A Residue-based Approach to Vanishing Sums

Shaoshi Chen

KLMM, AMSS Chinese Academy of Sciences

Combinatorics and Algebra from A to Z July 26–29, 2021

A joint work with Rong-Hua Wang

Thanks to Doron!

Thanks to Doron!

Author Citations for Doron Zeilberger Doron Zeilberger is cited 2794 times by 1802 authors

in the MR Citation Database

	Most Cited Publications	My ACM Author Profile
Citations	Publication	
489	MR1379802 (97j:05001) Petkovšek, Marko; Wilf, Herbert S.; Zeilberger, Doron A = B. With a foreword by Donald E. Knuth. With a separately available computer disk. AK Peters, Ltd, Wellesley, MA, 1996. xii+212 pp. ISBN: 1-5684: 0-63-6 (Reviewer: Peter Paule) 0-5-11 (05A10 05A10 33C20 68R05)	hypergeometric term teleSCO Creative telesco Creative telesco
146	MR1090884 (92b:33014) Zeilberger, Doron A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32 (1990), no. 3, 321–368. (Reviewer: R. A. Askey) 33C20 (05A10 33D20 68Q40)	
140	MR1163239 (93k:33010) Wilf, Herbert S.; Zeilberger, Doron An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities. <i>Invent. Math.</i> 108 (1992), no. 3, 575–633. (Reviewer: David R. Masson) 33059 (03353 05A13 33099 68Q40)	
123	MR1103727 (92c:33005) Zellberger, Doron The method of creative telescoping, J. Symbolic Comput. 11 (1991), no. 3, 195–204. (Reviewer: R. A. Askey) 33C20	
115	MR1392498 (97d:05012) Zeilberger, Doron Proof of the alternating sign matrix conjecture. The Foata Festschrift. <i>Electron. J. Combin.</i> 3 (1996), no. 2, Research Paper 13, approx. 84 pp. (Reviewer: David M. Bressoud) 05A10 (05A15 39A10)	
68	MR1048463 (91d:33006) Zeilberger, Doron A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80 (1990), no. 2, 207–211. (Reviewer: R. A. Askey) 33C20 (05A19 11865 11146 33C05)	
66	MR1487614 (99i:05137) Foata, Dominique; Zeilberger, Doron A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs. <i>Trans. Amer. Math. Soc.</i> 351 (1999), no. 6, 2257–2274. (Reviewer: H. M. Stark) 05CS0 (11M41)	
56	MR1007910 (91a:05006) Wilf, Herbert S.; Zeilberger, Doron Rational functions certify combinatorial identities. J. Amer. Math. Soc. 3 (1990), no. 1, 147–158. (Reviewer: Ira Gessel) 05A19 (33C05 68Q40)	
49	MR0808671 (87b:05015) Wimp, Jet; Zeilberger, Doron Resurrecting the asymptotics of linear recurrences. J. Math. Anal. Appl. 111 (1985), no. 1, 162–176. (Reviewer: Edward A. Bender) 05A15 (39A10)	
49	MR1383799 (97c:05010) Zellberger, Doron Proof of the refined alternating sign matrix conjecture. New York J. Math. 2 (1996), 59–68, electronic. (Reviewer: Jiang Zeng) 05A15 (33D45 82B23)	a lai term
	See All	v

Among 2794 citations, I contributed 106 in my 24 papers!

Thanks to Doron!

My 3 talks at Z's seminar:

1/20	1/:
October 20, 2011	October 18, 2012
Proof of the Wilf-Zeilberger Conjecture	Telescopers for 3D Walks via Residues
Shaoshi Chen Depentine of Mediomatics North Caralina State Unionatify Relaigh October 20, 2011 Rutgers Experimental Mathematics Seminar Joint work with C. Koutschan and G. Pavne	Shaoshi Chen Department of Valenamica North Carolina State University, Redegh Rutgers Experimental Mathematics Seminar October 18, 2012 Joint with Manuel Kauers and Michael F. Singer
5. Own WH-Zeilberger Conjecture	Statubil Olim Telescopers and Residues
	July 20, 2018

How to Generate All Possible **Rational WZ-pairs?**

Shaoshi Chen

KLMM, AMSS Chinese Academy of Sciences

Rutgers Experimental Mathematics Seminar Rutgers University, July 20, 2018

July 20, 2018

How to generate all possible WZ-pairs algorithmic... vimeo.com

Happy Birthday to Amitai and Doron!

I wish both of you long life and happiness! 福如东海, 寿比南山!

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

Wilf-Zeilberger theory

In the early 1990s, Wilf and Zeilberger developed an algorithmic theory for proving identities in combinatorics and special functions.

2

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

$$\sum_{j=0}^{k} \binom{k}{j}^{2} \binom{n+2k-j}{2k} = \binom{n+k}{k}^{2}$$

$$\int_{0}^{\infty} x^{\alpha-1} Li_{n}(-xy) dx = \frac{\pi(-\alpha)^{n}y^{-\alpha}}{\sin(\alpha\pi)}$$

$$\int_{-1}^{+1} \frac{e^{-px}T_{n}(x)}{\sqrt{1-x^{2}}} dx = (-1)^{n} \pi I_{n}(p)$$

Herbert Wilf

Doron Zeilberger

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$f(k) = g(k+1) - g(k)$$

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$f(k) = g(k+1) - g(k) = \Delta_k(g)$$

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$f(k) = g(k+1) - g(k) = \Delta_k(g)$$

$$\downarrow$$

$$\sum_{k=a}^{b} f(k) = g(b+1) - g(a)$$

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$f(k) = g(k+1) - g(k) = \Delta_k(g)$$

$$\downarrow$$

$$\sum_{k=a}^{b} f(k) = g(b+1) - g(a)$$

Examples.

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$f(k) = g(k+1) - g(k) = \Delta_k(g)$$

$$\downarrow$$

$$\sum_{k=a}^{b} f(k) = g(b+1) - g(a)$$

Examples.

Rational sums

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \Delta_k \left(-\frac{1}{k} \right) = 1 - \frac{1}{n+1}$$

Problem. For a sequence f(k) in some class $\mathfrak{S}(k)$, decide whether there exists $g(k) \in \mathfrak{S}(k)$ s.t.

$$f(k) = g(k+1) - g(k) = \Delta_k(g)$$

$$\downarrow$$

$$\sum_{k=a}^{b} f(k) = g(b+1) - g(a)$$

Examples.

Rational sums

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \Delta_k \left(-\frac{1}{k} \right) = 1 - \frac{1}{n+1}$$

Hypergeometric sums

J

$$\sum_{k=0}^{n} \frac{\binom{2k}{k}^2}{(k+1)4^{2k}} = \sum_{k=0}^{n} \Delta_k \left(\frac{4k\binom{2k}{k}^2}{4^{2k}}\right) = \frac{4(n+1)\binom{2n+2}{n+1}^2}{4^{2n+2}}$$

Creative telescoping

Problem. For a sequence f(n,k) in some class $\mathfrak{S}(n,k)$, find a linear recurrence operator $L \in \mathbb{F}[n,S_n]$ and $g \in \mathfrak{S}(n,k)$ s.t.

$$\underbrace{L(n,S_n)}_{\mathsf{Telescoper}}(f) = \Delta_k(g)$$

Call g the certificate for L.

Creative telescoping

Problem. For a sequence f(n,k) in some class $\mathfrak{S}(n,k)$, find a linear recurrence operator $L \in \mathbb{F}[n,S_n]$ and $g \in \mathfrak{S}(n,k)$ s.t.

$$\underbrace{L(n,S_n)}_{\mathsf{Telescoper}}(f) = \Delta_k(g)$$

Call g the certificate for L.

Example. Let $f(n,k) = {\binom{n}{k}}^2$. Then a telescoper for f and its certificate are

Creative telescoping

Problem. For a sequence f(n,k) in some class $\mathfrak{S}(n,k)$, find a linear recurrence operator $L \in \mathbb{F}[n,S_n]$ and $g \in \mathfrak{S}(n,k)$ s.t.

$$\underbrace{L(n,S_n)}_{\mathsf{Telescoper}}(f) = \Delta_k(g)$$

Call g the certificate for L.

Example. Let $f(n,k) = {\binom{n}{k}}^2$. Then a telescoper for f and its certificate are

$$L = (n+1)S_n - 4n - 2$$
 and $g = \frac{(2k - 3n - 3)k^2 {\binom{n}{k}}^2}{(k - n - 1)^2}$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2 \text{ and } g = \frac{(2k - 3n - 3)k^2 \binom{n}{k}^2}{(k - n - 1)^2}$$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2$$
 and $g = \frac{(2k - 3n - 3)k^2 {\binom{n}{k}}^2}{(k - n - 1)^2}$

Since f(n,k) = 0 when k < 0 or k > n, we have

$$\sum_{k=-\infty}^{+\infty} \binom{n}{k}^2 = \sum_{k=0}^{n} \binom{n}{k}^2$$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2 \text{ and } g = \frac{(2k - 3n - 3)k^2 \binom{n}{k}^2}{(k - n - 1)^2}$$

Taking sums on both sides of $L(f) = \Delta_k(g)$:

$$\sum_{k=-\infty}^{+\infty} L(f) = L\left(\sum_{k=-\infty}^{+\infty} f\right) = g(n, +\infty) - g(n, -\infty) = 0$$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2 \text{ and } g = \frac{(2k - 3n - 3)k^2 \binom{n}{k}^2}{(k - n - 1)^2}$$

Taking sums on both sides of $L(f) = \Delta_k(g)$:

$$L\left(\sum_{k=-\infty}^{+\infty} f\right) = 0$$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2 \text{ and } g = \frac{(2k - 3n - 3)k^2 \binom{n}{k}^2}{(k - n - 1)^2}$$

Taking sums on both sides of $L(f) = \Delta_k(g)$:

L(F(n)) = 0

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2 \text{ and } g = \frac{(2k - 3n - 3)k^2 \binom{n}{k}^2}{(k - n - 1)^2}$$

The sequence F(n) satisfies

$$(n+1)F(n+1) - (4n+2)F(n) = 0$$

$$F(n) := \sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$

Creative telescoping for $f = {\binom{n}{k}}^2$: $L(f) = \Delta_k(g)$, where

$$L = (n+1)S_n - 4n - 2 \text{ and } g = \frac{(2k - 3n - 3)k^2 \binom{n}{k}^2}{(k - n - 1)^2}$$

Verify the initial condition:

$$F(1) = 2 = \begin{pmatrix} 2\\1 \end{pmatrix}$$

Then the identity is proved!

Example: Identity about Harmonic Numbers

$$\sum_{k=1}^{n} \underbrace{(-1)^{k+1} \frac{1}{k} \binom{n}{k}}_{F(n,k)} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \triangleq H_n.$$

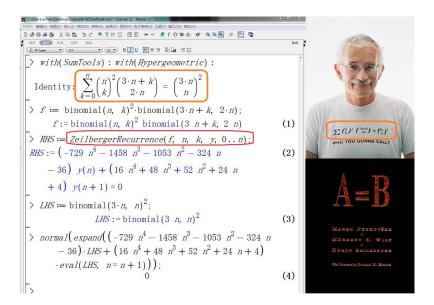
1 Creative telescoping for F(n,k) yields $L(n,S_n)(F) = \Delta_k(G)$ with

$$L=S_n-1$$
 and $G=rac{(-1)^k}{n+1}\binom{n}{k-1}.$

2 Summing both sides of $L(F) = \Delta_k(G)$ for k from 1 to n gets

$$\sum_{k=1}^{n} L(F) = L\left(\sum_{k=1}^{n} F\right) - F(n+1, n+1) = \sum_{k=1}^{n} \Delta_k(G)$$
$$= G(n, n+1) - G(n, 1) \quad \Rightarrow \quad L\left(\sum_{k=1}^{n} F\right) = \frac{1}{n+1}$$

Example: Identity on T-shirt



Integrability criterion via residues

Problem: Given $f \in \mathbb{C}(x)$, decide whether

 $f = D_x(g)$ for some $g \in \mathbb{C}(x)$.

Partial fraction decomposition:

$$f = p + \sum_{i=1}^{n} \sum_{j=1}^{m_i} \frac{\alpha_{i,j}}{(x - \beta_i)^j}, \text{ where } p \in \mathbb{C}[x], \alpha_{i,j}, \beta_i \in \mathbb{C}.$$

Def. The residue of f at β_i is $\alpha_{i,1}$, denoted by $\operatorname{res}_x(f,\beta_i)$.

Theorem.

$$f = D_x(g)$$
 for some $g \in \mathbb{C}(x) \quad \Leftrightarrow \quad \text{All residues of } f$ are zero.

Discrete residues

Def. For $\beta \in \mathbb{C}$, the \mathbb{Z} -orbit of β in \mathbb{C} is

 $[\beta] := \{\beta + i \mid i \in \mathbb{Z}\}.$

Partial fraction decomposition:

$$f = p + \sum_{i=1}^{m} \sum_{j=1}^{n_i} \sum_{\ell=0}^{d_{i,j}} \frac{\alpha_{i,j,\ell}}{(x - \beta_i + \ell)^j},$$
(1)

where $p \in \mathbb{C}[x]$, $m, n_i, d_{i,j} \in \mathbb{N}$, $\alpha_{i,j,\ell}, \beta_i \in \mathbb{C}$ and β_i 's are in distinct \mathbb{Z} -orbits.

Def. Let $f \in \mathbb{C}(x)$ be of the form (1). The sum $\sum_{\ell=0}^{d_{i,j}} \alpha_{i,j,\ell} \in \mathbb{C}$ is called the discrete residue of f at the \mathbb{Z} -orbit $[\beta_i]$ of multiplicity j, denoted by $\operatorname{dres}_x(f, [\beta_i], j)$.

Summability criterion via residues

Problem: Given $f \in \mathbb{C}(x)$, decide whether

 $f = \Delta_x(g)$ for some $g \in \mathbb{C}(x)$.

If g exists, we say f is summable in $\mathbb{C}(x)$.

Theorem (ChenSinger2012). Let $f = a/b \in \mathbb{C}(x)$ be s.t. $a, b \in \mathbb{C}[x]$ and gcd(a,b) = 1. Then

 $f \text{ is summable in } \mathbb{C}(x) \quad \Leftrightarrow \quad \operatorname{dres}_{x}(f, [\beta], j) = 0$ for any \mathbb{Z} -orbit $[\beta]$ with $b(\beta) = 0$ of any multiplicity j.

Example. Consider

$$f = \frac{1}{x(x+1)(x+2)} = \frac{1/2}{x+2} + \frac{-1}{x+1} + \frac{1/2}{x}.$$

Then dres_x(f, [0], 1) = 1/2 - 1 + 1/2 = 0. So f is summable.

Integrability and summability of monomials

Continuous case: For any $\beta \in \mathbb{C}$ and $m \in \mathbb{Z}$, we have

 $(x-\beta)^m = D_x(f)$ for some $f \in \mathbb{C}(x) \quad \Leftrightarrow \quad m \neq -1$. If $m \neq -1$, we have $f = (m+1)^{-1}(x-\beta)^{m+1}$.

Definition: For $p \in \mathbb{F}[x]$ and $m \in \mathbb{Z}$, we define

$$p(x)^{\underline{m}} = \begin{cases} p(x)p(x-1)\cdots p(x-m+1), & m > 0; \\ 1, & m = 0; \\ \frac{1}{p(x+1)\cdots p(x-m)}, & m < 0. \end{cases}$$

Discrete case: For any $\beta \in \mathbb{C}$ and $m \in \mathbb{Z}$, we have

 $(x-\beta)^{\underline{m}} = \Delta_x(f)$ for some $f \in \mathbb{C}(x) \quad \Leftrightarrow \quad m \neq -1$. If $m \neq -1$, we have $f = (m+1)^{-1}(x-\beta)^{\underline{m+1}}$.

Nicole's theorem

Theorem (Nicole, 1717, *Traité du calcul des différences finies*). Let $P \in \mathbb{C}[x]$ be such that $\deg(P) \leq n-2$. Then

$$f = rac{P(x)}{(x+eta_1)\cdots(x+eta_n)}, \quad ext{where } eta_i - eta_j \in \mathbb{Z} \setminus \{0\} ext{ for } i
eq j,$$

is summable in $\mathbb{C}(x)$.

Proof. By the assumption on the β_i , we can write

$$f = \frac{\tilde{P}(x)}{(x-\beta)\underline{m}}, \text{ where } m \ge n, \ \beta \in \mathbb{C}, \text{ and } \deg_x \tilde{P}) \le m-2.$$

Since $\deg_x(\tilde{P}) \le m-2$, we have

$$\tilde{P} = \sum_{i=0}^{m-2} c_i (x-\beta)^{\underline{i}} \quad \Rightarrow \quad \frac{\tilde{P}}{(x-\beta)^{\underline{m}}} = \sum_{i=0}^{m-2} c_i (x-\beta-m)^{\underline{i-m}}$$

Note that $i - m \neq -1$ if $0 \le i \le m - 2$.

Theorem. If f is holomorphic in an open set containing a circle C and its interior, except for poles at $\alpha_1, \ldots, \alpha_m$ inside C. Then

$$\frac{1}{2\pi i} \int_C f(z) \, dz = \sum_{i=1}^m \operatorname{res}_z(f, \alpha_i).$$

If f(z) is also holomorphic outside C, then

$$\sum_{i=1}^{m} \operatorname{res}_{z}(f, \alpha_{i}) = -\operatorname{res}_{z}(f, \infty) \quad \text{where } \operatorname{res}_{z}(f, \infty) \triangleq \int_{C} \frac{f(1/z)}{z^{2}} dz.$$

Theorem. If f is holomorphic in an open set containing a circle C and its interior, except for poles at $\alpha_1, \ldots, \alpha_m$ inside C. Then

$$\frac{1}{2\pi i} \int_C f(z) \, dz = \sum_{i=1}^m \operatorname{res}_z(f, \alpha_i).$$

If f(z) is also holomorphic outside C, then

$$\sum_{i=1}^{m} \operatorname{res}_{z}(f, \alpha_{i}) = -\operatorname{res}_{z}(f, \infty) \quad \text{where } \operatorname{res}_{z}(f, \infty) \triangleq \int_{C} \frac{f(1/z)}{z^{2}} dz.$$

If f has a pole of order n at α_0 , then

$$\operatorname{res}_{z}(f, \alpha_{0}) = \lim_{z \to \alpha_{0}} \frac{1}{(n-1)!} D_{z}^{n-1} (z - \alpha_{0})^{n} f(z).$$

Theorem. If f is holomorphic in an open set containing a circle C and its interior, except for poles at $\alpha_1, \ldots, \alpha_m$ inside C. Then

$$\frac{1}{2\pi i} \int_C f(z) \, dz = \sum_{i=1}^m \operatorname{res}_z(f, \alpha_i).$$

If f(z) is also holomorphic outside C, then

$$\sum_{i=1}^{m} \operatorname{res}_{z}(f, \alpha_{i}) = -\operatorname{res}_{z}(f, \infty) \quad \text{where } \operatorname{res}_{z}(f, \infty) \triangleq \int_{C} \frac{f(1/z)}{z^{2}} dz.$$

If f = P/Q with $P, Q \in \mathbb{C}[z]$ and Q squarefree, then for any $z_0 \in \mathbb{C}$ with $Q(z_0) = 0$, we have

$$\operatorname{res}_{z}(f, \alpha_{0}) = \frac{P(\alpha_{0})}{D_{z}(Q)(\alpha_{0})}$$

Lagrange's formula.

Theorem. If f is holomorphic in an open set containing a circle C and its interior, except for poles at $\alpha_1, \ldots, \alpha_m$ inside C. Then

$$\frac{1}{2\pi i} \int_C f(z) \, dz = \sum_{i=1}^m \operatorname{res}_z(f, \alpha_i).$$

If f(z) is also holomorphic outside C, then

$$\sum_{i=1}^{m} \operatorname{res}_{z}(f, \alpha_{i}) = -\operatorname{res}_{z}(f, \infty) \quad \text{where } \operatorname{res}_{z}(f, \infty) \triangleq \int_{C} \frac{f(1/z)}{z^{2}} dz.$$

If f=P/Q with $P,Q\in \mathbb{C}[z]$ and $\deg_z(P)\leq \deg_z(Q)-2$, then

$$\operatorname{res}_{z}(f,\infty) = \int_{C} \frac{f(1/z)}{z^{2}} dz = 0,$$

where all zeros of Q are inside the circle C.

Proof of Nicole's theorem via residues

Theorem (Nicole, 1717). Let $P \in \mathbb{C}[x]$ be such that $\deg(P) \leq n-2$. Then

$$f = rac{P(x)}{(x+eta_1)\cdots(x+eta_n)}, \quad ext{where } eta_i - eta_j \in \mathbb{Z} \setminus \{0\} ext{ for } i
eq j,$$

is summable in $\mathbb{C}(x)$.

Proof. By Partial fraction decomposition,

$$f = \sum_{i=1}^n rac{lpha_i}{x+eta_i}, \quad ext{where } lpha_i \in \mathbb{C}.$$

Then f is summable iff $\sum_{i=1}^{n} \alpha_i = 0$. By Cauchy's residue theorem,

$$\sum_{i=1}^{n} \alpha_{i} = -\operatorname{res}_{x}(f, \infty) = -\frac{1}{2\pi i} \oint_{\Gamma_{0}} f\left(\frac{1}{x}\right) d\frac{1}{x} = \frac{1}{2\pi i} \oint_{\Gamma_{0}} \underbrace{\frac{P(1/x)x^{n-2}}{(1+\beta_{1}x)\cdots(1+\beta_{n}x)}}_{\tilde{f}} dx$$

Since $deg(P) \le n-2$, \tilde{f} is analytic at 0 and then $res_x(f,\infty) = 0$.

From Nicole's theorem to vanishing sums

Corollary. Let $P \in \mathbb{C}[x]$ be such that $\deg(P) \le n-1$. Then

$$\sum_{k=0}^{n} r_k = 0, \quad \text{where } r_k = \frac{P(-k)}{(-1)^k k! (n-k)!}.$$

Proof. Consider the rational function

$$f = \frac{P(x)}{x(x+1)\cdots(x+n)}.$$

By Nicole's theorem, f is summable in $\mathbb{C}(x)$. Then Lagrange's formula implies that

dres_x(f, [0], 1) =
$$\sum_{k=0}^{n} \operatorname{res}_{x}(f, -k) = \sum_{k=0}^{n} \frac{P(-k)}{(-1)^{k}k!(n-k)!} = 0.$$

Vanishing sums via residues

Example.

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0.$$

Consider the rational function

$$f = \frac{P}{Q} = \frac{n!}{x(x+1)\cdots(x+n)} = \sum_{i=0}^{n} \frac{\alpha_i}{x+i}.$$

By Lagrange's formula, $\operatorname{res}_{\scriptscriptstyle X}(f,-i) = P(-i)/D_{\scriptscriptstyle X}(Q)(-i)$,

$$\alpha_i = \frac{n!}{(-i)(-i+1)\cdots(-1)\cdot 1\cdot 2\cdots(-i+n)} = (-1)^i \binom{n}{i}.$$

By Nicole's theorem, f is summable if $n \ge 1$. Then

$$\sum_{i=0}^{n} \alpha_{i} = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} = 0.$$

Vanishing sums via residues

Example.

$$\sum_{i=0}^{n} \binom{2i}{i} \binom{2n-2i}{n-i} \frac{1}{2i-1} = 0.$$

Consider the rational function

$$f = \frac{P}{Q} = \frac{-2^n \prod_{i=1}^{n-1} (2(x+i)+1)}{x(x+1)\cdots(x+n)} = \sum_{i=0}^n \frac{\alpha_i}{x+i}.$$

By Lagrange's formula, $\operatorname{res}_{x}(f,i) = P(i)/D_{x}(Q)(i)$,

$$\alpha_i = \binom{2i}{i} \binom{2n-2i}{n-i} \frac{1}{2i-1}$$

By Nicole's theorem, f is summable if $n \ge 1$. Then

$$\sum_{i=0}^{n} \alpha_{i} = \sum_{i=0}^{n} \binom{2i}{i} \binom{2n-2i}{n-i} \frac{1}{2i-1} = 0.$$

Vanishing sums via residues

$$\begin{split} \sum_{k=0}^{n} (-1)^k \binom{n}{k} k^j &= 0, \quad \text{where } 0 \leq j < n. \\ \sum_{k=0}^{n} (-1)^k \binom{n}{k} p(k) &= 0, \quad \text{where } p \in \mathbb{C}[x] \text{ with } 0 \leq \deg(p) < n. \\ \sum_{k=0}^{n} (-1)^k \binom{n+x}{n-k} \binom{k+x+1}{k} &= 0, \quad \text{where } n \geq 2. \\ \sum_{k=0}^{2n-1} (-1)^{k-1} \frac{n-k}{\binom{2n}{k}} &= 0. \\ \sum_{k=0}^{2n+1} (-1)^{k-1} \binom{2k}{k} \binom{4n-2k+2}{2n-k+1} &= 0 \\ \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{\binom{m+k}{k}} + \sum_{k=0}^{m} (-1)^k \binom{m}{k} \frac{1}{\binom{n+k}{k}} &= 0. \\ \frac{2n+1}{k} (-1)^k \binom{2n+1}{\binom{k}{k}} \binom{2k}{\binom{2k}{k}} \frac{1}{\binom{n+k+1}{k}} &= 0. \end{split}$$

Remark. Related work by G. P. Egorychev, I.-Ch. Huang, Z.G. Liu etc.

How to find rational functions for vanishing sums

To show the identity of the form

$$\sum_{k=0}^{n} a(n,k) = 0,$$

where a(n,k) are hypergeometric in n and k. Consider

$$\sum_{k=0}^{n} \frac{a(n,k)}{x+k} = \frac{P_n(x)}{x(x+1)\cdots(x+n)}$$

It suffices to show that $\deg_x(P_n(x)) \le n-1$.

Idea. Find a linear recurrence in n for $P_n(x)$ and estimate the degree recursively.

How to find rational functions for vanishing sums

Example (Gould's Combinatorial Identities, page 63).

$$\sum_{k=0}^{2n+1} a(n,k) = 0, \quad \text{where } a(n,k) = (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+k+1}{k}}.$$

Consider

$$\sum_{k=0}^{2n+1} \frac{a(n,k)}{x+k} = \frac{P_n(x)}{x(x+1)\cdots(x+2n+1)}.$$

By creative telescoping, we get

$$b_3P_{n+3}(x) + b_2P_{n+2}(x) + b_1P_{n+1}(x) + b_0P_n(x) = 0,$$

where $b_3, b_2, b_1, b_0 \in \mathbb{Q}[n, x]$ with

$$(\deg_x(b_3), \deg_x(b_2), \deg_x(b_1), \deg_x(b_0)) = (2, 4, 6, 5).$$

Since $(\deg_x(P_1), \deg_x(P_2), \deg_x(P_3)) = (2, 4, 6)$, we get $\deg_x(P_n(x)) \le 2n$.

Vanishing sums from orthogonal polynomials

Example. Laguerre polynomials

$$L_n^{\alpha}(x) = \sum_{k=0}^n \frac{\Gamma(n+\alpha+1)}{\Gamma(k+\alpha+1)} \frac{(-x)^k}{k!(n-k)!}.$$

Consider the rational function

$$f = \frac{L_{n-1}^{\alpha}(x)}{x(x+1)\cdots(x+n)} = \sum_{k=0}^{n} \frac{a(n,k)}{x+k} \quad \Rightarrow \quad \sum_{k=0}^{n} a(n,k) = 0.$$

When $\alpha = 0$, we get

$$\sum_{k=0}^{n} \sum_{j=0}^{n-1} \binom{n}{k} (-1)^k \frac{k^j}{j!} = 0.$$

Using Legendre polynomial yields

$$\sum_{k=0}^{n+1} \sum_{j=0}^{\lceil n/2 \rceil} (-1)^k \binom{n}{k} \binom{n}{j} \binom{2n-2j}{n-2j} (-k)^{n-2j} = 0.$$

Creative vanishing sums

Example.

$$F_n := \sum_{k=0}^n (-1)^k \binom{n}{k} k^n = (-1)^n n!.$$

Let $L = S_n + (n+1)$. Then

$$\begin{split} L\left(\sum_{k=0}^{n} \binom{n}{k} (-1)^{k} k^{n}\right) &= \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{k} k^{n+1} + (n+1) \sum_{k=0}^{n+1} \binom{n}{k} (-1)^{k} k^{n} \\ &= \sum_{k=0}^{n+1} (-1)^{k} k^{n} \left(k \binom{n+1}{k} + (n+1) \binom{n}{k} \right) \\ &= \sum_{k=0}^{n+1} (-1)^{k} k^{n} (n+1) k \binom{n+1}{k}. \end{split}$$

Using Nicole's theorem, we get $L(F_n) = 0$. Remark. Note that k^n is not holonomic.

Summary

Theorem (Nicole, 1717). Let $P \in \mathbb{C}[x]$ be s.t. deg $(P) \leq n-2$. Then

$$f = rac{P(x)}{(x+eta_1)\cdots(x+eta_n)}, \quad ext{where } eta_i - eta_j \in \mathbb{Z} \setminus \{0\} ext{ for } i
eq j,$$

is summable in $\mathbb{C}(x)$.

Applications. Proving and discovering vanishing sums via residues:

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+k+1}{k}} = 0.$$

Summary

Theorem (Nicole, 1717). Let $P \in \mathbb{C}[x]$ be s.t. $\deg(P) \le n-2$. Then

$$f = \frac{P(x)}{(x + \beta_1) \cdots (x + \beta_n)}, \quad \text{where } \beta_i - \beta_j \in \mathbb{Z} \setminus \{0\} \text{ for } i \neq j,$$

is summable in $\mathbb{C}(x)$.

Applications. Proving and discovering vanishing sums via residues:

$$\sum_{k=0}^{2n+1} (-1)^k \binom{2n+1}{k} \binom{2k}{k} \frac{1}{\binom{n+k+1}{k}} = 0.$$

Thank you!

Holonomic Polynomial Sequences I. Degree Growth

Shaoshi Chen

KLMM, AMSS Chinese Academy of Sciences

ACA'21, July 23-27, 2021 (online) AADIOS

Beer and Hops

Joint with Jason P. Bell, Daqing Wan, Rong-hua Wang, and Hang Yin