Solutions to the "QUIZ" for Nov.2, 2006

1. Evaluate

$$\int \int \int_E (x^2 + y^2 + z^2) \, dV$$

where E is bounded by the xy-plane and the hemispheres $z = \sqrt{1 - x^2 - y^2}$ and $z = \sqrt{4 - x^2 - y^2}$.

Solutuion: Since z is positive, and in the dictionary

$$z = \rho \cos \phi$$
 ,

it means that $\cos \phi$ must be positive, which means that ϕ is between 0 and $\pi/2$ (recall that $\cos \phi$ is negative for ϕ between $\pi/2$ and π). On the other hand x and y have no restriction, so θ has the full (default) range $0 \le \theta \le 2\pi$.

So the description of E in spherical coordinates is

$$E = \{(\rho, \theta, \phi) | 1 \le \rho \le 2, 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/2\}.$$

Now remember that the "phrase" $x^2+y^2+z^2$ becomes ρ^2 in "spherical" language, and $dV=\rho^2\sin\phi\,d\phi\,d\theta\,d\rho$. So our integral is

$$\int_{1}^{2} \int_{0}^{2\pi} \int_{0}^{\pi/2} (\rho^{2}) \cdot \rho^{2} \sin \phi \, d\phi \, d\theta \, d\rho$$
$$= \int_{1}^{2} \int_{0}^{2\pi} \int_{0}^{\pi/2} \rho^{4} \sin \phi \, d\phi \, d\theta \, d\rho$$

By the **separation trick** (**Note:** it only works when all the *limits of integration* are **numbers** and the integrand is a *product* of functions that only depend on **one variable at a time**).

$$= \left(\int_{1}^{2} \rho^{4} d\rho \right) \left(\int_{0}^{2\pi} d\theta \right) \left(\int_{0}^{\pi/2} \sin \phi \, d\phi \right)$$
$$= \left(\frac{\rho^{5}}{5} \Big|_{1}^{2} \right) (2\pi) \left(-\cos \phi \Big|_{0}^{\pi/2} \right)$$
$$= \left(\frac{31}{5} \right) (2\pi) (0 - -1) = \frac{62\pi}{5} .$$

Ans.: $\frac{62\pi}{5}$.

Common Mistakes:

- 1. Mess-up the limits of integration due to rusty trig.
- **2.** Even though I YELLED so many times that the "phrase" $x^2 + y^2 + z^2$ is ρ^2 some people just literally consulted the full dictionary and it did the "long way" and of course never finished it.
- **3.** Some people replaced dV by $d\phi d\theta d\rho$ instead of the correct: $dV = \rho^2 \sin \phi d\phi d\theta d\rho$.