NAME: (print!) RUID: (print!) SSC: (circle) None / I / II / I and II

MATH 251 (22,23,24) [Fall 2020], Dr. Z. , Final Exam , Tue., Dec. 15, 2020
Email the completed test, renamed as finalFirstLast.pdf to DrZcalc3@gmail.com no later than $3: 30 \mathrm{pm}$, (or, in case of conflict, three and half hours after the start).

WRITE YOUR FINAL ANSWERS BELOW

1. -18
2. $1 / 2<=y<=1, y^{\wedge} 2<=x<=1$
3. $-3 \mathrm{sqrt2}(\mathrm{x}-(\mathrm{pi} / 3))+-5 \mathrm{sqrt} 3(\mathrm{y}-(\mathrm{pi} / 3))+-6 \mathrm{sqr} 3(\mathrm{z}-(\mathrm{pi} / 3))$
4. $\langle-1,-6,6>$
5. $<A=\mathrm{pi} / 3$
$<B=p i / 3$
$<\mathrm{C}=\mathrm{pi} / 3$
6. -4 sqr 3
$7.6 \cos ^{\wedge} 2(1)-6 \sin ^{\wedge} 2(1)$
7. 8pi
8. -15
9. Saddle point-($3 / 4,-1$)
10. 3.0003
11. $1 / 3$
12. int_(0,2) $\mathrm{p}^{\wedge} 6$ * int $(0, \mathrm{pi} / 2) \sin ^{\wedge} 4 \phi^{*} \cos \phi d \phi$ *int(pi,pi/2) $\cos ^{\wedge} 2 \boldsymbol{\theta}^{*} \sin \boldsymbol{\theta} \mathrm{~d} \boldsymbol{\theta}$
13. $1 / 3$
14. Int_(0,1) Int _(0,1$) \operatorname{sqrt}\left(4 v^{\wedge} 4+16 u^{\wedge} 2^{*} v^{\wedge} 2+4 u^{\wedge} 2\right) d u d v$
15. 14

Sign the following declaration:
I Hereby declare that all the work was done by myself. I was allowed to use Maple (unless specifically told not to), calculators, the book, and all the material in the web-page of this class but not other resources on the internet.

I only spent (at most) 3 hours on doing the exam. The last 30 minutes were spent in checking and double-checking the answers.

I also understand that I may be subject to a random short chat to verify that I actually did it all by myself.

Signed:

Possibly useful facts from school Geometry (that you are welcome to use) : (i) The area of a circle radius r is πr^{2}. (ii) The circumference of a circle radius r is $2 \pi r$ (iii) The parametric equation of an ellipse with axes $a b$ and parallel to the x and y axes respectively is $x=a \cos \theta, y=b \cos \theta, 0<\theta<2 \pi$. (iv) The area of an ellipse with axes a and b is $\pi a b(v)$ The volume and surface area of a sphere radius R are ${ }_{3}{ }_{3} \pi R^{3}$ and $4 \pi R^{2}$ respectively (vi) The volume of a cone is the area of the base times the height over 3. (vii) The volume of a pyramid is the area of the base times the height over 3. (viii) The area of a triangle is base times height over 2.

Formula that you may (or may not) need

If the surface S is given in explicit notation $z=g(x, y)$, above the region of the $x y$-plane ' D, then Z Z

$$
{ }_{s} \mathrm{~F} \cdot d \mathrm{~S}=
$$

Z Z

$$
-P \partial g
$$

D
$\partial x-Q \partial g$
$\partial y+R$

1. (12 pts.) Without using Maple (or any software) Compute the vector-field line integral $_{Z}$

$$
c \quad\left(\cos \left(e^{\sin x}\right)+5 y\right) d x+\left(\sin \left(e^{\cos y}\right)+11 x\right) d y
$$

over the path consisiting of the five line segments (in that order)

$$
(1,0) \rightarrow(-1,0) \rightarrow(-1,1) \rightarrow(0,2) \rightarrow(1,1) \rightarrow(1,0)
$$

Explain!

ans.
2. (12 points) Change the order of integration Z_{1} $f(x, y) d x d y$. $\frac{1}{4}$
ans.

$$
Z_{* 0} V_{*}
$$

3. (12 points) Find the equation of the tangent plane at the point $\left({ }_{6},{ }_{6},{ }_{6},{ }_{6}\right)$ to the surface
given implicitly by

$$
2 \cos (x+y)+4 \cos (x+z)+8 \cos (y+z)=7
$$

Express you answer in explicit form, i.e in the format $z=a x+b y+c$.
ans. $z=$

$$
a \times b=i+j-k, b \times c=i-j+k, a \times c=2 i+j+2 k .
$$

What is

$$
(a+b+c) \times(2 a-b+3 c) ?
$$

ans.
5. (12 points) Find the three angles of the triangle $A B C$ where $A=(0$,

$$
0,0), B=(1,0,1), C=(1,1,0) .
$$

ans. The angle at A is: radians;
The angle at B is: radians ;
The angle at C is: radians ;
6. (12 points) Find the directional derivative of

$$
f(x, y, z)=x^{3}+y^{3}+z^{3}+x y z
$$

at the point $(1,1,1)$ in a direction pointing to the point $(-1,-1,-1)$.
ans.
7. (12 points) Using the Chain Rule (no credit for other methods), find

$$
\partial g
$$ ∂u

at $(u, v)=(0,1)$, where

$$
g(x, y)=3 x^{2}-3 y^{2}
$$

and

$$
x=e^{u} \cos v, y=e^{u} \sin v
$$

ans.
8. (12 points) Without using Maple (or any other software), compute the vector-field surface integral $R_{S} F$. $d S$ if

$$
\mathrm{F}=h 3 x+\cos \left(y^{3}+y z\right),-2 y+e^{x+z_{2}}, 5 z+\sin \left(x y^{3}+e^{x}\right) i
$$

and S is the closed surface in 3D space bounding the region

$$
\left\{(x, y, z): x^{2}+y^{2}+z^{2}<4 \text { and } x>0 \text { and } y<0 \text { and } z>0\right\} . \text { ans. }
$$

$$
\mathrm{F}=h 3 z, 2 x, y+z i
$$

and S is the oriented surface

$$
z=2 x+3 y, 0<x<1,0<y<1,
$$

with upward pointing normal.
ans.
10. (12 points) Without using Maple or software, find the critical point(s) of

$$
f(x, y)=4 x-y^{2}-\ln (2 x+y)
$$

and decide for each whether it is a local maximum, local minimum, or saddle point. Ex plain.
ans.
$(1,1,2)$, approximate $f(1.001,0.999,2.001)$ if

$$
f(x, y, z)=p_{2 x^{2}+3 y^{2}+z^{2} .}
$$

ans.
nates (no credit for doing it directly) find

$x d y d x$.
ans.
Explain!
$Z^{{ }_{2} 2}$

$$
\begin{array}{ll}
0 & x d y d x+ \\
Z_{x} 0 & \\
\end{array}
$$

$Z^{V_{1-x^{2}} 0}$

14
13. (12 points) Convert the triple iterated integral

$$
\begin{array}{lll}
\mathbf{Z}_{4} 0 & \mathbf{Z}^{\sqrt{ }} 4-z^{z} 0 & -\sqrt{4-z}^{2}-y^{2} x^{2} y z \\
\mathbf{Z}_{0} & d x d y d z
\end{array}
$$

to spherical coordinates. Do not evaluate. ans.
14. (12 points) Find the curvature of the curve $r(t)=h 5$, $3 \sin t, 3 \cos t i$
at the point where $t=\frac{\pi}{3}$.
ans.

16
15. (12 points) Set-up an iterated double integral, in type I format, but do not compute, for the surface area of the surface given parameterically by

$$
\mathrm{r}(u, v)=h u^{2}, u v, v^{2} i, 0<u<v<1 .
$$

ans.
16. (12 points) Let

$$
f(x, y, z)=x y^{2} z^{3}
$$

and let

$$
g(x, y, z)=x+y^{2}+z^{3} .
$$

compute the dot-product

$$
\operatorname{grad}(f) . \operatorname{grad}(g) .
$$

at the point (1, 1, 1).
ans.
17. (8 points) Decide whether the following limit exists. If it does ,find it. If it does not, explain why it does not exist.
$(x+y)^{2}-(z+w)^{2}$

$$
x+y-z-w .
$$

ans.

