## Dr. Z.'s Fourth Practice Make-Up Exam I

1. Find an equation for the plane that passes through the point $(0,0,0)$ and contains the line of intersection of the planes

$$
x+y+z=3 \quad, \quad 2 x+y+z=4
$$

2. Determine whether the planes are parallel, perpendicular or neither. If neither find the angle between them.

$$
x+y+z=1 \quad, \quad x-y+z=4
$$

3. Find the arclength of the curve

$$
\mathbf{r}(t)=\left\langle\sqrt{2} t, e^{t},-e^{-t}\right\rangle \quad, \quad 1 \leq t \leq 2
$$

4. A particle of mass 1 kg is moving thanks to a force

$$
\mathbf{F}=\left\langle 2,6 t, 12 t^{2}\right\rangle
$$

At $t=0$, it is at the point $(1,1,1)$ moving at a velocity $\langle 2,3,4\rangle$. Find its position at $t=2$.
5. Find the following limit, if it exists, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{5}}{\left(x^{2}+y^{2}\right)}
$$

6. Find an equation for the tangent plane of the surface

$$
z=\sqrt{x+y}
$$

at (2,2,2).
7. Use the chain rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, if

$$
w=x^{3} y^{2} z^{2} \quad, \quad x=s^{2} t^{2}+1 \quad, \quad y=t^{2} s+3 t \quad, \quad z=t^{3} s
$$

8. Find the directional derivative of the function

$$
g(x, y, z)=(x+2 y-2 z)^{7 / 2}
$$

at the point $(1,1,1)$, in the direction of the vector $\langle 3,4,0\rangle$.
9. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x^{3}+y^{3}+z^{3}=3 x y z+7 .
$$

10. Find the linearization, $L(x, y, z)$, of

$$
f(x, y)=\cos (3 x-2 y+3 z)
$$

at the point $(1,3,1)$.

