MIDTERM 1 FOR  Multivariable Calculus, Math 251(22-24), FALL 2020, Dr. Z.
                                                                               NAME: Sai Embar
                                                                               RUID: 193003278
                                                                               EMAIL: sai.embar@rutgers.edu
                                                                BELOW WRITE THE LIST OF THE ANSWERS
                                                                          Answer[ 1  ]= -2
                                                                          Answer[ 2  ]= decreasing
                                                                          Answer[ 3  ]= 60/sqrt(8) (WRONG ANS., RIGHT WAY, CARELESS ERROR, -3 POINTS)
                                                                          Answer[ 4  ]= (1,3)
                                                                          Answer[ 5  ]= 14
                                                                          Answer[ 6  ]= 2
                                                                          Answer[ 7  ]= 54/729
                                                                          Answer[ 8  ]= (0,-9)
                                                                          Answer[ 9  ]= 17
                                                                          Answer[ 10  ]= (1,2,3)
                                                  -----------------------------------------------------------------
SCORE: 97 POINTS (out of 100) GOOD JOB!
                                 Instructions: Download this file with its original name, mt1.txt, then rename it, in your computer
                                                                          mt1FirstLast.txt
                                                              Edit it with your answers and solutions
USING COMPUTEREZE: e.g.: x times y IS x*y, x to the power y is x^y
                              and Email DrZcalc3@gmail.com,  80 minutes (or sooner) after starting (for most people 10:00am, Oct. 15)
                                                                            Subject: mt1
                                                            with an attachment. YOU MUST NAME IT EXACTLY
                                                                          mt1FirstLast.txt
                                             ---------------------------------------------------------------------------
                                    For each of the questions you MUST first figure, YOUR version, with the following convention
                                      For i=1,2,3,4,5,6,7,8,9 , a[i]:= The i-th digit of your RUID, BUT of it is zero make it 1
                                                                      Example: RUID=413200125;
                                      a[1] = 4, a[2] = 1, a[3] = 3, a[4] = 2, a[5] = 1, a[6] = 1, a[7] = 1, a[8] = 2, a[9] = 5
-----------------------------------------------------------------------------------------------------------------------------------------------
                                                                     HERE WRITE THE ACTUAL a[i]
                                      a[1]= 1  ,  a[2]= 9  ,  a[3]= 3 ,  a[4]= 1  , a[5]= 1 , a[6]= 3 , a[7]= 2 ,  a[8]= 7 ,  a[9]= 8 
                                                            --------------------------------------------
                                                            ---------------------------------------------
                                                                             Problem 1:
                                           Find dz/dy at the point (1,1,1)  if z(x,y) is given implicitly by the equation
x^a[1]+y^a[2]+z^a[3]+a[5]*x*y*z^2 = 3+a[5]
                                                                 With my RUID data the question is
x^1+y^9+z^3+1*x*y*z^2 = 3+1
                                                              Here is how I do it (Explain everything)
								The shortcut formula for implicit differentiation for dz/dy = -(F_y)/(F_z)
								F_y (partial derivative) = 9y^8 + x*z^2
								F_z = 3*z^2 + 2*x*y*z
								dz/dy = -(9y^8 + xz^2)/(3z^2+2xyz)
								To find dz/dy at a specific point, plug in the point into dz/dy
								dz/dy at (1,1,1) = (9*1^8 + 1*1^2)/(3*1^2 + 2*1*1*1)
								= -10/5
								= -2
                                                                               Ans.: -2
                                                            ---------------------------------------------
                                                                             Problem 2:
                           Suppose that grad(f)(P)=. Is f increasing or decreasing at the direction  ?
                                                                 With my RUID data the question is
			Suppose that grad(f)(P)=<1,-1,4>. Is f increasing or decreasing at the direction  <1,3,-1>?
                                                              Here is how I do it (Explain everything)
				First we can label the direction vector v = <1,3,-1>
				Next, we take the magnitude to find the unit vector of v. ||v|| = sqrt(1^2 + 3^2 + (-1)^2) = sqrt(11)
				u_v (unit vector) = <1/sqrt(11), 3/sqrt(11), -1/sqrt(11)>
				Next, we find the directional derivative D_u(f)(P) = grad(f)(P) *(dot product) u_v
				= <1,-1,4> * (dot product) <1/sqrt(11), 3/sqrt(11), -1/sqrt(11)> 
				= -6/sqrt(11) -----> Negative directional derivative means f is decreasing at the direction <1,3,-1>
                                                                               Ans.: decreasing
                                                            ---------------------------------------------
                                                                             Problem 3:
                                                      Find the directional derivative of the function f(x,y,z)
x^3*a[6]+y^3*a[3]+z^3*a[8] 
                                                  At the point P=(1,-1,1) in the direction pointing to Q=(1,-1,3)
                                                                 With my RUID data the question is
						x^3*3+y^3*3+z^3*7
                                                              Here is how I do it (Explain everything)
						First find F_x, F_y, and F_z
						F_x = 9x^2
						F_y = 9y^2
						F_z = 21z^2
						next find grad(f) = <9x^2, 9y^2, 21z^2>
						next, plug in the point P to find grad(f)(P) = <9, -9, 21>
						next, find vector v = PQ = <0,-2,2> 
						find magnitude of v = ||v|| = sqrt(0^2 + (-2)^2 + 2^2) = sqrt(8)
						unit vector of v = u_v = <0, -2/sqrt(8), 2/sqrt(8)>
						Next, we find the directional derivative D_u(f)(P) = grad(f)(P) *(dot product) u_q
				= <1,-9,21> * (dot product) <0, -2/sqrt(8), 2/sqrt(8)>
				= 60/sqrt(8)
						
                                                                               Ans.: 60/sqrt(8)
                                                            ---------------------------------------------
                                                                             Problem 4:
                                                            Find a saddle point of the function  f(x,y)=
exp(x-a[4])-(x-a[4])*exp(y-a[6])
                                   If there is no saddle point, write in the Answers: "Does Not exist". Explain what you are doing
                                                                 With my RUID data the question is
								        Find a saddle point of the function  f(x,y)=
exp(x-1)-(x-1)*exp(y-3)
                                   If there is no saddle point, write in the Answers: "Does Not exist". Explain what you are doing
                                                              Here is how I do it (Explain everything)
							First find F_x and F_y
							F_x = exp(x-1)-(x-1)*exp(y-3)
							F_y = -exp(y-3)*(x-1)
							Set both equations equal to 0. We can then solve for x in the F_y equation and we find that x = 1. Plug x back into the F_x equation to solve for y, which gives y = 3.
							The critical point is (1,3).
							Find F_xx, F_xy, and F_yy
							F_xx = exp(x-1)
							F_xy = -exp(y-3)
							F_yy = -exp(y-3)*(x-1)
							Next, find the discriminant, D = F_xx*F_yy - (F_xy)^2
							= exp(x-1)*-exp(y-3)*(x-1)-(-exp(y-3))^2
							Calculate it at (1,3)
							= -1
							Since the discriminant D < 0, (1,3) is a saddle point
                                                                               Ans.: (1,3)
                                                            ---------------------------------------------
                                                                             Problem 5:
                                                                     Let f(x,y) be the function
a[4]*x + a[7]*y + a[2]
                                          Find the ABSOLUTE MINIMUM VALUE of f(x,y) INSIDE the TRIANGLE whose VERTICES ARE
A = [a[1], a[2]], B = [a[3], a[4]], C = [a[5], a[6]]
                                                                 With my RUID data the question is
									  Let f(x,y) be the function
1*x + 2*y + 9
                                          Find the ABSOLUTE MINIMUM VALUE of f(x,y) INSIDE the TRIANGLE whose VERTICES ARE
A = [1, 9], B = [3, 1], C = [1, 3]
                                                              Here is how I do it (Explain everything)
							Since it is a linear function, the finalists are automatically the vertices
							so f(1,9) = 1+2(9) + 9 = 28
							f(3,1) = 3 + 2*1 + 9 = 14
							f(1,3) = 1 + 2(3) + 9 = 16
							The absolute minimum is 14.
                                                                               Ans.: 14
                                                            ---------------------------------------------
                                                                             Problem 6:
                                                                     Let f(x,y) be the function
(x^2*a[4]^2-y^2*a[5]^2)/(x*a[4]-y*a[5])
                                   Find the LIMIT of f(x,y) as (x,y) goes to the point [a[5],a[4]], or show that it does not exist
                                                                 With my RUID data the question is
(x^2*1^2-y^2*1^2)/(x*1-y*1)
                                   Find the LIMIT of f(x,y) as (x,y) goes to the point [1,1], or show that it does not exist
                                                              Here is how I do it (Explain everything)
								limit of (x^2 - y^2)/(x-y) as (x,y) goes to (1,1)
								we can factor the numerator.
								limit of ((x-y)(x+y))/(x-y) as (x,y) goes to (1,1)
								we can cancel the (x-y) from the numerator and denominator
								limit of x + y as (x,y) goes to (1,1)
								Now we can just plug in the point to get 1 + 1 = 2.
								
										Ans: 2
                                                            ---------------------------------------------
                                                                             Problem 7:
                                                                  Find the curvature of the curve
r(t) = [a[1], a[2]*t, a[3]*t^2]
                                                                      At the point  (a[1],0,0)
                                                                 With my RUID data the question is
r(t) = [1, 9*t, 3*t^2]
                                                                      At the point  (1,0,0)
                                                              Here is how I do it (Explain everything)
								first find r'(t) and r''(t)
								r'(t) = <0,9,6t>
								r''(t) = <0,0,6>
								do cross product of r'(t) x r''(t)
								After doing it you get r'(t) x r''(t) = 54 i.
								Find magnitude of r'(t) = 9 at (1,0,0)
								Find mangitude of r'(t) x r''(t) = 54
								Plug into curvature formula K(t) = ||r'(t) x r''(t)||/(||r'(t)||^3)
								= 54/729
										Ans: 54/729
                                                            ---------------------------------------------
                                                                             Problem 8:
                                                    A particle is moving in the plane with ACCELERATION given by
[-a[1]*sin(t), -a[2]*cos(t)]
                                                               At time t=0 its position is , [0, a[2]]
                                                                  and  its velocity is , [a[1], 0]
                                                                Where is it located at time , t = Pi
                                                                 With my RUID data the question is
[-1*sin(t), -9*cos(t)]
                                                               At time t=0 its position is , [0, 9]
                                                                  and  its velocity is , [1, 0]
                                                                Where is it located at time , t = Pi
                                                              Here is how I do it (Explain everything)
						first find velocity r'(t) by integrating acceleration function
						integrating r''(t) = r'(t) = 
						Next, integrate r'(t) to find r(t), the position vector
						integrating r'(t) = r(t) = 
						plug in time = Pi
						r(Pi) = 
						=<0,-9> = (0,-9)
										Ans: (0,-9)
                                                            ---------------------------------------------
                                                                             Problem 9:
                                                           A certain function depends on variables x and y
                                               Right now the rate of change of the function with respect to x is, a[5]
                                                  and the rate of change of the function with respect to y is, a[7]
                                                                     Both x and y depend on time
                                                   Right now the rate of change of x with respect to time is, a[1]
                                                      and the rate of change of y with respect to time is, a[9]
                                                            How fast is the function changing right now?
                                                                 With my RUID data the question is
										
                                                           A certain function depends on variables x and y
                                               Right now the rate of change of the function with respect to x is, 1
                                                  and the rate of change of the function with respect to y is, 2
                                                                     Both x and y depend on time
                                                   Right now the rate of change of x with respect to time is, 1
                                                      and the rate of change of y with respect to time is, 8
                                                            How fast is the function changing right now?
                                                              Here is how I do it (Explain everything)
							df/dx = 1, df/dy = 2, dx/dt = 1, dy/dt = 8
							Formula to find df/dt = (df/dx)*(dx/dt) + (df/dy)*(dy/dt)
							df/dt = 1*1 + 2*8 = 1 + 16
							df/dt = 17
										Ans: 17
                                                            ---------------------------------------------
                                                                            Problem 10:
                                                         Find the point of intersection of the three planes
                                                                    x = a[5], y = a[7], z = a[3]
                                                                 With my RUID data the question is
							Find the point of intersection of the three planes
                                                                    x = 1, y = 2, z = 3
                                                              Here is how I do it (Explain everything)
							The traditional way of solving for the point of intersection between three planes is by setting up a system of equations
									x - 1 = 0
									y - 2 = 0
									z - 3 = 0
							Usually, this is followed up with solving for the three variables x,y, and z using the three equations, 
							We can solve these three equations which gives us, x = 1, y = 2, and z = 3.
							In this case, the values of x,y, and z are already given to us
							This means that the point of intersection is simply (1,2,3) because the values are already solved and there is no need for a system of equations to set up.
										Ans: (1,2,3)