27.7.2012

The birthday conference in honor of Amitai Regev and Doron Zeilberger

Conjugacy classes and representations of Hopf algebras and their Quantum Doubles

Miriam Cohen and Sara Westreich

Semisimple Hopf algebras over algebraically closed fields of characteristic 0 have an elusive nature. On one hand they resemble finite groups (or group algebras) in many aspects. As a result, many of the techniques in dealing with Hopf algebras try to use methods of group theory and their representation theory, some times with a great deal of success. On the other hand many elementary facts about finite groups are either hard to translate or even false.

A common key feature of groups and Hopf algebras is that the tensor product $V \otimes W$ of two *H*-module becomes an *H*-module in a nontrivial way, by using the coalgebra structure of *H*.

This resemblance is even stronger when (H, R) is **quasitriangular**. In this case,

$$V \otimes W \cong W \otimes V$$

as *H*-modules via the *R*-matrix, $R \in H \otimes H$. This is, in a certain sense, the essence of being quasitriangular. Throughout, $(H, \mu, \Delta, S, \varepsilon)$ is a semisimple (hence finite dimensional) Hopf algebra over an algebraically closed field of characteristic 0 with multiplication μ , comultiplication Δ ,

 $\Delta: H \to H \otimes H, \ \Delta(h) = \sum h_1 \otimes h_2,$

an antipode $S: H \to H$ and an augmentation map $\varepsilon: H \to k$. Its dual

 $(Hom(H,k) = H^*, \Delta^*, \mu^*, S^* = s, \varepsilon^* = 1)$

is a Hopf algebra (which is also semisimple) as well.

The Drinfeld (or quantum) double of H, D(H) is the tensor product algebra

$$D(H) = H^{*cop} \otimes H$$

with induced canonical Hopf algebra structure. D(H) is always quasitriangular via the image of the identity under the isomorphism

$$Hom_k(H,H) \cong H \otimes H^*.$$

When *H* is semisimple, so is D(H). We denote $p \bowtie h \in D(H)$ where $p \in H^*$, $h \in H$. When applied the double construction to kGwith $\{p_g\}_{g\in G}$ (the *g*-th projection) as a basis of kG^* dual to $\{g\}_{g\in G}$, we have

$$(p_h \bowtie g)(p_{h'} \bowtie g') = \delta_{h,gh'g^{-1}}(p_h \bowtie gg')$$
 for all $g,g',h,h' \in G$.

Two module structures play a central role in this context:

1. *H* is a left H^* -module via the *hit* action \leftarrow defined for all $a \in H, p \in H^*$,

$$\left\langle a \leftarrow p, p' \right\rangle = \left\langle a, pp' \right\rangle$$

2. H is a left H-module via the adjoint action

$$h_{ad}^{\cdot}a = \sum h_1 a S h_2$$

The combination of this two actions makes H into a D(H)-module via

$$(p \bowtie h) \bullet a = (h_{ad}a) \leftarrow s(p)$$

If $\rho_V : H \to End_k(V)$ is a representation of H, then its character χ_V is given by:

$$\chi_V(h) = trace(\rho_V(h)).$$

The product of two characters is given by:

 $\chi_V \chi_W = \chi_{V \otimes W}$

The product of characters (that coincides with the product Δ^* of elements in H^*) is an integral sum of irreducible characters of H. As for groups, the character ring is a ring with involution $\chi_V^* = \chi_{V^*}$.

We define the character algebra R(H) to be the subalgebra of H^* generated by the characters of H. It turns out that R(H) is the algebra of all cocommutative elements of H^* , that is $\Delta(x) = \Delta^{cop}(x)$.

The involution coincides with the antipode s. The set of irreducible characters form a basis for R(H).

When H is quasitriangular, then R(H) is commutative.

Theorem(Kac-Zhu): R(H) is semisimple.

Let $\{V_0, \ldots V_{n-1}\}$ be a complete set of nonisomorphic irreducible *H*-modules of dimension d_i . Let $\{E_0, \ldots E_{n-1}\}$ and $Irr(H) = \{\chi_0, \ldots, \chi_{n-1}\}$ be the associated central primitive idempotents and irreducible characters of *H* respectively, where $E_0 = \Lambda$, the idempotent integral of *H* and $\chi_0 = \varepsilon$. We have:

$$\lambda = \chi_H = \sum_{i=0}^{n-1} d_i \chi_i$$

is an integral for H^* satisfying $\langle \lambda, \Lambda \rangle = 1$. When R(H) is commutative, it has also a basis of (central) primitive idempotents $\{F^i\}_{i=0}^{n-1}$ where $F^0 = \frac{1}{d}\lambda$. Define the **conjugacy class** \mathfrak{C}^i as:

$$\mathfrak{C}^i = \Lambda \leftarrow F^i H^*.$$

We have shown that:

Theorem: [CW] \mathfrak{C}^i is an irreducible D(H)-module via the action \bullet . Moreover,

$$H = \bigoplus_i \mathfrak{C}^i$$

as a D(H)-module.

We generalize also the notions of **Class sum** and of a representative of a conjugacy class as follows:

$$C^i = \Lambda \leftarrow dF_i \qquad \eta^i = \frac{C^i}{\dim(F_i H^*)}$$

As for groups $C^i \in Z(H)$.

We refer to η^i as a **normalized class sum**. We have:

 $\{F^i\}$ and $\{\eta^i\}$ are dual bases for R(H) and Z(H) respectively.

These definitions boil down to the usual ones when applied to finite groups G.

Let H = kG, a quasitriangular Hopf algebra (with $R = 1 \otimes 1$) and the projections $\{p_g\}$ be a basis for kG)*. We have,

$$\Lambda = \frac{1}{|G|} \sum_{g \in G} g \qquad g \leftarrow p_{g'} = \delta_{g,g'} g$$

For $\sigma_i \in G$ we have

$$\mathfrak{C}^i = \mathfrak{C}_{\sigma_i} = \{g\sigma_i g^{-1}\}_{g \in G}$$

The orthogonal idempotents of R(kG) are precisely $\{F^i\}$ where

$$F^i = \sum_{g \in \mathfrak{E}^i} p_g$$

Then

$$\frac{1}{|G|} \sum_{g \in G} g \leftarrow |G| \sum_{g \in \mathfrak{C}^i} p_g = \sum_{g \in \mathfrak{C}^i} g = C^i$$

and

$$\{\sum_{g\in G}g \leftarrow (\sum_{g\in\mathfrak{C}^i} p_g)p_h\}_{h\in G} = \{\delta_{g,h}g, g\in\mathfrak{C}^i\} = \mathfrak{C}^i.$$

When (H, R) quasitriangular, we have the following Hopf algebras maps:

$$f_R: H^{*cop} \to H, f_R(p) = \sum \langle p, R^1 \rangle R^2,$$

 $f_R^* = f_{R^{\tau}} : H^{*op} \mapsto H, \ f_{R^{\tau}}(p) = \sum \langle p, R^2 \rangle R^1,$ and the Drindeld map, with $Q = R^{\tau}R$

$$f_Q(p) = (f_{R^{\tau}} * f_R)(p) = \sum \langle p, R^2 r^1 \rangle R^1 r^2.$$

H is **factorizable** if the map f_Q is a monomorphism. In particular D(H) is always factorizable. We have a Hopf projection

 $\Phi: D(H) \to H, \ \Phi(p \bowtie h) = f_R(p)h$

and its dual Hopf injection

$$\Phi^*: H^* \longrightarrow D(H)^*, \ \Phi^*(p) = \sum f_{R^{\tau}}(p_1) \otimes p_2$$

In particular, if V_i is an irreducible *H*-module with associated character χ_i , then it is also an irreducible D(H)-module with associated character $\Phi^*(\chi_i) \in R(D(H))$. In order to distinguish between H and D(H), elements of the D(H)-theory will usually appear with[^].

For D(H) (in fact for any factorizable Hopf algebra) the following sets have the same cardinality and the same set of indices.

$$\{\widehat{\chi}_i\}, \{\widehat{F}_i\}, \{\widehat{E}_i = f_{\widehat{Q}}(\widehat{F_i})\}, \{\widehat{\eta}_i = f_{\widehat{Q}}(\frac{\widehat{\chi}_i}{\widehat{d}_i})\}$$

of respectively irreducible characters, primitive idempotents of R(D(H)), central primitive idempotents of D(H) and normalized class sums of D(H).

Let $\{F^t\}$ denote the set of primitive orthogonal idempotents of R(H). Since Φ^* is an algebra injection from R(H) to R(D(H)) we have that $\Phi^*(F^t) = \hat{F}^t$ is an idempotent in R(D(H)). Hence for each primitive idempotent $\hat{F}_i \in R(D(H))$ there exists a unique t so that

$$\widehat{F}_i \widehat{F}^t = \widehat{F}_i$$
, and $\widehat{F}_i \widehat{F}^k = 0, \ k \neq t$

We may say that \widehat{F}_i "belongs" to \widehat{F}^t

We define an equivalence relation on $\{\hat{F}_i\}$ by: Two primitive idempotents are equivalent if they belong to the same idempotent \hat{F}^t . That is:

$$\widehat{F}_i \cong \widehat{F}_j \iff \widehat{F}_i \widehat{F}^t = \widehat{F}_i \text{ and } \widehat{F}_j \widehat{F}^t = \widehat{F}_j.$$

We denote the equivalence class of indices of idempotents belonging to \hat{F}^t by I_t . We also denote by I_{t^*} the equivalence class related to $s(\hat{F}^t)$.

We show

Lemma: Let $\{\hat{\eta}_j\}$, $\{\eta^t\}$ be the sets of normalized class sums in D(H) and H respectively. Then

$$\Phi(\widehat{\eta}_j) = \eta^t \Longleftrightarrow j \in I_t.$$

Important elements of I_t

Let $\hat{\chi}_{j_{\mathfrak{C}^t}}$ denote the character of the irreducible D(H)-module \mathfrak{C}^t . That is,

$$\left\langle \widehat{\chi}_{j_{\mathfrak{C}^t}}, p \bowtie h \right\rangle = Trace_{(\mathfrak{C}^t, \bullet)}(p \bowtie h).$$

Motivated by Zhu Shenglin et al we prove a key observation.

Theorem: Let \mathfrak{C}^t be a conjugacy class of Hand η^t its normalized class sum. Let $\hat{\chi}_{j_{\mathfrak{C}^t}} \in R(D(H))$ be the character of \mathfrak{C}^t as an irreducible D(H) module. Then

$$\Phi f_{\widehat{Q}}\left(\frac{S\widehat{\chi}_{j_{\mathfrak{C}^t}}}{\dim \mathfrak{C}^t}\right) = \Phi(S\widehat{\eta}_{j_{\mathfrak{C}^t}}) = \eta^t.$$

Hence by the previous lemma

$$j_{\mathfrak{C}^t} \in I_{t^*}$$

Another equivalence relation arises from Nichols-Richmond equivalence relation on characters.

Motivation: Hopf subalgebras of $(kG)^*$ are in 1 - 1 correspondence with normal subgroups of G via the representations of their quotients. Explicitly, each Hopf subalgebra $B \subset (kG)^*$ is of the form $k(G/N)^*$ for some normal group $N \triangleright G$.

Given a normal subgroup N of G, we have a natural equivalence relation on the irreducible characters of G, where each equivalence class consists of all irreducible characters with the same restriction to N (up to scalar multiplication by dimension).

This equivalence relation is expressed in the following Nichols-Richmond equivalence relation on simple subcoalgebras of H^* , with respect to a Hopf subalgebra B.

Let *B* be a Hopf subalgebra of H^* . Define an equivalence relation on simple subcoalgebra of H^* as follows:

$$B_j \cong B_k \Longleftrightarrow B_j \subset BB_k.$$

Denote the equivalence class of B_j by $[B_j]$. Note that $[B_j] = BB_j$.

Note that the Nichols-Richmond equivalence relation yields a decomposition of H^*

$$H^* = \bigoplus_{[B_t]} BB_t$$

where $\{B_t\}$ is a set of representatives of each equivalence class. Since each simple subcoalgebra B_j is generated as a coalgebra by the irreducible character χ_j , we have equivalently,

$$\chi_j \cong_B \chi_k \iff \lambda_B \frac{\chi_j}{d_j} = \lambda_B \frac{\chi_k}{d_k},$$

where λ_B is the integral of the Hopf algebra B.

Back to D(H). Set $\widehat{N} = D(H)^{co\Phi}$, that is

 $\widehat{N} = \{x \in D(H) | \sum x_1 \otimes \Phi(x_2) = x \otimes 1\}$

In fact, this is the Hopf analogue of the grouptheory kernels. Set

$$\widehat{B} = f_{\widehat{Q}}^{-1}(\widehat{N}).$$

by [CW], \hat{B} is a Hopf subalgebra of $D(H)^*$. **Remark**: When $T = (R^{\tau})^{-1}$, then (H,T) is quasitriangual as well. To avoid ambiguity, we define f_T, Φ_T etc. as for f_R, Φ, etc . We proved:

$$\widehat{B} = \Phi_T^*(H^*)$$

We show,

Proposition For any $\hat{\chi}_j, \hat{\chi}_k \in R(D(H)),$

$$j,k \in I_t \iff \widehat{\chi}_j \cong_{\widehat{B}} \widehat{\chi}_k.$$

equivalently,

$$\widehat{B}_j \cong_{\widehat{B}} \widehat{B}_k \Longleftrightarrow j, k \in I_t$$

In particular, we can choose as a representative of each equivalence class the simple subcoalgebra $B_{j_{ot}}$. We can show now our main result:

Main theorem: Let (H, R) be a semisimple quasitriangular Hopf algebra, \mathfrak{C}^t a conjugacy class and $\widehat{\chi}_{j_{\mathfrak{C}^t}} \in R(D(H))$ its corresponding irreducible character. Let $\widehat{B}_{j_{\mathfrak{C}^t}}$ be the simple subcoalgebra of $D(H)^*$ generated by $\widehat{\chi}_{j_{\mathfrak{C}^t}}$. Then:

$$D(H)^* = \bigoplus_t \Phi_T^*(H^*) \widehat{B}_{j_{\mathfrak{C}^t}}.$$

Hence, each irreducible character of D(H) is a constituent of

$$\Phi_T^*(\chi_i)\widehat{\chi}_{j_{\mathfrak{o}t}}.$$

for some irreducible *H*-character χ_i and some conjugacy class \mathfrak{C}^t .

Equivalently, each irreducible D(H)-representation is a direct summand of $V_i \otimes \mathfrak{C}^t$ where V_i is an irreducible H-representation and \mathfrak{C}^t is some conjugacy class.

The special case of 1-dimensional representations of H.

For any Hopf algebra H, if $\eta \in G(H^*)$ (that is, η is an algebra homomorphism in Hom(H,k)) and (M, \cdot) is an H-module, then we have a modified action of H on M given by

$$h_{\dot{\eta}}m = (\eta \rightharpoonup h) \cdot m = \sum \langle \eta, h_2 \rangle h_1 \cdot m$$

If (M, \cdot) is an irreducible *H*-module, so is $(M,_{\dot{\eta}})$. Moreover, any 1-dimension representation of *H* is isomorphic to $k\Lambda^{\eta^{-1}} = k(\Lambda \leftarrow \eta^{-1})$ where $\eta \in G(H^*)$ and so, for all $h \in H$,

$$h\Lambda^{\eta^{-1}} = \langle \eta, h \rangle \Lambda^{\eta^{-1}}.$$

Consider $(f_R(\eta^{-1}) \otimes \eta) \in G(D(H)^*)[\text{Radford}]$, then the action • of D(H) on \mathfrak{C}^s , gives rise to the modified $(f_R(\eta^{-1}) \otimes \eta)$ -action of D(H) on \mathfrak{C}^s , which we denote by •. Explicitly,

$$(p \bowtie h)_{\underset{\eta}{\bullet}c} = ((\eta \rightharpoonup h)_{ad}^{\cdot}c) \leftarrow s(p \leftarrow f_R(\eta^{-1})).$$

Note that when H = kG then $R = 1 \otimes 1$, hence the action \bullet_{η} of H^* on \mathfrak{C}^s boils down to \bullet . Based on the above, we obtain a family of irreducible D(H)-modules that are modifications of \mathfrak{C}^s on one hand and have the form $V_i \otimes \mathfrak{C}^s$ on the other.

Proposition: Let $\eta \in G(H^*)$, then

$$H\Lambda^{\eta^{-1}}\otimes\mathfrak{C}^s\cong(\mathfrak{C}^s,_{\eta^{-1}})$$

as D(H)-modules. In particular,

$$k \wedge \otimes \mathfrak{C}^s \cong \mathfrak{C}_s.$$

Remark If $\eta \neq \eta'$ then $\Lambda^{\eta} \neq \Lambda^{\eta'}$, yet, $H\Lambda^{\eta} \otimes \mathfrak{C}^s$ and $H\Lambda^{\eta'} \otimes \mathfrak{C}^s$ may be isomorphic as D(H)modules. A common way to construct D(kG) modules is known (e.g. [Di,Ma,Gou]). We present below our translated form.

Given a conjugacy classe \mathfrak{C}^{σ} and an irreducible representations M^{σ} of its centralizer $Z_G(\mathfrak{C}^{\sigma})$, an irreducible D(kG)-representation V^{σ} is constructed as:

$$V^{\sigma} = kG \underset{kZ_G(\sigma)}{\otimes} M^{\sigma}.$$

The action of D(kG) on V^{σ} is given by:

$$h_{D(kG)}(a \bigotimes_{(kZ_G(\sigma),\cdot)} m) = ha \bigotimes_{(kZ_G(\sigma),\cdot)} m$$

 $p_{D(kG)}(a \bigotimes_{(kZ_G(\sigma),\cdot)} m) = \langle s(p), a_1 \sigma S a_3 \rangle a_2 \bigotimes_{(kZ_G(\sigma),\cdot)} m.$

Example - Representations of $D(kS_3)$: In the following example we compare the Hopf approach and the common D(kG) approach for the irreducible representations of $D(kS_3)$.

Set x = (1,2) and y = (1,2,3). So $x^2 = 1$, $y^3 = 1$ and $xy = y^2x$. Conjugacy classes of S_3 are given by:

 $\mathfrak{C}_1 = \{1\}$ $\mathfrak{C}_x = \{x, yx, y^2x\}$ $\mathfrak{C}_y = \{y, y^2\}$ Their centralizers are given by:

 $Z_G(1) = S_3$ $Z_G(x) = \{1, x\}$ $Z_G(y) = \{1, y, y^2\}$ The irreducible representations of kS_3 are:

 $V_1 = (k_{,\dot{\varepsilon}}) \cong k \wedge \qquad V_2 = (k_{,s\dot{g}n}) \cong k \wedge^{sgn}$

$$V_{\mathsf{3}} = He_{\omega} = sp_k\{e_{\omega}, xe_{\omega}\}$$

where ω a third root of unity and

$$e_{\omega} = \frac{1}{3}(1 + \omega y + \omega^2 y^2)$$

The irreducible representations of $D(kS_3)$ are constructed as follows. From \mathfrak{C}_1 with centralizer kS_3 , we obtain 3 irreducible representations of $D(kS_3)$, which are actually the 3 irreducible representations of S_3 .

1. $M_1 = kS_3 \bigotimes_{kS_3} V_1 = V_1$ 2. $M_2 = kS_3 \bigotimes_{kS_3} V_2 = V_2$ 3. $M_3 = kS_3 \bigotimes_{kS_3} V_3 = V_3$

From \mathfrak{C}_x with centralizer $Z_G(x) = \{1, x\}$, we obtain 2 irreducible representation of $D(kS_3)$:

4.
$$M_4 = kS_3 \bigotimes_{(kZ_G(x), \varepsilon)} k \cong (\mathfrak{C}_x, \bullet).$$

That is, M_4 is the module obtained from the trivial representation $(k_{,\dot{\varepsilon}})$, of $kZ_G(x)$.

5.
$$M_5 = kS_3 \bigotimes_{(kZ_G(x), sgn)} k \cong (\mathfrak{C}_x, \bullet_{sgn}).$$

That is, M_5 is the module obtained from the sign representation (k_{sgn}) of $kZ_G(x)$. Note that $sgn \in G(kS_3)^*$ and so $(\mathfrak{C}_x, \bullet_{sgn})$ is a modified action of $D(kS_3)$ on \mathfrak{C}_x .

From \mathfrak{C}_y with centralizer $Z_G(y) = \{1, y, y^2\}$, we obtain 3 irreducible representations of $D(kS_3)$,

6.
$$M_6 = kS_3 \bigotimes_{(Z_G(y), \varepsilon)} k \cong (\mathfrak{C}_y, \bullet)$$

That is, M_6 is the module obtained from the trivial representation $(k, \dot{\varepsilon})$, of $kZ_G(y)$. Now,

7.
$$M_7 = kS_3 \bigotimes_{(Z_G(y),\dot{\omega})} k$$

That is, M_7 is the module obtained from the $(k,_{\dot{\omega}})$ representation of $kZ_G(y)$,

$$y_{\dot{\omega}}\alpha = \omega\alpha, \, \alpha \in k.$$

Finally,

8.
$$M_8 = kS_3 \bigotimes_{(Z_G(y), \dot{y}_2)} k$$

That is, M_8 is the module obtained from the (k, j_2) representation of $kZ_G(y)$, given by:

$$y_{\dot{\omega}^2} \alpha = \omega^2 \alpha, \ \alpha \in k.$$

The Hopf decomposition described in the main theorem into the irreducible $D(kS_3)$ -representations, is given in the following:

1.
$$\mathfrak{C}_x \otimes V_1 = \mathfrak{C}_x \cong M_4$$

- 2. $\mathfrak{C}_x \otimes V_2 = (\mathfrak{C}_x, sgn) \cong M_5$
- 3. $\mathfrak{C}_x \otimes V_3 \cong M_4 \oplus M_5$
- 4. $\mathfrak{C}_y \otimes V_1 = \mathfrak{C}_y \otimes V_2 \cong \mathfrak{C}_y \cong M_6$
- 5. $\mathfrak{C}_y \otimes V_3 \cong M_7 \oplus M_8$

Note that, while $\mathfrak{C}_x \otimes V_3$ is a direct sum of already known deformations of \mathfrak{C}_x , this is no longer true for $\mathfrak{C}_y \otimes V_3$.

NOT NECESSARILY FOR THIS LECTURER Let $\sigma \in kG$, $\eta \in G((kG)^*)$. Set $\overline{\eta} = \eta_{|kZ_G(\sigma)} \in G(kZ_G(\sigma)^*)$. Let \overline{M} be a $kZ_G(\sigma)$ -module. Denote by $\frac{1}{\eta}$ the modified $kZ_G(\sigma)$ module action on \overline{M}

$$y_{\overline{\eta}}\overline{m} = (\eta \rightharpoonup y) \cdot \overline{m}$$

for $\overline{m} \in \overline{M}, y \in kZ_G(\sigma)$.

Proposition: Let $\sigma \in kG$, $\eta \in G((kG)^*)$. Then

$$kG \underset{(kZ_G(\sigma), \underline{\dot{\eta}})}{\otimes} k \cong (\mathfrak{C}_{\sigma, \bullet})$$

as D(kG)-modules.

Corollary:

$$kG \underset{(kZ_G(\sigma),_{\overline{\eta}})}{\otimes} k \cong (\mathfrak{C}_{\sigma,_{\Phi}}) \cong \mathfrak{C}_s \otimes k \wedge^{\eta^{-1}}$$

Remark:

If $\eta, \eta' \in kG^*$, $\eta \neq \eta'$, but $\eta_{|kZ_G(\sigma))} = \eta'_{kZ_G(\sigma))}$, then the modules $\mathfrak{C}_s \otimes k \Lambda^{\eta^{-1}}$ and $\mathfrak{C}_s \otimes k \Lambda^{\eta'^{-1}}$ are isomorphic.