NAME: (print!) Yongshan Li
RUID: (print!) 204000235
SSC: (circle None I / II / I and II

MATH 251 (22,23,24) [Fall 2020], Dr. Z. , Final Exam , Tue., Dec. 15, 2020
Email the completed test, renamed as finalFirstLast.pdf to DrZcalc3@gmail.com no later than $3: 30 \mathrm{pm}$, (or, in case of conflict, three and half hours after the start).

WRITE YOUR FINAL ANSWERS BELOW

1. 18
2. $\operatorname{Int}(\operatorname{Int}(f(x, y), x=1 . .1 / 4), y=0 . .1 / 2)+\operatorname{Int}\left(\operatorname{Int}\left(f(x, y), x=y^{\wedge} 2 . .1\right), y=1 / 2 . .1\right)$
3. $\mathrm{z}=-3 * \operatorname{sqrt}(3) * \mathrm{x}-5 * \operatorname{sqrt}(3) * \mathrm{y}+\mathrm{Pi}^{*}(4 * \operatorname{sqrt}(3) / 3+1 / 6)$
4. $-\mathrm{i}-4 \mathrm{j}-9 \mathrm{k}$
5. ans. The angle at A is: 45 radians: $\mathrm{Pi} / 4$

The angle at B is:90 Radians: $\mathrm{Pi} / 2$;
The angle at C is:45 Radians: $\mathrm{Pi} / 4$;
6. $-4 * \operatorname{sqrt}(3)$
7.0
8. 8 Pi
9. -15
10. $(3 / 4,-1)$ a saddle point
11. 3.0003
12. - (sqrt(2)-2)/6
13. $\operatorname{Int}\left(\operatorname{Int}\left(\operatorname{Int}\left((r \sin (p) \cos (\mathrm{t}))^{\wedge} 2^{*}(\mathrm{r} \sin (\mathrm{p}) \sin (\mathrm{t}))^{*}(\mathrm{r} \cos (\mathrm{p}))^{*} \mathrm{r}^{\wedge} 2 * \sin (\mathrm{p}), \mathrm{r}=0 . .2\right), \mathrm{p}=3 \mathrm{Pi} / 4 . . \mathrm{Pi}\right)\right.$, $\mathrm{t}=3 \mathrm{Pi} / 2 . .2 \mathrm{Pi})$
14. 3^{*} sqrt(2)/2
15. $\operatorname{Int}\left(\operatorname{Int}\left(i u^{\wedge} 2+j u v+k v^{\wedge} 2, u=0 . . v\right), v=0 . .1\right)$
16. 14
17.0

Sign the following declaration:
I Hereby declare that all the work was done by myself. I was allowed to use Maple (unless specifically told not to), calculators, the book, and all the material in the web-page of this class but not other resources on the internet.

I only spent (at most) 3 hours on doing the exam. The last 30 minutes were spent in checking and double-checking the answers.

I also understand that I may be subject to a random short chat to verify that I actually did it all by myself.

Signed: Yongshan Li
Possibly useful facts from school Geometry (that you are welcome to use) : (i) The area of a circle radius r is πr^{2}. (ii) The circumference of a circle radius r is $2 \pi r$ (iii) The parametric equation of an ellipse with axes $a b$ and parallel to the x and y axes respectively is $x=a \cos \theta, y=b \cos \theta, 0<\theta<2 \pi$. (iv) The area of an ellipse with axes a and b is $\pi a b$ (v) The volume and surface area of a sphere radius R are $\frac{4}{3} \pi R^{3}$ and $4 \pi R^{2}$ respectively (vi) The volume of a cone is the area of the base times the height over 3. (vii) The volume of a pyramid is the area of the base times the height over 3. (viii) The area of a triangle is base times height over 2 .

Formula that you may (or may not) need

If D, the surface S is given in explicit notation $z=g(x, y)$, above the region of the $x y$-plane

$$
\begin{gathered}
\iint \mathbf{F} \cdot d \mathbf{S}= \\
\iint_{D}^{-}-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R \quad \sum^{\boldsymbol{S}} d A
\end{gathered}
$$

1. (12 pts.) Without using Maple (or any software) Compute the vector-field line integral

$$
{ }_{c}^{1}\left(\cos \left(e^{\sin x}\right)+5 y\right) d x+\left(\sin \left(e^{\cos y}\right)+11 x\right) d y
$$

over the path consisting of the five line segments (in that order)

$$
(1,0) \rightarrow(-1,0) \rightarrow(-1,1) \rightarrow(0,2) \rightarrow(1,1) \rightarrow(1,0)
$$

Explain!
ans. 18

2. (12 points) Change the order of integration

$$
\begin{aligned}
& \mathbf{J}_{1} \mathrm{~J}_{\frac{1}{4}}^{V_{\bar{x}}} \\
& 0
\end{aligned}
$$

ans. $\operatorname{Int}(\operatorname{Int}(f(x, y), x=1 . .1 / 4), y=0 . .1 / 2)+\operatorname{Int}\left(\operatorname{Int}\left(f(x, y), x=y^{\wedge} 2 . .1\right), y=1 / 2 . .1\right)$
\qquad
好女T

3. (12 points) Find the equation of the tangent plane at the point $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$ to the surface given implicitly by

$$
2 \cos (x+y)+4 \cos (x+z)+8 \cos (y+z)=7
$$

Express you answer in explicit form, ie in the format $z=a x+b y+c$.
ans. $z=-3 * \operatorname{sqrt}(3) * \mathrm{x}-5 * \operatorname{sqrt}(3) * \mathrm{y}+\mathrm{Pi} *(4 * \operatorname{sqrt}(3) / 3+1 / 6)$

4. (16 points) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three vectors such that

$$
\mathbf{a} \times \mathbf{b}=\mathbf{i}+\mathbf{j}-\mathbf{k} \quad, \quad \mathbf{b} \times \mathbf{c}=\mathbf{i}-\mathbf{j}+\mathbf{k} \quad, \quad \mathbf{a} \times \mathbf{c}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}
$$

What is

$$
(\mathbf{a}+\mathbf{b}+\mathbf{c}) \times(2 \mathbf{a}-\mathbf{b}+3 \mathbf{c}) \quad ?
$$

ans. -i-4j-9k
4.

$$
(a+b+c) \times(2 a-b+3 c)
$$

$$
=i(33 c \times b+b \times c)-j(3 a \times c-2 a \times c)+k(-b \times a-2 a \times b)
$$

$$
=i((3 i-j j+k)+(i-j+k))-j((6 i+3 j+6 k)-(4 i+2 j+4 k))+k((-i-j+k)-(2 i+5 i)
$$

$$
=(4 i-4 j+4 k)-(2 i+5 j+10 k)+(-3 i-3 j-3 k)
$$

$=-i-4 j-9 k$
5. (12 points) Find the three angles of the triangle $A B C$ where

$$
A=(0,0,0) \quad, \quad B=(1,0,1) \quad, \quad C=(1,1,0) \quad .
$$

ans. The angle at A is:45 radians: ; Pi/4

The angle at B is:90
Radians: Pi/2
;
The angle at C is:45 Radians: $\mathrm{Pi} / 4$;
6. (12 points) Find the directional derivative of

$$
f(x, y, z)=x^{3}+y^{3}+z^{3}+x y z
$$

at the point $(1,1,1)$ in a direction pointing to the point $(-1,-1,-1)$.
ans. -4 *sqrt(3)
6.

$$
\begin{aligned}
& f_{x}=3 x^{2}+y z \quad f_{y}=3 y^{2}+x z \quad f z=3 z^{2}+x y \\
& \nabla f=\left\langle 3 x^{2}+y z, \quad 3 y^{2}+x z, 3 z^{2}+x y\right\rangle \\
& |\langle-1,-1,-1\rangle|=\sqrt{(-1)^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{3} \\
& u=\frac{1}{\sqrt{3}}\langle-1,-1,-1\rangle=\left\langle-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle
\end{aligned}
$$

$$
\nabla f(1,1,1)=\langle 3+1,3+1,3+1\rangle
$$

$$
=\langle 4,4,4\rangle
$$

$$
\begin{aligned}
& \langle 4,4,4\rangle \cdot\left\langle-\frac{1}{\sqrt{3}},-\right. \\
= & -\frac{4}{\sqrt{3}}+\left(-\frac{4}{\sqrt{3}}\right)+\left(-\frac{4}{\sqrt{3}}\right) \\
= & -4 \sqrt{3}
\end{aligned}
$$

7. (12 points) Using the Chain Rule (no credit for other methods), find

$$
\frac{\partial g}{\partial u}
$$

at $(u, v)=(0,1)$, where

$$
g(x, y)=3 x^{2}-3 y^{2}
$$

and

$$
x=e^{u} \cos v \quad, \quad y=e^{u} \sin v
$$

ans. 0

8. (12 points) Without using Maple (or any other software), compute the vector-field surface integral ${ }_{S} \mathbf{F} . d \mathbf{S}$ if

$$
\mathbf{F}=\left(3 x+\cos \left(y^{3}+y z\right),-2 y+e^{x+z^{2}}, 5 z+\sin \left(x y^{3}+e^{x}\right)\right)
$$

and S is the closed surface in 3D space bounding the region

$$
\{(x, y, z): z+\}+z<4 \text { and } x>0 \text { and } y<0 \text { and } z>0\} .
$$

ans. aPi

9. (12 points) Compute the vector-field surface integral $\iint_{S} \mathbf{F} . d \mathbf{S}$ if

$$
\mathbf{F}=(3 z, 2 x, y+z)
$$

and S is the oriented surface

$$
z=2 x+3 y \quad, \quad 0<x<1, \quad 0<y<1
$$

with upward pointing normal.
ans. -15

10. (12 points) Without using Maple or software, find the critical points) of

$$
f(x, y)=4 x-y^{2}-\ln (2 x+y)
$$

and decide for each whether it is a local maximum, local minimum, or saddle point. Explain.
ans. (3/4,-1) a saddle point

11. (12 points) Without using Maple or software, using a Linearization around the point (1, $1,2)$, approximate $f(1.001,0.999,2.001)$ if

$$
f(x, y, z)=\sqrt{ } \overline{2 x^{2}+3 y^{2}+z^{2}}
$$

ans. 3.0003

12. (12 points) Without using Maple (or any other software) and by using polar coordinates (no credit for doing it directly) find

$$
\begin{aligned}
& \mathrm{J}_{\frac{V_{2}}{2} \mathrm{~J}_{x}} \quad \mathrm{~J}_{1} \mathrm{~J}^{\mathrm{J}_{\overline{1-x^{2}}}} x d y d x+\underbrace{}_{\frac{v_{2}}{2}} \quad 0
\end{aligned}
$$

Explain!
ans. -(sqrt(2)-2)/6
\qquad

13. (12 points) Convert the triple iterated integral

$$
\iint_{2} \int_{0}^{\sqrt{4-z^{2}}} \int_{0}^{0} x^{-4-z^{2}-y^{2}} x^{2} y z d x d y d z
$$

to spherical coordinates. Do not evaluate.
ans. $\operatorname{Int}\left(\operatorname{Int}\left(\operatorname{Int}\left((\operatorname{rsin}(p) \cos (t))^{\wedge} \mathbf{2}^{*}(r \sin (p) \sin (t))^{*}(\mathbf{r c o s}(p))^{*} \mathbf{r}^{\wedge} \mathbf{2}^{*} \sin (p), r=0 . .2\right)\right.\right.$, $\mathrm{p}=3 \mathrm{Pi} / 4 . . \mathrm{Pi}), \mathrm{t}=3 \mathrm{Pi} / 2 . .2 \mathrm{Pi})$

14. (12 points) Find the curvature of the curve

$$
\mathbf{r}(t)=(5,3 \sin t, 3 \cos t)
$$

at the point where $t=\frac{\pi}{3}$.
ans. 3^{*} sqrt(2)/2

15. (12 points) Set-up an iterated double integral, in type I format, but do not compute, for the surface area of the surface given parameterically by

$$
\mathbf{r}(u, v)=\left(u^{2}, u v, v^{2}\right) \quad, \quad 0<u<v<1 .
$$

ans. $\operatorname{Int}\left(\operatorname{Int}\left(\mathbf{i u}^{\wedge} \mathbf{2 + j u v}+\mathbf{k v}^{\wedge} \mathbf{2}, \mathbf{u}=\mathbf{o} . . \mathrm{v}\right), \mathbf{v}=\mathbf{0} . . \mathbf{1}\right)$

16. (12 points) Let

$$
f(x, y, z)=x y^{2} z^{3}
$$

and let

$$
g(x, y, z)=x+y^{2}+z^{3}
$$

compute the dot-product

$$
\operatorname{grad}(f) \cdot \operatorname{grad}(g)
$$

at the point $(1,1,1)$.
ans. 14

16

$$
\begin{aligned}
\operatorname{grad}(f) & =\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle \\
\operatorname{grad}(g) & =\left\langle 1,2 y, 3 z^{2}\right\rangle
\end{aligned}
$$

$0 \operatorname{grad}(f) \cdot \operatorname{grad}(g)$

$$
=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle \cdot\left\langle 1,2 y, 3 z^{2}\right\rangle
$$

$=y^{2} z^{3}+4 x y^{2} z^{3}+9 x y^{2} z^{3}$

17. (8 points) Decide whether the following limit exists. If it does ,find it. If it does not, explain why it does not exist.

$$
\lim _{(x, y, z, w) \rightarrow(0,0,0,0)} \frac{(x+y)^{2}-(z+w)^{2}}{x+y-z-w}
$$

ans. 0

