Dr. Z's Math251 Handout \#0

By Doron Zeilberger
Problem Type 12.4b: (a) Find a vector orthogonal to the plane through the points $P=$ $\left(p_{1}, p_{2}, p_{3}\right), Q=\left(q_{1}, q_{2}, q_{3}\right), R=\left(r_{1}, r_{2}, r_{3}\right)$.(b) Find the area of the triangle $P Q R$.

Example Problem 12.4b: (a) Find a vector orthogonal to the plane through the points $P=$ $(2,1,5), Q=(-1,3,4), R=(3,0,6)$. (b) Find the area of the triangle $P Q R$.

Steps

1. Compute the vector $\mathbf{P Q}$ by subtracting Q from P and the vector $\mathbf{P R}$ by subtracting R from P.
2. Take the cross product of $\mathbf{P Q}$ and $\mathbf{P R}$.

$$
\begin{gathered}
\mathbf{P Q} \times \mathbf{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & -1 \\
1 & -1 & 1
\end{array}\right| . \\
=\mathbf{i}\left|\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
-3 & -1 \\
1 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right| \\
=\mathbf{i}+2 \mathbf{j}+\mathbf{k}=\langle 1,2,1\rangle
\end{gathered}
$$

Ans. to First Part: The vector $\langle 1,2,1\rangle$ is orthogonal to the plane of the triangle $P Q R$.
3. Take the magnitude of the vector you found in step 2. This is the area of the parralelogram. To get the area of the parralelogram, divide it by 2 .
3.

$$
|\langle 1,2,1\rangle|=\sqrt{1^{2}+2^{2}+1^{2}}=\sqrt{6} .
$$

So the area of the parallelogram formed by $P Q$ and $P R$ is $\sqrt{6}$ and the area of triangle PQR is half of that, $\sqrt{6} / 2$.

Ans. to Second Part: The area of triangle $P Q R$ is $\sqrt{6} / 2$.

