Dr. Z's Math251 LAST Handout [The Meaning of It All]

By Doron Zeilberger

Concept 1: Indefinite Integral:

Notation: $\int f(x) d x$
Input: A function $f(x)$ of the single-variable x.
Output: A function $F(x)$
Meaning: $F(x)$ is a function such that $F^{\prime}(x)=f(x)$. Since there are many such functions (for example if $f(x)=x$, then $F(x)=x^{2} / 2, F(x)=x^{2} / 2+1, F(x)=x^{2} / 2+11$, etc. all have this property, we write $+C$ for arbitrary constant, to indicate that this is really a family of answers.

How to compute it: Memorize the answer for basic functions and use integration techniques for complicated ones. Better still: use Maple (but not on exams!).

Concept 2: Definite Integral:
Notation: $\int_{a}^{b} f(x) d x$
Input: A function $f(x)$ of the single-variable x, and two numbers a and b.
Output: A number.
How to Compute it: Find the indefinite integral $\int f(x) d x$, let's call it $F(x)$, and do $F(b)-F(a)$.
Meanings: 1. If $f(x)$ is positive for $a \leq x \leq b$, then it is the area under the curve $y=f(x)$, above the x axis, and between the vertical lines $y=a$ and $y=b$.
2. If you have a one-dimensional wire stretched out from $x=a$ to $x=b$, and its (linear) densityfunction is $f(x)$, then this is its mass.

Important Special case: when $f(x)=1, \int_{a}^{b} d x=b-a$, the length of the interval $b-a$.
Concept 3: Line-Integral of the arclength kind
Notation: $\int_{C} f(x, y, z) d s$
Inputs: a function of three variables (x, y, z) (or sometimes two $(x, y))$) and a curve described (usually) in parametric representation. $x=$ Expression $_{1}(t), y=$ Expression $_{2}(t), z=$ Expression $_{3}(t)(a \leq t \leq b)$ or equivalently in vector notation $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle(a \leq t \leq b)$.

Output: a number.

How to Compute it: replace $d s$ by $\left|\mathbf{r}^{\prime}(t)\right| d t, \int_{C}$ by \int_{a}^{b} and $f(x, y, z)$ by $f(x(t), y(t), z(t)$, getting a definite integral in t.

Meanings: 1. If you bulid your two-dimensional house along the curve, with the floor being the curve and the ceiling-height given by the function $f(x, y, z)$, it is the area of that house.
2. If it is a wire whose linear density is given by $f(x, y, z)$ then it is its mass

Important Special case: If $f(x, y, z)=1$ we get the length of the curve (also called arclength.
Concept 3': Line-Integral of the Vector-Field kind
Notation: $\int_{C} \mathbf{F} \cdot d \mathbf{r}$
Inputs: a vector-field of three variables $(x, y, z), \mathbf{F}=\langle P, Q, R\rangle$, (or sometimes two (x, y)) and $\mathbf{F}=\langle P, Q\rangle$) and a curve described (usually) in parametric representation. $x=$ Expression $_{1}(t), y=$ Expression $_{2}(t), z=$ Expression $_{3}(t)(a \leq t \leq b)$ or equivalently in vector notation $\mathbf{r}(t)=$ $\langle x(t), y(t), z(t)\rangle(a \leq t \leq b)$.

Output: a number.
How to Compute it: replace $d \mathbf{r}$ by $\mathbf{r}^{\prime}(t) d t, \int_{C}$ by \int_{a}^{b} and \mathbf{F} by what you get by plugging-in in P, Q, R the expressions in terms of t for x, y, z. Then compute the dot-product $\mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t$ and integrate from $t=a$ to $t=b$. Equivalently do $\int P d x+Q d y+R d z$ with $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t$, $d z=z^{\prime}(t) d t$.

Meanings: Several in physics. Most important, the work done by a force \mathbf{F} moving along C.
Important Special case: None.
Concept 4: Iterated Integral of two variables
Notation: $\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \quad$ (type I)
or
$\int_{a}^{b} \int_{g_{1}(y)}^{g_{2}(y)} f(x, y) d x d y \quad$ (type II)
Inputs: a function $f(x, y)$ of two variables, numbers a and b and functions (that sometimes happen to be constant functions hence may be numbers) $g_{1}(x), g_{2}(x)$ (for type I) or $g_{1}(y), g_{2}(y)$ (for type II).

Output: a number.
Watch out for nonsense: $\int_{x}^{2 x} \int_{0}^{1} f(x, y) d y d x$ is utter-nonsense (outside limits-of-integration can only be numbers).

How to Compute it: First you do the inner-integral, getting a function of the outside variable-of-integration, then you do the outside-integral getting a number.

Meanings: these come up when evaluating double-integrals (alias area-integrals).

Important Special case: None.

Concept 5: Iterated Integral of three variables

Analogous to two variables, but now you have an inside integral, a middle integral, and an outside integral.

Concept 6: Double Integral (alias Area-integral)
Notation: $\iint_{D} f(x, y) d A$
Inputs: a function $f(x, y)$ of two variables, and a region D in the plane ($x y$-plane).
Output: a number.

How to Compute it: Express the region D either in type-I style, or type-II style, or polar. Then convert the double-integral into an iterated integral.

Meanings: 1. If $f(x, y)$ is positive, and you build a building whose floor is the region D, and whose ceiling-height above a typical point (x, y) is given by the function $f(x, y)$, then it is the volume of that building.
2. If you have a plate whose shape is D and $f(x, y)$ is its density, then it is the mass of the plate.

Important Special case: if $f(x, y)$ is 1 then you get the area of D.
Concept 7: Surface Integral of the scalar kind
Notation: $\iint_{S} f(x, y, z) d S$

Inputs: a function $f(x, y, z)$ of three variables, and a surface S (either given explicitly as $z=g(x, y)$ or parametrically as as $\mathbf{r}(u, v)$.

Output: a number.

How to Compute it: In the explicit case: find the projection on the $x y$-plane, call it D, then replace $d S$ by $\sqrt{\left.1+\left(g_{x}\right)^{2}+\left(g_{y}\right)^{2}\right)} d A$ and do the resulting double-integral (not forgetting to replace z by $g(x, y)$ so you won't get any mention of z.)

In the parametric case: Let D be the parameter-space region (usually given by the problem). Replace x, y, z by their expression in (u, v) and replace $d S$ by $\left|r_{u} \times r_{v}\right| d A$, and do the resulting double-integral.

Meanings: 1. If you have a building whose floor is the surface S, and whose ceiling-height above a typical point (x, y, z) is given by the function $f(x, y, z)$, then it is the volume of that building.
2. If you have a piece of material that fits on S and $f(x, y, z)$ is the density function, then it is the mass.

Important Special case: if $f(x, y, z)$ is 1 then you get the surface-area of S.
Concept 7': Surface Integral of the vector-field kind
Notation: $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$
Inputs: a vector-field $\mathbf{F}(x, y, z)$ of three variables, and three components (called $P, Q, R)$ and a surface S (either given explicitly as $z=g(x, y)$ or parametrically as as $\mathbf{r}(u, v)$.

Output: a number.
How to Compute it: In the explicit case, $z=g(x, y)$ find the projection of S on the $x y$-plane, call it D, and find the double-integral

$$
\iint_{D}\left(-P \frac{\partial z}{\partial x}-Q \frac{\partial z}{\partial y}+R\right) d A
$$

In the parametric case: Let D be the parameter-space region (usually given by the problem). replace x, y, z by their expression in (u, v) and replace $d \mathbf{S}$ by $\left(r_{u} \times r_{v}\right) d A$, take the dot-product and do the resulting double-integral.

Meanings: Several in physics (most notably Electricity and Magnetism).
Important Special case: None.

Concept 8.: Triple Integral (alias Volume-Integral)

Notation: $\iiint_{E} f(x, y, z) d V$
Inputs: a function $f(x, y, z)$ of three variables, and a region E in space.

Output: a number.

How to Compute it: Express the region E either in $x-y-z$ order or $x-z-y$ order etc., or in cylindrical, or in spherical coordinaters. Then convert the triple-integral into an iterated integral and do it one-step-at-a-time from inside to outside.

Meanings: 1. If $f(x, y, z)$ is positive, and you build a four-dimensional building whose "floor" is the region E, and whose ceiling-height above a typical point (x, y, z) is given by the function $f(x, y, z)$, then it is the four-dimensional "volume" of that building.
2. If you have a solid body whose shape is E and $f(x, y, z)$ is its density, then it is the mass of that solid-body.

Important Special case: if $f(x, y, z)$ is 1 then you get the volume of E.

Concept 9: Gradient

Notation: $\nabla f(x, y, z)$
Inputs: a function $f(x, y, z)$ of three variables,
Output: a vector-field.
How to Compute it: $\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$
Meaning: the magnitude of ∇f is the maximum rate of change and its direction is the direction where it changes the fastest.

Concept 9: Curl
Notation: $\operatorname{curl} \mathbf{F}$ (in math) or $\nabla \times \mathbf{F}$ (in physics)
Input: a vector-field $\mathbf{F}(x, y, z)$ of three components and three variables, $\langle P, Q, R\rangle$.
Output: another vector-field.
How to Compute it:

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| .
$$

Meaning: very important in Electricity and Magnetism.
Concept 10: Divergence
Notation: $\operatorname{div} \mathbf{F}$ (in math) or $\nabla \cdot \mathbf{F}$ (in physics)
Input: a vector-field $\mathbf{F}(x, y, z)$ of three components and three variables, $\langle P, Q, R\rangle$.
Output: a function of (x, y, z).
How to Compute it: $P_{x}+Q_{y}+R_{z}$.
Meaning: very important in Electricity and Magnetism.

Important relationships between concepts

Green's Theorem relates the notion of line-integral (of the vector-field kind over a closed
curve) in two dimensions with the notion of area-integral (a.k.a. as double integral).
Stokes's Theorem relates the notion of line-integral (of the vector-field kind) in three dimensions with the notion of surface-integral (of the vector-field kind) over an open surface [one that has a bounding-curve].

The Divergence Theorem relates the notion of surface-integral (of the vector-field kind) over a closed surface with the notion of triple-integral (a.k.a. volume-integral) .

Important Simplifications

1. For any function $f(x, y, z)$ (that is "nice") $\operatorname{curl}(\nabla f)=\mathbf{0}$.

More explicitly: If you take any function $f(x, y, z)$ (you name it!) and first take its gradient getting some vector field (a vector of functions). Then take the curl of that vector-field, and surprise you get the $\mathbf{0}$ vector-field.
2. For any vector-field $\mathbf{F}(x, y, z)$ (that is "nice") $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$.

More explicitly: If you take any vector-field $\mathbf{F}(x, y, z)$ (you name it!) and first take its curl getting some other vector field, then take the divergence of that vector-field, and surprise you get the 0 -function.

How to use these fact? Suppose that I give you an extremely complicated function like

$$
f(x, y, z)=\cos \left(e^{\cos x y z+\sin z}+x+y+z^{3}\right)\left(x^{3}+7 x y z-y^{6}\right)
$$

and ask you to compute $\operatorname{curl}(\nabla f)$. If you do it stupidly, you would first find ∇f, and then take the curl of that. This would take you two hours and you won't have time to do anything else. But if you knew the fact that $\operatorname{curl}(\nabla f)$ is always $\mathbf{0}$ it would take you one second.

Important shortcuts

1. If you have an area-integral with the integrand being a plain number of a region whose area you know from middle-school, for example

$$
\iint_{D} 5 d A
$$

You first take the 5 in front

$$
5 \iint_{D} d A
$$

and use the fact that when the integrand is 1 the area-integral becomes plain area so the answer is 5 times the area of D.

Remember: the area of a rectangle is: length times width;
the area of a triangle is: base times height over 2.

The area of a circle radius r is πr^{2}.
The area of a semi-circle radius r is $\left(\pi r^{2}\right) / 2$.
2. Similarly if you have a surface-integral with the integrand being a number (remember the surface area of a sphere radius R is $4 \pi R^{2}$, that of an open hemisphere half of that, that of a closed cylinder radius R height h is $2 \pi R h+2 \pi r^{2}$)
3. Similarly if you have a volume-integral with the integrand being a number (remember the volume of a sphere radius R is $(4 \pi / 3) R^{3}$, that of a hemisphere half of that, that of a cylinder radius R height h is $\pi R^{2} h$)
4. Similarly if you have a line-integral (of the $d s$ kind) with the integrand being a number (remember the length (i.e. circumference) of a circle radius R is $2 \pi R$).
5. In polar and cylindrical coordinates the "phrase" $x^{2}+y^{2}$ is r^{2}.
6. In spherical coordinates the "phrase" $x^{2}+y^{2}+z^{2}$ is ρ^{2}.

Use and Abuse of Nonsense Detection

length, area, and volume can never be negative numbers but line-integrals, area-integrals and volume-integrals often are.

