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Semisimple Hopf algebras over algebraically closed
fields of characteristic 0 have an elusive nature.
On one hand they resemble finite groups (or
group algebras) in many aspects. As a result,
many of the techniques in dealing with Hopf al-
gebras try to use methods of group theory and
their representation theory, some times with a
great deal of success. On the other hand many
elementary facts about finite groups are either
hard to translate or even false.

A common key feature of groups and Hopf al-
gebras is that the tensor product V ⊗ W of
two H-module becomes an H-module in a non-
trivial way, by using the coalgebra structure of
H.

This resemblance is even stronger when (H,R)
is quasitriangular. In this case,

V ⊗W ∼= W ⊗ V
as H-modules via the R-matrix, R ∈ H ⊗ H.
This is, in a certain sense, the essence of being
quasitriangular.



Throughout, (H,µ,∆, S, ε) is a semisimple (hence
finite dimensional) Hopf algebra over an alge-
braically closed field of characteristic 0 with
multiplication µ, comultiplication ∆,

∆ : H → H ⊗H, ∆(h) =
∑

h1 ⊗ h2,

an antipode S : H → H and an augmentation
map ε : H → k. Its dual

(Hom(H, k) = H∗,∆∗, µ∗, S∗ = s, ε∗ = 1)

is a Hopf algebra (which is also semisimple) as
well.
The Drinfeld (or quantum) double of H, D(H)
is the tensor product algebra

D(H) = H∗cop ⊗H

with induced canonical Hopf algebra structure.
D(H) is always quasitriangular via the image
of the identity under the isomorphism

Homk(H,H) ∼= H ⊗H∗.

When H is semisimple, so is D(H).
We denote p ./ h ∈ D(H) where p ∈ H∗, h ∈ H.



When applied the double construction to kG

with {pg}g∈G (the g-th projection) as a basis

of kG∗ dual to {g}g∈G, we have

(ph ./ g)(ph′ ./ g
′) = δh,gh′g−1(ph ./ gg

′)

for all g, g′, h, h′ ∈ G.

Two module structures play a central role in

this context:

1. H is a left H∗-module via the hit action ↼

defined for all a ∈ H, p ∈ H∗,〈
a ↼ p, p′

〉
=
〈
a, pp′

〉
2. H is a left H-module via the adjoint action

hȧda =
∑

h1aSh2

The combination of this two actions makes H

into a D(H)-module via

(p ./ h) • a = (hȧda) ↼ s(p)



If ρV : H → Endk(V ) is a representation of H,
then its character χV is given by:

χV (h) = trace(ρV (h)).

The product of two characters is given by:

χV χW = χV⊗W
The product of characters (that coincides with
the product ∆∗ of elements in H∗) is an inte-
gral sum of irreducible characters of H. As for
groups, the character ring is a ring with invo-
lution χ∗V = χV ∗.
We define the character algebra R(H) to be
the subalgebra of H∗ generated by the charac-
ters of H. It turns out that R(H) is the algebra
of all cocommutative elements of H∗, that is
∆(x) = ∆cop(x).
The involution coincides with the antipode s.
The set of irreducible characters form a basis
for R(H).

When H is quasitriangular, then R(H) is com-
mutative.

Theorem(Kac-Zhu): R(H) is semisimple.



Let {V0, . . . Vn−1} be a complete set of non-
isomorphic irreducible H-modules of dimension
di. Let {E0, . . . En−1} and Irr(H) = {χ0, . . . , χn−1}
be the associated central primitive idempotents
and irreducible characters of H respectively,
where E0 = Λ, the idempotent integral of H
and χ0 = ε. We have:

λ = χH =
n−1∑
i=0

diχi

is an integral for H∗ satisfying 〈λ,Λ〉 = 1.
When R(H) is commutative, it has also a ba-
sis of (central) primitive idempotents {F i}n−1

i=0
where F0 = 1

dλ. Define the conjugacy class Ci

as:

Ci = Λ ↼ F iH∗.

We have shown that:
Theorem:[CW] Ci is an irreducible D(H)-module
via the action •. Moreover,

H =
⊕
i

Ci

as a D(H)-module.



We generalize also the notions of Class sum

and of a representative of a conjugacy class as

follows:

Ci = Λ ↼ dFi ηi =
Ci

dim(FiH∗)
.

As for groups Ci ∈ Z(H).

We refer to ηi as a normalized class sum.

We have:

{F i} and {ηi} are dual bases for R(H) and Z(H)

respectively.

These definitions boil down to the usual ones

when applied to finite groups G.



Let H = kG, a quasitriangular Hopf algebra

(with R = 1⊗1) and the projections {pg} be a

basis for kG)∗. We have,

Λ =
1

|G|
∑
g∈G

g g ↼ pg′ = δg,g′g

For σi ∈ G we have

Ci = Cσi = {gσig−1}g∈G
The orthogonal idempotents of R(kG) are pre-

cisely {F i} where

F i =
∑
g∈Ci

pg

Then

1

|G|
∑
g∈G

g ↼ |G|
∑
g∈Ci

pg =
∑
g∈Ci

g = Ci

and

{
∑
g∈G

g ↼ (
∑
g∈Ci

pg)ph}h∈G = {δg,hg, g ∈ Ci} = Ci.



When (H,R) quasitriangular, we have the fol-

lowing Hopf algebras maps:

fR : H∗cop → H, fR(p) =
∑〈

p,R1
〉
R2,

f∗R = fRτ : H∗op 7→ H, fRτ(p) =
∑〈

p,R2
〉
R1,

and the Drindeld map, with Q = RτR

fQ(p) = (fRτ ∗ fR)(p) =
∑〈

p,R2r1
〉
R1r2.

H is factorizable if the map fQ is a monomor-

phism. In particular D(H) is always factoriz-

able. We have a Hopf projection

Φ : D(H)→ H, Φ(p ./ h) = fR(p)h

and its dual Hopf injection

Φ∗ : H∗ −→ D(H)∗, Φ∗(p) =
∑

fRτ(p1)⊗ p2

In particular, if Vi is an irreducible H-module

with associated character χi, then it is also an

irreducible D(H)-module with associated char-

acter Φ∗(χi) ∈ R(D(H)).



In order to distinguish between H and D(H),
elements of the D(H)-theory will usually ap-
pear with ̂ .

For D(H) (in fact for any factorizable Hopf
algebra) the following sets have the same car-
dinality and the same set of indices.

{χ̂i}, {F̂i}, {Êi = f
Q̂

(F̂i)}, {η̂i = f
Q̂

(
χ̂i

d̂i
)}

of respectively irreducible characters, primitive
idempotents of R(D(H)), central primitive idem-
potents of D(H) and normalized class sums of
D(H).
Let {F t} denote the set of primitive orthogonal
idempotents of R(H). Since Φ∗ is an algebra
injection from R(H) to R(D(H)) we have that
Φ∗(F t) = F̂ t is an idempotent in R(D(H)).
Hence for each primitive idempotent F̂i ∈ R(D(H))
there exists a unique t so that

F̂iF̂
t = F̂i, and F̂iF̂

k = 0, k 6= t

We may say that F̂i ”belongs” to F̂ t



We define an equivalence relation on {F̂i} by:

Two primitive idempotents are equivalent if

they belong to the same idempotent F̂ t. That

is:

F̂i
∼= F̂j ⇐⇒ F̂iF̂

t = F̂i and F̂jF̂
t = F̂j.

We denote the equivalence class of indices of

idempotents belonging to F̂ t by It. We also

denote by It∗ the equivalence class related to

s(F̂ t).

We show

Lemma: Let {η̂j}, {ηt} be the sets of normal-

ized class sums in D(H) and H respectively.

Then

Φ(η̂j) = ηt ⇐⇒ j ∈ It.



Important elements of It
Let χ̂jCt

denote the character of the irreducible

D(H)-module Ct. That is,〈
χ̂jCt

, p ./ h
〉

= Trace(Ct,•)(p ./ h).

Motivated by Zhu Shenglin et al we prove a

key observation.

Theorem: Let Ct be a conjugacy class of H

and ηt its normalized class sum. Let χ̂jCt
∈

R(D(H)) be the character of Ct as an irre-

ducible D(H) module. Then

Φf
Q̂

(
Sχ̂jCt

dimCt

)
= Φ(Sη̂jCt

) = ηt.

Hence by the previous lemma

jCt ∈ It∗



Another equivalence relation arises from Nichols-

Richmond equivalence relation on characters.

Motivation: Hopf subalgebras of (kG)∗ are in

1 − 1 correspondence with normal subgroups

of G via the representations of their quotients.

Explicitly, each Hopf subalgebra B ⊂ (kG)∗ is

of the form k(G/N)∗ for some normal group

N BG.

Given a normal subgroup N of G, we have a

natural equivalence relation on the irreducible

characters of G, where each equivalence class

consists of all irreducible characters with the

same restriction to N (up to scalar multiplica-

tion by dimension).

This equivalence relation is expressed in the

following Nichols-Richmond equivalence rela-

tion on simple subcoalgebras of H∗, with re-

spect to a Hopf subalgebra B.



Let B be a Hopf subalgebra of H∗. Define an

equivalence relation on simple subcoalgebra of

H∗ as follows:

Bj
∼= Bk ⇐⇒ Bj ⊂ BBk.

Denote the equivalence class of Bj by [Bj].

Note that [Bj] = BBj.

Note that the Nichols-Richmond equivalence

relation yields a decomposition of H∗

H∗ =
⊕
[Bt]

BBt

where {Bt} is a set of representatives of each

equivalence class. Since each simple subcoal-

gebra Bj is generated as a coalgebra by the

irreducible character χj, we have equivalently,

χj
∼=B χk ⇐⇒ λB

χj

dj
= λB

χk
dk
,

where λB is the integral of the Hopf algebra B.



Back to D(H). Set N̂ = D(H)coΦ, that is

N̂ = {x ∈ D(H)|
∑

x1 ⊗Φ(x2) = x⊗ 1}

In fact, this is the Hopf analogue of the group-
theory kernels. Set

B̂ = f−1
Q̂

(N̂).

by [CW], B̂ is a Hopf subalgebra of D(H)∗.
Remark: When T = (Rτ)−1, then (H,T ) is
quasitriangualr as well. To avoid ambiguity, we
define fT ,ΦT etc. as for fR,Φ, etc. We proved:

B̂ = Φ∗T (H∗)

We show,
Proposition For any χ̂j, χ̂k ∈ R(D(H)),

j, k ∈ It ⇐⇒ χ̂j
∼=
B̂
χ̂k.

equivqlently,

B̂j
∼=
B̂
B̂k ⇐⇒ j, k ∈ It

In particular, we can choose as a representative
of each equivalence class the simple subcoal-
gebra BjCt

.



We can show now our main result:

Main theorem: Let (H,R) be a semisimple

quasitriangular Hopf algebra, Ct a conjugacy

class and χ̂jCt
∈ R(D(H)) its corresponding

irreducible character. Let B̂jCt
be the sim-

ple subcoalgebra of D(H)∗ generated by χ̂jCt
.

Then:

D(H)∗ =
⊕
t

Φ∗T (H∗)B̂jCt.

Hence, each irreducible character of D(H) is a

constituent of

Φ∗T (χi)χ̂jCt
.

for some irreducible H-character χi and some

conjugacy class Ct.

Equivalently, each irreducible D(H)-representation

is a direct summand of Vi⊗Ct where Vi is an ir-

reducible H-representation and Ct is some con-

jugacy class.



The special case of 1-dimensional repre-

sentations of H.

For any Hopf algebra H, if η ∈ G(H∗) (that is,
η is an algebra homomorphism in Hom(H, k))
and (M, ·) is an H-module, then we have a
modified action of H on M given by

hη̇m = (η ⇀ h) ·m =
∑
〈η, h2〉h1 ·m

If (M, ·) is an irreducible H-module, so is (M,η̇ ).
Moreover, any 1-dimension representation of
H is isomorphic to kΛη

−1
= k(Λ ↼ η−1) where

η ∈ G(H∗) and so, for all h ∈ H,

hΛη
−1

= 〈η, h〉Λη
−1
.

Consider (fR(η−1) ⊗ η) ∈ G(D(H)∗)[Radford],
then the action • of D(H) on Cs, gives rise to
the modified (fR(η−1)⊗ η)-action of D(H) on
Cs, which we denote by •

η
. Explicitly,

(p ./ h)•
η
c = ((η ⇀ h)ȧdc) ↼ s(p ↼ fR(η−1)).

Note that when H = kG then R = 1⊗1, hence
the action •

η
of H∗ on Cs boils down to •.



Based on the above, we obtain a family of ir-

reducible D(H)-modules that are modifications

of Cs on one hand and have the form Vi ⊗ Cs

on the other.

Proposition: Let η ∈ G(H∗), then

HΛη
−1
⊗ Cs ∼= (Cs,•

η
)

as D(H)-modules. In particular,

kΛ⊗ Cs ∼= Cs.

Remark If η 6= η′ then Λη 6= Λη
′
, yet, HΛη ⊗ Cs

and HΛη
′ ⊗ Cs may be isomorphic as D(H)-

modules.



A common way to construct D(kG) modules is

known (e.g. [Di,Ma,Gou]). We present below

our translated form.

Given a conjugacy classe Cσ and an irreducible

representations Mσ of its centralizer ZG(Cσ),

an irreducible D(kG)-representation V σ is con-

structed as:

V σ = kG ⊗
kZG(σ)

Mσ.

The action of D(kG) on V σ is given by:

h •
D(kG)

(a ⊗
(kZG(σ),·)

m) = ha ⊗
(kZG(σ),·)

m

p •
D(kG)

(a ⊗
(kZG(σ),·)

m) = 〈s(p), a1σSa3〉 a2 ⊗
(kZG(σ),·)

m.



Example - Representations of D(kS3): In

the following example we compare the Hopf

approach and the common D(kG) approach for

the irreducible representations of D(kS3).

Set x = (1,2) and y = (1,2,3).

So x2 = 1, y3 = 1 and xy = y2x.

Conjugacy classes of S3 are given by:

C1 = {1} Cx = {x, yx, y2x} Cy = {y, y2}

Their centralizers are given by:

ZG(1) = S3 ZG(x) = {1, x} ZG(y) = {1, y, y2}

The irreducible representations of kS3 are:

V1 = (k,ε̇ ) ∼= kΛ V2 = (k, ˙sgn ) ∼= kΛsgn

V3 = Heω = spk{eω, xeω}

where ω a third root of unity and

eω =
1

3
(1 + ωy + ω2y2)



The irreducible representations of D(kS3) are
constructed as follows. From C1 with central-
izer kS3, we obtain 3 irreducible representa-
tions of D(kS3), which are actually the 3 irre-
ducible representations of S3.

1. M1 = kS3 ⊗
kS3

V1 = V1

2. M2 = kS3 ⊗
kS3

V2 = V2

3. M3 = kS3 ⊗
kS3

V3 = V3

From Cx with centralizer ZG(x) = {1, x}, we
obtain 2 irreducible representation of D(kS3) :

4. M4 = kS3 ⊗
(kZG(x),ε̇)

k ∼= (Cx, •).

That is, M4 is the module obtained from the
trivial representation (k,ε̇ ), of kZG(x).

5. M5 = kS3 ⊗
(kZG(x), ˙sgn)

k ∼= (Cx, •
sgn

).

That is, M5 is the module obtained from the
sign representation (k, ˙sgn ) of kZG(x). Note that
sgn ∈ G(kS3)∗ and so (Cx, •

sgn
) is a modified ac-

tion of D(kS3) on Cx.



From Cy with centralizer ZG(y) = {1, y, y2}, we

obtain 3 irreducible representations of D(kS3),

6. M6 = kS3 ⊗
(ZG(y),ε̇)

k ∼= (Cy, •)

That is, M6 is the module obtained from the

trivial representation (k, ε̇), of kZG(y). Now,

7. M7 = kS3 ⊗
(ZG(y),ω̇)

k

That is, M7 is the module obtained from the

(k,ω̇ ) representation of kZG(y),

yω̇α = ωα, α ∈ k.

Finally,

8. M8 = kS3 ⊗
(ZG(y),

ω̇2)
k.

That is, M8 is the module obtained from the

(k,
ω̇2 ) representation of kZG(y), given by:

y
ω̇2α = ω2α, α ∈ k.



The Hopf decomposition described in the main

theorem into the irreducible D(kS3)-representations,

is given in the following:

1. Cx ⊗ V1 = Cx
∼= M4

2. Cx ⊗ V2 = (Cx, ˙sgn) ∼= M5

3. Cx ⊗ V3
∼= M4 ⊕M5

4. Cy ⊗ V1 = Cy ⊗ V2
∼= Cy

∼= M6

5. Cy ⊗ V3
∼= M7 ⊕M8

Note that, while Cx ⊗ V3 is a direct sum of

already known deformations of Cx, this is no

longer true for Cy ⊗ V3.



NOT NECESSARILY FOR THIS LECTURER
Let σ ∈ kG, η ∈ G((kG)∗).
Set η = η|kZG(σ) ∈ G(kZG(σ)∗). Let M be a
kZG(σ)-module. Denote by η̇ the modified kZG(σ)-
module action on M

yη̇m = (η ⇀ y) ·m

for m ∈M, y ∈ kZG(σ).

Proposition: Let σ ∈ kG, η ∈ G((kG)∗). Then

kG ⊗
(kZG(σ),η̇)

k ∼= (Cσ,•
η

)

as D(kG)-modules.

Corollary:

kG ⊗
(kZG(σ),η̇)

k ∼= (Cσ,•
η

) ∼= Cs ⊗ kΛη
−1

Remark:
If η, η′ ∈ kG∗, η 6= η′, but η|kZG(σ)) = η′

kZG(σ)),

then the modules Cs⊗kΛη
−1

and Cs⊗kΛη
′−1

are
isomorphic .


