \\
& \int_{0}^{2 \pi}\left(-2 \cos t \sin ^{2} t+\cos ^{2} t\right) d t=\pi
\end{aligned}
$$

3)

$$
\begin{aligned}
& \oint_{0}^{1} \oint_{0}^{1} F d A=f \operatorname{curl} F \\
& \left|\begin{array}{l}
\frac{j}{\partial z} \frac{\partial}{j z} \frac{k}{\partial z} \\
e^{j-z} 0
\end{array}\right|=0 i-\left(-e^{y-z}\right) j+\left(-1 e^{j-z}\right) k \\
& \oint F \cdot d r=\int_{0}^{1}\left\langle 0, e^{j-z}, e^{j z}\right\rangle \cdot\langle 0,0,1\rangle d A \\
& =\int_{0}^{1} \int_{0}^{1} e^{j-z} d j d z \approx 1.086
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle-3 e^{2^{3}}, 8 \sin (x z)+2 e^{z^{2}}, 2\right\rangle \\
& f \text { fut }=\iint_{5}\left\langle-3 e^{z^{3}}, \varepsilon \sin (x z)+\left(2 e^{z^{2}}, 2\right\rangle \cdot\left\langle\frac{x}{\sqrt{-x^{2}-y^{2}+1}}, \frac{y}{\sqrt{-x^{2}-y^{2}+1}}, 1\right\rangle d A\right. \\
& =2 \pi
\end{aligned}
$$

answer is 0
11) curl $F=\left|\begin{array}{ccc}i & j_{2} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial \gamma} & \frac{\partial}{\partial z} \\ 3 \gamma & -2 x & 37\end{array}\right|=(3-0) i-(0-0) j+(-2-3) k$

Plux of cart $F=\iint_{S_{2}}\left(3 x-5^{(2)} d s\right.$

$$
=\int_{0}^{0} \int_{0}^{2 \pi}(3 \pi-10) d \theta d r=4 \pi \pi
$$

13) $\begin{aligned} \text { aurl } F=\left|\begin{array}{lll}j & j & \frac{z}{j} \\ \frac{\partial}{j x} & \frac{\partial}{\partial j} & \frac{\partial}{\partial z} \\ y & z & x\end{array}\right|=(0-1) i-(1-0) j+(0-1) k \\ =\langle-1,-1,-1\rangle\end{aligned}$

Hhus of cart $F=\iint_{S}(-x-y-z) d s$

$$
=\int_{0}^{3} \int_{0}^{3} \int_{0}^{3}(-x-z-z) d x d z d x=\frac{-243}{2}
$$

