NAME: (print!) Yongshan Li RUID: (print!) 204000235

SSC: (circle) None I / II / I and II

MATH 251 (22,23,24) [Fall 2020], Dr. Z., Final Exam, Tue., Dec. 15, 2020

Email the completed test, renamed as finalFirstLast.pdf to DrZcalc3@gmail.com no later than 3:30pm, (or, in case of conflict, three and half hours after the start).

WRITE YOUR FINAL ANSWERS BELOW

1.18

2. Int(Int(f(x,y), x=1..1/4), y=0..1/2)+Int(Int(f(x,y), x=y^2..1), y=1/2..1)

3. z = -3*sqrt(3)*x-5*sqrt(3)*y+Pi*(4*sqrt(3)/3+1/6)

4. -i-4j-9k

5. ans. The angle at A is:45 radians: Pi/4

The angle at B is:90 Radians: Pi/2;

The angle at C is:45 Radians: Pi/4 ;

6. -4*sqrt(3)

7.0

8.8Pi

9. -15

10. (3/4,-1) a saddle point

11.3.0003

12. - (sqrt(2)-2)/6

13. Int(Int((rsin(p)cos(t))^2*(rsin(p)sin(t))*(rcos(p))*r^2*sin(p), r=0..2), p=3Pi/4..Pi), t=3Pi/2..2Pi)

14.3*sqrt(2)/2

15. Int(Int(iu^2+juv+kv^2, u=0..v), v=0..1)

16.14

17.0

Sign the following declaration:

I Hereby declare that all the work was done by myself. I was allowed to use Maple (unless specifically told not to), calculators, the book, and all the material in the web-page of this class but **not** other resources on the internet.

I only spent (at most) 3 hours on doing the exam. The last 30 minutes were spent in checking and double-checking the answers.

I also understand that I may be subject to a random short chat to verify that I actually did it all by myself.

Signed: Yongshan Li

Possibly useful facts from school Geometry (that you are welcome to use) : (i) The area of a circle radius r is πr^2 . (ii) The circumference of a circle radius r is $2\pi r$ (iii) The parametric equation of an ellipse with axes $a \ b$ and parallel to the x and y axes respectively is $x = a \cos \theta$, $y = b \cos \theta$, $0 < \theta < 2\pi$. (iv) The area of an ellipse with axes a and b is πab (v) The volume and surface area of a sphere radius $R \operatorname{are}_{3}^{4} \pi R^{3}$ and $4\pi R^{2}$ respectively (vi) The volume of a cone is the area of the base times the height over 3. (vii) The volume of a triangle is base times height over 2.

Formula that you may (or may not) need

If the surface S is given in **explicit** notation z = g(x, y), above the region of the xy-plane f(x, y), then

$$\mathbf{F} \cdot d\mathbf{S} =$$

$$\int \int \frac{S}{-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R} dA$$

1. (12 pts.) **Without using Maple (or any software)** Compute the **vector-field line** integral

 $_{C}(\cos(e^{\sin x})+5y)\,dx+(\sin(e^{\cos y})+11x)\,dy$,

over the path consisiting of the five line segments (in that order)

$$(1,0) \to (-1,0) \to (-1,1) \to (0,2) \to (1,1) \to (1,0)$$

Explain!

ans. 18

$$P = (\cos(e^{\sin(x)}) + 5y) \quad (Q = (\sin(e^{\cos(y)}) + 11x))$$

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{\partial}{\partial x} (\sin(e^{\cos(y)}) + 11x) - \frac{\partial}{\partial y} (\cos(e^{\sin(x)}) + 5y)$$

$$= 6$$

$$\iint D = 6 \times (Area of the bound)$$

$$= 6 \times 2 \times 1 + 6 \times 2 \times 1 \times \frac{1}{2}$$

$$= 18$$

2. (12 points) Change the order of integration

$$\int_{\frac{1}{4}} \int_{\frac{1}{x}} \sqrt{\frac{1}{x}} f(x, y) \, dy \, dx$$

ans. Int(Int(f(x,y), x=1..1/4), y=0..1/2)+Int(Int(f(x,y), x=y^2..1), y=1/2..1)

妇女卫 $D = \{(x,y) | \overline{f_0} \le x \le 1, 0 \le y \le \overline{f_x}\}$ D = {(x,y) (0 < y < 1, # < x < 1) U (1 < y < 1, me x < 1)} $\int_{\frac{1}{2}} f(x,y) dx dy + \int_{\frac{1}{2}} \int_{\frac{1}{2}} f(x,y) dx dy$

3. (12 points) Find the equation of the tangent plane at the point $(\frac{\pi}{666}, \frac{\pi}{666})$ to the surface given implicitly by

$$2\cos(x+y) + 4\cos(x+z) + 8\cos(y+z) = 7$$

.

Express you answer in **explicit** form, i.e in the format z = ax + by + c.

ans. *z* = -3*sqrt(3)*x-5*sqrt(3)*y+Pi*(4*sqrt(3)/3+1/6)

$$\frac{3}{2\cos(\frac{\pi}{5} + \frac{\pi}{5}) + 4\cos(\frac{\pi}{5} + \frac{\pi}{5}) + 8\cos(\frac{\pi}{5} + \frac{\pi}{5})}{=7}$$

$$= \frac{3}{7}$$

$$\frac{1}{f_{x} = \frac{3}{2x}(2\cos(x+y) + 4\cos(x+z) + 8\cos(y+z))}{= -2\sin(x+y) - 4\sin(x+z)}$$

$$= -2\sin(x+y) - 4\sin(x+z)$$

$$\frac{1}{5} = -2\sin(x+y) + 4\cos(x+z) + 8\cos(y+z))$$

$$= -2\sin(x+y) - 8\sin(y+z)$$

$$\frac{1}{5} = -2\sin(x+y) - 8\sin(y+z)$$

$$\frac{1}{5} = -2\sin(\frac{\pi}{5} + \frac{\pi}{5}) = -35$$

$$\frac{1}{5} - 4\sin(\frac{\pi}{5} + \frac{\pi}{5}) = -35$$

$$\frac{1}{5} - \frac{1}{5} - \frac{1}$$

4. (16 points) Let **a**, **b**, **c** be three vectors such that

$$\mathbf{a} \times \mathbf{b} = \mathbf{i} + \mathbf{j} - \mathbf{k}$$
, $\mathbf{b} \times \mathbf{c} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{a} \times \mathbf{c} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.

What is

$$(a+b+c) \times (2a-b+3c)$$
 ?

ans. -i-4j-9k

4			A ROLL
(a +b+1	C) X ()	(2a-b	+ 3c)
1	i	k	3
a	Ь	С	日本の日本は生活す
20	-b	3c	
= i l 3 b c v	h'+h	x()-	j(3axc - 2axc) + k(-bxa - 2axb)
= 1(3) 3) 3))+(1-)	+k))-j((bi+3j+6k)- (4i+2j+4k))+ k(-i-j+k)-(2i+3)
= (4i-4j-	+ 4/2) .	-(2i+	+5j+10k)+(-3i-3j-3k)
=-i-4j	-9k	22.25	
7	1	1 Alin	AND SARATAN AND AND AND AND AND AND AND AND AND A
	-	fait.	頭のも物情には法に
	5-412	は有利	Martin Martine 2 (19 2)
	1 men		
	-		
	-		

5. (12 points) Find the three angles of the triangle ABC where

$$A = (0,0,0)$$
 , $B = (1,0,1)$, $C = (1,1,0)$

•

ans. The angle at A is:45radians:
Pi/4;The angle at B is:90Radians: Pi/2;The angle at C is:45Radians: Pi/4;

6. (12 points) Find the directional derivative of

$$f(x, y, z) = x^3 + y^3 + z^3 + xyz$$
,

at the point (1, 1, 1) in a direction pointing to the point (-1, -1, -1).

ans. -4*sqrt(3)

7. (12 points) Using the Chain Rule (no credit for other methods), find

$$\frac{\partial g}{\partial u}$$

at (u, v) = (0, 1), where

$$g(x, y) = 3x^2 - 3y^2$$
,

and

$$x = e^u \cos v$$
 , $y = e^u \sin v$.

ans. o

7.

$$\frac{\partial q}{\partial x} = bx$$

$$\frac{\partial q}{\partial y} = -by$$

$$\frac{\partial y}{\partial x} = e^{u}\cos(y)$$

$$\frac{\partial y}{\partial u} = e^{u}\cdot\sin(y)$$

$$\frac{\partial q}{\partial u} = \frac{\partial q}{\partial x}$$

$$\frac{\partial x}{\partial u} + \frac{\partial q}{\partial y} \cdot \frac{\partial y}{\partial u} = 6x \cdot e^{u}\cdot\sin(y) - by \cdot e^{u}\cdot\cos(y)$$

$$\frac{\partial q}{\partial u} = \frac{\partial q}{\partial u} + \frac{\partial q}{\partial y} \cdot \frac{\partial y}{\partial u} = 0$$

8. (12 points) Without using Maple (or any other software), compute the vector-field surface integral ${}_{S}\mathbf{F}.d\mathbf{S}$ if

$$\mathbf{F} = (3x + \cos(y^3 + yz), -2y + e^{x+z^2}, 5z + \sin(xy^3 + e^x))$$

and S is the closed surface in 3D space bounding the region

$$\{(x, y, z) : \hat{x} + \hat{y} + \hat{z} < 4 \text{ and } x > 0 \text{ and } y < 0 \text{ and } z > 0\}$$

ans. 8Pi

8 $divF = \frac{3}{2} (3x + \cos(y^3 + yz) + \frac{3}{2}(2y + e^{x+z^2}) + \frac{3}{2}(5z + \sin(x)^3 + \frac{3}{2})$ = 3 - 2 + 5 = 6 $D = \{x^2 + y^2 + z^2 < 4, x > 0, y < 0, z > 0\}$ 4 $\iint_{S} F \cdot dS = 6 \times (Volume of the bound)$ =6 x = x = x = x = x = 3 = 8TL

9. (12 points) Compute the vector-field surface integral $\int_{S}^{\int} \mathbf{F} \cdot d\mathbf{S}$ if

$$F = (3z, 2x, y+z)$$
,

and S is the oriented surface

$$z = 2x + 3y$$
, $0 < x < 1$, $0 < y < 1$,

with **upward pointing** normal.

ans. -15

10. (12 points) Without using Maple or software, find the critical point(s) of

$$f(x, y) = 4x - y^2 - \ln(2x + y)$$
,

and decide for each whether it is a local maximum, local minimum, or saddle point. Explain.

ans. (3/4,-1) a saddle point

11. (12 points) Without using Maple or software, using a **Linearization** around the point (1, 1, 2), approximate f(1.001, 0.999, 2.001) if

$$f(x, y, z) = \sqrt[n]{2x^2 + 3y^2 + z^2}$$

ans. 3.0003

 $\frac{\partial}{\partial x} \left(\sqrt{2x^{2} + 3y^{2} + z^{2}} \right) = \frac{2x}{\sqrt{2x^{2} + 3y^{2} + z^{2}}} = \frac{3y}{\sqrt{2x^{2} + 3y^{2} + 3y^{2}}} = \frac{3y}{\sqrt{2x^{2} + 3y^{2}}} = \frac{3y}{\sqrt{2x^{2} + 3y^{2}$ = = (12x2+3y2 = (J2x + 3Y 4 f(1,1,2) = 3fy(1,1,2) = 1 $f_2(1,1,2) = \frac{4}{3}$ $L(x, y, z) = 3 + \frac{2}{3}(x-1) + (y-1) + \frac{2}{3}(z-2)$ $f(1.001, 0.099, 2.001) \approx 3+(\frac{2}{3})(1.001-1) + (0.999-1) + \frac{2}{3}(2.001-2)$ = $3 + \frac{2}{3000} \approx -0.001 + \frac{2}{3000}$ = 3.0003

12. (12 points) Without using Maple (or any other software) and by using polar coordinates (no credit for doing it directly) find

Explain!

ans. -(sqrt(2)-2)/6

13. (12 points) Convert the triple iterated integral

$$\int_{2} \int_{4-z^{2}}^{\sqrt{-1}} \int_{0}_{-\sqrt{-1}}^{\sqrt{-1}} x^{2} y z \, dx \, dy \, dz$$

to spherical coordinates. Do not evaluate.

ans. Int(Int((rsin(p)cos(t))^2*(rsin(p)sin(t))*(rcos(p))*r^2*sin(p), r=0..2), p=3Pi/4..Pi), t=3Pi/2..2Pi)

 $(\rho \sin \varphi \cos \theta)^2 (\rho \sin \varphi \sin \theta) \cdot (\rho \cos \varphi) \rho^2 \sin \varphi$ $d\rho d\varphi d\Theta$ 211 2

14. (12 points) Find the curvature of the curve

$$\mathbf{r}(t) = (5, 3 \sin t, 3 \cos t)$$

at the point where $t = \frac{\pi}{3}$.

ans. 3*sqrt(2)/2

15. (12 points) Set-up an iterated double integral, in type I format, but do not compute, for the surface area of the surface given parameterically by

$$\mathbf{r}(u,v) = (u^2, uv, v^2)$$
, $0 < u < v < 1$

ans. Int(Int(iu^2+juv+kv^2, u=0..v), v=0..1)

16. (12 points) Let

$$f(x,y,z)=xy^2z^3 \quad , \quad$$

and let

 $g(x, y, z) = x + y^2 + z^3$.

compute the dot-product

grad(f).grad(g) .

at the point (1, 1,1).

ans. 14

17. (8 points) Decide whether the following limit exists. If it does ,find it. If it does not, explain why it does not exist.

ans. 0
17.
$$\frac{17}{4}$$

 $\frac{17}{4}$
 $\frac{1}{4}$
 $\frac{10}{11}$
 $\frac{10}{11}$
 $\frac{10}{12}$
 $\frac{10}{12}$
 $\frac{10}{12}$
 $\frac{10}{12}$
 $\frac{10}{12}$
 $\frac{10}{12}$
 $\frac{11}{2}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{12}{12}$
 $\frac{13}{12}$
 $\frac{14}{12}$
 $\frac{16}{13}$
 $\frac{16}{15}$
 $\frac{16}{16}$
 $\frac{16}{16}$

$$\lim_{(x,y,z,w)\to(0,0,0,0)} \frac{(x+y)^2 - (z+w)^2}{x+y-z-w}$$

.

20