%ho165.tex: (2nd ed.) %%a Plain TeX file by Doron Zeilberger for Math 251 %\bigskip & \bigskip \cr %& %\cr %begin macros \def\g{\bigtriangledown} \def\L{{\cal L}} \baselineskip=14pt \parskip=10pt \def\Tilde{\char126\relax} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \magnification=\magstephalf \def\P{{\cal P}} \def\Q{{\cal Q}} \parindent=0pt \overfullrule=0in \def\frac#1#2{{#1 \over #2}} %end macros \centerline { \bf Dr. Z's Math251 Handout \#16.5 (2nd ed.) [Surface Integrals of Functions and Surface Integrals of Vector Fields] } By Doron Zeilberger {\bf Problem Type 16.5a}: Evaluate the surface integral $$ \int\int_S F(x,y,z) \, dS \quad, $$ where $S$ is a given surface that is either given parametrically in terms of $u$ $v$, or can be made so, or can be written in the form $z=f(x,y)$, $\{ (x,y) \vert, (x,y) \in D\}$ for some set $D$ in the $xy$-plane. {\bf Example Problem 16.5a}: Evaluate the surface integral $$ \int\int_S 2x^2z^2 \, dS \quad, $$ where $S$ is the part of the cone $z^2=x^2+y^2$ that lies between the planes $z=1$ and $z=3$. \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} If the surface can be described parametrically as $$ \{ (x(u,v),y(u,x),z(u,v)) \vert (u,v) \in D \} \quad, $$ for some set $D$ in $uv$-plane, set-up $r=x \,{\bf i}+y\,{\bf j}+z\,{\bf k}$, and compute $r_u$, $r_v$, then their cross product $r_u \times r_v$, and finally its length $\vert r_u \times r_v \vert$. Put $$ dS=\vert r_u \times r_v \vert \, du \, dv \quad . $$ On the other hand if the surface is given as $z=f(x,y)$, with some description where it lives, figure out the ``floor'' (projection on the $xy$-plane), and put $$ dS=\sqrt{1+ \left ( {{\partial z} \over {\partial x}} \right )^2 + \left ( {{\partial z} \over {\partial y}} \right )^2} \, dA $$ {\bf Note:} The first method also works in the second case, just take $x$, $y$ as the parameters and put $x=x,y=y,z=f(x,y)$. & {\bf 1.} In this problem $z^2=x^2+y^2$ means $z=\sqrt{x^2+y^2}$, so it is possible to do it the second way. But it is a bit easier to use cylindrical coordinates and then the surface is $z=r$, and the parametric representation is $$ x=r \cos \theta \, , \, y=r \sin \theta \, , \, z=r \quad , $$ where the parameters are $r$ and $\theta$. The region on the $xy$-plane below the surface is $$ \{ (r, \theta) \, \vert \, 1 \leq r \leq 3, 0 \leq \theta \leq 2 \pi \} \quad . $$ So $$ {\bf r}(r,\theta)= r \cos \theta \, {\bf i}+ r \sin \theta \, {\bf j}+ r \, {\bf k} \quad. $$ $$ {\bf r}_r= \cos \theta \, {\bf i}+ \sin \theta \, {\bf j}+ \, {\bf k} \quad. $$ $$ {\bf r}_{\theta}= -r \sin \theta \, {\bf i}+ r \cos \theta \, {\bf j}+ 0 \, {\bf k} \quad. $$ $$ {\bf r}_r \times {\bf r}_{\theta} = - r \cos \theta \, {\bf i}- r \sin \theta \, {\bf j} + r\, {\bf k} \quad, $$ (you do it!). Also $$ \vert {\bf r}_r \times {\bf r}_{\theta} \vert= \sqrt{ (- r \cos \theta)^2+(-r \sin \theta)^2 +r^2}=\sqrt{2} r \quad , $$ so $dS=\sqrt{2} r \, dr \, d \theta$. \cr \bigskip & \bigskip \cr {\bf 2.} Set-up the integral $$ \int\int_S F(x,y,z) \, dS \quad, $$ with the $x,y,z$ replaced by their expressions in terms of the parameters, and $S$ replaced by its description in terms of $u,v$, and $dS$ replaced by what you found in step 1. & {\bf 2.} $$ \int\int_S 2x^2z^2 \, dS \quad $$ $$ =\int\int_D 2(r \cos \theta)^2 r^2 \sqrt{2} r \, dr \, d\theta \quad, $$ where $D$ is the region $1 \leq r \leq 3$, $0 \leq \theta \leq 2 \pi$. Converting it to an iterated integral, we get $$ =2 \sqrt{2} \int_{0}^{2 \pi} \int_{1}^{3} r^5 \cos^2 \theta \, dr \, d\theta \quad . $$ \cr \bigskip & \bigskip \cr {\bf 3.} Evaluate the iterated integral. & {\bf 3.} $$ = 2\sqrt{2} \int_{0}^{2 \pi} \int_{1}^{3} r^5 \cos^2 \theta \, dr \, d\theta \quad . $$ $$ =\sqrt{2} \int_{0}^{2 \pi} \left [ \int_{1}^{3} r^5 2\cos^2 \theta \, dr \right ] \, d\theta \quad . $$ $$ = \sqrt{2}\, \int_{0}^{2 \pi} 2 \cos^2 \theta \left [ {{r^6} \over {6}} \Bigl \vert_{1}^{3} \right ] \, d \theta \quad. $$ $$ = \sqrt{2} \, \left ( {{3^6-1^6} \over {6}} \right ) \cdot \int_{0}^{2 \pi} 2 \cos^2 \theta d \theta $$ $$ = \sqrt{2} {{364} \over {3}} \cdot \int_{0}^{2 \pi} (1+ \cos (2 \theta)) d \theta $$ $$ = \sqrt{2} \, \left ( {{364} \over {3}} \right ) \cdot (\theta + {{\sin (2 \theta)} \over {2}}) \Bigl \vert_{0}^{2 \pi} = \sqrt{2} \, {{364} \over {3}} \cdot 2 \pi = {{728 \sqrt{2} \pi} \over {3}} \quad. $$ {\bf Ans.:} ${{728 \sqrt{2} \pi} \over {3}}$. \cr} {\bf Problem Type 16.5b}: Evaluate the surface integral $\int\int_S {\bf F} \cdot d {\bf S}$ for the given vector field ${\bf F}$ and oriented surface $S$. $$ {\bf F}(x,y,z)= P(x,y,z) \, {\bf i}+Q(x,y,z) \, {\bf j}+R(x,y,z) \, {\bf k} \quad, $$ where $S$ is the part of the surface $z=g(x,y)$ that lies above some region $D$, in the $xy$-plane and has upward orientation. {\bf Example Problem 16.5b}: Evaluate the surface integral $\int\int_S {\bf F} \cdot d {\bf S}$ for the given vector field ${\bf F}$ and oriented surface $S$. $$ {\bf F}(x,y,z)= xy \, {\bf i}+yz \, {\bf j}+zx \, {\bf k} \quad, $$ $S$ is the part of the paraboloid $z=4-x^2-y^2$ that lies above the square $0 \leq x \leq 1, 0 \leq y \leq 1$ and has upward orientation. \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} Set-up the formula $$ \int\int_S {\bf F} \cdot d {\bf S}= $$ $$ \int\int_D \left ( -P {{\partial g} \over {\partial x}} -Q {{\partial g} \over {\partial y}} +R \right ) \, dA $$ Be also sure to replace $z$ by $g(x,y)$. & {\bf 1.} Here $g=4-x^2-y^2$, $$ P= xy \quad , \quad Q=yz \quad , \quad R=zx \quad . $$ Plugging everything in, our surface integral $$ =\int\int_D -xy (-2x)-yz (-2y)+xz ) \, dA $$ $$ =\int\int_D (2x^2y+(2y^2+x)z ) \, dA \quad, $$ but since $z=4-x^2-y^2$, this equals $$ =\int\int_D (2x^2y+(2y^2+x)(4-x^2-y^2) ) \, dA \quad, $$ $$ =\int\int_D (2x^2y+8y^2-2y^2x^2-2y^4+4x-x^3-xy^2) \, dA \quad, $$ where $D$ is the square $$ \{ \, (x,y) \, \vert \, 0 \leq x \leq 1 \, , \, 0 \leq y \leq 1 \} \quad. $$ \cr \bigskip & \bigskip \cr {\bf 2.} Looking at $D$ convert it into an iterated integral. & {\bf 2.} $$ =\int_{0}^{1}\int_{0}^{1} (2x^2y+8y^2-2y^2x^2-2y^4+4x-x^3-xy^2) \, \, dx \, dy \quad. $$ $$ =\int_{0}^{1}\int_{0}^{1} (-x^3+x^2(-2y^2+2y)+x(-y^2+4)-2y^4+8y^2)\, dx \, dy \quad. $$ \cr \bigskip & \bigskip \cr {\bf 3.} Evaluate the iterated integral. & {\bf 3.} You do it! (it is rather tedious). The answer turns out to be ${{713} \over {180}}$. \cr} {\bf A Problem from a Previous Final:} Evaluate the surface integral $$ \int\int_S \sqrt{3} \, x \, dS \quad , $$ where $S$ is the triangular region with vertices $(1,0,0),(0,1,0),(0,0,1)$. {\bf Ans.} ${{1} \over {2}}$. \end