nAME: (print!) Fady Besada
RUID: (print!) 192005137
SSC: (circle) None/ I / II / I and II
MATH 251 (22,23,24) [Fall 2020], Dr. Z. , Final Exam , Tue., Dec. 15, 2020
Email the completed test, renamed as finalFirstLast.pdf to DrZcalc3@gmail.com no later than $3: 30 \mathrm{pm}$, (or, in case of conflict, three and half hours after the start).

WRITE YOUR FINAL ANSWERS BELOW

1. 18
2. $\int_{01 / 4}^{1 / 2} f(x, y) d x d y+\int_{1 / 2}^{1} \int_{y^{2}}^{1} f(x, y) d x d y$
3. $z=-\frac{1}{2} x-\frac{5}{6} y+\frac{7 \pi}{18}$
4. $\langle 3,-6,9\rangle$
5. $\theta_{A}=\frac{\pi}{3} ; \quad \theta_{B}=\frac{\pi}{3} ; \quad \theta_{C}=\frac{\pi}{3}$
6. $-4 \sqrt{3}$
7. $6 \cos ^{2}(1)-6 \sin ^{2}(1)$
8. 8π
9. -15
10. $\left(\frac{3}{4},-1\right)$ is a saddle point
11. $\frac{9001}{3000}$
12. $\frac{1}{3 \sqrt{2}}$
13. $\int_{0}^{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \rho^{\pi} \rho^{6} \sin ^{4} \phi \cos ^{2} \theta \cos \phi \sin \theta d \theta d \phi d \rho$
14. $\frac{1}{3}$
15. $\int_{0}^{1} \int_{0}^{v} 2 v \sqrt{v^{2}+4^{2}} d u d v$
16. 14
17. 0

Sign the following declaration:
I
Hereby declare that all the work was done by myself. I was allowed to use Maple (unless specifically told not to), calculators, the book, and all the material in the web-page of this class but not other resources on the internet.

I only spent (at most) 3 hours on doing the exam. The last 30 minutes were spent in checking and double-checking the answers.

I also understand that I may be subject to a random short chat to verify that I actually did it all by myself.
Signed: Yoaty ferada
Possibly useful facts from school Geometry (that you are welcome to use) : (i) The area of a circle radius r is πr^{2}. (ii) The circumference of a circle radius r is $2 \pi r$ (iii) The parametric equation of an ellipse with axes $a b$ and parallel to the x and y axes respectively is $x=a \cos \theta, y=b \cos \theta, 0<\theta<2 \pi$. (iv) The area of an ellipse with axes a and b is $\pi a b$ (v) The volume and surface area of a sphere radius R are $\frac{4}{3} \pi R^{3}$ and $4 \pi R^{2}$ respectively (vi) The volume of a cone is the area of the base times the height over 3. (vii) The volume of a pyramid is the area of the base times the height over 3. (viii) The area of a triangle is base times height over 2 .

Formula that you may (or may not) need

If the surface S is given in explicit notation $z=g(x, y)$, above the region of the $x y$-plane , D, then

$$
\begin{gathered}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}= \\
\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A
\end{gathered}
$$

1. (12 pts.) Without using Maple (or any software) Compute the vector-field line integral

$$
\int_{C}\left(\cos \left(e^{\sin x}\right)+5 y\right) d x+\left(\sin \left(e^{\cos y}\right)+11 x\right) d y
$$

over the path consisting of the five line segments (in that order)

$$
(1,0) \rightarrow(-1,0) \rightarrow(-1,1) \rightarrow(0,2) \rightarrow(1,1) \rightarrow(1,0)
$$

Explain!
ans. 18

$$
\frac{1}{2} b h
$$

$$
\begin{aligned}
& \rightarrow \text { Greene's Theorem } \\
& \rightarrow P=\cos \left(e^{\sin x}\right)+S y ; P y=S \\
& \rightarrow Q=\sin \left(e^{\cos y}\right)+\left\|x, \quad Q_{x}=\right\| \\
& \rightarrow \iint_{0} 6 d x d y \\
& \rightarrow \text { Since we hare a constant, multiply it by area } \\
& \begin{array}{l}
\text { of pentagon: } \\
\rightarrow 6\left(\frac{1}{2}+\frac{1}{2}+2\right)=6(3)=18
\end{array}
\end{aligned}
$$

2. (12 points) Change the order of integration

$$
\int_{\frac{1}{4}}^{1} \int_{0}^{\sqrt{x}} f(x, y) d y d x
$$

ans. $\int_{0}^{\frac{1}{2}} \int_{\frac{1}{4}}^{1} f(x, y) d x d y+\int_{\frac{1}{2}}^{1} \int_{y^{2}}^{1} f(x, y) d x d y$

\rightarrow Must be split into two integrals

$$
\rightarrow \sqrt{\int_{0}^{\frac{1}{2}} \int_{\frac{1}{4}}^{1} f(x, y) d x d y+\int_{\frac{1}{2}}^{1} \int_{y^{2}}^{1} f(x, y) d x d y . d x y}
$$

3. (12 points) Find the equation of the tangent plane at the point $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$ to the surface given implicitly by

$$
2 \cos (x+y)+4 \cos (x+z)+8 \cos (y+z)=7
$$

Express you answer in explicit form, i.e in the format $z=a x+b y+c$.

$$
\begin{aligned}
& \text { ans. } z=-\frac{1}{2} x-\frac{5}{6} y+\frac{7 \pi}{18} \\
& \rightarrow f(x, y, z)=2 \cos (x+y)+4 \cos (x+z)+8 \cos (y+z)-7 \\
& \rightarrow f_{x}=-4 \sin (x+z)-2 \sin (x+y) \\
& \rightarrow f_{y}=-8 \sin (y+2)-2 \sin (x+y) \\
& \rightarrow f_{2}=-8 \sin (y+z)-4 \sin (x+z) \\
& \rightarrow f_{x}\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)=-4 \sin \left(\frac{\pi}{3}\right)-2 \sin \left(\frac{\pi}{3}\right)=-4 \cdot \frac{\sqrt{3}}{2}-2 \cdot \frac{\sqrt{3}}{2}=-3 \sqrt{3} \\
& \rightarrow f_{y}\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)=-8 \sin \left(\frac{\pi}{3}\right)-2 \sin \left(\frac{\pi}{3}\right)=-8 \cdot \frac{\sqrt{3}}{2}-2 \cdot \frac{\sqrt{3}}{2}=-5 \sqrt{3} \\
& \rightarrow f_{2}\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)=-8 \sin \left(\frac{\pi}{3}\right)-4 \sin \left(\frac{\pi}{3}\right)=-8 \cdot \frac{\sqrt{3}}{2}-4 \cdot \frac{\sqrt{3}}{2}=-6 \sqrt{3} \\
& \rightarrow-3 y / 3\left(x-\frac{\pi}{6}\right)-5 \sqrt{3}\left(y-\frac{\pi}{6}\right)-6 \sqrt{3}\left(z-\frac{\pi}{r}\right)=0 \\
& \rightarrow-3\left(x-\frac{\pi}{6}\right)-5\left(y-\frac{\pi}{6}\right)-6\left(z-\frac{\pi}{6}\right)=0 \\
& \rightarrow z=-\frac{1}{2} x-\frac{5}{6} y+\frac{7 \pi}{18}
\end{aligned}
$$

4. (16 points) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three vectors such that

$$
\mathbf{a} \times \mathbf{b}=\mathbf{i}+\mathbf{j}-\mathbf{k} \quad, \quad \mathbf{b} \times \mathbf{c}=\mathbf{i}-\mathbf{j}+\mathbf{k} \quad, \quad \mathbf{a} \times \mathbf{c}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}
$$

What is

$$
(\mathbf{a}+\mathbf{b}+\mathbf{c}) \times(2 \mathbf{a}-\mathbf{b}+3 \mathbf{c}) \quad ?
$$

$$
\begin{aligned}
& \text { ans. }\langle 3,-6,9\rangle \\
\rightarrow & 2(b a)^{0}-a \times b+3(a \times c)+2(b \times a)-3(b \times c)+2(c \times a) \\
& -c \times b+3(0 \times)^{0} \\
\rightarrow & \langle-1,-1,1\rangle+3\langle 2,1,2\rangle+2\langle-1,-1,1\rangle+3\langle 1,-1,1\rangle+2\langle-2,-1,-2\rangle \\
& -\langle-1,1,-1\rangle \\
\rightarrow & \langle-1,-1,1\rangle+\langle 6,3,6\rangle+\langle-2,-2,2\rangle+\langle 3,-3,3\rangle+\langle-4,-2,-4\rangle \\
& +\langle 1,-1,1\rangle \\
\rightarrow & \langle 3,-6,9\rangle
\end{aligned}
$$

5. (12 points) Find the three angles of the triangle $A B C$ where

$$
A=(0,0,0) \quad, \quad B=(1,0,1) \quad, \quad C=(1,1,0)
$$

ans. The angle at A is: $\frac{\pi}{3}$ radians ;
The angle at B is: $\frac{\pi}{3}$ radians ;
The angle at C is: $\frac{\pi}{3}$ radians ;

$$
\begin{aligned}
& \rightarrow \cos \theta=\frac{u \cdot v}{|u| \cdot|v|} \\
& \rightarrow \overline{A B}=B-A=(1,0,1)-(0,0,0)=\langle 1,0,1\rangle \\
& \rightarrow \overline{A C}=(-A=(1,1,0)-(0,0,0)=\langle 1,1,0\rangle \\
& \rightarrow \overline{B C}=C-B=(1,1,0)-(1,0,1)=\langle 0,1,-1\rangle \\
& \rightarrow \overline{B A}=-\overline{A B}=\langle-1,0,-1\rangle
\end{aligned}
$$

\rightarrow The angle at A :

$$
\cos \theta=\frac{\langle 1,0,1\rangle \cdot\langle 1,1,0\rangle}{2} \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta_{A}=\frac{\pi}{3}
$$

\rightarrow The angle at B.

$$
\cos \theta=\frac{(0,1,-1\rangle \cdot\langle-1,0,-1\rangle}{2} \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta_{B}=\frac{\pi}{3}
$$

\rightarrow The angle at C :

$$
\theta=\pi-\frac{\pi}{3}-\frac{\pi}{3} \Rightarrow \theta=\frac{3 \pi}{3}-\frac{2 \pi}{3} \Rightarrow \theta_{c}=\frac{\pi}{3}
$$

\rightarrow This is an equilateral triangle.
6. (12 points) Find the directional derivative of

$$
f(x, y, z)=x^{3}+y^{3}+z^{3}+x y z
$$

at the point $(1,1,1)$ in a direction pointing to the point $(-1,-1,-1)$.

$$
\begin{aligned}
& \text { ans. }-4 \sqrt{3} \\
& \rightarrow \nabla f=\left\langle 3 x^{2}+y z, 3 y^{2}+x z, 3 z^{2}+x y\right\rangle \\
& \rightarrow Q-P=\langle-2,-2,-2\rangle \\
& \rightarrow|Q-P|=2 \sqrt{3} \\
& \rightarrow u=\left\langle-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle \\
& \rightarrow \nabla f(1,1,1)=\langle 4,4,4\rangle \\
& \rightarrow\langle 4,4,4\rangle \cdot\left\langle-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle=-\frac{4}{\sqrt{3}}-\frac{4}{\sqrt{3}}-\frac{4}{\sqrt{3}}=-\frac{12}{\sqrt{3}}=\frac{-12 \sqrt{3}}{3}=-4 \sqrt{3}
\end{aligned}
$$

7. (12 points) Using the Chain Rule (no credit for other methods), find

$$
\frac{\partial g}{\partial u}
$$

at $(u, v)=(0,1)$, where

$$
g(x, y)=3 x^{2}-3 y^{2}
$$

and

$$
x=e^{u} \cos v \quad, \quad y=e^{u} \sin v
$$

ans. $6 \cos ^{2}(1)-6 \sin ^{2}(1)$

$$
\begin{aligned}
& \rightarrow g_{u}=\left(g_{x}\right)\left(x_{u}\right)+\left(g_{y}\right)\left(y_{u}\right) \\
& \rightarrow g_{x}=6 x, g_{y}=-6 y \\
& \rightarrow g_{x}=6 e^{n} \cos v, g_{y}=-6 e^{u} \sin v \\
& \rightarrow x_{u}=e^{u} \cos v, y_{u}=e^{u} \sin v \\
& \rightarrow g_{u}=\left(6 e^{u} \cos v\right)\left(e^{u} \cos v\right)-\left(6 e^{u} \sin v\right)\left(e^{u} \sin v\right) \\
& \rightarrow g_{u}(0,1)=\left(6 \cos ^{4} 1\right)(\cos 1)-(6 \sin 1)\left(\sin ^{4} 1\right) \\
& \rightarrow g_{u}(0,1)=6 \cos ^{2}(1)-6 \sin ^{2}(1)
\end{aligned}
$$

8. (12 points) Without using Maple (or any other software), compute the vector-field surface integral $\int_{S} \mathbf{F} . d \mathbf{S}$ if

$$
\mathbf{F}=\left\langle 3 x+\cos \left(y^{3}+y z\right),-2 y+e^{x+z^{2}}, 5 z+\sin \left(x y^{3}+e^{x}\right)\right\rangle
$$

and S is the closed surface in 3D space bounding the region

$$
\left\{(x, y, z): x^{2}+y^{2}+z^{2}<4 \quad \text { and } \quad x>0 \quad \text { and } \quad y<0 \quad \text { and } \quad z>0\right\}
$$

$$
\begin{aligned}
& \text { ans. } 8 \pi \\
& \rightarrow \operatorname{div}(f)=3-2+5 \\
& \rightarrow 1 \iint_{0} 6 d V \\
& \rightarrow \text { Since we have a constant. } \\
& \rightarrow 6\left(\frac{4}{3} \pi r^{3}\right)=\frac{24}{3} \pi r^{3}=8 \pi r^{3} \quad(r=2) \\
& \rightarrow 8 \pi\left(2^{3}\right)=8 \pi \cdot 8=64 \pi \\
& \rightarrow \text { Divide by } 8:
\end{aligned}
$$

9. (12 points) Compute the vector-field surface integral $\iint_{S} \mathbf{F} . d \mathbf{S}$ if

$$
\mathbf{F}=\langle 3 z, 2 x, y+z\rangle
$$

and S is the oriented surface

$$
z=2 x+3 y \quad, \quad 0<x<1, \quad 0<y<1
$$

with upward pointing normal.
ans. -15

$$
\begin{aligned}
& \rightarrow g(x, y)=2 x+3 y \\
& \rightarrow g_{x}=2, \quad g y=3 \\
& \rightarrow \int_{0}^{1} \int_{0}^{1}(-6 z-6 x+y+z) d x d y \\
& \rightarrow \int_{0}^{1} \int_{0}^{1}(-6(2 x+3 y)-6 x+y+(2 x+3 y)) d x d y \\
& \rightarrow \int_{0}^{1} \int_{0}^{1}(-12 x-18 y-6 x+y+2 x+3 y) d x d y \\
& \rightarrow \int_{0}^{1} \int_{0}^{1}(-16 x-14 y) d x d y \\
& \rightarrow \int_{0}^{1}(-16 x-14 y) d x=-14 y-8 \\
& \rightarrow \int_{0}^{1}(-14 y-8) d y=-15
\end{aligned}
$$

10. (12 points) Without using Maple or software, find the critical points) of

$$
f(x, y)=4 x-y^{2}-\ln (2 x+y)
$$

and decide for each whether it is a local maximum, local minimum, or saddle point. Explain.
ans. $\left(\frac{3}{4},-1\right)$ is a saddle point

$$
\begin{aligned}
& \rightarrow f_{x}=4-\frac{2}{2 x+y} \\
& \rightarrow f_{y}=-2 y-\frac{1}{2 x+y} \\
& \rightarrow f_{x}=0 \Rightarrow 4-\frac{2}{2 x+y}=0 \Rightarrow \frac{4}{1}=\frac{2}{2 x+y} \Rightarrow 4(2 x+y)=2 \Rightarrow 8 x+4 y=2 \\
& \rightarrow f_{y}=0 \Rightarrow-2 y-\frac{1}{2 x+y}=0 \Rightarrow \frac{-2 y}{1}=\frac{1}{2 x+y} \Rightarrow-2 y(2 x+y)=1 \Rightarrow-4 x y-2 y^{2}=1
\end{aligned}
$$

\rightarrow Critical Point: $\left(\frac{3}{4},-1\right)$

$$
\rightarrow f_{x x}=\frac{4}{(2 x+y)^{2}} @\left(\frac{3}{4},-1\right)=16
$$

$$
\rightarrow f_{y y}=-2+\frac{1}{(2 x+y)^{2}} @\left(\frac{3}{4},-1\right)=2
$$

$$
\rightarrow f_{x y}=\frac{2}{(2 x+y)^{2}} @\left(\frac{3}{4},-1\right)=8
$$

$$
\rightarrow D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

$$
\rightarrow D=(16)(2)-(64) \Rightarrow D=-32<0
$$

\rightarrow Since $D<0$, we can say that our only critical point $\left(\frac{3}{4},-1\right)$ is a saddle point.
11. (12 points) Without using Maple or software, using a Linearization around the point $(1,1,2)$, approximate $f(1.001,0.999,2.001)$ if

$$
f(x, y, z)=\sqrt{2 x^{2}+3 y^{2}+z^{2}}
$$

$$
\begin{aligned}
& \text { ans. } \frac{9001}{3000} \\
& \rightarrow f_{x}=\frac{2 x}{\sqrt{2 x^{2}+3 y^{2}+z^{2}}}, f_{y}=\frac{3 y}{\sqrt{2 x^{2}+3 y^{2}+2^{2}}}, f_{z}=\frac{2}{\sqrt{2 x^{2}+3 y^{2}+2^{2}}} \\
& \rightarrow f_{x}(1,1,2)=\frac{2}{\sqrt{2+3+4}}=\frac{2}{3} \\
& \rightarrow f_{y}(1,1,2)=\frac{3}{3}=1 \\
& \rightarrow f_{z}(1,1,2)=\frac{2}{3} \\
& \rightarrow f(1,1,1)=3 \\
& \rightarrow L(1.001,0.999,2.001)=3+\frac{2}{3}(1.001-1)+1(0.999-1)+\frac{2}{3}(2.001-2) \\
& \rightarrow L(1.001,0.999,2.001)=\frac{9001}{3000}
\end{aligned}
$$

12. (12 points) Without using Maple (or any other software) and by using polar coordinates (no credit for doing it directly) find

$$
\int_{0}^{\frac{\sqrt{2}}{2}} \int_{0}^{x} x d y d x+\int_{\frac{\sqrt{2}}{2}}^{1} \int_{0}^{\sqrt{1-x^{2}}} x d y d x
$$

Explain!

ans. $\frac{1}{3 \sqrt{2}}$
$\rightarrow 0 \leq r \leq \frac{\sqrt{2}}{2} \sec \theta$
$\rightarrow 0 \leq \theta \leq \pi / 4$
$\rightarrow \int_{0}^{\pi / 4} \int_{0}^{\frac{\sqrt{2}}{2}} \sec \theta \quad \cos \theta r d r d \theta$
$\rightarrow \frac{\sqrt{2}}{2} \sec \theta \leqslant r \leqslant 1$
$\rightarrow 0 \leq \theta \leq \frac{\pi}{4}$
$\rightarrow \int_{0}^{\pi / 4} \int_{\frac{\sqrt{2}}{2} \sec \theta}^{1} r \cos \theta r d r d \theta$
$\rightarrow \int_{0}^{\pi / 4} \int_{0}^{\frac{\sqrt{2}}{2} \sec \theta} r \cos \theta r d r d \theta+\int_{0}^{\pi / 4} \int_{\frac{\sqrt{2}}{2}}^{\pi} r \sec \theta \cdot \frac{1}{3 \sqrt{2}}$
13. (12 points) Convert the triple iterated integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} \int_{-\sqrt{4-z^{2}-y^{2}}}^{0} x^{2} y z d x d y d z
$$

to spherical coordinates. Do not evaluate.

$$
\begin{aligned}
& \text { ans. } \int_{0}^{2} \int_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \rho^{6} \sin ^{4} \phi \cos ^{2} \theta \cos \phi \sin \theta d \theta d \phi d \rho \\
& \rightarrow G \text { Groped on Maple } \\
& \left.\rightarrow \int_{0}^{2} \int_{0}^{\frac{\pi}{2}} \int^{\pi} \rho \sin \phi \cos \theta\right)^{2} \rho \sin \phi \sin \theta \rho \cos \phi \rho^{2} \sin \phi d \theta d \phi d \rho \\
& \rightarrow \int_{0}^{2} \int_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} \rho^{6} \sin ^{4} \phi \cos ^{2} \theta \cos \phi \sin \theta d \theta d \phi d \rho
\end{aligned}
$$

14. (12 points) Find the curvature of the curve

$$
\mathbf{r}(t)=\langle 5,3 \sin t, 3 \cos t\rangle
$$

at the point where $t=\frac{\pi}{3}$.
ans. $\frac{1}{3}$

$$
\begin{aligned}
& \rightarrow r(t)=\langle 5,3 \sin t, 3 \cos t\rangle \\
& \rightarrow r^{\prime}(t)=\langle 0,3 \cos t,-3 \sin t\rangle \\
& \rightarrow r^{\prime \prime}(t)=\langle 0,-3 \sin t,-3 \cos t\rangle \\
& \rightarrow r^{\prime}\left(\frac{\pi}{3}\right)=\left\langle 0, \frac{3}{2},-\frac{3 \sqrt{3}}{2}\right\rangle \\
& \rightarrow r^{\prime \prime}\left(\frac{\pi}{3}\right)=\left\langle 0,-\frac{3 \sqrt{3}}{2}, \frac{-3}{2}\right\rangle \\
& \rightarrow r^{\prime}\left(\frac{\pi}{3}\right) \times r^{\prime \prime}\left(\frac{\pi}{3}\right)=\left\langle 0, \frac{3}{2},-\frac{3 \sqrt{3}}{2}\right\rangle \times\left\langle 0, \frac{-3 \sqrt{3}}{2}, \frac{-3}{2}\right\rangle=\langle-9,0,0\rangle \\
& \rightarrow\left.\left|r^{\prime}\left(\frac{\pi}{3}\right)\right|^{3}=\left(\sqrt{0+9}+\frac{9}{4}+\frac{27}{4}\right)^{3}=\left(\sqrt{\frac{36}{4}}\right)^{3}=3^{3}=2\right\rangle \\
& \rightarrow K\left(\frac{\pi}{3}\right)=\frac{9}{27} \\
& \rightarrow\left.K\left(\frac{\pi}{3}\right)=\frac{1}{3}\right)
\end{aligned}
$$

15. (12 points) Set-up an iterated double integral, in type I format, but do not compute, for the surface area of the surface given parametrically by

$$
\mathbf{r}(u, v)=\left\langle u^{2}, u v, v^{2}\right\rangle \quad, \quad 0<u<v<1
$$

ans. $\int_{0}^{1} \int_{0}^{v} 2 v \sqrt{v^{2}+u^{2}} d u d v$
$\rightarrow \iint_{0}\|N(u, v)\| d u d v$

$$
\rightarrow 2 v^{2} i-4 u v j=\left\langle 2 v^{2},-4 u v, 0\right\rangle
$$

$$
\rightarrow\left|\left\langle 2 v^{2},-4 u v, 0\right\rangle\right|=\sqrt{4 v^{4}+16 u^{2} v^{2}}=\sqrt{4 v^{2}\left(v^{2}+4 u^{2}\right)}=2 v \sqrt{v^{2}+4 u^{2}}
$$

$\rightarrow \int_{0}^{1} \int_{0}^{v} 2 v \sqrt{v^{2}+4 u^{2}} d u d v$
16. (12 points) Let

$$
f(x, y, z)=x y^{2} z^{3}
$$

and let

$$
g(x, y, z)=x+y^{2}+z^{3} .
$$

compute the dot-product

$$
\operatorname{grad}(f) \cdot \operatorname{grad}(g)
$$

at the point $(1,1,1)$.
ans. 14
\rightarrow Vf $=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$
$\rightarrow \nabla g=\left\langle 1,2 y, 3 z^{2}\right\rangle$
$\rightarrow \operatorname{Of}(1,1,1)=\langle 1,2,3\rangle$
$\rightarrow \operatorname{Vg}(1,1,1)=\langle 1,2,3\rangle$
$\rightarrow\langle 1,2,3\rangle \cdot\langle 1,2,3\rangle=14$
17. (8 points) Decide whether the following limit exists. If it does ,find it. If it does not, explain why it does not exist.

$$
\lim _{(x, y, z, w) \rightarrow(0,0,0,0)} \frac{(x+y)^{2}-(z+w)^{2}}{x+y-z-w}
$$

ans. 0

$$
\rightarrow \lim _{(x, y, 2, w) \rightarrow(0,0,0,0)} \frac{(x+y)^{2}-(2+\omega)^{2}}{x+y-2-w}=\frac{0}{0}
$$

\rightarrow The numerator is a differnce of squares:

$$
\rightarrow \lim _{(x, y, 2, \omega) \rightarrow(0,0,0,0)}(x+y+z+\omega)=0
$$

