%ho164.tex: (2nd ed.) %%a Plain TeX file by Doron Zeilberger for Math 251 %\bigskip & \bigskip \cr %& %\cr %begin macros \def\g{\bigtriangledown} \def\L{{\cal L}} \baselineskip=14pt \parskip=10pt \def\Tilde{\char126\relax} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \magnification=\magstephalf \def\P{{\cal P}} \def\Q{{\cal Q}} \parindent=0pt \overfullrule=0in \def\frac#1#2{{#1 \over #2}} %end macros \centerline { \bf Dr. Z's Math251 Handout \#16.4 (2nd ed.) [Parametrized Surfaces] } By Doron Zeilberger {\bf Problem Type 16.4a}: Find an equation of the tangent plane to the given parametric surface at the specified point. $$ x=x(u,v) \quad , \quad y=y(u,v) \quad , \quad z=z(u,v) \quad ; \quad u=1, v=1 \quad . $$ {\bf Example Problem 16.4a}: Find an equation of the tangent plane to the given parametric surface at the specified point. $$ x=u^2 \quad , \quad y=v^2 \quad , \quad z=uv \quad ; \quad u=1, v=1 \quad . $$ \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} Set-up $$ {\bf r}=x \, {\bf i}+ y \, {\bf j}+ z \, {\bf k} \quad , $$ and compute the partial derivatives w.r.t. $u$ and w.r.t. $v$ : $$ {\bf r}_u=x_u \, {\bf i}+ y_u \, {\bf j}+ z_u \, {\bf k} \quad , $$ $$ {\bf r}_v=x_v \, {\bf i}+ y_v \, {\bf j}+ z_v \, {\bf k} \quad . $$ Then {\bf plug-in} the given values of $u$ and $v$. & {\bf 1.} In this problem $$ {\bf r}=u^2 \, {\bf i}+ v^2 \, {\bf j}+ uv \, {\bf k} \quad , $$ We have $$ {\bf r}_u=2u \, {\bf i}+ 0 \, {\bf j}+ v \, {\bf k} \quad , $$ $$ {\bf r}_v=0\, {\bf i}+ 2v \, {\bf j}+ u \, {\bf k} \quad . $$ Now {\bf plug-in} $u=1, v=1$ to get {\bf numerical vectors}. $$ {\bf r}_u(1,1)=2 \, {\bf i}+ 0 \, {\bf j}+ 1 \, {\bf k} \quad , $$ $$ {\bf r}_v(1,1)=0\, {\bf i}+ 2 \, {\bf j}+ 1 \, {\bf k} \quad . $$ So at this point, $r_u=\langle\, 2,0,1 \,\rangle$, $r_v=\langle\, 0,2,1 \,\rangle$. \cr \bigskip & \bigskip \cr {\bf 2.} Find the cross-product ${\bf r}_u \times {\bf r}_v$. This is a vector {\bf normal} to the tangent plane. & {\bf 2.} $$ {\bf r}_u \times {\bf r}_v = \left \vert \matrix{ {\bf i} & {\bf j} & {\bf k} \cr 2 & 0& 1\cr 0 & 2 & 1 } \right \vert \quad $$ $$ =-2 \, {\bf i} -2 \, {\bf j}+ 4 \, {\bf k} \quad . $$ Or in $\langle \rangle$ notation $$ {\bf N}= \langle -2 , -2 ,4 \rangle \quad . $$ \cr \bigskip & \bigskip \cr {\bf 3.} Find the {\bf point} $(x_0,y_0,z_0)$ by plugging into $x,y,z$ the specific values of $u$ and $v$ given in the problem The desired equation of the tangent plane is $$ a(x-x_0)+b(y-y_0)+c(z-z_0)=0 \quad . $$ where $N=\langle a,b,c \rangle$ and the point is $(x_0,y_0,z_0)$. & {\bf 3.} The point is $(1^2,1^2, 1 \cdot 1 )=(1,1,1)$. The desired equation of the tangent plane is $$ (-2)(x-1)-2(y-1)+4(z-1)=0 \quad . $$ Or, in expanded form $$ -2x-2y+4z=0 \quad . $$ Dividing by $-2$ (to make it nicer), we get: {\bf Ans.:} $x+y-2z=0$. \cr} {\bf A Problem from a previous Final}: Find an equation for the tangent plane to the parametric surface $$ x=u^2 \quad , \quad y=u+v \quad, \quad z=v^2 \quad , $$ at the point $(1,2,1)$. Simplify as much as you can! {\bf Ans.}: $x-2y+z=-2$. {\bf Another Problem from a Previous Final:} Evaluate the surface integral $$ \int\int_S \sqrt{3} \, x \, dS \quad , $$ where $S$ is the triangular region with vertices $(1,0,0),(0,1,0),(0,0,1)$. {\bf Ans.} ${{1} \over {2}}$. \end