%ho161.tex: %%a Plain TeX file by Doron Zeilberger for Math 251 %\bigskip & \bigskip \cr %& %\cr %begin macros \def\g{\bigtriangledown} \def\L{{\cal L}} \baselineskip=14pt \parskip=10pt \def\Tilde{\char126\relax} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \magnification=\magstephalf \def\P{{\cal P}} \def\Q{{\cal Q}} \parindent=0pt \overfullrule=0in \def\frac#1#2{{#1 \over #2}} %end macros \centerline { \bf Dr. Z's Math251 Handout \#16.5 [Curl and Divergence] } By Doron Zeilberger {\bf Problem Type 16.5a}: Find (a) the curl and (b) the divergence of the vector field $$ {\bf F}(x,y,z)= P(x,y,z) \, {\bf i} + Q(x,y,z) \, {\bf j} + R(x,y,z) {\bf k} \quad . $$ {\bf Example Problem 16.5a}: Find (a) the curl and (b) the divergence of the vector field $$ {\bf F}(x,y,z)= 2 e^x \sin y \, {\bf i}+ 3 e^x \cos y \, {\bf j}+ (4 z^2+x+y) \, {\bf k} \quad . $$ \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} $curl \, {\bf F}$ equals $$ \g \times {\bf F}= \left \vert \matrix{ {\bf i} & {\bf j} & {\bf k} \cr {{\partial} \over {\partial x}} & {{\partial} \over {\partial y}} & {{\partial} \over {\partial z}} \cr P & Q & R } \right \vert \quad. $$ Set it up for the specific $P,Q,R$. & {\bf 1.} $$ \g \times {\bf F}= \left \vert \matrix{ {\bf i} & {\bf j} & {\bf k} \cr {{\partial} \over {\partial x}} & {{\partial} \over {\partial y}} & {{\partial} \over {\partial z}} \cr 2 e^x \sin y & 3 e^x \cos y & 4 z^2+x+y } \right \vert \quad . $$ \cr \bigskip & \bigskip \cr {\bf 2.} Evaluate the `determinant'. & {\bf 2.} $$ {\bf i} \, \left ( {{\partial} \over {\partial y}} (4z^2+x+y) - {{\partial} \over {\partial z}} (3e^x \cos y) \right ) $$ $$ -{\bf j} \, \left ( {{\partial} \over {\partial x}} (4z^2+x+y) - {{\partial} \over {\partial z}} (2e^x \sin y) \right ) $$ $$ +{\bf k} \, \left ( {{\partial} \over {\partial x}} (3 e^x \cos y) - {{\partial} \over {\partial y}} (2 e^x \sin y) \right ) $$ $$ ={\bf i} \, (1-0) -{\bf j} \, ( 1 -0) +{\bf k} \, (3 e^x \cos y -2 e^x \cos y) $$ $$ ={\bf i} -{\bf j} + e^x \cos y \, {\bf k} \quad . $$ {\bf Ans. to (a)}: $curl \, {\bf F}={\bf i} -{\bf j} + e^x \cos y \, {\bf k}$. \cr \bigskip & \bigskip \cr {\bf 3.} Set-up the formula for the divergence $$ div \, {\bf F}= {{\partial P} \over {\partial x}} +{{\partial Q} \over {\partial y}} +{{\partial R} \over {\partial z}} \quad . $$ Then compute it. & {\bf 3.} $$ div \, {\bf F}= {{\partial } \over {\partial x}} (2 e^x \sin y) +{{\partial } \over {\partial y}} (3 e^x \cos y) +{{\partial } \over {\partial z}}(4 z^2+x+y) $$ $$ = 2 e^x \sin y-3 e^x \sin y+8z = -e^x \sin y +8z \quad . $$ {\bf Ans. to (b):} $div \, {\bf F}= -e^x \sin y +8z$ . \cr} {\bf Problem Type 16.5b}: Determine whether or not the vector field is conservative. If it is, find a function $f$ such that ${\bf F}=\g f$. $$ {\bf F}(x,y,z)= P(x,y,z) \, {\bf i} + Q(x,y,z) \, {\bf j} + R(x,y,z) {\bf k} \quad . $$ {\bf Example Problem 16.5b}: Determine whether or not the vector field is conservative. If it is, find a function $f$ such that ${\bf F}=\g f$. $$ {\bf F}(x,y,z)= (y^2z+2xyz)\, {\bf i}+ (2xyz+x^2z) \, {\bf j}+ (xy^2+x^2y+2z) \, {\bf k} $$ \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} Compute $curl \, {\bf F}$ $$ \g \times {\bf F}= \left \vert \matrix{ {\bf i} & {\bf j} & {\bf k} \cr {{\partial} \over {\partial x}} & {{\partial} \over {\partial y}} & {{\partial} \over {\partial z}} \cr P & Q & R } \right \vert \quad. $$ If it is the {\bf zero} vector (i.e. {\bf all} compoents are zero) then the vector field ${\bf F}$ is conservative. Otherwise not. If it is not, end of story. If it is, go on. & {\bf 1.} $$ \g \times {\bf F}= \left \vert \matrix{ {\bf i} & {\bf j} & {\bf k} \cr {{\partial} \over {\partial x}} & {{\partial} \over {\partial y}} & {{\partial} \over {\partial z}} \cr y^2z+2xyz & 2xyz+x^2z & xy^2+x^2y+2z } \right \vert \quad . $$ This equals $$ {\bf i} \, \left ( {{\partial} \over {\partial y}} (xy^2+x^2y+2z) - {{\partial} \over {\partial z}} (2xyz+x^2z) \right ) $$ $$ -{\bf j} \, \left ( {{\partial} \over {\partial x}} (xy^2+x^2y+2z) - {{\partial} \over {\partial z}} (y^2z+2xyz) \right ) $$ $$ +{\bf k} \, \left ( {{\partial} \over {\partial x}} (2xyz+x^2z) - {{\partial} \over {\partial y}} (y^2z+2xyz) \right ) $$ $$ ={\bf i} \, (2xy+x^2-2xy-x^2) -{\bf j} \, ( y^2 +2xy-y^2-2xy) $$ $$ +{\bf k} \, (2yz+2xz-2yz-2xz) $$ $$ =0 \, {\bf i} - 0 \, {\bf j} + 0 {\bf k} = {\bf 0} \quad. $$ Since the curl of ${\bf F}$ is ${\bf 0}$, the vector field ${\bf F}$ is conservative, and we must go on. \cr \bigskip & \bigskip \cr {\bf 2.} Find a function $f(x,y,z)$ such that $\g F=f$, in other words $$ f_x=P \quad , \quad f_y=Q \quad , \quad f_z=R \quad. $$ You first integrate $P$ w.r.t. to $x$ getting that $f$ equals something {\bf plus} a function $g(y,z)$. Then you plug that expression for $f$ and use it in $f_y=Q$ getting that $g(y,z)$ equals something explicit {\bf plus} a function $h(z)$. Plug-it back into $f$, and use $f_z=Q$ to get what $h(z)$ is, and plug it back into $f$. & {\bf 2.} $f_x=y^2z+2xyz$, means that $$ f= \int (y^2z+2xyz) \, dx= xy^2z+x^2yz+ g(y,z) \quad. $$ $f_y=2xyz+x^2z$ means that $$ 2xyz+x^2z+g_y=2xyz+x^2z \quad, $$ so $g_y=0$ and $g(y,z)=h(z)$, for some function, $h(z)$, of $z$. So now $$ f= xy^2z+x^2yz+ h(z) $$ $f_z=xy^2+x^2y+2z$ means that $$ xy^2+x^2y+h'(z)=xy^2+x^2y+2z \quad $$ So $h'(z)=2z$ and $h(z)=z^2$. It follows that $$ f= xy^2z+x^2yz+z^2 \quad . $$ {\bf Ans.}: ${\bf F}$ is conservative, and the potential function $f$ such that $\g f={\bf F}$ is $f= xy^2z+x^2yz+z^2$. \cr} \end