

Combinatorics and Algebras From A to Z, Monday July 26, 2021

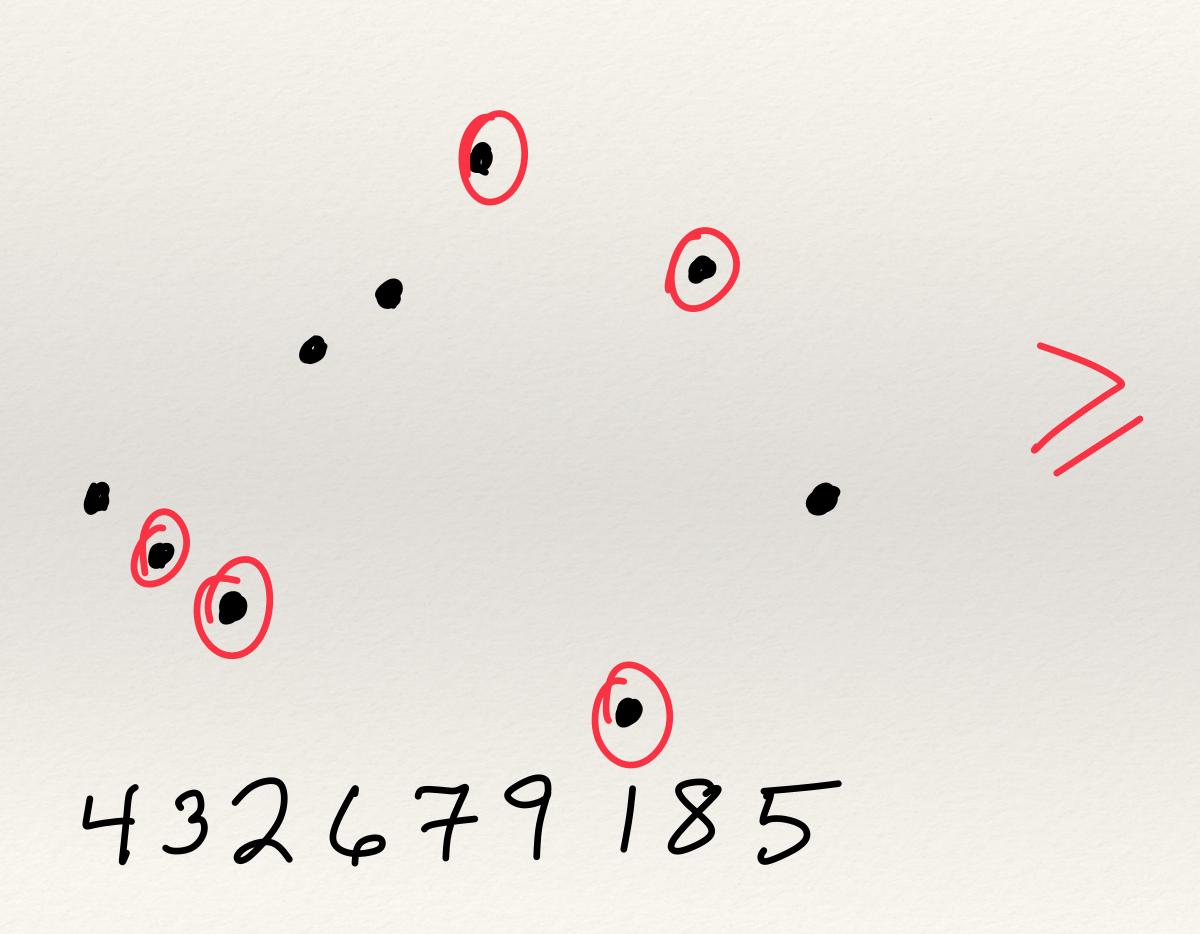
Growth rates of grids and merges of permutation classes

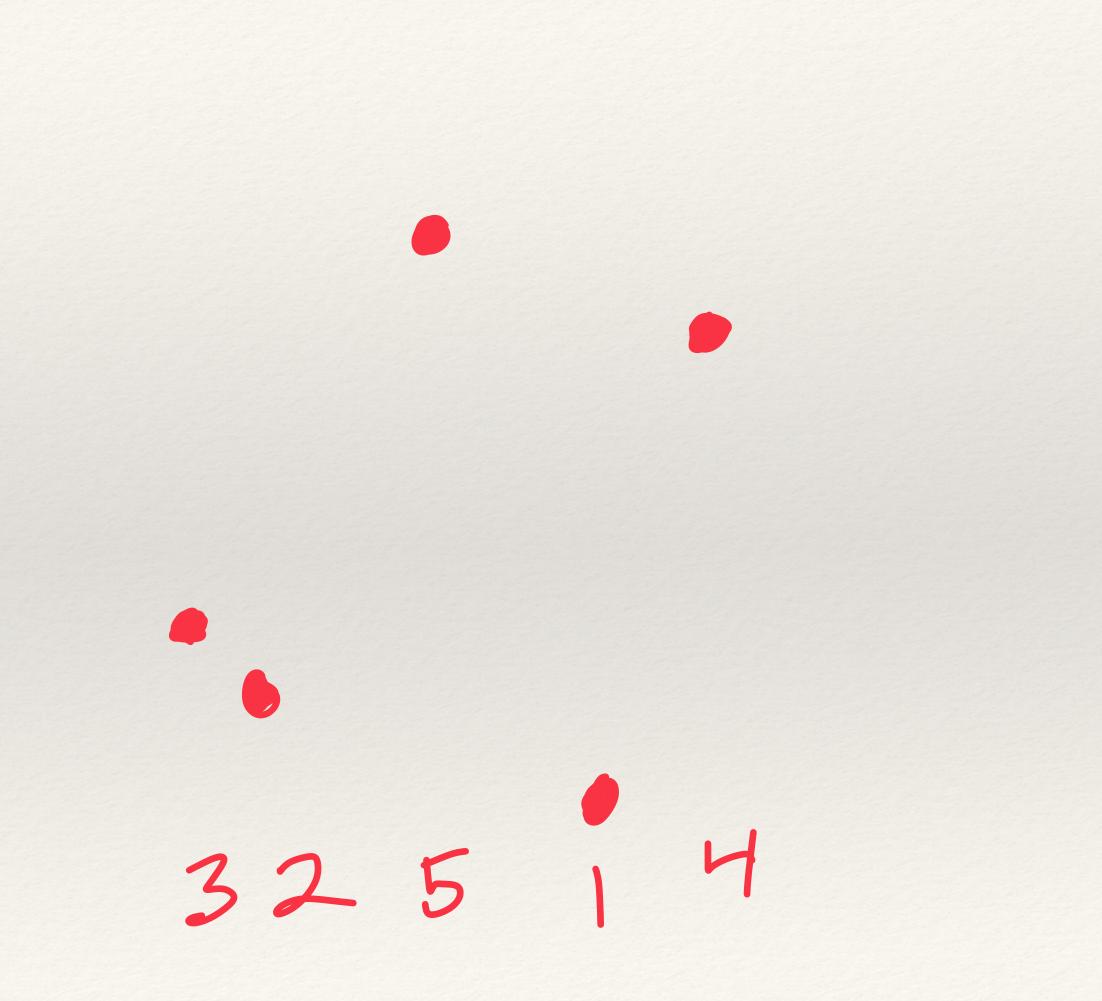
Vince Vatter (U Florida)

with Michael Albert and Jay Pantone

Permutation patterns

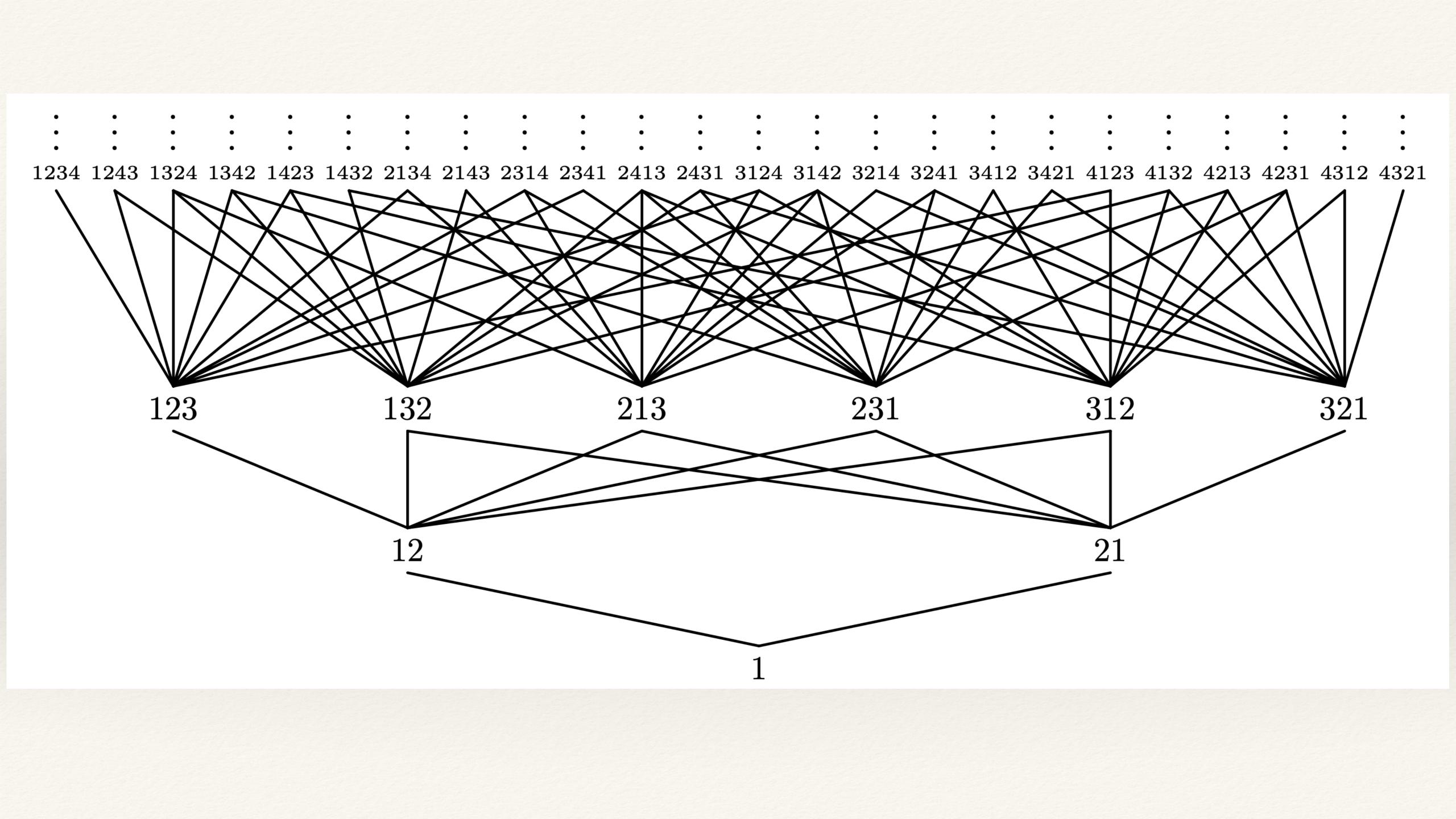
Permutation patterns

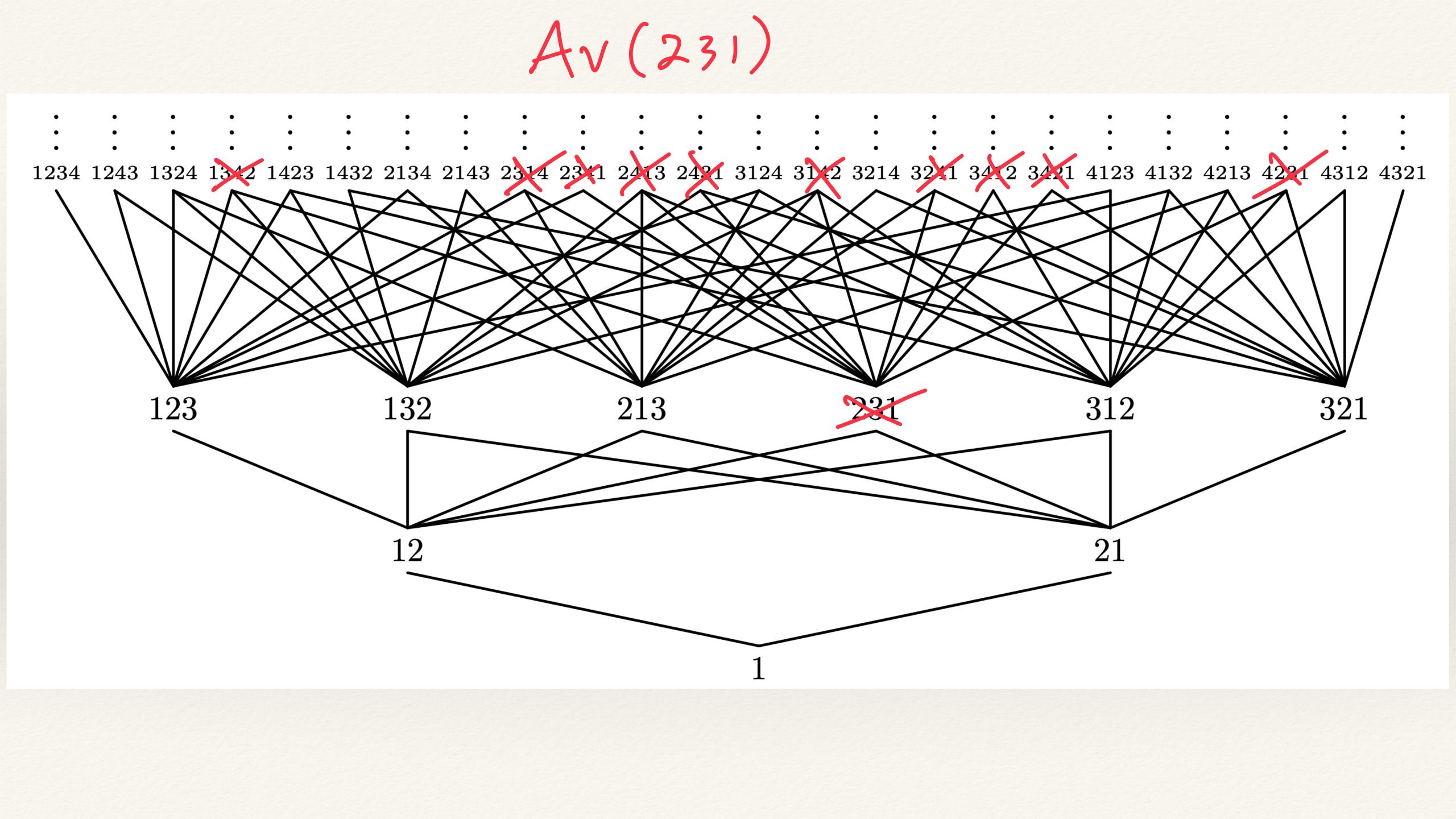


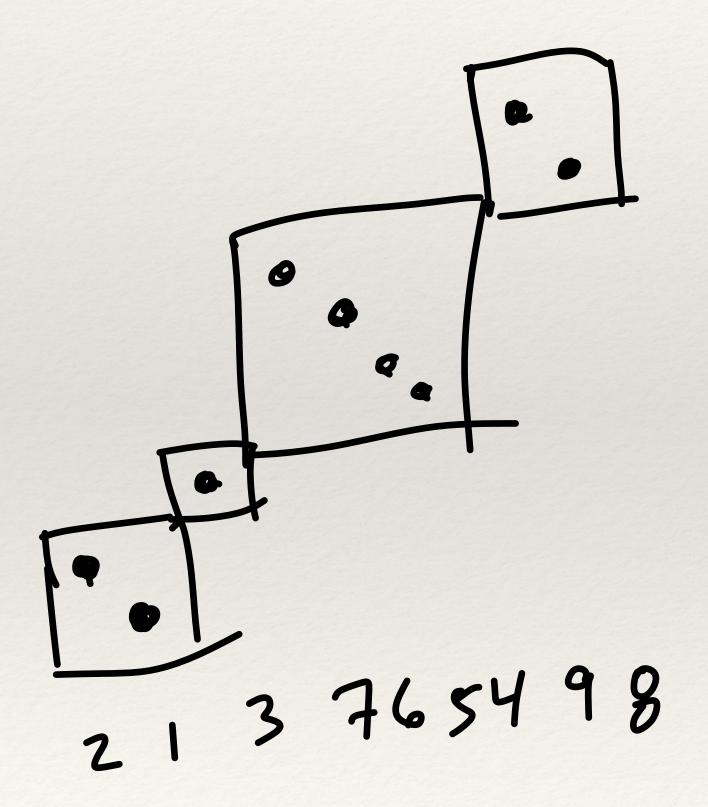


Permitation classes This is a gartial order on the set of all (finite) permutations. A downset in this order is called a permitation class.

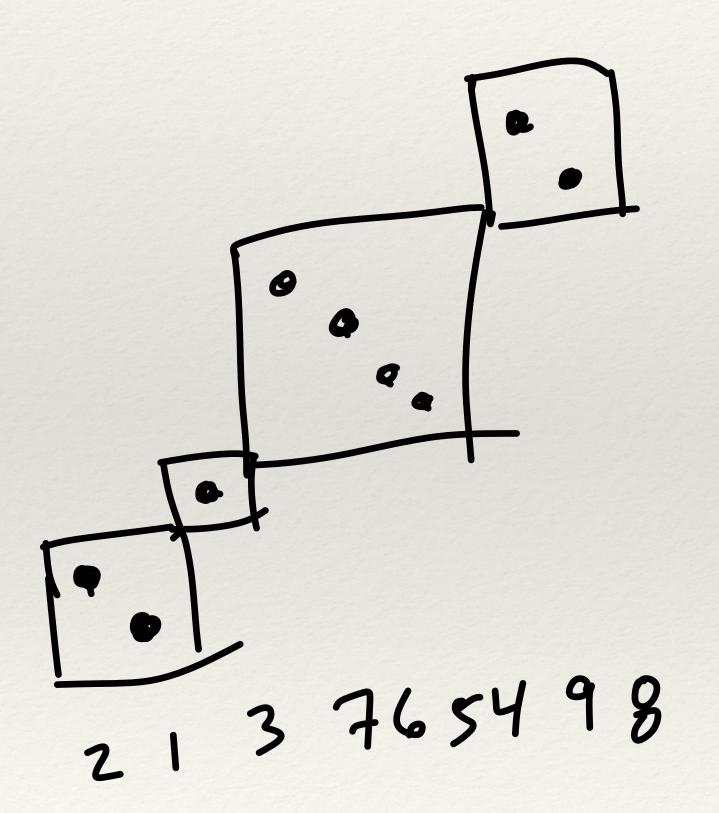
Permitation classes This is a gartial order on the all (finite) permutations. A downset in this order is called a permitation class. Every class can be specified by avoidance - Av (B). VZ J





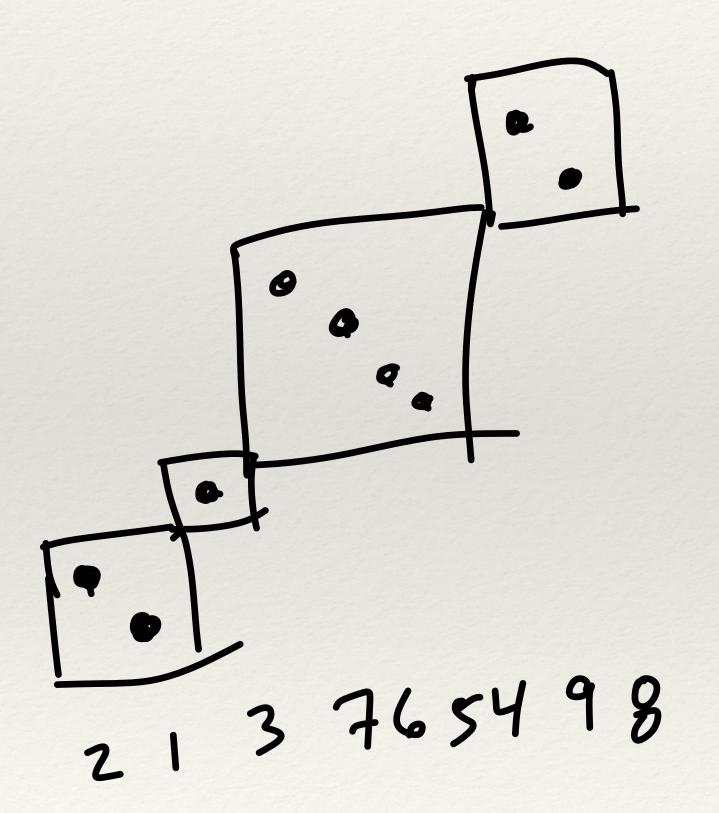


Example: layered permutations



Example: layered permutations

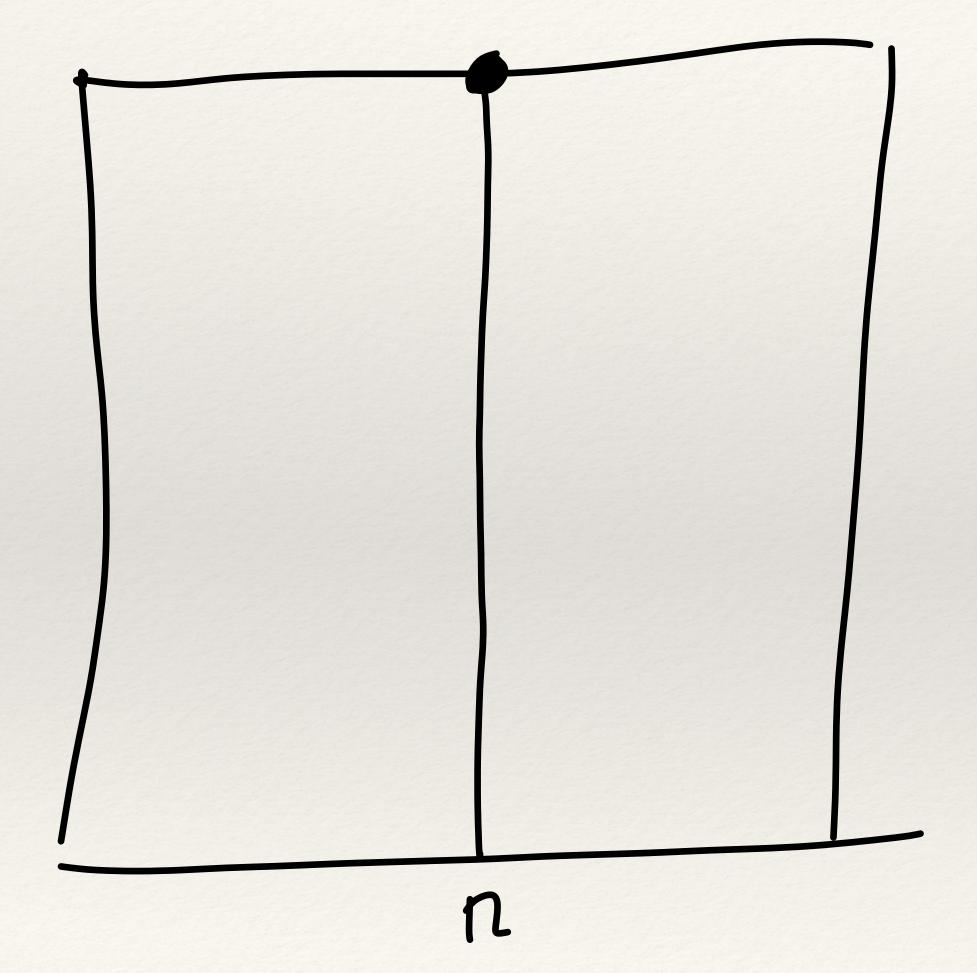
Compositions 2 d length n



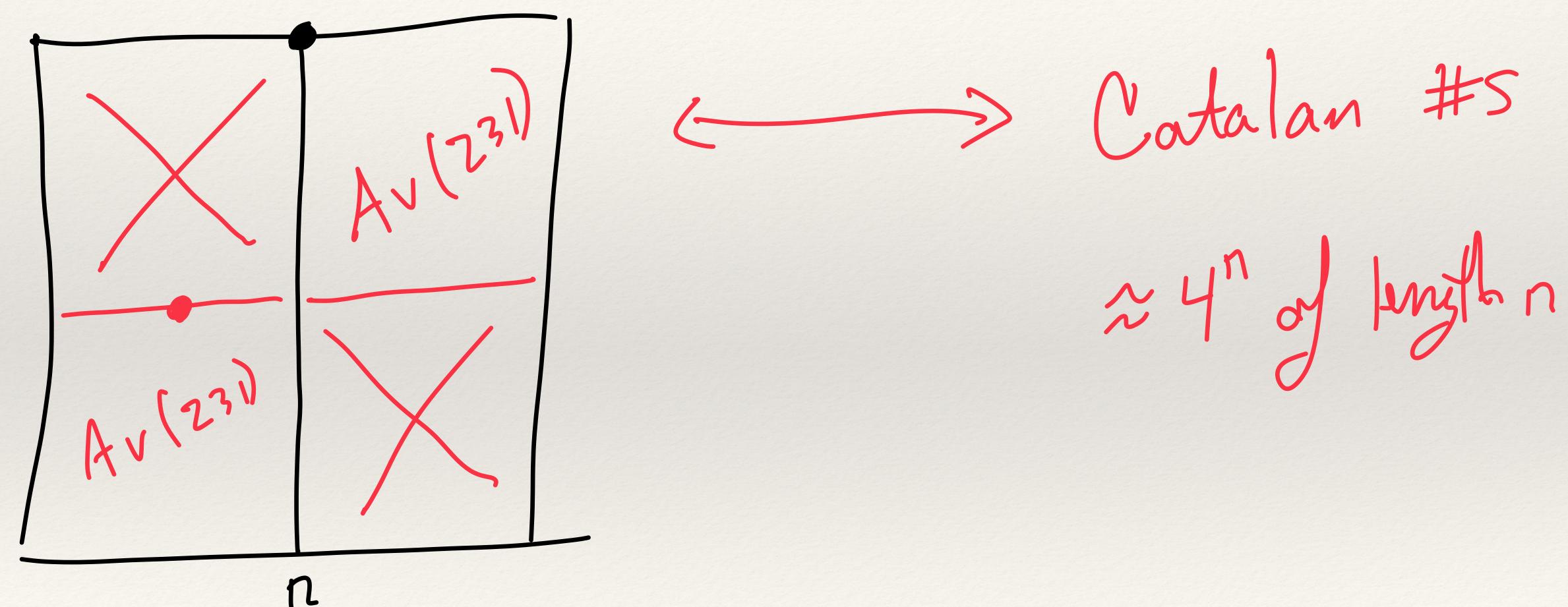
Example: layered permutations

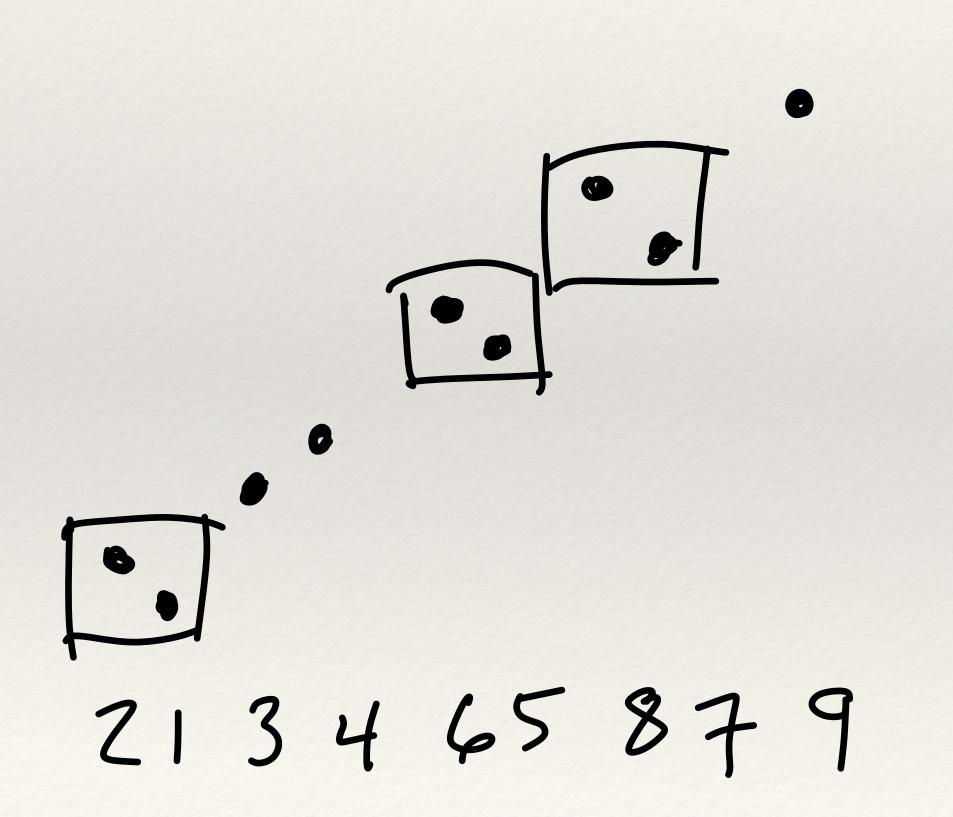
Compositions 2 length n 231 211 Av(231, 312)

Example: Av(231)

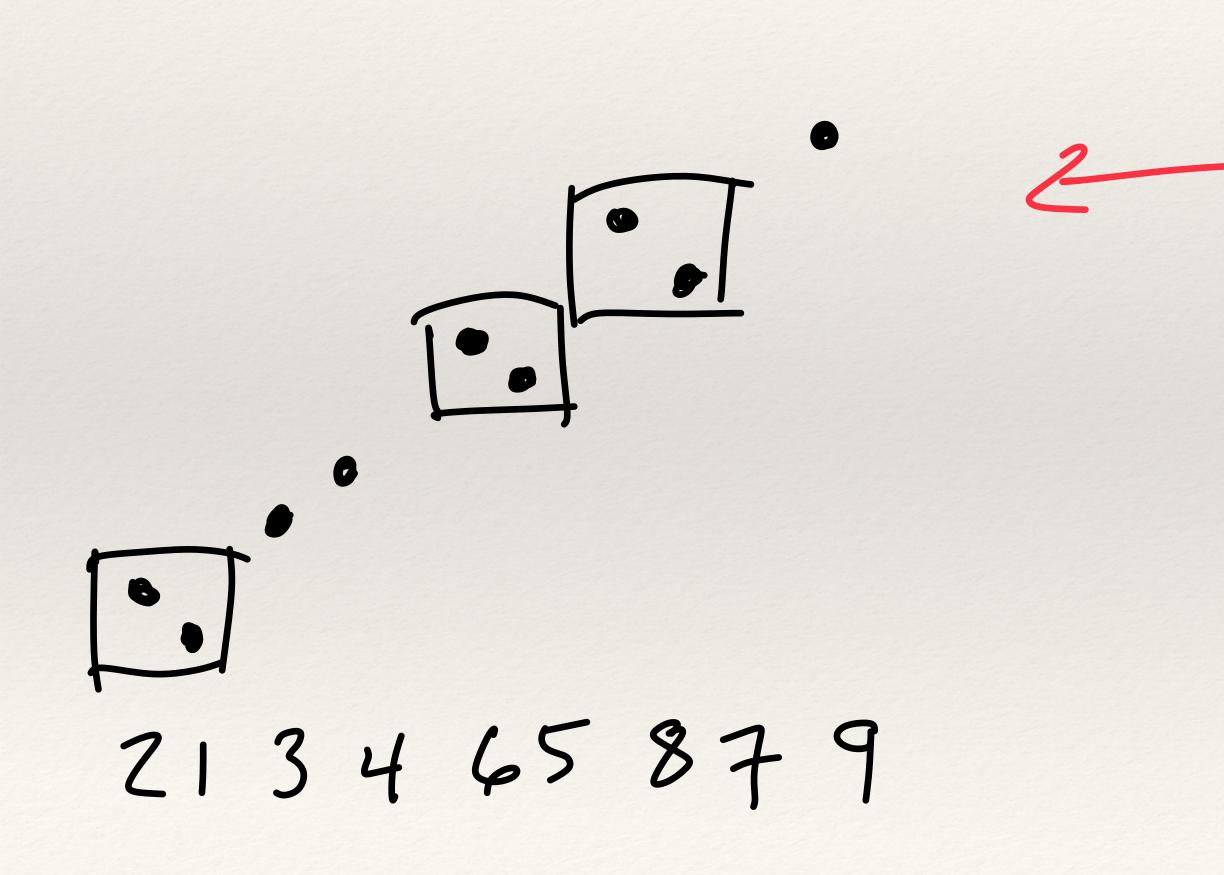


Example: Av(231)





Example: Av(231, 312, 321)



Example: Av(231, 312, 321)

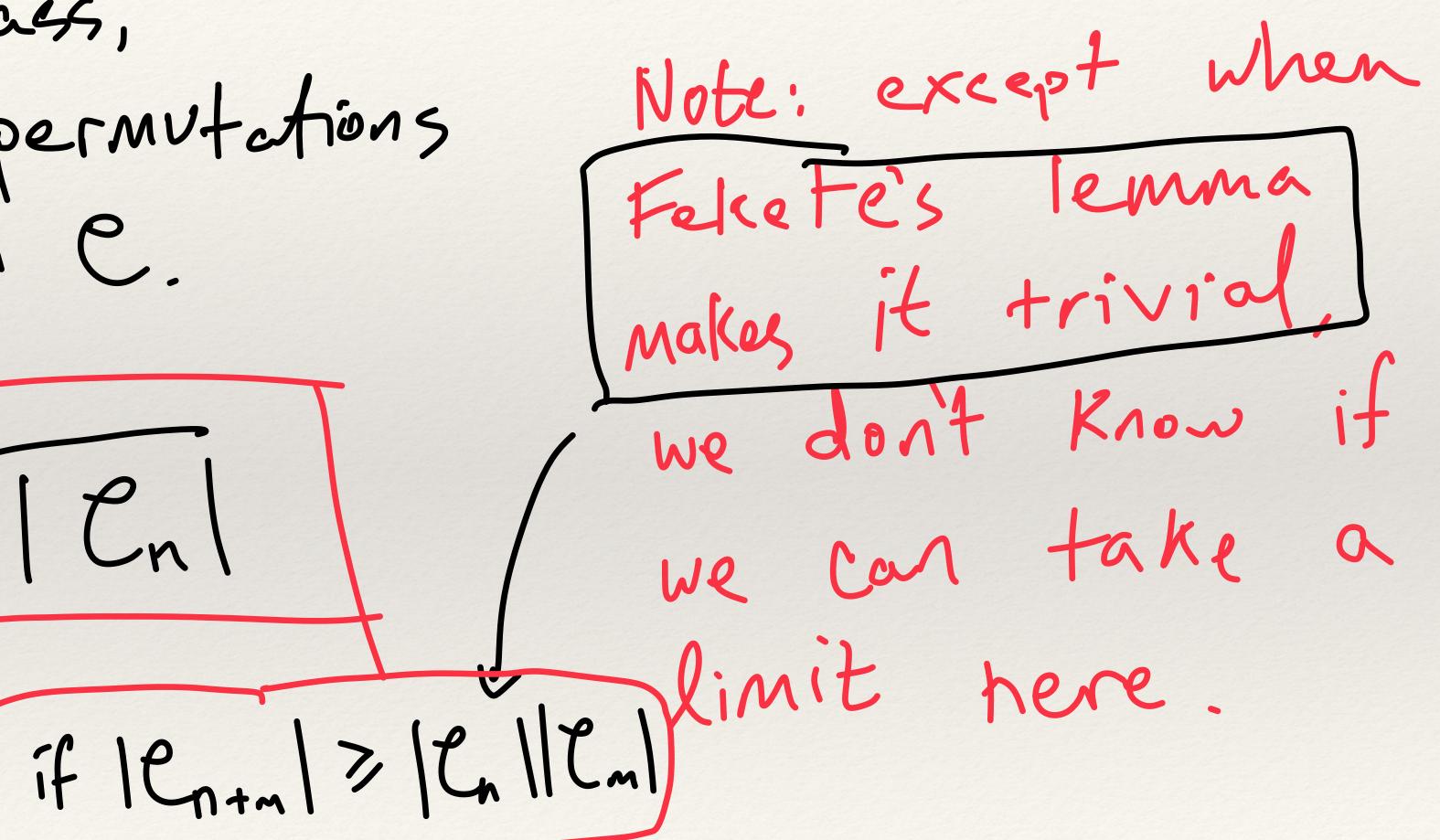
Fibonacci #5 ~ 1.62° Jænghr

Let C be a class, and C, be the permutations of length n in C. $gr(\mathcal{C}) = \lim_{n \to \infty} \sup_{n \to \infty} \inf_{n \to \infty} \inf_{n \to \infty} \mathcal{C}_n$

Let C be a class, and C_n be the permutations of length n in C. $gr(c) = \lim_{n \to \infty} \frac{1}{n} Cn$

Note: except when Fekete's lemma makes it trivial, we don't Know if we can take a limit pere.

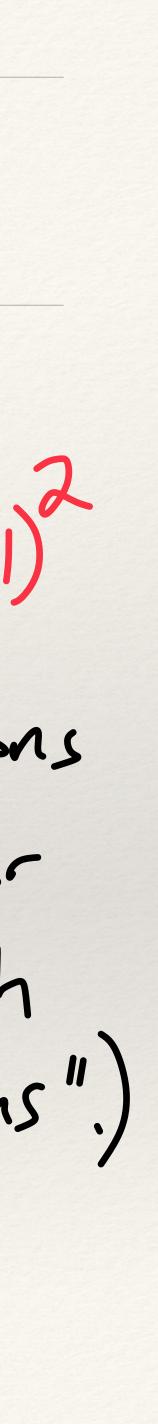
Let C be a class, and Cn be the permutations of length n in C. $gr(\mathcal{C}) = \lim_{n \to \infty} \frac{n}{|\mathcal{C}_n|}$



Let C be a class, and C_n be the permutations of length n in C. $gr(\mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} \frac{\mathcal{C}_n}{\mathcal{C}_n}$

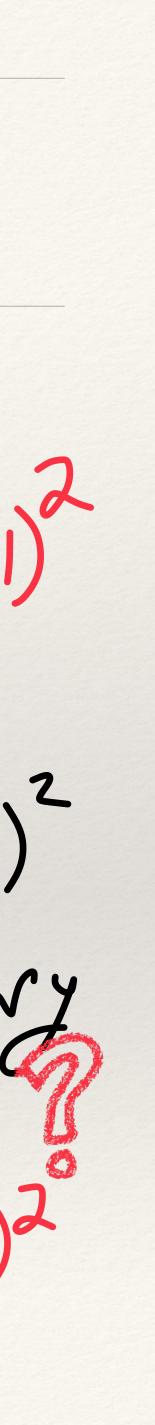
Examples: gr (layered) = 2 $g_{\mathcal{F}}(A_{\mathcal{V}}(231)) = 4$ • 95 (Av(231,312,321))~1.62

Let C be a class, and C be the permutations of length n in C. $gr(\mathcal{C}) = \lim_{n \to \infty} \sup_{n \to \infty} \lim_{n \to \infty} until \mathcal{C}_n$

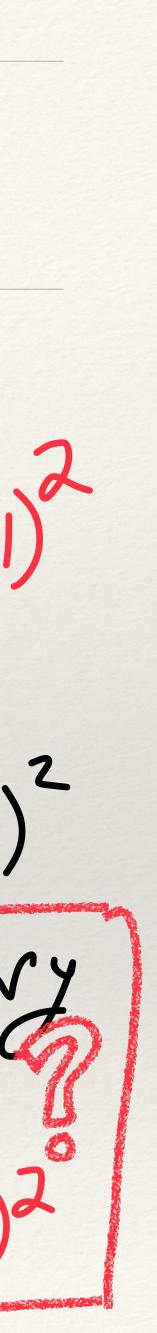


Let C be a class, and C, be the permutations of length n in C. $gr(\mathcal{C}) = \lim_{n \to \infty} \int |\mathcal{C}_n|$

Reger (1981): $gr(Av(k...2l)) = (k-l)^{2}$ Easy: $gr(Av(k...21)) \leq (k-1)^2$ Ts there an elementary proof of the reverse T $9r(Av(k-21)) \ge (k-1)^2$



Let C be a class, and C_n be the permutations of length n in C. Reger (1981): $gr(Av(K...21)) = (k-1)^{2}$ Easy: $gr(Av(K-21)) \leq (k-1)^2$ $gr(\mathcal{C}) = \lim_{n \to \infty} \frac{n}{|\mathcal{C}_n|}$ Is there an elementary proof of the reverse ?? $9r(Av(k-21)) > (k-1)^2$



* What does the set of all growth rates of all classes look like? Kaiser and Klazar (2003): it begins 0, 1, 21.62, ---, 2 1.62 0

The set of all growth rates

all come from g.f. denominators of 1-x-x²...-x^k, accumulate at 2 11111

* What does the set of all growth rates of all classes look like? V(2011): extend list to \$2.20, where there are uncountably Many Classes.

0

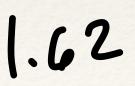
only countably many clusses here

1.62

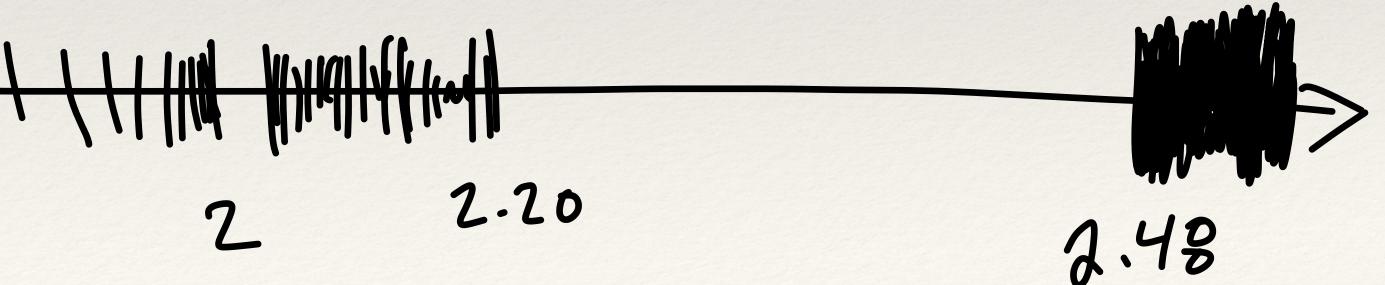
- 2.20

* What does the set of all growth rates of all classes look like? Albert and Linton (2009), V(2010): above =2.48, every real # is the growth rate of some class.

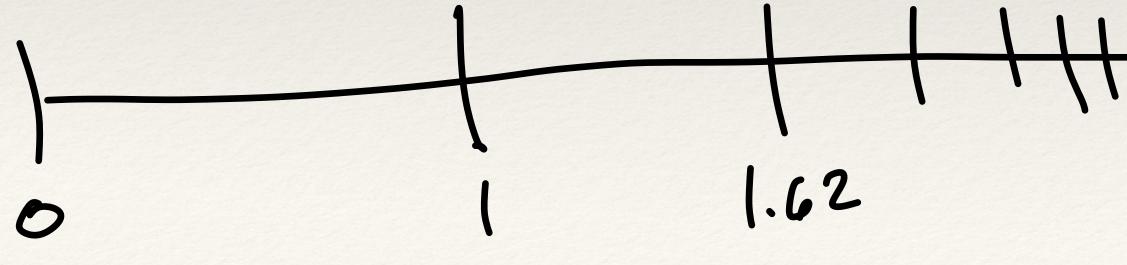
0



The set of all growth rates



* What does the set of all growth rates of all classes look like? Bevan (2018): Make that ~ 2.36.



2.20 2 2.36 2.48

* What does the set of all growth rates of all classes look like? to ~2.30, where There are uncountably menz growth rates. only countably many .62

V(2019) and Pantone and V(2020): extend list

* What does the set of all growth rates of all classes look like? to ~2.30, where There are uncountably menz growth rates. only countably many .62

V(2019) and Pantone and V(2020): extend list

• What about avoiding a single
•
$$gr(Av(231)) = gr(Av(321))$$

• $gr(Av(4321)) = 9 (Regev$
• $gr(Av(1342)) = 8 (Bonn)$
• $gr(Av(1342)) = 8 (Bonn)$
• $gr(Av(1324)) = 7 (probe)$

le = 7) = 4(1981)(1987)(1997)(1997)(1.6)

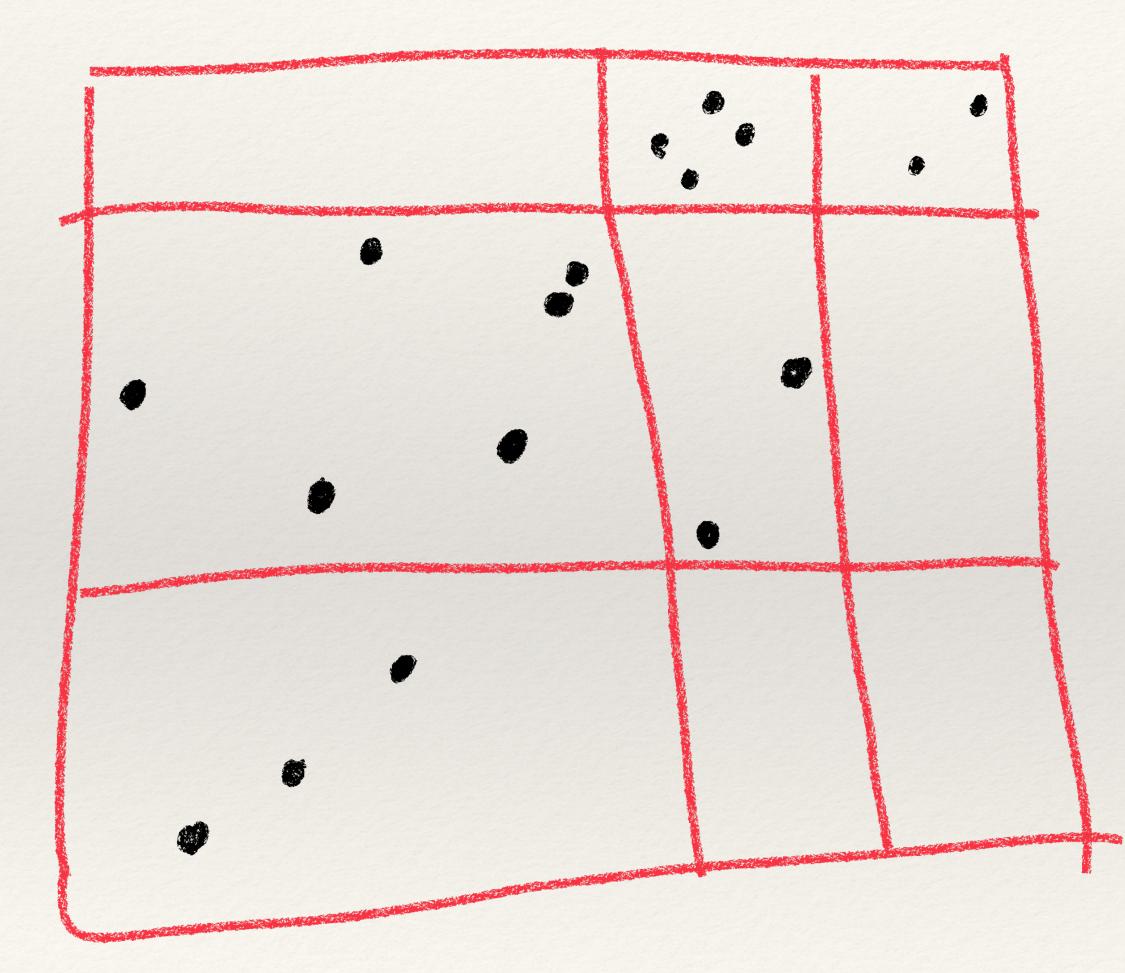
Grid classes

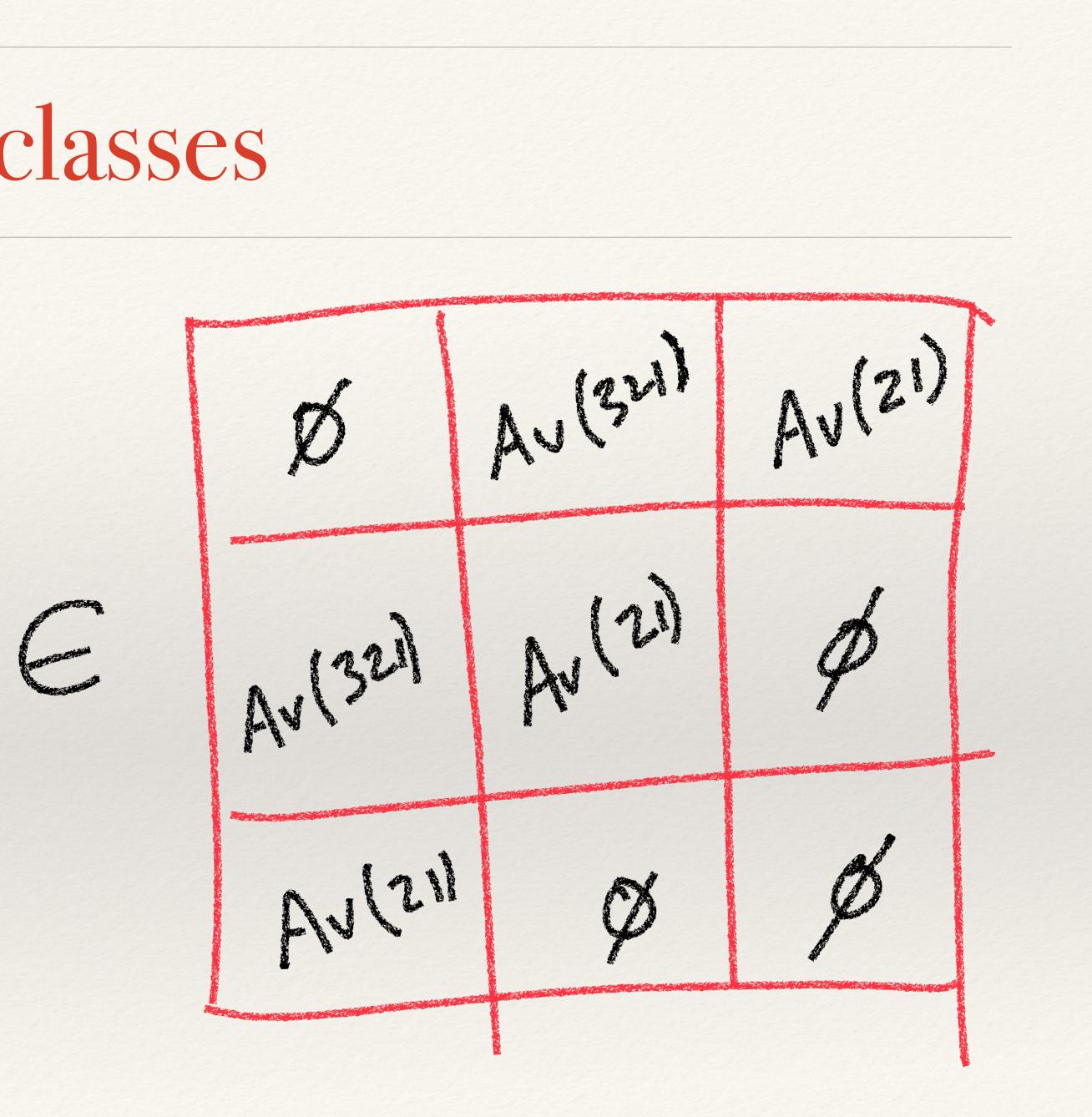
A (generalized) grid cl is defined by a note of remutation cla It contains those P that can be subdi in a compatible mann

ass

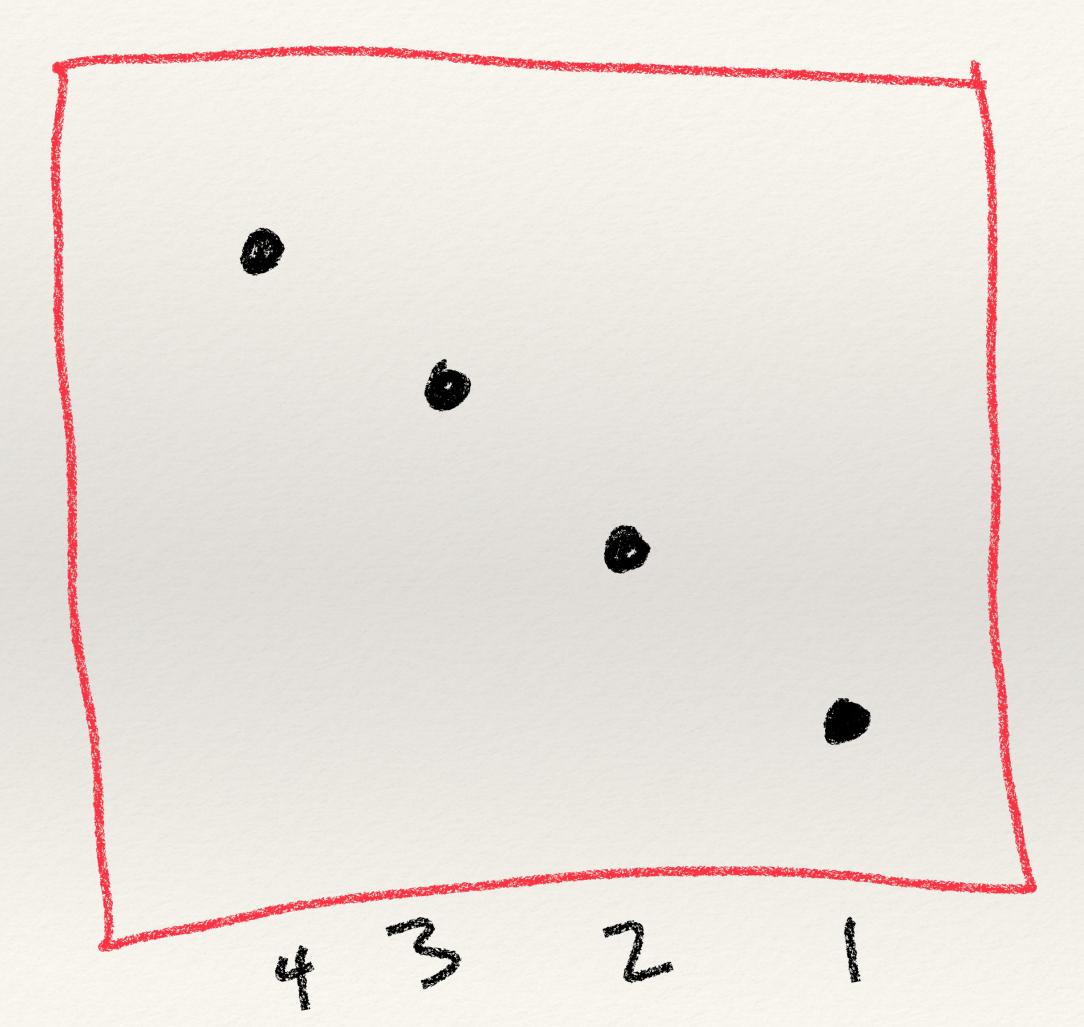
$$rix$$
 $Ø$ $Au(3u)$ $Au(21)$
 $rses.$
 $au(3u)$ $Au(21)$ $Ø$
 $erms$ $Au(3u)$ $Au(21)$ $Ø$
 $ivided$ $Au(21)$ $Ø$ $Ø$

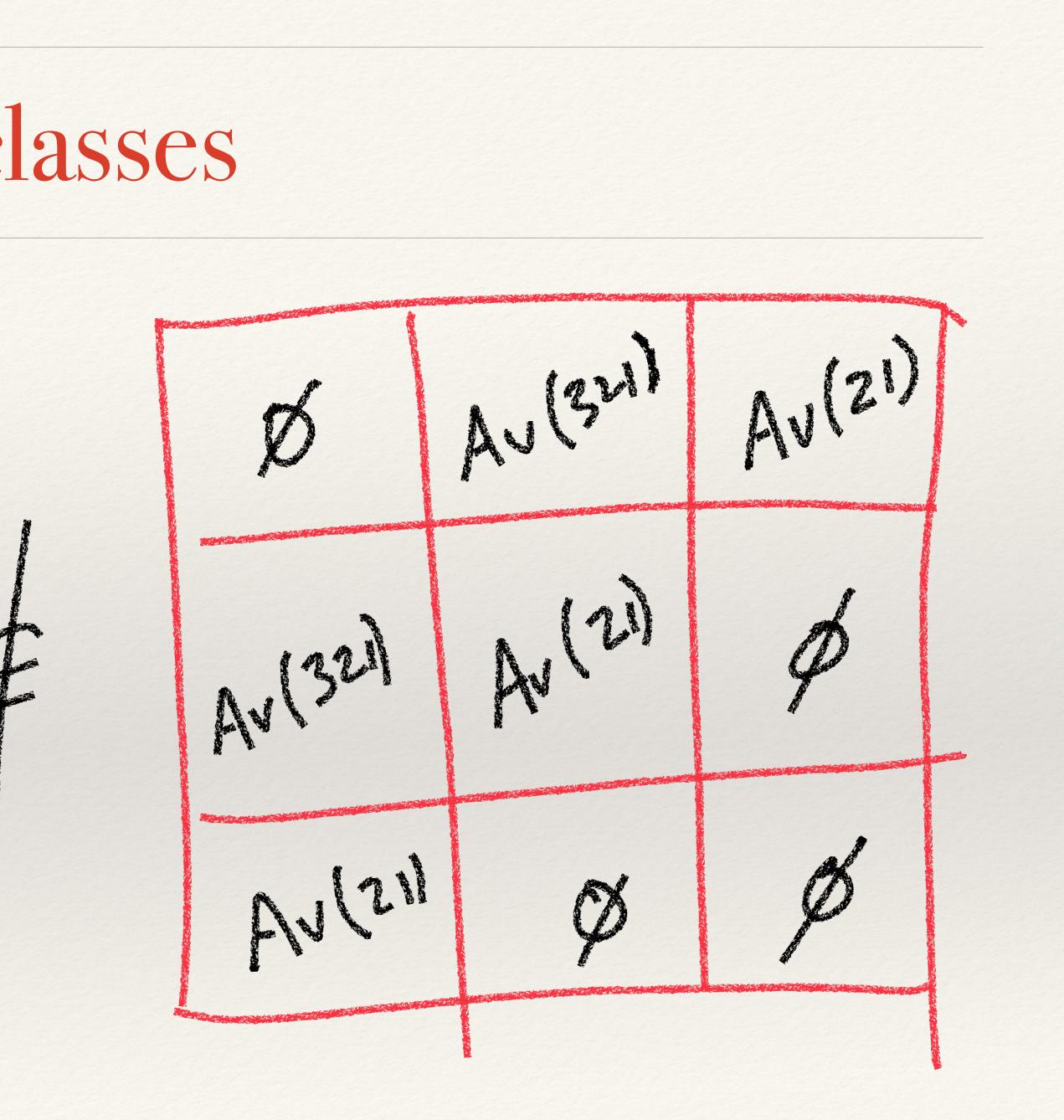
Grid classes





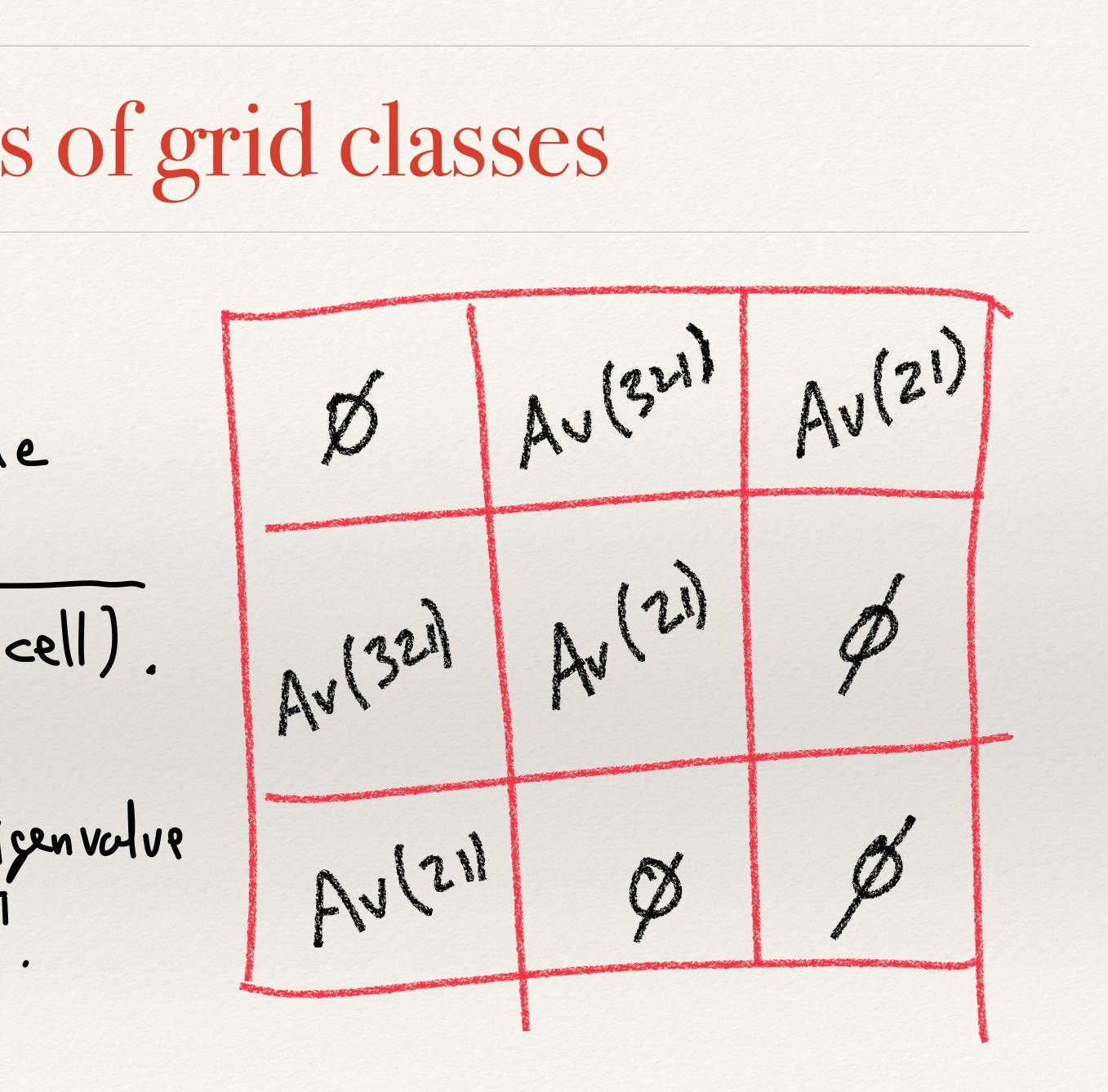
Grid classes





Growth rates of grid classes

Building on Bevan (2015): Albert and V (2019): Define a matrix I by $\Gamma(K, Q) = \sqrt{gr(class in that cell)}$. Then gr (grid class) = lagest eigenvolve 01

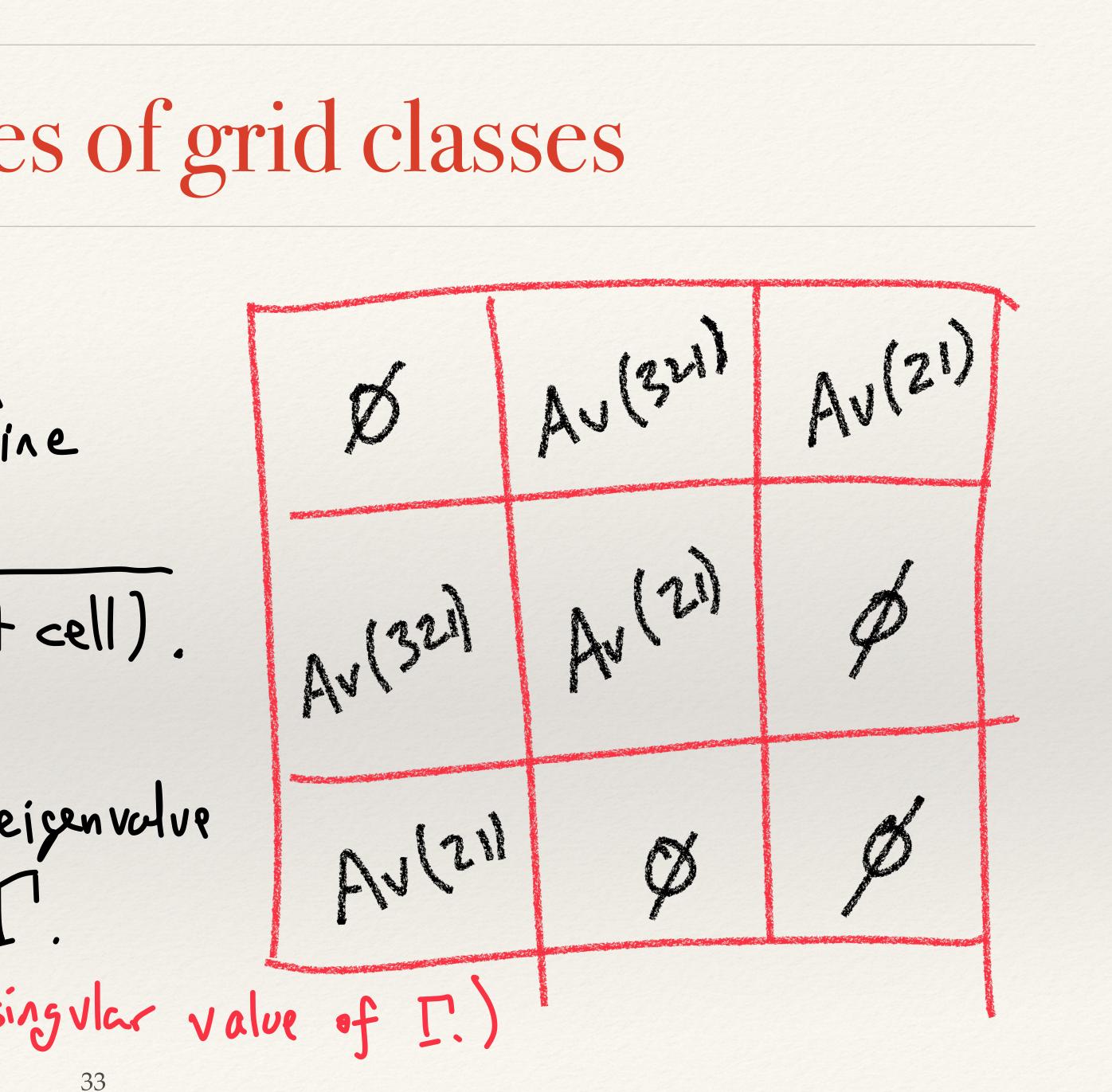


Growth rates of grid classes

Building on Bevan (2015):
Albert and V (2019): Defin
a matrix II by

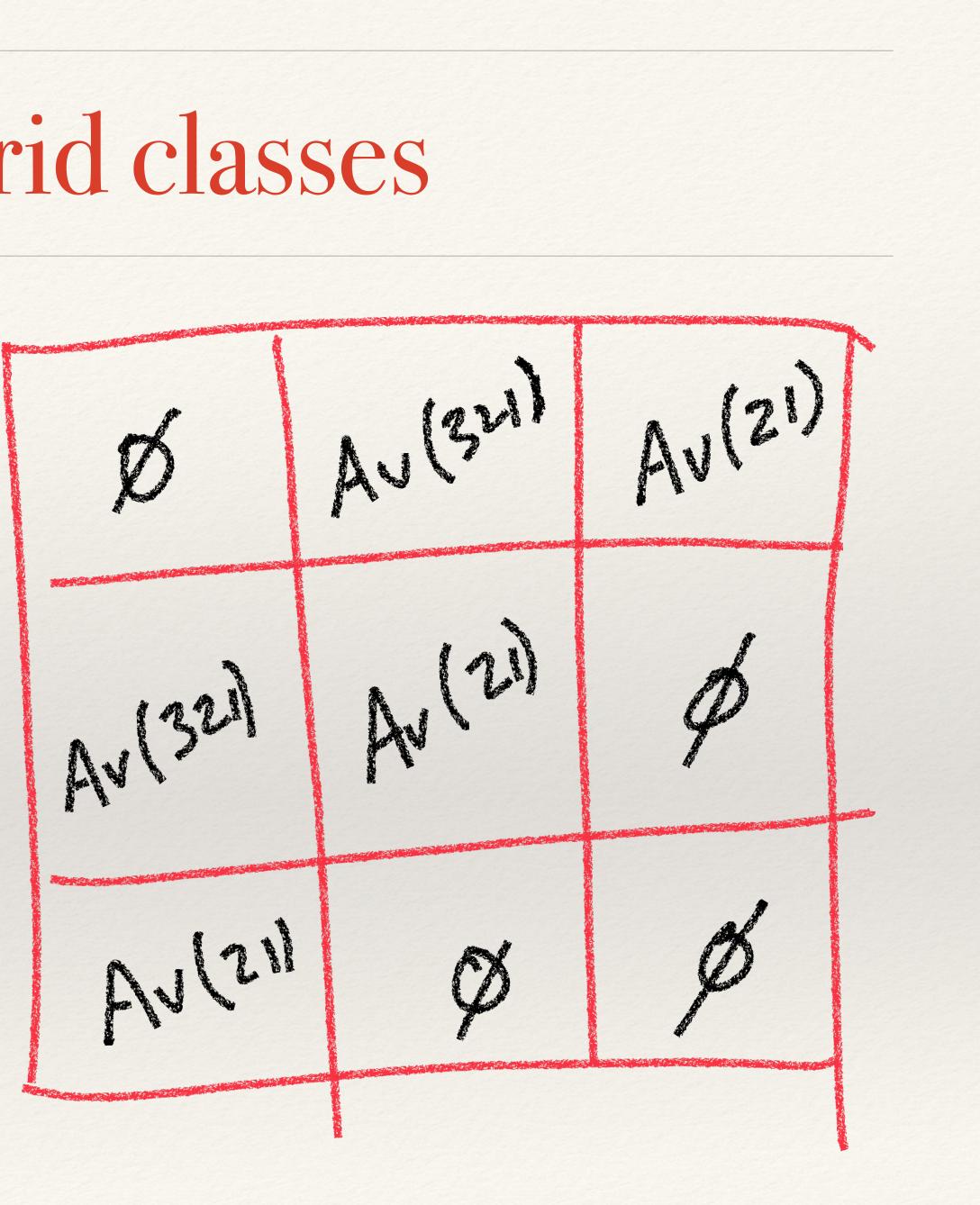
$$\Gamma(K,l) = \sqrt{gr(class in that})$$

Then
 $gr(grid class) = langest eigent
of IIt I
(Because square of largest sin$

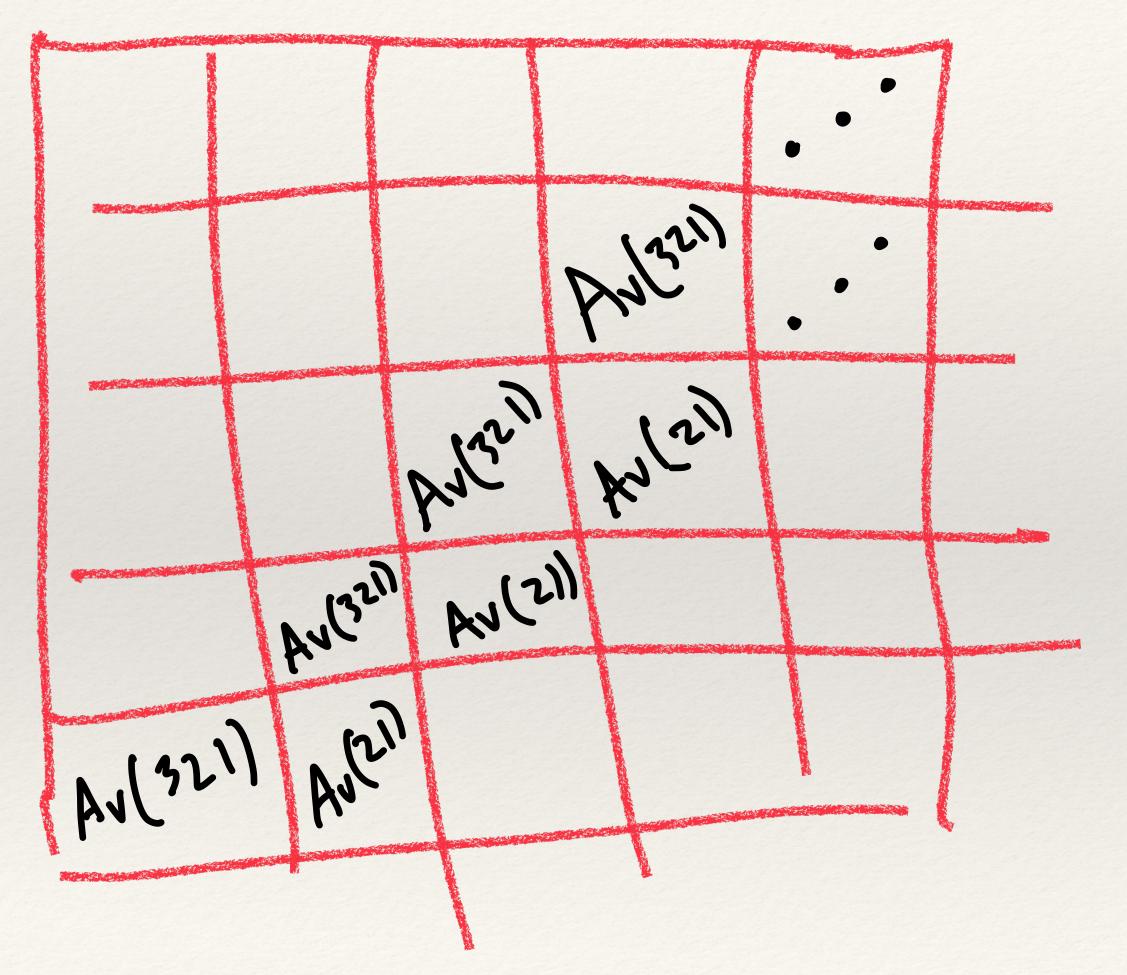


Growth rates of grid classes

In this cxample, $\Gamma = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$ = pt p 5 gr (grid) ~ 7.34.

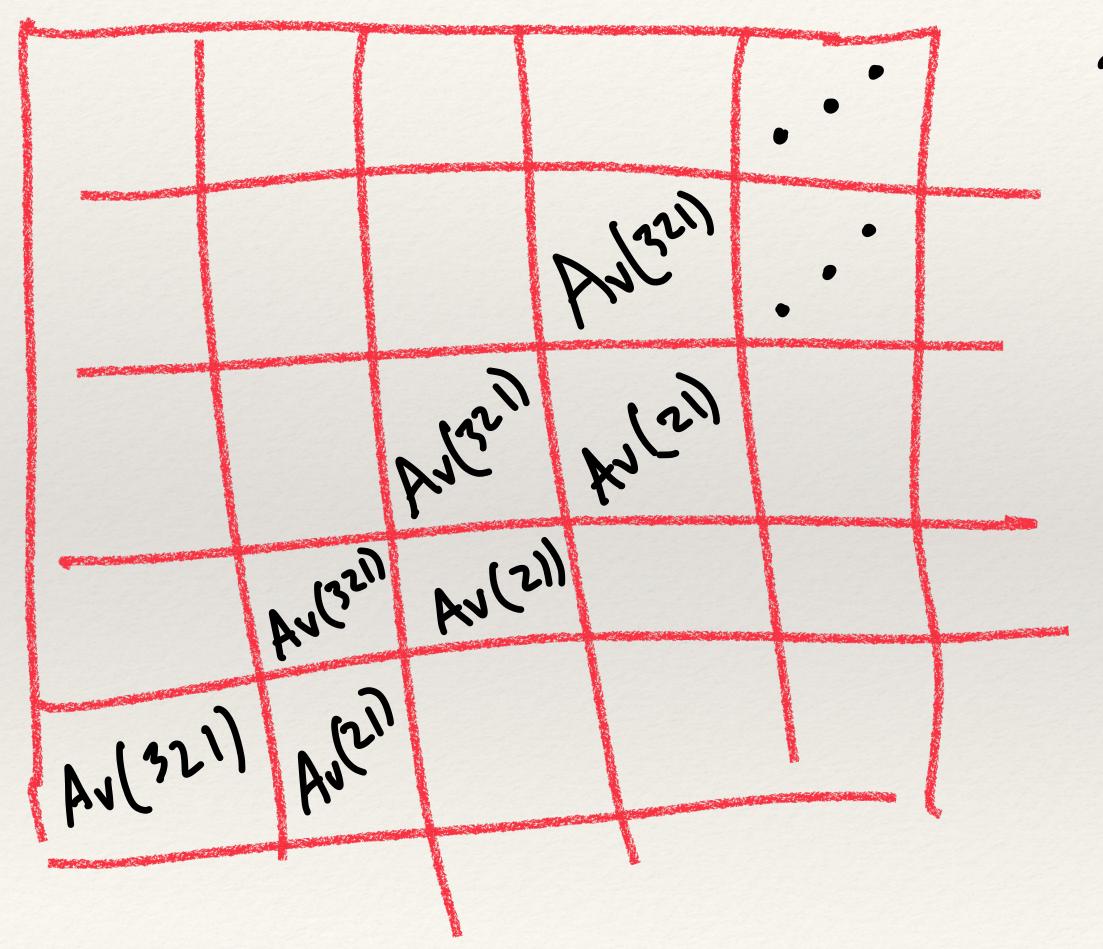


Avoiding a monotone pattern



rtr= Nou, there is a formula for the eigenvolves of a tri-diag Toeplitz... If we start with a txt grid... $5 + 4 \cos(\frac{1}{41})$ L.

Avoiding a monotone pattern

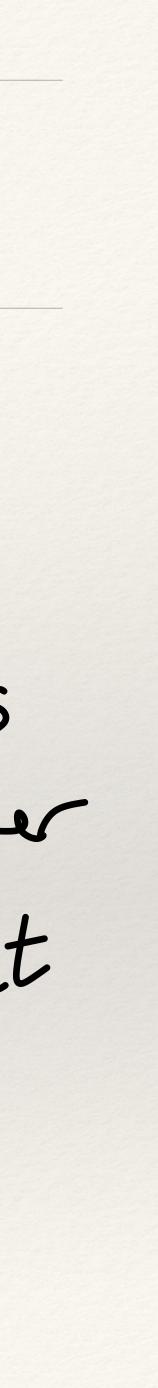


This generalizes in the obvious way to prove $gr(Av(K-21)) > (K-1)^{2}$

Albert, Pantone, and V (2019) generalized this construction to obtain results about merges.

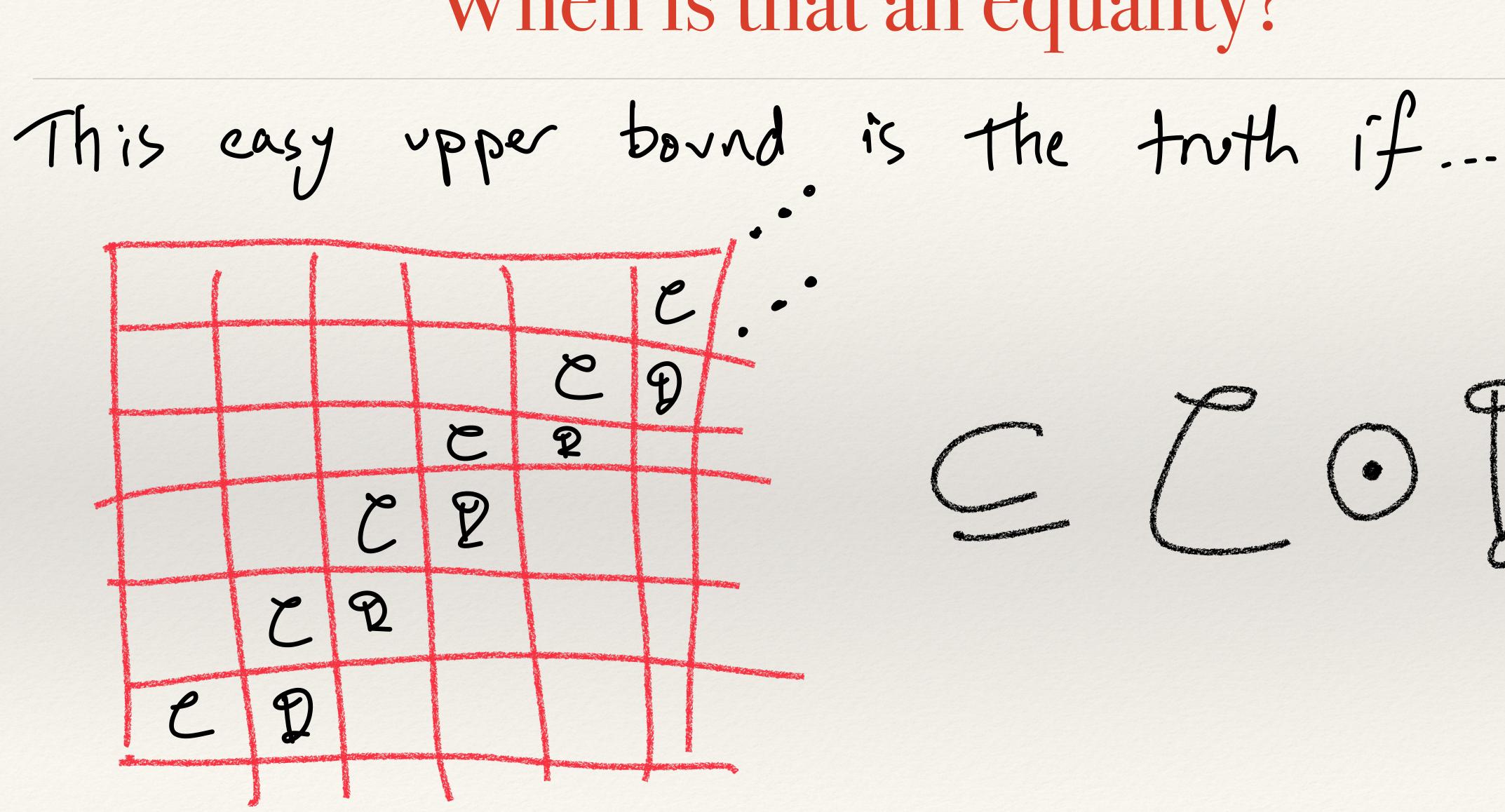
Given two classes C and D, their merge is all perms whose entries can be partitioned into a member of C and a member of D (sometimes thought of as a red-blue coloring of these entries).

Merges of classes



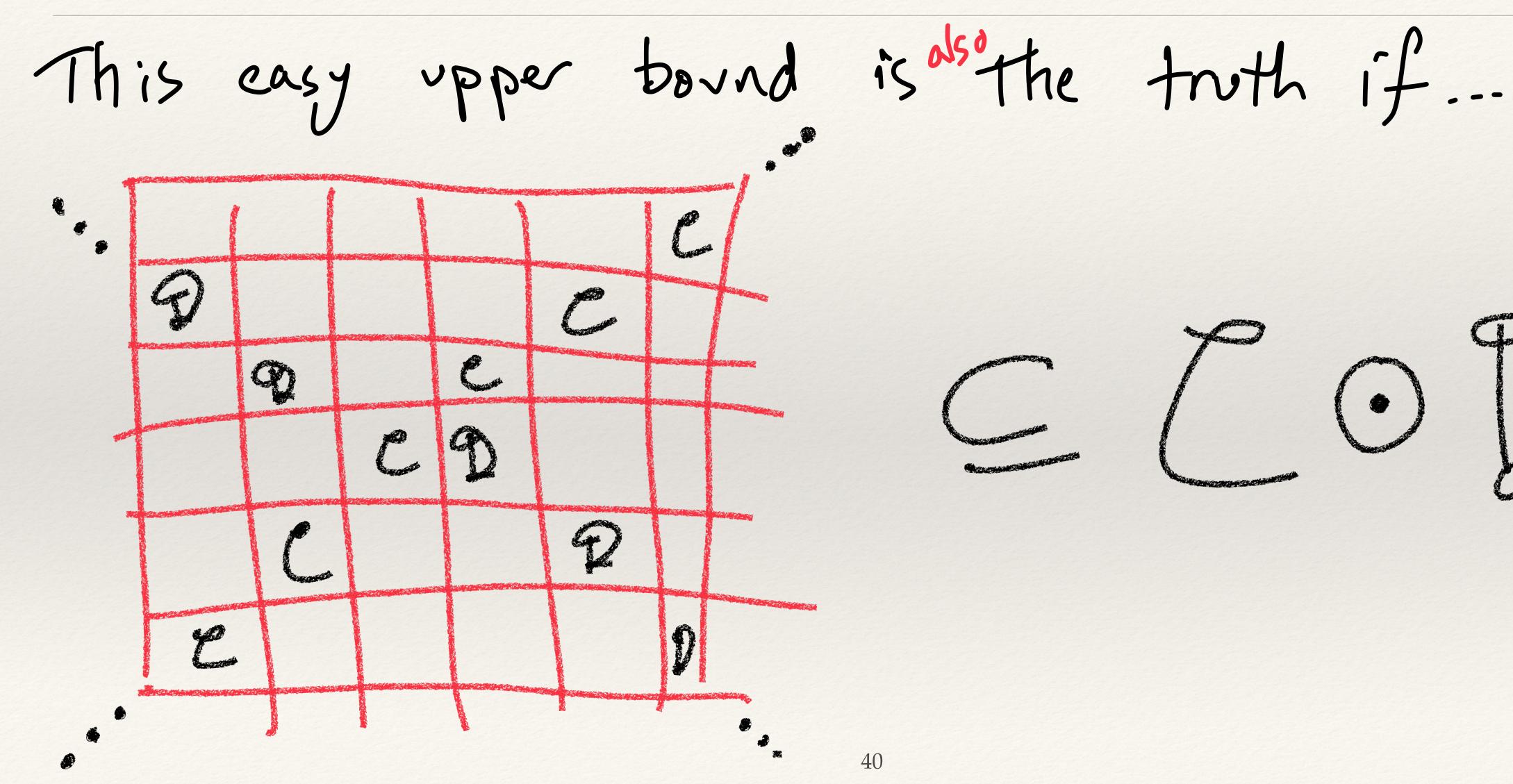
Merges of classes $|(\mathcal{C} \circ \mathcal{D})_n| \leq \hat{\sum} (n)^2 |\mathcal{C}_i| |\mathcal{D}_{n-i}|, s_0$ $gr(e \circ \mathfrak{D}) \leq (Vgr(e) + Vgr(\mathfrak{D}))^{2}$ $A_{V}(4321) = A_{V}(321) \circ A_{V}(21).$

Let COD = merge of C and D. Easy:



When is that an equality?

When is that an equality?



Some corollaries

$B_{\delta n \alpha} (2005):$ $gr(A_{v}(54213)) =$

$$= \left(\sqrt{gr(Av(21))} + \sqrt{gr(Av(421))} \right)$$

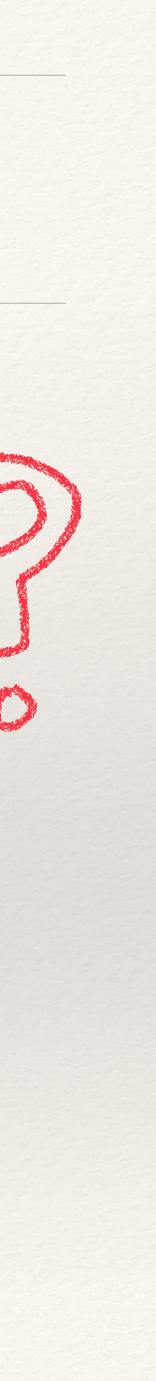
= $\left(\sqrt{gr(Av(21))} + \sqrt{gr(Av(134))} \right)$
= $\left(1 + \sqrt{8} \right)^{2}$
= $9 + 4\sqrt{2}$.

Some corollaries

 $\frac{Bsna}{gr(Av(\square))} = \left(gr(Av(\square)) + gr(Av(\square))\right)^{a},$

One more question

Is it always true that $gr(C \circ D) = (\sqrt{gr(C)} + \sqrt{gr(D)})^2 P$



One more question

Is it always true that

