#ATTENDANCE QUIZ for Lecture 11 of Math251(Dr. Z.) #EMAIL RIGHT AFTER YOU WATCHED THE VIDEO #BUT NO LATER THAN Oct. 12, 2020, 8:00PM (Rutgers time) #EXTENDED TO Oct. 17 #THIS .txt FILE (EDITED WITH YOUR ANSWERS) #TO: #DrZcalc3@gmail.com #Subject: aq11 #with an ATTACHMENT CALLED: #aq11FirstLast.txt #(e.g. aq11DoronZeilberger.txt) #LIST ALL THE ATTENDANCE QUESTIONS FOLLOWED BY THEIR ANSWERS #FIRST ATTENDANCE PROBLEM OF LECTURE 11 #WHO PROVED THAT EVERY POS. INTEGER CAN ALWAYS BE WRITTEN AS A SUM OF FOUR SQUARES? #ANS. #Joseph Lagrange #ATTENDANCE QUESTION #2 FOR LECTURE 11 #Use Largange mutipliers(no credit for other methods)to find the largest value that x+3y+5z can be,given that x^2+y^2+z^2=35 #ANS. #fx=1 fy=3 fz=5 #grad(f)=<1,3,5> #gx=2x gy=2y gz=2z #grad(g)=<2x,2y,2z> #λ<1,3,5>=<2x,2y,2z> #{2x=λ,2y=3λ,2z=5λ,x^2+y^2+z^2=35} #x=1,y=3,z=5,λ=2 #1+3*3+5*5=35 #THE ANSWER IS 35 #THIRD ATTENDANCE QUESTION #Let a[i]:=The i-th digit of your RUID,if it is zero make it 5 #FIND THE MAXIMUMVALUE OF a[1]x^3+a[4]xy+a[9]y^2 ON the curve a[5]x^3+a[7]xy+a[5]y^3=a[5] #ANS. #f=2x^3+5xy+5y^2 #g=5x^3+2xy+5y^3=5 #fx=6x^2+5y fy=5x+10y #grad(f)=<6x^2+5y,fy=5x+10y> #gx=15x^2+2y gy=2x+15y^2 #grad(g)=<15x^2+2y,2x+15y^2> #λ<6x^2+5y,5x+10y>=<15x^2+2y,2x+15y^2> #{λ6x^2+λ5y=15x^2+2y,λ5x+λ10y=2x+15y^2,5x^3+2xy+5y^3=5} #{ λ= 1.058976679, x = 0.5700821043, y = 0.8528193121} #2x^3+5xy+5y^2=6.437935113 #THE ANSWER IS 6.437935113 #FOURTH ATTENDANCE PROBLEM #FINISH THIS UP! #ANS. #y=sqrt(8/3) #x=4/sqrt(8/3) #f=48 #THE ANSWER IS 48