Restricted permutations, Conjecture of Lin and Kim, and work of Andrews and Chern

Toufik Mansour University of Haifa, Israel

$$
\text { July 26, } 2021
$$

Combinatorics and Algebras from A to Z in
honor of Amitai Regev and Doron Zeilberger

Table of contents

Avoiding a set of patterns in \mathcal{S}_{4} (with Callan, Schork, Shattuck)

Conjecture of Lin and Kim (with Shattuck)

Work of Andrews and Chern (with Shattuck)

Avoiding a set of patterns in \mathcal{S}_{4} (with Callan, Schork, Shattuck)

- Let \mathcal{S}_{n} be the symmetric group of all permutations of $[n] \equiv$ $\{1, \ldots, n\}$.
- Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathcal{S}_{n}$ and $\tau=\tau_{1} \tau_{2} \cdots \tau_{k} \in \mathcal{S}_{k}$ be two permutations.
- We say that π contains τ if there exists a subsequence $1 \leq i_{1}<$ $i_{2}<\cdots<i_{k} \leq n$ such that $\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{k}}$ is order-isomorphic to τ, that is, $\pi_{i_{a}}<\pi_{i_{b}}$ if and only if $\tau_{a}<\tau_{b}$; in such a context τ is usually called a pattern.
- We say that π avoids τ, or is τ-avoiding, if such a subsequence does not exist.
- The set of all τ-avoiding permutations in \mathcal{S}_{n} is denoted by $\mathcal{S}_{n}(\tau)$.
- For an arbitrary finite collection of patterns T, we define $\mathcal{S}_{n}(T)=$ $\cap_{\tau \in T} \mathcal{S}_{n}(\tau)$.
- Two sets of patterns T and T^{\prime} belong to the same symmetry class if and only if T^{\prime} can be obtained by the action of the dihedral group of order eight - generated by the operations reverse, complement, and inverse - on T.
- The sets of patterns T and T^{\prime} belong to the same Wilf class if and only if $\left|\mathcal{S}_{n}(T)\right|=\left|\mathcal{S}_{n}\left(T^{\prime}\right)\right|$ for all $n \geq 0$.
- We denote the number of Wilf classes of subsets of k patterns in \mathcal{S}_{4} by w_{k}, respectively.
- It is well known that $w_{1}=3$ and $w_{2}=38$.

Theorem

We have $w_{3}=242, w_{4}=1100, w_{5}=3441, w_{6}=8438$, $w_{7}=15392, w_{8}=19002, w_{9}=16293, w_{10}=10624$, $w_{11}=5857, w_{12}=3044, w_{13}=1546, w_{14}=786$, $w_{15}=393, w_{16}=198, w_{17}=105, w_{18}=55, w_{19}=28$, $w_{20}=14, w_{21}=8, w_{22}=4, w_{23}=2$, and $w_{24}=1$.

- To determine w_{k} for $k \in\{3,4, \ldots, 24\}$. Since the number of subsets of \mathcal{S}_{4} containing at least 4 patterns is given by $\sum_{k=3}^{24}\binom{24}{k}=$ 16776915, it seems to be impossible to reach by using the action of the dihedral group on permutations and by constructing explicit bijections between sets of permutations.
- The way out is to combine several software programs to do the work for us. Briefly, the line of argument will be as follows:

1. Fix $k \in\{3,4, \ldots, 24\}$. In the following steps, only $T \subseteq \mathcal{S}_{4}$ with $|T|=k$ are considered.
2. Use Kuszmaul's algorithm to find the symmetry classes of the subsets T, denoted by $\mathcal{S C}_{k}$. Determine also for each symmetry class $T \in \mathcal{S C}_{k}$ the sequence $\left(\left|\mathcal{S}_{n}(T)\right|\right)_{n=1, \ldots, 16}$.
3. Use the Maple package INSENC (regular insertion encoding) and try to determine the generating functions of the sequences $\left|\mathcal{S}_{n}(T)\right|_{n \geq 0}$ for all $T \in \mathcal{S C}_{k}$ on the basis of the starting sequences determined in (2).
4. Determine by Cell Decompositions the generating functions for those $T \in \mathcal{S C}_{k}$ where INSENC failed.
5. Count the number of different generating functions obtained in last steps. This number equals w_{k}.

- Here let us give one example for cell decomposition. Fix

$$
T=\{1324,1432,2143,2413,2431,3142,4132\}, \tau=132
$$

- We define the cell diagram of $\tau=132$ to be the graph of 132 on a $(3+1) \times(3+1)$ board. A cell is said to be shadow of a dot in the cell diagram of τ if it is either directly southwest or northwest of the dot. We call the cell diagram of τ with its shadow cells a shadow cell diagram:

- Note that we can represent a permutation $\pi \in \mathcal{S}_{n}$ which contains $\tau \in \mathcal{S}_{3}$ either as dots on an $(n+1) \times(n+1)$ board, or, alternatively, on the shadow cell diagram - a $(3+1) \times(3+1)$ board - where the dots represent the leftmost occurrence of τ and the cells contain (possibly empty) subsequences π^{\prime} of π.
- In fact, the shadow cell diagram of τ represents the graph of all permutations π that contain τ in positions $i_{1} i_{2} i_{3}$ such that (1) i_{1} is minimal, (2) $i_{1}+i_{2}$ is minimal, and (3) $i_{1}+i_{2}+i_{3}$ is minimal. This minimality produces additional conditions on the empty cells. For instance, the 14 -cell on the left of the 13 -cell.
- For the class of permutations π that contain τ and avoid T, we consider each cell in the shadow cell diagram of τ and determine the necessary restrictions which follow for the structure of π.
(1) For each empty cell of the shadow cell diagram, we check whether adding a dot would lead to a contradiction concerning the avoidance of the patterns T. If it is possible to add a dot without contradiction, the cell is left empty, otherwise it is blackened.
(2) For each of the empty cells resulting from (1), we check whether the cell form a decreasing or increasing subsequence.
(3) For each of the empty cells resulting from (2), we check whether minimality gives a restriction (decreasing/increasing) for the possible subsequences in the cell.

Example

Let $T=\{1324,1432,2143,2413,2431,3142,4132\}$ and let π that contains 132 and avoids T. Then the cell decomposition diagram of permutations π can be described as

Hence the generating function for the number permutations in $S_{n}(T)$ is given by

$$
C(x)+\frac{x^{3}}{(1-x)^{3}} .
$$

Conjecture of Lin and Kim (with Shattuck)

An inversion within a permutation $\sigma=\sigma_{1} \cdots \sigma_{n} \in \mathcal{S}_{n}$ is an ordered pair (a, b) such that $1 \leq a<b \leq n$ and $\sigma_{a}>\sigma_{b}$.

The inversion sequence of σ is given by $a_{1} \cdots a_{n}$, where a_{i} records the number of entries of σ to the right of i and less than i for each $i \in[n]$ (see Corteel, Martinez, Savage, and Weselcouch; and Mansour and Shattuck).

The (large) Schröder number S_{n} is defined recursively by

$$
n S_{n}=3(2 n-3) S_{n-1}-(n-3) S_{n-2}, \quad n \geq 3
$$

with $S_{1}=1$ and $S_{2}=2$, and arises as the enumerator of several avoidance classes of permutations corresponding to a pair of patterns of length four (see works of Gire; Kremer and West). In particular, one has the S_{n} enumerates $\mathcal{S}_{n}(\sigma, \tau)$ for the following ten inequivalent pairs (σ, τ) :

$(1234,2134)$	$(1324,2314)$	$(1342,2341)$	$(3124,3214)$	$(3142,3214)$
$(3412,3421)$	$(1324,2134)$	$(3124,2314)$	$(2134,3124)$	$(2413,3142)$.

This answered in the affirmative a conjecture originally posed by Stanley. Moreover, outside of symmetry, there are no other such pairs (σ, τ) for which $\left|\mathcal{S}_{n}(\sigma, \tau)\right|=S_{n}$.

Lin and Kim introduced a new triangle $S_{n, k}$ for Schröder numbers in their study of inversion sequences, where

$$
S_{n, k}=S_{n, k-1}+2 S_{n-1, k}-S_{n-1, k-1}, \quad 1 \leq k \leq n-2,
$$

with $S_{n, n}=S_{n, n-1}=S_{n, n-2}$ for $n \geq 3$ and $S_{1,1}=S_{2,1}=S_{2,2}=1$.
Lin and Kim showed that $S_{n, k}$ enumerates the inversion sequences $\pi_{1} \cdots \pi_{n} \in\left\{I_{n}(021) \mid \pi_{n}=k \bmod n\right\}$. Then they state the following conjecture which provides a connection between inversion sequences and pattern avoidance in permutations.

Conjecture

Let (ν, μ) be a pair of patterns of length four. Then

$$
S_{n, k}=\left|\left\{\sigma_{1} \cdots \sigma_{n} \in \mathcal{S}_{n}(\nu, \mu) \mid \sigma_{1}=k\right\}\right|
$$

for all $1 \leq k \leq n$ if and only if (ν, μ) is one of the following nine pairs:

$$
\begin{aligned}
& (4321,3421),(3241,2341),(2431,2341),(4231,3241),(4231,2431), \\
& (4231,3421),(2431,3241),(3421,2431),(3421,3241) .
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& \sum_{n \geq 1}\left(\sum_{k=1}^{n} S_{n, k} y^{k}\right) x^{n} \\
& =\frac{x y(2-3 x-3 y+3 x y)+x y(x+y-x y)\left(x y+\sqrt{1-6 x y+x^{2} y^{2}}\right)}{2(1-2 x-y+x y)} .
\end{aligned}
$$

With help of recurrence relations, generating functions, and computer programming we proved this conjecture. One of the harder cases is the case $(1243,1423)$.

Here, we enumerate the members of $\mathcal{S}_{n}(1243,1423)$ according to the joint distribution of the first and second letter statistics. So let

$$
a_{n}(i, j)=\left\{\pi \in \mathcal{S}_{n}(1243,1423) \mid \pi_{1}=i, \pi_{2}=j\right\} .
$$

Lemma: We have

$$
\begin{aligned}
a_{n}(i, i+1)= & a_{n-1}(i, i+1) \\
& +\sum_{a=1}^{i-1} \sum_{c=0}^{i-a-1} \sum_{b=a+1}^{i-c}\binom{i-a-1}{c} a_{n-c-2}(a, b), \quad 1 \leq i \leq n-2, \\
a_{n}(i, i+2)= & a_{n-1}(i, i+1)+a_{n-1}(i, i+2) \\
& +\sum_{a=1}^{i-1} \sum_{c=0}^{i-a-1} \sum_{b=a+1}^{i-c+1}\binom{i-a-1}{c} a_{n-c-2}(a, b), \quad 1 \leq i \leq n-3,
\end{aligned}
$$

with $a_{n}(n-1, n)=a_{n-2}, a_{n}(n-2, n)=a_{n-2}$, and

$$
\begin{aligned}
a_{n}(i, j)= & a_{n-1}(i, j-1)+\sum_{a=1}^{i-1} \sum_{c=0}^{i-a-1}\binom{i-a-1}{c} a_{n-c-2}(a, j-c-2) \\
& +\left(1-\delta_{j, n}\right) \cdot\left(a_{n-1}(i, j)+\sum_{a=1}^{i-1} \sum_{c=0}^{i-a-1}\binom{i-a-1}{c} a_{n-c-2}(a, j-c-1)\right)
\end{aligned}
$$

We will make use of the following generating functions:

$$
\begin{aligned}
A(x, v, w) & =\sum_{n \geq 2} \sum_{a=1}^{n} \sum_{b=1}^{n} a_{n}(a, b) v^{a} w^{b} x^{n}, \\
A^{+}(x, v, w) & =\sum_{n \geq 2} \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} a_{n}(a, b) v^{a} w^{b} x^{n}, \\
A^{-}(x, v, w) & =\sum_{n \geq 2} \sum_{a=2}^{n} \sum_{b=1}^{a-1} a_{n}(a, b) v^{a} w^{b} x^{n}, \\
C(x, v) & =\sum_{n \geq 2} \sum_{a=1}^{n-1} a_{n}(a, a+1) v^{a} x^{n}, \\
D(x, v) & =\sum_{n \geq 2} \sum_{a=1}^{n-2} a_{n}(a, a+2) v^{a} x^{n}, \\
B(x, v, w) & =\sum_{n \geq 4} \sum_{a=1}^{n-3} \sum_{b=a+3}^{n} a_{n}(a, b) v^{a} w^{b} x^{n} .
\end{aligned}
$$

Translating the recurrence relations in terms of generating functions yields

proposition We have

$$
\begin{aligned}
& A^{+}(x, v, w)=w C(x, v w)+w^{2} D(x, v w)+B(x, v, w) \\
& A^{-}(x, v, w)=v^{2} w x^{2}+\frac{v x}{1-v} A(x, v w, 1)-\frac{v^{2} x}{1-v} A(v x, w, 1), \\
& C(x, v w)=v w x^{2} A(v w x, 1,1)+v w x^{2}+v^{2} w^{2} x^{3}+x C(x, v w) \\
& +\frac{v w x^{2}}{v w x+v w-1} A^{+}\left(\frac{v w x}{1-v w x}, 1-v w x, 1\right)-\frac{(1-v w x) x^{2}}{v w x+v w-1} A^{+}\left(x, 1-v w x, \frac{v w}{1-v w x}\right), \\
& D(x, v w)=x^{2} A(v w x, 1,1)-v^{2} w^{2} x^{4}+x\left(C(x, v w)-v w x^{2} A(v w x, 1,1)\right) \\
& +x D(x, v w)+\frac{x^{2}(1-v w x)}{v w x+v w-1} A^{+}\left(\frac{v w x}{1-v w x}, 1-v w x, 1\right) \\
& -\frac{x^{2}(1-v w x)^{2}}{v w(v w x+v w-1)} A^{+}\left(x, 1-v w x, \frac{v w}{1-v w x}\right)-x^{2} C(x, v w), \\
& B(x, v, w)=w x B(x, v, w)+w^{3} x D(x, v w) \\
& +\frac{w^{2} x^{2}(1-v w x)}{v w x+v-1} A^{+}\left(x, 1-v w x, \frac{v w}{1-v w x}\right)-\frac{v w^{2} x^{2}}{v w x+v-1} A^{+}(x, v, w)+x B(x, v, w) \\
& +\frac{w x^{2}(1-v w x)^{2}}{v(v w x+v-1)} B\left(x, 1-v w x, \frac{v w}{1-v w x}\right)-\frac{v w x^{2}}{v w x+v-1} B(x, v, w) .
\end{aligned}
$$

By this proposition, one may express $B(x, v, w)$ in terms the generating functions A, C, D and C, D in terms of A. Thus

$$
\begin{aligned}
& \frac{v x-w x-v-x+1}{v w x+v-1} A^{+}(x, v, w) \\
& =\frac{w^{2} x^{2}(v w x-v-1) A^{+}\left(\frac{v w x}{1-v w x}, 1-v w x, 1\right)}{v w x+v w-1} \\
& +\frac{v w x^{2}\left(w^{2}-1\right)(v w x-1) A^{+}\left(x, 1-v w x, \frac{v w}{1-v w x}\right)}{(v w x+v-1)(v w x+v w-1)} \\
& +w^{2} x^{2}(v w x-v-1) A(v w x, 1,1)+x^{2} v w^{2}\left(v w^{2} x^{2}-v w x-1\right) .
\end{aligned}
$$

By lot of luck (Computer programming), we obtain

$$
\begin{aligned}
& A^{+}(x, v, w) \\
& =\frac{\left(w^{2}-1\right)(1-x) v w x^{2} \sqrt{1-6 v w x+v^{2} w^{2} x^{2}} \sqrt{(1-x)(1-x-4 v w x)}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} \\
& +\frac{(1-x-2 v w x) v w(1-x) x^{2} \sqrt{1-6 v w x+v^{2} w^{2} x^{2}}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} \\
& +\frac{\left(1-2 v^{2} x^{2}+4 v^{2} x-2 v^{2}-x^{2}-2 x-2 v w x(1-x)\right) v w^{3} x^{2} \sqrt{1-6 v w x+v^{2} w^{2} x^{2}}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} \\
& +\frac{\left(1-w^{2}\right)\left(v w x^{2}-v w x-3 x+1\right) v w x^{2} \sqrt{(1-x)(1-x-4 v w x)}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} \\
& +\frac{\left(3\left(w^{2}-1\right) x^{2}+4(1-2 w) x-w^{2}+4 w-1\right) v w x^{2}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} \\
& -\frac{\left(\left(w^{2}-1\right) x^{3}+8\left(w^{2}+1\right) x^{2}-\left(7 w^{2}+4 w+11\right) x+4 w+4\right) v^{2} w^{2} x^{2}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} \\
& -\frac{2\left((1-x)\left(w^{2} x^{2}+x^{2}+3 x-3\right)+v w x(1-x)^{2}\right) v^{3} w^{3} x^{2}}{4(v w x-v w-2 x+1)(v x-w x-v-x+1)} .
\end{aligned}
$$

and

$$
\begin{aligned}
& A^{-}(x, v, w) \\
& =\frac{\left((1+v-2 v x) x+\left(v^{2} x-v^{2}+v x-1\right) w x-(1-x)(1-v x) v w^{2}\right) v^{2} w x^{2} \sqrt{1-6 v w x+v^{2} w{ }^{2} x}}{2(v w x-2 v x-w+1)(v w x-v w-2 x+1)} \\
& +\frac{\left(6 v x^{2}-3(v+1) x+2-\left(2 v^{2} x^{3}+2 v(v+1) x^{2}-\left(3 v^{2}+2 v+3\right) x+2 v+2\right) w\right) v^{2} w x^{2}}{2(v w x-2 v x-w+1)(v w x-v w-2 x+1)} \\
& +\frac{\left(v^{2} x^{3}-v^{2} x^{2}+v x^{3}+3 v x^{2}-3 v x-x^{2}-3 x+3-(1-x)(1-v x) v w x\right) v^{3} w^{3} x^{2}}{2(v w x-2 v x-w+1)(v w x-v w-2 x+1)} .
\end{aligned}
$$

So we can state the following result: The generating function for the joint distribution of the first and second letter statistics on $\mathcal{S}_{n}(1243,1423)$ for $n \geq 1$ is given by

$$
A^{+}(x, v, w)+A^{-}(x, v, w)
$$

Lin and Kim conjectured

Conjecture
Let (ν, μ) be a pair of patterns of length four. Then

$$
\sum_{\pi \in \mathcal{S}_{n}(\sigma, \tau)} q^{\operatorname{desc}(\pi)} v^{\text {first }(\pi)}=\sum_{e \in I_{n}(\geq,-,>)} q^{\operatorname{dist}(e)-1} v^{\text {last }(e)}
$$

for the following six pairs (ν, μ) :
$(1243,1324),(1243,1342),(1243,1423),(1324,1342),(1324,1423),(1342,1423)$.

As before with lot of tricks we proved this conjecture. In particular, we showed that the generating function over $n \geq 1$ of both sides of

$$
\sum_{\pi \in \mathcal{S}_{n}(\sigma, \tau)} q^{\operatorname{desc}(\pi)} v^{\operatorname{first}(\pi)}=\sum_{e \in I_{n}(\geq,-,>)} q^{\operatorname{dist}(e)-1} v^{\operatorname{last}(e)}
$$

is given by

$$
\begin{aligned}
& \frac{v x}{1-v q x}+\frac{x v(v q x-v-x) t(x v)}{2\left(v q^{2} x^{2}-v q x^{2}-q x+v x-v-x+1\right)(v q x-v x-1)} \\
& +\frac{\left(x+\left(q x^{2}+q x+3 x^{2}-2 x-1\right) v\right) v x}{2(v q x-v x-1)(v q x-1)\left(v q^{2} x^{2}-v q x^{2}-q x+v x-v-x+1\right)} \\
& -\frac{\left(2 q^{2} x^{2}+3 q^{2} x-q x^{2}-q x-3 q+2 x-1+(1-2 q)(q x-1) v q x\right) v^{3} x^{2}}{2(v q x-v x-1)(v q x-1)\left(v q^{2} x^{2}-v q x^{2}-q x+v x-v-x+1\right)}
\end{aligned}
$$

where $t(x)=\sqrt{(1-2 q)^{2} x^{2}-2 x(1+2 q)+1}$.

Work of Andrews and Chern: Further enumeration results concerning a recent equivalence of restricted inversion sequences (with Shattuck)

Lin conjectured the following equivalence involving the ascents statistic on the avoidance classes $I_{n}(\geq, \neq,>)$ and $I_{n}(>, \neq, \geq)$:

$$
\begin{equation*}
\sum_{e \in \ln _{n}(\geq, \neq>,>)} q^{\operatorname{asc}(e)}=\sum_{e \in \ln _{n}(>, \neq, \geq)} q^{n-1-\operatorname{asc}(e)}, \quad n \geq 1 . \tag{1}
\end{equation*}
$$

This equivalence was shown by Andrews and Chern using a functional equation approach.

Here, we consider some further combinatorial aspects of (??). In particular, we consider a refinement of both sides of (??) by introducing a variable p marking the number of descents in members of each class. We compute an explicit formula for the generating function of the joint distribution of desc and asc on $I_{n}(\geq, \neq,>)$, and also of desc and $n-1-$ asc on $I_{n}(>, \neq, \geq)$, using the kernel method.

Here we solve the case $\mathcal{A}_{n}=I_{n}(\geq, \neq,>)$.

We first define two new concepts related to the relative sizes of the non-ascent entries within an inversion sequence.

Let the height of $e=e_{1} e_{2} \cdots e_{n} \in I_{n}$ be given by

$$
\operatorname{hgt}(e)=\max \left\{e_{i}: 1 \leq i \leq n-1 \text { and } e_{i} \geq e_{i+1}\right\} .
$$

If $a=\operatorname{hgt}(e)$ with $j \in[n-1]$ minimal such that $e_{j}=a$, then let the depth of e be defined as $\operatorname{dep}(e)=e_{j+1}$.
Let $e \in \mathcal{A}_{n}$ has height and depth values of a and b, respectively. If $a>b$, then there exists a single descent $a b$ and at most two runs of the letter a, the first of which has length one. On the other hand, if $a=b$ within e, there can exist only a single run of a. Within a (maximal) subsequence of the form $a b \cdots b$, any letter beyond the second will be referred to as a redundant bottom, regardless of whether or not a and b are distinct.

We now decompose \mathcal{A}_{n} into disjoint subsets as follows. Given $1 \leq i \leq n-1$ and $1 \leq j \leq n$, let $\mathcal{B}_{n}(i, j)$ denote the subset of \mathcal{A}_{n} whose members have height i and last letter j, where the last letter is not a redundant bottom. Let $\mathcal{C}_{n}(i, j)$ be defined the same as $\mathcal{B}_{n}(i, j)$, but where the last letter is a redundant bottom. Note that $\mathcal{C}_{n}(i, j)$ can be nonempty only when $n \geq 3$ and $1 \leq j \leq i \leq n-2$. Define the distribution polynomial $b_{n}(i, j)=b_{n}(i, j ; p, q)$ by

$$
b_{n}(i, j)=\sum_{\pi \in \mathcal{B}_{n}(i, j)} p^{\operatorname{desc}(\pi)} q^{\operatorname{asc}(\pi)}
$$

and likewise for $c_{n}(i, j)=c_{n}(i, j ; p, q)$.

Let

$$
b_{n}=\sum_{i=1}^{n-1} \sum_{j=1}^{n} b_{n}(i, j), \quad n \geq 2
$$

and

$$
c_{n}=\sum_{i=1}^{n-2} \sum_{j=1}^{i} c_{n}(i, j), \quad n \geq 3
$$

and put $b_{1}=0$ and $c_{1}=c_{2}=0$. Note that b_{n} and c_{n} are polynomials in p and q. Then we seek a formula for $a_{n}=a_{n}(p, q)$ defined as

$$
a_{n}=b_{n}+c_{n}+q^{n-1}, \quad n \geq 1
$$

Note that a_{n} gives the joint distribution of desc and asc on \mathcal{A}_{n}, where the q^{n-1} term accounts for the sequence $12 \cdots n$ which belongs to no subset $\mathcal{B}_{n}(i, j)$ or $\mathcal{C}_{n}(i, j)$.

The arrays $b_{n}(i, j)$ and $c_{n}(i, j)$ satisfy the following system of recurrences.
lemma We have

$$
\begin{aligned}
b_{n}(i, j) & =\delta_{i, n-2} \cdot q^{n-2}+q c_{n-1}(i, i)+q \sum_{\ell=i+1}^{j-1} b_{n-1}(i, \ell) \\
& +q \sum_{k=1}^{i-1} b_{n-2}(k, i)+q \sum_{\ell=1}^{i-1} c_{n}(i, \ell) \\
& +q^{2} \sum_{\ell=1}^{i-1} \sum_{s=1}^{n-i-2} c_{n-s}(i, \ell), \quad 1 \leq i \leq n-2 \text { and } i<j \leq n,
\end{aligned}
$$

with $b_{n}(n-1, n)=0$ for $n \geq 2$,

$$
\begin{aligned}
& b_{n}(i, i)=\delta_{i, n-1} \cdot q^{n-2} \\
& \quad+\sum_{k=1}^{i-1} b_{n-1}(k, i)+q \sum_{\ell=1}^{i-1} \sum_{s=1}^{n-i-1} c_{n-s+1}(i, \ell), 1 \leq i \leq n-1, \\
& b_{n}(i, j)=\delta_{i, n-1} \cdot p q^{n-2}+p \sum_{k=1}^{j} b_{n-1}(k, i) \\
& \quad+p \sum_{k=j+1}^{i-1} \sum_{s=0}^{i-k-1}\binom{i-k-1}{s} q^{s+1} c_{n-s-1}(k, j),
\end{aligned}
$$

for $\quad 1 \leq j<i \leq n-1$,

$$
\begin{gathered}
c_{n}(i, j)=b_{n-1}(i, j)+c_{n-1}(i, j), \quad 1 \leq j<i \leq n-2 \\
c_{n}(i, i)=\delta_{i, n-2} \cdot q^{n-3}+c_{n-1}(i, i)+\sum_{k=1}^{i-1} b_{n-2}(k, i), \quad 1 \leq i \leq n-2
\end{gathered}
$$

Furthermore, we have the following recurrences

$$
\begin{aligned}
b_{n}(i, j) & =\sum_{\ell=1}^{i} \sum_{t=0}^{j-i-1}\binom{j-i-1}{t} q^{t+1} c_{n-t}(i, \ell) \\
& +\sum_{\ell=1}^{i-1} \sum_{t=0}^{j-i-1} \sum_{s=1}^{n-i-t-2}\binom{j-i-1}{t} q^{t+2} c_{n-s-t}(i, \ell)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{p q}\left(b_{n}(i, j)-q \sum_{k=j+1}^{i-1} b_{n-1}(k, j)\right) \\
& =\delta_{j, n-2} \cdot q^{n-3}+\sum_{k=j+1}^{i-1} c_{n-1}(k, j)+\sum_{k=1}^{j} \sum_{\ell=1}^{k} c_{n-1}(k, \ell) \\
& \quad+\sum_{\ell=2}^{j} \sum_{k=1}^{\ell-1} b_{n-2}(k, \ell)+q \sum_{k=2}^{j} \sum_{\ell=1}^{k-1} \sum_{r=1}^{n-k-2} c_{n-r-1}(k, \ell)
\end{aligned}
$$

Define now the following generating functions: $A(x)=\sum_{n \geq 1} a_{n} x^{n}$, $B(x)=\sum_{n \geq 2} b_{n} x^{n}$ and $C(x)=\sum_{n \geq 3} c_{n} x^{n}$. Then clearly,

$$
A(x)=B(x)+C(x)+\frac{x}{1-x q} .
$$

Note that $A(x)$ is the (ordinary) generating function for the joint distribution of desc and asc on $I_{n}(\geq, \neq,>)$ for $n \geq 1$. In order to study $B(x)$ and $C(x)$, we refine them as follows.

Define

$$
\begin{gathered}
B_{0}(x, v)=\sum_{n \geq 2} \sum_{i=1}^{n-1} b_{n}(i, i) v^{i} x^{n} \\
B^{+}(x, v, w)=\sum_{n \geq 2} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{n}(i, j) v^{i} w^{j} x^{n} \\
B^{-}(x, v, w)=\sum_{n \geq 3} \sum_{i=2}^{n-1} \sum_{j=1}^{i-1} b_{n}(i, j) v^{i} w^{j} x^{n}
\end{gathered}
$$

with

$$
C_{0}(x, v)=\sum_{n \geq 3} \sum_{i=1}^{n-2} c_{n}(i, i) v^{i} x^{n}
$$

and

$$
C^{-}(x, v, w)=\sum_{n \geq 4} \sum_{i=2}^{n-2} \sum_{j=1}^{i-1} c_{n}(i, j) v^{i} w^{j} x^{n}
$$

Translating our recurrences in terms of these generating functions yields the following system of functional equations.

Lemma We have $B(x)=B_{0}(x, 1)+B^{+}(x, 1,1)+B^{-}(x, 1,1)$ and $C(x)=C_{0}(x, 1)+C^{-}(x, 1,1)$, where

$$
\begin{aligned}
B^{+}(x, v, w) & =\frac{q v w^{2} x^{3}(w+1)}{1-q v w x}+\frac{q w x}{1-w}\left(C_{0}(x, v w)-w C_{0}(w x, v)\right) \\
& +\frac{q w x}{1-w}\left(B^{+}(x, v, w)-w B^{+}(w x, v, 1)\right) \\
& +\frac{q w x^{2}}{1-w}\left(B^{+}(x, 1, v w)-w^{2} B^{+}(w x, 1, v)\right) \\
& +\frac{q w}{1-w}\left(C^{-}(x, v w, 1)-C^{-}(w x, v, 1)\right) \\
& +\frac{q^{2} w}{1-w}\left(\frac{x}{1-x} C^{-}(x, v w, 1)-\frac{w x}{1-w x} C^{-}(w x, v, 1)\right)
\end{aligned}
$$

$$
B_{0}(x, v)=\frac{v x^{2}}{1-q v x}+x B^{+}(x, 1, v)+\frac{q}{1-x} C^{-}(x, v, 1)
$$

$$
B^{-}(x, v, w)=\frac{p q v^{2} w x^{3}}{(1-q v x)(1-q v w x)}+\frac{p x}{1-w}\left(B^{+}(x, w, v)-B^{+}(x, 1, v w)\right)
$$

$$
+\frac{p q v x}{1-v-q v x}\left(C^{-}(x, v, w)-C^{-}\left(\frac{v x}{1-q v x}, 1-q v x, w\right)\right)
$$

$$
\begin{aligned}
& C^{-}(x, v, w)=\frac{x}{1-x} B^{-}(x, v, w), \\
& C_{0}(x, v)=\frac{v x^{3}}{(1-x)(1-q v x)}+\frac{x^{2}}{1-x} B^{+}(x, 1, v), \\
& B^{+}(x, v, w)=\frac{q w}{1-w-q w x}\left(C_{0}(x, v w)-C_{0}\left(\frac{w x}{1-q w x}, v(1-q w x)\right)\right) \\
& +\frac{q w}{1-w-q w x}\left(C^{-}(x, v w, 1)-C^{-}\left(\frac{w x}{1-q w x}, v(1-q w x), 1\right)\right) \\
& +\frac{q^{2} w x}{(1-x)(1-w-q w x)}\left(C^{-}(x, v w, 1)-\frac{w(1-x)}{1-w x-q w x} C^{-}\left(\frac{w x}{1-q w x}, v(1-q w x), 1\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{1}{p q} B^{-}(x, v, w) \\
& =\frac{v x}{p(1-v)}\left(B^{-}(x, v, w)-B^{-}(v x, 1, w)\right)+\frac{v^{2} w x^{3}}{1-q v w x} \\
& +\frac{v x}{1-v}\left(C^{-}(x, v, w)-C^{-}(v x, 1, w)\right) \\
& +\frac{x}{1-w}\left(\frac{v}{1-v}\left(C^{-}(x, v w, 1)+C_{0}(x, v w)-C^{-}(v x, w, 1)-C_{0}(v x, w)\right)\right. \\
& \left.-\frac{v w}{1-v w}\left(C^{-}(x, v w, 1)+C_{0}(x, v w)-C^{-}(v w x, 1,1)-C_{0}(v w x, 1)\right)\right) \\
& +\frac{x^{2}}{1-w}\left(\frac{v}{1-v}\left(B^{+}(x, 1, v w)-v B^{+}(v x, 1, w)\right)-\frac{v w}{1-v w}\left(B^{+}(x, 1, v w)-v w B^{+}(v w x, 1,1)\right)\right) \\
& +q x^{2}\left(\frac{v}{(1-v)(1-v w)(1-x)} C^{-}(x, v w, 1)-\frac{v^{2} w}{(1-v)(1-v w)(1-v w x)} C^{-}(v w x, 1,1)\right. \\
& \left.-\frac{v^{2}}{(1-v)(1-w)(1-v x)} C^{-}(v x, w, 1)+\frac{v^{2} w}{(1-v)(1-w)(1-v w x)} C^{-}(v w x, 1,1)\right) .
\end{aligned}
$$

Again, with computer programming, we showed the following.
Lemma The generating function $A(x)$ is given by

$$
A(x)=\frac{1}{1-x} B^{+}(x, 1,1)+\frac{1-x+q x}{(1-x)^{2}} B^{-}(x, 1,1)+\frac{x}{(1-x)(1-q x)},
$$

where

$$
\begin{aligned}
& K(x, v) B^{-}(x / v, 1, v) \\
& =A_{1}(x, v) B^{-}(x, 1,1)+A_{2}(x, v) B^{+}(x, 1,1)+A_{3}(x, v)
\end{aligned}
$$

with

$$
\begin{aligned}
K(x, v) & =(x-v)(q x+v-1)\left(q v x+v^{2}-v x-v+x\right) \\
& -q x^{2}\left(q v x-q x+v^{2}-v x-2 v+2 x\right) p \\
A_{1}(x, v) & =(x-v)\left(q v x+v^{2}-v x-v+x\right) x q \\
& +\frac{(v-x) x^{2}\left((q v-q-v+2) x^{2}+\left(v^{2}-v-2\right) x-v^{2}+2 v\right) q p}{(1-x)^{2}} \\
A_{2}(x, v) & =\frac{(x-v)(1-v)\left(q x^{2}+v x-x^{2}-v+x\right) x p}{1-x} \\
A_{3}(x, v) & =\frac{(x-v)\left(q x^{2}-q x+v x-x^{2}-v+x+1\right)(1-v) p q x^{3}}{(1-x)(1-q x)} .
\end{aligned}
$$

Note that the kernel equation $K(x, v)=0$ (see prior lemma) has two power series solutions $v_{1}(x)$ and $v_{2}(x)$, where

$$
\begin{aligned}
v_{1}(x) & =1+(\sqrt{p q}-q) x-\frac{q((2 p+1) \sqrt{p q}-2 p q-p)}{2 \sqrt{p q}} x^{2} \\
& +\cdots, \\
v_{2}(x) & =1-(\sqrt{p q}+q) x-\frac{q((2 p+1) \sqrt{p q}+2 p q+p)}{2 \sqrt{p q}} x^{2}
\end{aligned}
$$

$$
+\cdots
$$

Substituting $v=v_{1}(x)$ and $v=v_{2}(x)$ into

$$
\begin{aligned}
& K(x, v) B^{-}(x / v, 1, v) \\
& =A_{1}(x, v) B^{-}(x, 1,1)+A_{2}(x, v) B^{+}(x, 1,1)+A_{3}(x, v)
\end{aligned}
$$

and solving for $B^{-}(x, 1,1)$ and $B^{+}(x, 1,1)$, we obtain
$B^{-}(x, 1,1)$

$$
\begin{aligned}
& =\frac{p x\left(v_{2}(x)-1\right)\left(v_{1}(x)-1\right)}{\left((q-1) x^{2}-v_{1}(x) v_{2}(x)+x v_{1}(x)+x v_{2}(x)\right)(p-q)} \\
& B^{+}(x, 1,1) \\
& =\frac{q x(q x-1)(q x-x+1)\left(v_{2}(x)-1\right)\left(v_{1}(x)-1\right)}{(1-x)(1-q x)\left((q-1) x^{2}-v_{1}(x) v_{2}(x)+x v_{1}(x)+x v_{2}(x)\right)(p-q)} \\
& +\frac{q x^{2}\left((q-1) x\left(v_{1}(x) v_{2}(x)+x^{2}\right)+\left(x^{2}-x+1-q x\right)\left(v_{1}(x)+v_{2}(x)\right)+(1-2 q) x^{2}+(1\right.}{(1-x)(1-q x)\left((q-1) x^{2}-v_{1}(x) v_{2}(x)+x v_{1}(x)+x v_{2}(x)\right)}
\end{aligned}
$$

Hence, we have the following result.
The generating function $A(x)$ is given by

$$
A(x)=\frac{\left(1-v_{1}(x)-v_{2}(x)-(q-1) x\right) x}{(q-1) x^{2}-v_{1}(x) v_{2}(x)+x\left(v_{1}(x)+v_{2}(x)\right)}
$$

Refereneces

[1] Permutation patterns and cell decompositions (with Schork); this paper is part of the ACA 2017 Jerusalem Special Issue.
[2] Wilf classification of subsets of four letter patterns (with Schork)
[3] Wilf classification of subsets of eight and nine four-letter patterns (with Schork)
[5] Wilf classification of subsets of six and seven four-letter patterns (with Schork)
[5] Enumeration and Wilf-classification of permutations avoiding five patterns of length 4
[6] Enumeration of permutations avoiding a triple of 4-letter patterns is almost all done (with Callan and Shattuck)
[7] A Wilf class composed of 19 symmetry classes of quadruples of 4-letter patterns (with Arikan and Kilic)
[8] Enumeration of 2-Wilf Classes of Four 4-letter Patterns (with Callan)
[9] Enumeration of 3- and 4-Wilf classes of four 4-letter patterns (with Callan) [10] A Wilf class composed of 7 symmetry classes of triples of 4-letter patterns (with Callan)
[11] On permutations avoiding 1324, 2143, and another 4-letter pattern (with Callan)
[12] On permutations avoiding 1243, 2134, and another 4-letter pattern (with Callan)
[13] Wilf classification of triples of 4-letter patterns I+II (with Callan and Shattuck)
[14] Enumeration of permutations avoiding a triple of 4-letter patterns is almost all done (with Callan and Shattuck)
[15] On a conjecture of Lin and Kim concerning a refinement of Schröder numbers (with Shattuck)
[16] Equivalence of the descents statistic on some (4,4)-avoidance classes of permutations (with Shattuck)
[17] Further enumeration results concerning a recent equivalence of restricted inversion sequences (with Shattuck)

Happy
 Birthday
 Amitai
 and Doron

