Section:

MATH 251 Dr. Z. , Third Make-Up Practice Exam I

1. Find an equation for the plane that is parallel to the line joining $(2,2,0)$ and $(2,0,2)$ as well as to the line joining $(0,0,0)$ and $(1,1,1)$.
2. Find parametric equations for the line segment joining $(1,1,1)$ and $(2,3,4)$.
3. Find the curvature of the curve

$$
\mathbf{r}(t)=\left\langle t, e^{t}, e^{2 t}\right\rangle
$$

4. What is the velocity and acceleration of a particle at time $t=1$ if its position function is

$$
\mathbf{r}(t)=\left\langle\sin 2 t, \cos 2 t, e^{2 t}\right\rangle .
$$

5. Find the following limit, if it exists, or show that it does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{1}{\left(x^{2}+y^{2}\right)}
$$

6. Find the linear approximation to the function

$$
f(x, y, z)=(\sqrt{x+2 y+4 z})^{3}
$$

at the point $(3,1,1)$.
7. Use the chain rule to find $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$, if

$$
w=\sin (x+y+z) \quad, \quad x=s t \quad, \quad y=s^{2} t^{2} \quad, \quad z=s^{3} t^{3},
$$

at $s=0, t=2$.
8. Find the maximum rate of change of $f(x, y, z)=e^{x^{3}+y^{3}+z^{3}}$ at the point $(1,1,1)$, and the direction in which it occurs.
9. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
\sin (x+y+z)=3+\cos (x+y+z)
$$

10. Find an equation of the tangent plane to the surface

$$
z=\cos (x+y)
$$

at the point $(\pi / 4, \pi / 4,0)$.

