%ho144.tex: (2nd ed.) %%a Plain TeX file by Doron Zeilberger for Math 251(1 page) %\bigskip & \bigskip \cr %& %\cr %begin macros \def\L{{\cal L}} \baselineskip=14pt \parskip=10pt \def\Tilde{\char126\relax} \font\eightrm=cmr8 \font\sixrm=cmr6 \font\eighttt=cmtt8 \magnification=\magstephalf \def\P{{\cal P}} \def\Q{{\cal Q}} \parindent=0pt \overfullrule=0in \def\frac#1#2{{#1 \over #2}} %end macros \centerline { \bf Dr. Z's Math251 Handout \#14.4 (2nd ed.) [Differentiability, Linear Approximations, and Tangent Planes] } By Doron Zeilberger {\bf Problem Type 14.4a}: Find an equation of the tangent plane to the given surface at the specified point. $$ z=f(x,y) \quad , \quad (x_0,y_0,z_0) \quad . $$ {\bf Example Problem 14.4a}: Find an equation of the tangent plane to the given surface at the specified point. $$ z=9x^2+y^2+6x-3y+5 \quad , \quad (1,2,18) \quad . $$ \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} First make sure that $z_0=f(x_0,y_0)$ or refuse to do the problem. Then take $f_x={{\partial f} \over {\partial x}}$ and $f_y={{\partial f} \over {\partial y}}$. & {\bf 1.} $9\cdot 1^2+2^2+6\cdot 1-3\cdot 2+5=18$, so the point $(1,2,18)$ indeed lies on the surface. Now $$ f_x= {{\partial} \over {\partial x}} (9x^2+y^2+6x-3y+5)= 18x+6 \quad , $$ $$ f_y={{\partial} \over {\partial y}} (9x^2+y^2+6x-3y+5) =2y-3 \quad . $$ \cr \bigskip & \bigskip \cr {\bf 2.} Plug in $x=x_0,y=y_0$ into $f_x$ and $f_y$ that you have just found. & {\bf 2.} $$ f_x(1,2)=18 \cdot 1 +6=24 \quad . $$ $$ f_y(1,2)=2 \cdot 2 -3=1 \quad . $$ \cr \bigskip & \bigskip \cr {\bf 3.} An equation for the tangent plane for the given surface at the given point is $$ z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0) \quad. $$ Plug-in the $x_0,y_0,z_0$ from the data of the problem and $f_x(x_0,y_0),f_y(x_0,y_0)$ from step 2. & {\bf 3.} $z-18=24(x-1)+(y-2) $. Or, in expanded form: $z=24x+y-8$. \cr} {\bf Problem Type 14.4b}: Explain why the function is differentiable at the given point. Then find the linearization of that function at the given point. $$ z=f(x,y) \quad , \quad (a,b) \quad . $$ {\bf Example Problem 14.4b}: Explain why the function is differentiable at the given point. Then find the linearization of that function at the given point. $$ z=e^x \sin(xy) \quad , \quad (0,\pi/2) \quad . $$ \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} Find the first partial derivatives $f_x$ and $f_y$. & {\bf 1.} $$ f_x={{\partial} \over {\partial x}} e^x \sin(xy)= ({{\partial} \over {\partial x}} e^x) \sin(xy)+ e^x({{\partial} \over {\partial x}} \sin(xy)) $$ $$ e^x \sin(xy)+e^x y \cos(xy) \quad , $$ $$ f_y={{\partial} \over {\partial y}} e^x \sin(xy)= e^x({{\partial} \over {\partial y}} \sin(xy)) =e^x x \cos(xy) \quad . $$ \cr \bigskip & \bigskip \cr {\bf 2.} If both $f_x$ and $f_y$ are {\it continuous} at the designated point $(a,b)$ (i.e. they are defined and do not blow up), then the function is {\it differentiable} at that point, and it is OK to have a linearlization. $$ L(x,y)= $$ $$ f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b) \quad . $$ & {\bf 2.} $f_x=e^x \sin(xy)+e^x y \cos(xy)$ and $f_y=e^x x \cos(xy)$ are both continuous at the point $(0,\pi/2)$ (they are continuous everywhere for that matter), so the function is differentiable there. Now $$ f(0,\pi/2)=e^0 \sin(0)=0 \quad, $$ $$ f_x(0,\pi/2)=e^0 \sin(0)+e^0 \cdot (\pi/2) \cos(0)=\pi/2 \quad , $$ $$ f_y(0,\pi/2)=e^0 \cdot 0 \cdot \cos(0)=0 \quad . $$ The linearization is $$ L(x,y)=0+(\pi/2)\cdot (x-0)+0\cdot (y-\pi/2)= (\pi/2)x \quad . $$ {\bf Ans.:} The linearization of the function $e^x \sin(xy)$ at the point $(0,\pi/2)$ is $(\pi/2)x$. \cr} {\bf Problem Type 14.4c}: Use the linear apprimation of the function $f(x,y)$ at $(a,b)$ to approximate $f(a_1,b_1)$, where $(a_1,b_1)$ is ``near'' $(a,b)$. {\bf Example Problem 14.4b}: Use the linear apprimation of the function $f(x,y)=\sqrt{20-x^2-2y^2}$ at $(3,1)$ to approximate $f(3.05,.97)$. \bigskip \hrule \bigskip %\halign{#\hfill & \quad #\hfill \cr \halign{ \vtop{\hsize=15pc\noindent #\strut} \qquad & \vtop{\hsize=15pc\noindent #\strut} \cr {\bf Steps} & {\bf Example} \cr & \cr {\bf 1.} The beginning is exactly as before. Just find the linearization of the function at the designated point $(a,b)$. So first find the first partial derivatives $f_x$ and $f_y$. & {\bf 1.} $$ f_x={{\partial} \over {\partial x}}(20-x^2-2y^2)^{1/2}= (1/2)(20-x^2-2y^2)^{-1/2} \cdot (-2x) $$ $$ ={{-x} \over {\sqrt{20-x^2-2y^2}}} \quad , $$ $$ f_y={{\partial} \over {\partial y}}(20-x^2-2y^2)^{1/2}= (1/2)(20-x^2-2y^2)^{-1/2} \cdot (-4y) $$ $$ ={{-2y} \over {\sqrt{20-x^2-2y^2}}} \quad . $$ \cr \bigskip & \bigskip \cr {\bf 2.} If both $f_x$ and $f_y$ are {\it continuous} at the designated point $(a,b)$ (i.e. they are defined and do not blow up), then the function is {\it differentiable} at that point, and it is OK to have a linearlization. $$ L(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b) \quad . $$ & {\bf 2.} $f_x={{-x} \over {\sqrt{20-x^2-2y^2}}}$ and $f_y={{-2y} \over {\sqrt{20-x^2-2y^2}}}$ are both continuous at the point $(3,1)$ (the argument of the square-root is $9$ which is positive and nothing blows up). Now $$ f(3,1)= \sqrt{20-3^2-2 \cdot 1^2}=3 \quad . $$ $$ f_x(3,1)={{-3} \over {\sqrt{20-3^2-2 \cdot 1^2}}}=-1 \quad , $$ $$ f_y(3,1)={{-2 \cdot 1} \over {\sqrt{20-3^2-2 \cdot 1^2}}}=-2/3 \quad . $$ and the linearization is $$ L(x,y)=3-(x-3)-(2/3)(y-1) \quad . $$ So the {\bf linear approximation}, valid {\bf near} $(3,1)$ is $$ f(x,y) \approx 3-(x-3)-(2/3)\cdot (y-1) \quad . $$ \cr \bigskip & \bigskip \cr {\bf 3.} Plug-in $(a_1,b_1)$ into this approximation. & {\bf 3.} $$ f(3.05,.97) \approx 3 - (3.05-3)-(2/3)\cdot (.97-1)= $$ $$ 3 -.05+.02=2.97 \quad . $$ {\bf Ans.:} $f(3.05,.97) \approx 2.97$ . \cr} {\bf Problem from a previous Final} Find an equation of the tangent plane to the surface $$ z=e^{2x-3y} \quad , $$ at the point $(3,2,1)$. Simplify as much as you can! {\bf Ans.}: $z=2x-3y+1$ (or $2x-3y-z=-1$ ). \end apprimation linearlization