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Wilf–Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic
theory for proving identities in combinatorics and special functions.
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Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k)

= ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 5/24



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)

⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 5/24



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 5/24



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.

Rational sums
n∑

k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 5/24



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 5/24



Telescoping

Problem. For a sequence f (k) in some class S(k), decide whether
there exists g(k) ∈S(k) s.t.

f (k) = g(k+1)−g(k) = ∆k(g)⇓b∑
k=a

f (k) = g(b+1)−g(a)

Examples.
Rational sums

n∑
k=1

1
k(k+1)

=

n∑
k=1

∆k

(
−

1
k

)
= 1−

1
n+1

Hypergeometric sums
n∑

k=0

(2k
k

)2

(k+1)42k =

n∑
k=0

∆k

(
4k
(2k

k

)2

42k

)
=

4(n+1)
(2n+2

n+1

)2

42n+2

, 5/24



Creative telescoping

Problem. For a sequence f (n,k) in some class S(n,k), find a linear
recurrence operator L ∈ F[n,Sn] and g ∈S(n,k) s.t.

L(n,Sn)︸ ︷︷ ︸
Telescoper

(f ) = ∆k(g)

Call g the certificate for L.

Example. Let f (n,k) =
(n

k

)2. Then a telescoper for f and its
certificate are

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2
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Proving identities

F(n) :=
n∑

k=0

(
n
k

)2

=

(
2n
n

)

Creative telescoping for f =
(n

k

)2: L(f ) = ∆k(g), where

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2
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L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2

Since f (n,k) = 0 when k < 0 or k > n, we have

+∞∑
k=−∞

(
n
k

)2

=

n∑
k=0

(
n
k

)2
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Proving identities
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k

)2: L(f ) = ∆k(g), where

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2

Taking sums on both sides of L(f ) = ∆k(g):

+∞∑
k=−∞L(f ) = L

(
+∞∑

k=−∞f

)
= g(n,+∞)−g(n,−∞) = 0
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Proving identities

F(n) :=
n∑

k=0

(
n
k

)2

=

(
2n
n

)
Creative telescoping for f =

(n
k

)2: L(f ) = ∆k(g), where

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2

The sequence F(n) satisfies

(n+1)F(n+1)−(4n+2)F(n) = 0
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Proving identities

F(n) :=
n∑

k=0

(
n
k

)2

=

(
2n
n

)
Creative telescoping for f =

(n
k

)2: L(f ) = ∆k(g), where

L = (n+1)Sn −4n−2 and g =
(2k−3n−3)k2

(n
k

)2

(k−n−1)2

Verify the initial condition:

F(1) = 2 =

(
2
1

)
Then the identity is proved!
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Example: Identity about Harmonic Numbers

n∑
k=1

(−1)k+1 1
k

(
n
k

)
︸ ︷︷ ︸

F(n,k)

= 1+
1
2
+ · · ·+ 1

n
, Hn.

1 Creative telescoping for F(n,k) yields L(n,Sn)(F) = ∆k(G) with

L = Sn −1 and G =
(−1)k

n+1

(
n

k−1

)
.

2 Summing both sides of L(F) = ∆k(G) for k from 1 to n gets
n∑

k=1

L(F) = L

(
n∑

k=1

F

)
−F(n+1,n+1) =

n∑
k=1

∆k(G)

= G(n,n+1)−G(n,1) ⇒ L

(
n∑

k=1

F

)
=

1
n+1
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Example: Identity on T-shirt
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Integrability criterion via residues

Problem: Given f ∈ C(x), decide whether

f = Dx(g) for some g ∈ C(x).

Partial fraction decomposition:

f = p+
n∑

i=1

mi∑
j=1

αi,j

(x−βi)j , where p ∈ C[x],αi,j,βi ∈ C.

Def. The residue of f at βi is αi,1, denoted by resx(f ,βi).

Theorem.

f = Dx(g) for some g ∈ C(x) ⇔ All residues of f are zero.

, 10/24



Discrete residues

Def. For β ∈ C, the Z-orbit of β in C is

[β ] := {β + i | i ∈ Z}.

Partial fraction decomposition:

f = p+
m∑

i=1

ni∑
j=1

di,j∑
`=0

αi,j,`

(x−βi + `)j , (1)

where p ∈ C[x], m,ni,di,j ∈ N, αi,j,`,βi ∈ C and βi’s are in
distinct Z-orbits.

Def. Let f ∈ C(x) be of the form (1). The sum
∑di,j

`=0 αi,j,` ∈ C is
called the discrete residue of f at the Z-orbit [βi] of multiplicity j,
denoted by dresx(f , [βi], j).

, 11/24



Summability criterion via residues

Problem: Given f ∈ C(x), decide whether

f = ∆x(g) for some g ∈ C(x).

If g exists, we say f is summable in C(x).

Theorem (ChenSinger2012). Let f = a/b ∈ C(x) be s.t. a,b ∈ C[x]
and gcd(a,b) = 1. Then

f is summable in C(x) ⇔ dresx(f , [β ], j) = 0

for any Z-orbit [β ] with b(β ) = 0 of any multiplicity j.

Example. Consider

f =
1

x(x+1)(x+2)
=

1/2
x+2

+
−1

x+1
+

1/2
x

.

Then dresx(f , [0],1) = 1/2−1+1/2 = 0. So f is summable.
, 12/24



Integrability and summability of monomials

Continuous case: For any β ∈ C and m ∈ Z, we have

(x−β )m = Dx(f ) for some f ∈ C(x) ⇔ m 6=−1.

If m 6=−1, we have f = (m+1)−1(x−β )m+1.

Definition: For p ∈ F[x] and m ∈ Z, we define

p(x)m =


p(x)p(x−1) · · ·p(x−m+1), m > 0;
1, m = 0;

1
p(x+1)···p(x−m) , m < 0.

Discrete case: For any β ∈ C and m ∈ Z, we have

(x−β )m = ∆x(f ) for some f ∈ C(x) ⇔ m 6=−1.

If m 6=−1, we have f = (m+1)−1(x−β )m+1.
, 13/24



Nicole’s theorem

Theorem (Nicole, 1717, Traité du calcul des différences finies).
Let P ∈ C[x] be such that deg(P)≤ n−2. Then

f =
P(x)

(x+β1) · · ·(x+βn)
, where βi −βj ∈ Z\ {0} for i 6= j,

is summable in C(x).

Proof. By the assumption on the βi, we can write

f =
P̃(x)

(x−β )m , where m≥ n, β ∈ C, and degx P̃)≤ m−2.

Since degx(P̃)≤ m−2, we have

P̃ =

m−2∑
i=0

ci(x−β )i ⇒ P̃
(x−β )m =

m−2∑
i=0

ci(x−β −m)i−m

Note that i−m 6=−1 if 0≤ i≤ m−2.
, 14/24



Residue theorem and Lagrange’s formula

Theorem. If f is holomorphic in an open set containing a circle C
and its interior, except for poles at α1, . . . ,αm inside C . Then

1
2πi

∫
C

f (z)dz =
m∑

i=1

resz(f ,αi).

If f (z) is also holomorphic outside C, then
m∑

i=1

resz(f ,αi) = −resz(f ,∞) where resz(f ,∞),
∫

C

f (1/z)
z2 dz.
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i=1

resz(f ,αi) = −resz(f ,∞) where resz(f ,∞),
∫

C

f (1/z)
z2 dz.

If f has a pole of order n at α0, then

resz(f ,α0) = limz→α0

1
(n−1)!

Dn−1
z (z−α0)

nf (z).

, 15/24
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C

f (1/z)
z2 dz.

If f = P/Q with P,Q ∈ C[z] and Q squarefree, then for any z0 ∈ C
with Q(z0) = 0, we have

resz(f ,α0) =
P(α0)

Dz(Q)(α0)
Lagrange’s formula.
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If f (z) is also holomorphic outside C, then
m∑

i=1

resz(f ,αi) = −resz(f ,∞) where resz(f ,∞),
∫

C

f (1/z)
z2 dz.

If f = P/Q with P,Q ∈ C[z] and degz(P)≤ degz(Q)−2 , then

resz(f ,∞) =

∫
C

f (1/z)
z2 dz = 0,

where all zeros of Q are inside the circle C.
, 15/24



Proof of Nicole’s theorem via residues

Theorem (Nicole, 1717). Let P ∈ C[x] be such that deg(P)≤ n−2.
Then

f =
P(x)

(x+β1) · · ·(x+βn)
, where βi −βj ∈ Z\ {0} for i 6= j,

is summable in C(x).
Proof. By Partial fraction decomposition,

f =
n∑

i=1

αi

x+βi
, where αi ∈ C.

Then f is summable iff
∑n

i=1 αi = 0. By Cauchy’s residue theorem,
n∑

i=1

αi =−resx(f ,∞)=−
1

2πi

∮
Γ0

f
(

1
x

)
d

1
x
=

1
2πi

∮
Γ0

P(1/x)xn−2

(1+β1x) · · ·(1+βnx)︸ ︷︷ ︸
f̃

dx.

Since deg(P)≤ n−2, f̃ is analytic at 0 and then resx(f ,∞) = 0.
, 16/24



From Nicole’s theorem to vanishing sums

Corollary. Let P ∈ C[x] be such that deg(P)≤ n−1. Then

n∑
k=0

rk = 0, where rk =
P(−k)

(−1)kk!(n− k)!
.

Proof. Consider the rational function

f =
P(x)

x(x+1) · · ·(x+n)
.

By Nicole’s theorem, f is summable in C(x). Then Lagrange’s
formula implies that

dresx(f , [0],1) =
n∑

k=0

resx(f ,−k) =
n∑

k=0

P(−k)
(−1)kk!(n− k)!

= 0.

, 17/24



Vanishing sums via residues
Example.

n∑
i=0

(−1)i
(

n
i

)
= 0.

Consider the rational function

f =
P
Q

=
n!

x(x+1) · · ·(x+n)
=

n∑
i=0

αi

x+ i
.

By Lagrange’s formula, resx(f ,−i) = P(−i)/Dx(Q)(−i),

αi =
n!

(−i)(−i+1) · · ·(−1) ·1 ·2 · · ·(−i+n)
= (−1)i

(
n
i

)
.

By Nicole’s theorem, f is summable if n≥ 1. Then

n∑
i=0

αi =

n∑
i=0

(−1)i
(

n
i

)
= 0.

, 18/24



Vanishing sums via residues
Example.

n∑
i=0

(
2i
i

)(
2n−2i

n− i

)
1

2i−1
= 0.

Consider the rational function

f =
P
Q

=
−2n∏n−1

i=1 (2(x+ i)+1)
x(x+1) · · ·(x+n)

=

n∑
i=0

αi

x+ i
.

By Lagrange’s formula, resx(f , i) = P(i)/Dx(Q)(i),

αi =

(
2i
i

)(
2n−2i

n− i

)
1

2i−1
.

By Nicole’s theorem, f is summable if n≥ 1. Then

n∑
i=0

αi =

n∑
i=0

(
2i
i

)(
2n−2i
n− i

)
1

2i−1
= 0.

, 18/24



Vanishing sums via residues

n∑
k=0

(−1)k
(

n
k

)
k j = 0, where 0≤ j < n.

n∑
k=0

(−1)k
(

n
k

)
p(k) = 0, where p ∈ C[x] with 0≤ deg(p)< n.

n∑
k=0

(−1)k
(

n+ x
n− k

)(
k+ x+1

k

)
= 0, where n≥ 2.

2n−1∑
k=0

(−1)k−1 n− k(2n
k
) = 0.

2n+1∑
k=0

(−1)k−1
(

2k
k

)(
4n−2k+2
2n− k+1

)
= 0

n∑
k=0

(−1)k
(

n
k

)
1(m+k
k
) + m∑

k=0

(−1)k
(

m
k

)
1(n+k
k
) = 0.

2n+1∑
k=0

(−1)k
(

2n+1
k

)(
2k
k

)
1(n+k+1
k

) = 0

Remark. Related work by G. P. Egorychev, I.-Ch. Huang, Z.G. Liu etc.
, 18/24



How to find rational functions for vanishing sums

To show the identity of the form

n∑
k=0

a(n,k) = 0,

where a(n,k) are hypergeometric in n and k. Consider

n∑
k=0

a(n,k)
x+ k

=
Pn(x)

x(x+1) · · ·(x+n)
.

It suffices to show that degx(Pn(x))≤ n−1.

Idea. Find a linear recurrence in n for Pn(x) and estimate the
degree recursively.
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How to find rational functions for vanishing sums

Example (Gould’s Combinatorial Identities, page 63).

2n+1∑
k=0

a(n,k) = 0, where a(n,k) = (−1)k
(

2n+1
k

)(
2k
k

)
1(n+k+1
k

) .
Consider

2n+1∑
k=0

a(n,k)
x+ k

=
Pn(x)

x(x+1) · · ·(x+2n+1)
.

By creative telescoping, we get

b3Pn+3(x)+b2Pn+2(x)+b1Pn+1(x)+b0Pn(x) = 0,

where b3,b2,b1,b0 ∈Q[n,x] with

(degx(b3),degx(b2),degx(b1),degx(b0)) = (2,4,6,5).

Since (degx(P1),degx(P2),degx(P3)) = (2,4,6), we get
degx(Pn(x))≤ 2n.
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Vanishing sums from orthogonal polynomials

Example. Laguerre polynomials

Lα
n (x) =

n∑
k=0

Γ (n+α +1)
Γ (k+α +1)

(−x)k

k!(n− k)!
.

Consider the rational function

f =
Lα

n−1(x)
x(x+1) · · ·(x+n)

=

n∑
k=0

a(n,k)
x+ k

⇒ n∑
k=0

a(n,k) = 0.

When α = 0, we get
n∑

k=0

n−1∑
j=0

(
n
k

)
(−1)k kj

j!
= 0.

Using Legendre polynomial yields
n+1∑
k=0

dn/2e∑
j=0

(−1)k
(

n
k

)(
n
j

)(
2n−2j
n−2j

)
(−k)n−2j = 0.
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Creative vanishing sums

Example.

Fn :=

n∑
k=0

(−1)k
(

n
k

)
kn = (−1)nn!.

Let L = Sn +(n+1). Then

L

(
n∑

k=0

(
n
k

)
(−1)kkn

)
=

n+1∑
k=0

(
n+1

k

)
(−1)kkn+1 +(n+1)

n+1∑
k=0

(
n
k

)
(−1)kkn

=

n+1∑
k=0

(−1)kkn
(

k
(

n+1
k

)
+(n+1)

(
n
k

))

=

n+1∑
k=0

(−1)kkn(n+1)k
(

n+1
k

)
.

Using Nicole’s theorem, we get L(Fn) = 0.

Remark. Note that kn is not holonomic.
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Summary

Theorem (Nicole, 1717). Let P ∈ C[x] be s.t. deg(P)≤ n−2. Then

f =
P(x)

(x+β1) · · ·(x+βn)
, where βi −βj ∈ Z\ {0} for i 6= j,

is summable in C(x).

Applications. Proving and discovering vanishing sums via residues:

2n+1∑
k=0

(−1)k
(

2n+1
k

)(
2k
k

)
1(n+k+1
k

) = 0.

Thank you!
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