Dr. Z.'s Math 251 Basic Skills and Math Etiquette Worksheet

Due: Dec. 11, 2006. (As one of the conditions for the "deal").

1. Trivial arithmetical simplifications

example: 1+1 should be replaced by 2

3-3 should be replaced by 0.

5/5 should be replaced by 1.

162/20 should be replaced by 81/10.

Do right now!:

Simplify as much as you can:

$$300/62 =$$

$$300/33 =$$

$$11/11 =$$

$$\sqrt{9} =$$

$$\sqrt{25} =$$

$$\sqrt{16} - (10/2)(\sqrt{4}) + (60/10) =$$

Warning: if I will see something like 202/62 unsimplified, I'll take-off points.

2. Absolute value:

|a| = a if a is positive, |-a| = a if a is negative.

Do right now!: Simplify the following numerical expressions featuring the absolute-value sign:

$$|11| =$$

$$|-6| =$$

$$|9| + |-11| =$$

$$|11-7|-|6-10|+|22/11|-|-55/11|.$$

Warning: if I see as final answer something like $\ln |7|$ (instead of $\ln 7$), I'll take-off points.

3. Simple values of $\sin x$, $\cos x$, e^x , $\ln x$.

Recall that: $\sin 0=0$, $\sin \pi/2=1$, $\cos 0=1$, $\cos \pi/2=0$, $\ln 1=0$, $\ln e=1$, $e^0=1$, $e^1=e$.

Do right now!: Simplify the following numerical expressions:

$$ln(\cos 0) =$$

$$e^{\sin 0} =$$

$$\ln e^{\cos 0} =$$

$$\ln(\sin(\pi/2)) + \cos^3(-\pi/2) + e^{\cos 0} - e^{\sin 0} =$$

4. Simple numerical expressions with square-roots

Recall that
$$x^{1/2} = \sqrt{x}, x^{-1/2} = 1/\sqrt{x},$$

Example: how to simplify $4^{-3/2}$?

$$4^{-3/2} = \frac{1}{4^{3/2}} = \frac{1}{(4^{1/2})^3} = \frac{1}{(\sqrt{4})^3} = \frac{1}{(2)^3} = \frac{1}{8}$$
.

Do right now!:

$$9^{1/2} =$$

$$27^{2/3} =$$

$$16^{-1/2} =$$

$$4^{3/2} =$$

5. Simple algebra: Recall the famous formula: $a^2 - b^2 = (a - b)(a + b)$.

Do right now!: Factorize

$$x^2 - y^2 =$$

$$x^2 - 9y^2 =$$

$$36x^2 - 25y^2 =$$

$$x^4 - y^4 =$$

Quick review of differentiation:

Basic differentiations that you should memorize:

$$(x^n)' = nx^{n-1}$$
 , $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(e^x)' = e^x$, $(\ln x)' = \frac{1}{x}$.

6.1 The product rule: (fg)' = f'g + fg'.

Example:

$$(x^2 \sin x)' = (x^2)'(\sin x) + (x^2)(\sin x)' = (2x)\sin x + (x^2)(\cos x) = 2x\sin x + x^2(\cos x) .$$

Do right now:

$$(x^5 \sin x)' =$$

$$(e^x \sin x)' =$$

$$(x^5e^x)' =$$

$$((\ln x)(\sin x)(e^x))' =$$

6.2 The Chain Rule:

$$[f(q(x))]' = f'(q(x)) \cdot g'(x) \quad ,$$

Or, better-put:

$$[OUTSIDE(INSIDE)]' = OUTSIDE'(INSIDE) \cdot INSIDE'$$
,

Examples:

$$(e^{x^3})' = (e^{x^3})(x^3)' = (e^{x^3})(3x^2) = 3x^2 e^{x^3} ,$$

$$(\sin(e^x))' = \cos(e^x) \cdot (e^x)' = \cos(e^x) \cdot (e^x) = e^x \cos(e^x) .$$

Do right now:

$$(e^{\sin 5x})' =$$

$$(e^{x^5})' =$$

$$(\ln(x^6+9))' =$$

$$(\cos(2x^2 + 5cx))' =$$

6.3 Combination of The Chain Rule and Product Rule

Example:

$$(x\sin(x^4))' = x'\sin(x^4) + x(\sin(x^4))' = \sin(x^4) + x((\cos(x^4))(x^4)') = \sin(x^4) + x((\cos(x^4))(4x^3)) = \sin(x^4) + 4x^4\cos(x^4)$$
.

Do Right Now:

$$(e^{x} \sin^{3} x)' =$$

$$(e^{x^{2}} \sin(x^{3}))' =$$

$$(e^{x^{5}+6} \cos(x^{3}+5))' =$$

$$(x^{5} e^{\sin(2x^{3})})' =$$

7. Quick review of integration:

7.1: Substitution

Recall that

$$\int e^{u} du = e^{u} + C \quad ,$$

$$\int \sin u du = \cos u + C \quad ,$$

$$\int \cos u du = \sin u + C \quad ,$$

$$\int \frac{du}{u} = \ln|u| + C \quad .$$

Often we can do a **short-cut substitution** by expressing an integral as a "composition".

If u is a function of x, then du = u'(x) dx.

Examples:

$$\int e^{x^3} 3x^2 dx = \int e^{x^3} d(x^3) dx = e^{x^3} + C$$
$$\int \sin^2 \cos x dx = \int \sin^2 x d(\sin x) = (1/3) \sin^3 x + C .$$

$$\int \cos^2 \sin x \, dx = \int \cos^2 x \, d(-\cos x) = -\int \cos^2 x \, d(\cos x) = -(1/3)\cos^3 x + C \quad .$$

Sometimes we have to make minor adjustments

$$\int e^{x^3} x^2 dx = (1/3) \int e^{x^3} 3x^2 dx = (1/3) \int e^{x^3} d(x^3) dx = (1/3)e^{x^3} + C$$

(here x^2 is 'not quite' $(x^3)'$ so we stick a (1/3) in front and replace the x^2 by $3x^2$.

Do right now!:

$$\int \sin(e^x) e^x dx =$$

$$\int \sin(x^5) x^4 dx =$$

$$\int e^{\sin x} \cos x \, dx =$$

$$\int \frac{x^2}{x^3 + 11} \, dx =$$

$$\int \tan x \, dx =$$

(Hint:
$$\tan x = \sin x / \cos x$$
)

$$\int \frac{x^5}{x^6 + 100} dx =$$

$$\int 3x^4 e^{x^5} dx =$$

$$\int \frac{3(\ln x)^2}{x} e^{(\ln x)^3} \, dx =$$

7.2 Integration by Parts:

$$\int u dv = uv - \int v du \quad .$$

Example: $\int xe^{x} dx = \int x d(e^{x}) = xe^{x} - \int e^{x} dx = xe^{x} - x + C$

Do right now:

$$\int x \sin x \, dx =$$

$$\int x \cos x \, dx =$$

7.3 powers of trig-functions

$$\int \sin^{odd} x \, dx$$
 and $\int \cos^{odd} x \, dx$

are handled via **substitution**, e.g.

$$\int \sin^3 x \, dx = \int (\sin^2 x) (\sin x) \, dx = -\int (\sin^2 x) \, d(\cos x)$$

$$= -\int (1 - \cos^2 x) \, d(\cos x) = -\int d(\cos x) + \int (\cos^2 x) d(\cos x) = -\cos x + (\cos^3 x)/3 + C \quad .$$

 $\int \sin^{even} x \, dx$ and $\int \cos^{even} x \, dx$ are handled via **trig identities**

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
 , $\sin^2 x = \frac{1 - \cos 2x}{2}$,

and then taking advantage of $\int \sin(ax) dx = -(\cos ax)/a + C$, $\int \cos(ax) dx = \sin(ax)/a + C$.

Example:

$$\int \cos^2 x \, dx = \int \frac{1 + \cos 2x}{2} \, dx = \int \frac{1}{2} \, dx + \int \frac{\cos 2x}{2} \, dx = \frac{x}{2} + \frac{\sin 2x}{4} + C \quad .$$

Do right now:

$$\int \sin^2 x \, dx =$$

$$\int \sin^5 x \, dx =$$

$$\int \cos^4 x \, dx =$$

(Hint: write $\cos^4 x = (\cos^2 x)^2$ and use the trig-identity $\cos^2 w = (1 + \cos 2w)/2$ twice, first with w = x, and after using algebra and expanding, with w = 2x)

$$\int \cos^5 x \, dx =$$