%ho173.tex: (2nd ed.) %%a Plain TeX file by Doron Zeilberger for Math 251 %\bigskip & \bigskip \cr %& %\cr %begin macros \def\g{\bigtriangledown} \def\L{{\cal L}} \baselineskip=14pt \parskip=10pt \def\Tilde{\char126\relax} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \magnification=\magstephalf \def\P{{\cal P}} \def\Q{{\cal Q}} \parindent=0pt \overfullrule=0in \def\frac#1#2{{#1 \over #2}} %end macros \centerline { \bf Dr. Z's Math251 Handout \#17.3 (2nd ed.) [The Divergence Theorem] } By Doron Zeilberger {\bf Problem Type 17.3a}: Use the Divergence Theorem to calculate the surface integral $\int\int_{S} {\bf F} \cdot d \, {\bf S}$, where $$ {\bf F}(x,y,z)= P(x,y,z) \, {\bf i}+ Q(x,y,z) \, {\bf j} + R(x,y,z) {\bf k} \quad, $$ where $S$ is a surface bounding some solid region that can be expressed in some coordinate system (Cartesian, cylindrical, or spherical). {\bf Example Problem 17.3a}: Use the Divergence Theorem to calculate the surface integral \hfill\break $\int\int_{S} {\bf F} \cdot d \, {\bf S}$, where $$ {\bf F}(x,y,z)= e^{2x} \sin 2y \, {\bf i}+ e^{2x} \cos 2y \, {\bf j} + y^2z^2 {\bf k} \quad, $$ where $S$ is the surface of the box bounded by the planes $x=0$, $x=2$, $y=0$, $y=1$, $z=0$, $z=3$. \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} Compute the divergence of ${\bf F}$: $$ div \, {\bf F}= {{\partial P} \over {\partial x}}+ {{\partial Q} \over {\partial y}}+ {{\partial R} \over {\partial z}} \quad . $$ & {\bf 1.} $$ div \, {\bf F}= {{\partial } \over {\partial x}} (e^{2x} \sin 2y)+ {{\partial } \over {\partial y}} (e^{2x} \cos 2y ) + {{\partial } \over {\partial z}} ( y^2z^2 ) $$ $$ =2e^{2x} \sin 2y -2 e^{2x} \sin 2y + 2y^2z=2y^2z \quad . $$ \cr \bigskip & \bigskip \cr {\bf 2.} Write the solid region $E$ in `iterated form' in either Cartesian, Cylindrical, or Spherical coordinates. & {\bf 2.} The solid region $E$ bounding our surface is clearly the box $$ \{ \, (x,y,z) \, \vert \, 0 \leq x \leq 2 \, , \, 0 \leq y \leq 1 \, , \, 0 \leq z \leq 3 \, \} \quad. $$ \cr \bigskip & \bigskip \cr {\bf 3.} Set-up the Divergence Theorem, and evaluate the triple integral. $$ \int\int_{S} {\bf F} \cdot d \, {\bf S}= \int\int\int_E div \, {\bf F} \, dV \quad . $$ & {\bf 3.} $$ \int\int_{S} {\bf F} \cdot d \, {\bf S}= \int\int\int_E div \, {\bf F} \, dV \quad . $$ $$ =\int_0^2\int_0^1\int_0^3 2y^2z\, dz \, dy \, dx \quad . $$ $$ =2\left ( \int_0^2 \, dx \right ) \left ( \int_0^1 y^2 \, dy \right ) \left ( \int_0^3 z \, dz \right ) $$ $$ =2(2-0) \cdot{{1^3-0^3} \over {3}} \cdot{{3^2-0^2} \over {2}} =2 \cdot 3 =6 \quad . $$ {\bf Ans.}: $6$. \cr} {\bf A Problem from a previous Final} Let $$ F(x,y,z) = $$ $$ \langle \, \cos(\sqrt{1+x} +zy^3) \quad , \quad \tan(x+y^2+1/z) \quad , \quad \tan^{-1} (e^{xyz}+\cos(x^2-y+3z) \, \rangle \quad , $$ and let $\langle P,Q,R \rangle = curl {\bf F}$. Compute $$ {{\partial P} \over {\partial x}}+ {{\partial Q} \over {\partial y}}+ {{\partial R} \over {\partial y}} \quad . $$ Be sure to explain everything. {\bf Ans.:} $0$ (taking the divergence of curl is always $0$). \end