27.7.2012

The birthday conference in honor of Amitai Regev and Doron Zeilberger

## Conjugacy classes and representations of Hopf algebras and their Quantum Doubles

Miriam Cohen and Sara Westreich

Semisimple Hopf algebras over algebraically closed fields of characteristic 0 have an elusive nature. On one hand they resemble finite groups (or group algebras) in many aspects. As a result, many of the techniques in dealing with Hopf algebras try to use methods of group theory and their representation theory, some times with a great deal of success. On the other hand many elementary facts about finite groups are either hard to translate or even false.

A common key feature of groups and Hopf algebras is that the tensor product $V \otimes W$ of two $H$-module becomes an $H$-module in a nontrivial way, by using the coalgebra structure of $H$.

This resemblance is even stronger when $(H, R)$ is quasitriangular. In this case,

$$
V \otimes W \cong W \otimes V
$$

as $H$-modules via the $R$-matrix, $R \in H \otimes H$. This is, in a certain sense, the essence of being quasitriangular.

Throughout, $(H, \mu, \Delta, S, \varepsilon)$ is a semisimple (hence finite dimensional) Hopf algebra over an algebraically closed field of characteristic 0 with multiplication $\mu$, comultiplication $\Delta$,

$$
\Delta: H \rightarrow H \otimes H, \Delta(h)=\sum h_{1} \otimes h_{2}
$$

an antipode $S: H \rightarrow H$ and an augmentation $\operatorname{map} \varepsilon: H \rightarrow k$. Its dual

$$
\left(H o m(H, k)=H^{*}, \Delta^{*}, \mu^{*}, S^{*}=s, \varepsilon^{*}=1\right)
$$

is a Hopf algebra (which is also semisimple) as well.
The Drinfeld (or quantum) double of $H, D(H)$ is the tensor product algebra

$$
D(H)=H^{* c o p} \otimes H
$$

with induced canonical Hopf algebra structure. $D(H)$ is always quasitriangular via the image of the identity under the isomorphism

$$
\operatorname{Hom}_{k}(H, H) \cong H \otimes H^{*}
$$

When $H$ is semisimple, so is $D(H)$.
We denote $p \bowtie h \in D(H)$ where $p \in H^{*}, h \in H$.

When applied the double construction to $k G$ with $\left\{p_{g}\right\}_{g \in G}$ (the $g$-th projection) as a basis of $k G^{*}$ dual to $\{g\}_{g \in G}$, we have

$$
\left(p_{h} \bowtie g\right)\left(p_{h^{\prime}} \bowtie g^{\prime}\right)=\delta_{h, g h^{\prime} g^{-1}}\left(p_{h} \bowtie g g^{\prime}\right)
$$

for all $g, g^{\prime}, h, h^{\prime} \in G$.

Two module structures play a central role in this context:

1. $H$ is a left $H^{*}$-module via the hit action $\leftharpoonup$ defined for all $a \in H, p \in H^{*}$,

$$
\left\langle a \leftharpoonup p, p^{\prime}\right\rangle=\left\langle a, p p^{\prime}\right\rangle
$$

2. $H$ is a left $H$-module via the adjoint action

$$
h_{a d} a=\sum h_{1} a S h_{2}
$$

The combination of this two actions makes $H$ into a $D(H)$-module via

$$
(p \bowtie h) \bullet a=\left(h_{\dot{a d}} a\right) \leftharpoonup s(p)
$$

If $\rho_{V}: H \rightarrow \operatorname{End}_{k}(V)$ is a representation of $H$, then its character $\chi_{V}$ is given by:

$$
\chi_{V}(h)=\operatorname{trace}\left(\rho_{V}(h)\right) .
$$

The product of two characters is given by:

$$
\chi_{V} \chi_{W}=\chi_{V \otimes W}
$$

The product of characters (that coincides with the product $\Delta^{*}$ of elements in $H^{*}$ ) is an integral sum of irreducible characters of $H$. As for groups, the character ring is a ring with involution $\chi_{V}^{*}=\chi_{V^{*}}$.
We define the character algebra $R(H)$ to be the subalgebra of $H^{*}$ generated by the characters of $H$. It turns out that $R(H)$ is the algebra of all cocommutative elements of $H^{*}$, that is $\Delta(x)=\Delta^{c o p}(x)$.
The involution coincides with the antipode $s$. The set of irreducible characters form a basis for $R(H)$.

When $H$ is quasitriangular, then $R(H)$ is commutative.

Theorem(Kac-Zhu): $R(H)$ is semisimple.

Let $\left\{V_{0}, \ldots V_{n-1}\right\}$ be a complete set of nonisomorphic irreducible $H$-modules of dimension $d_{i}$. Let $\left\{E_{0}, \ldots E_{n-1}\right\}$ and $\operatorname{Irr}(H)=\left\{\chi_{0}, \ldots, \chi_{n-1}\right\}$ be the associated central primitive idempotents and irreducible characters of $H$ respectively, where $E_{0}=\Lambda$, the idempotent integral of $H$ and $\chi_{0}=\varepsilon$. We have:

$$
\lambda=\chi_{H}=\sum_{i=0}^{n-1} d_{i} \chi_{i}
$$

is an integral for $H^{*}$ satisfying $\langle\lambda, \Lambda\rangle=1$. When $R(H)$ is commutative, it has also a basis of (central) primitive idempotents $\left\{F^{i}\right\}_{i=0}^{n-1}$ where $F^{0}=\frac{1}{d} \lambda$. Define the conjugacy class $\mathfrak{c}^{i}$ as:

$$
\mathfrak{C}^{i}=\wedge \leftharpoonup F^{i} H^{*} .
$$

We have shown that:
Theorem: [CW] $\mathfrak{C}^{i}$ is an irreducible $D(H)$-module via the action •. Moreover,

$$
H=\bigoplus_{i} \mathfrak{C}^{i}
$$

as a $D(H)$-module.

We generalize also the notions of Class sum and of a representative of a conjugacy class as follows:

$$
C^{i}=\wedge \leftharpoonup d F_{i} \quad \eta^{i}=\frac{C^{i}}{\operatorname{dim}\left(F_{i} H^{*}\right)} .
$$

As for groups $C^{i} \in Z(H)$.
We refer to $\eta^{i}$ as a normalized class sum.
We have:
$\left\{F^{i}\right\}$ and $\left\{\eta^{i}\right\}$ are dual bases for $R(H)$ and $Z(H)$ respectively.

These definitions boil down to the usual ones when applied to finite groups $G$.

Let $H=k G$, a quasitriangular Hopf algebra (with $R=1 \otimes 1$ ) and the projections $\left\{p_{g}\right\}$ be a basis for $k G)^{*}$. We have,

$$
\wedge=\frac{1}{|G|} \sum_{g \in G} g \quad g \leftharpoonup p_{g^{\prime}}=\delta_{g, g^{\prime}} g
$$

For $\sigma_{i} \in G$ we have

$$
\mathfrak{C}^{i}=\mathfrak{C}_{\sigma_{i}}=\left\{g \sigma_{i} g^{-1}\right\}_{g \in G}
$$

The orthogonal idempotents of $R(k G)$ are precisely $\left\{F^{i}\right\}$ where

$$
F^{i}=\sum_{g \in \mathfrak{C}^{i}} p_{g}
$$

Then

$$
\frac{1}{|G|} \sum_{g \in G} g \leftharpoonup|G| \sum_{g \in \mathbb{C}^{i}} p_{g}=\sum_{g \in \mathfrak{C}^{i}} g=C^{i}
$$

and

$$
\left\{\sum_{g \in G} g \leftharpoonup\left(\sum_{g \in \mathfrak{C}^{i}} p_{g}\right) p_{h}\right\}_{h \in G}=\left\{\delta_{g, h} g, g \in \mathfrak{C}^{i}\right\}=\mathfrak{C}^{i} .
$$

When ( $H, R$ ) quasitriangular, we have the following Hopf algebras maps:

$$
\begin{gathered}
f_{R}: H^{* c o p} \rightarrow H, f_{R}(p)=\sum\left\langle p, R^{1}\right\rangle R^{2}, \\
f_{R}^{*}=f_{R^{\tau}}: H^{* o p} \mapsto H, f_{R^{\tau}}(p)=\sum\left\langle p, R^{2}\right\rangle R^{1},
\end{gathered}
$$

and the Drindeld map, with $Q=R^{\tau} R$

$$
f_{Q}(p)=\left(f_{R^{\tau}} * f_{R}\right)(p)=\sum\left\langle p, R^{2} r^{1}\right\rangle R^{1} r^{2} .
$$

$H$ is factorizable if the map $f_{Q}$ is a monomorphism. In particular $D(H)$ is always factorizable. We have a Hopf projection

$$
\Phi: D(H) \rightarrow H, \Phi(p \bowtie h)=f_{R}(p) h
$$

and its dual Hopf injection

$$
\Phi^{*}: H^{*} \longrightarrow D(H)^{*}, \Phi^{*}(p)=\sum f_{R^{\tau}}\left(p_{1}\right) \otimes p_{2}
$$

In particular, if $V_{i}$ is an irreducible $H$-module with associated character $\chi_{i}$, then it is also an irreducible $D(H)$-module with associated character $\Phi^{*}\left(\chi_{i}\right) \in R(D(H))$.

In order to distinguish between $H$ and $D(H)$, elements of the $D(H)$-theory will usually appear with^.

For $D(H)$ (in fact for any factorizable Hopf algebra) the following sets have the same cardinality and the same set of indices.

$$
\left\{\widehat{\chi}_{i}\right\},\left\{\widehat{F}_{i}\right\},\left\{\widehat{E}_{i}=f_{\widehat{Q}}\left(\widehat{F_{i}}\right)\right\},\left\{\widehat{\eta}_{i}=f_{\widehat{Q}}\left(\frac{\widehat{\chi}_{i}}{\widehat{d}_{i}}\right)\right\}
$$

of respectively irreducible characters, primitive idempotents of $R(D(H))$, central primitive idempotents of $D(H)$ and normalized class sums of $D(H)$.
Let $\left\{F^{t}\right\}$ denote the set of primitive orthogonal idempotents of $R(H)$. Since $\Phi^{*}$ is an algebra injection from $R(H)$ to $R(D(H))$ we have that $\Phi^{*}\left(F^{t}\right)=\widehat{F}^{t}$ is an idempotent in $R(D(H))$. Hence for each primitive idempotent $\widehat{F}_{i} \in R(D(H))$ there exists a unique $t$ so that

$$
\widehat{F}_{i} \widehat{F}^{t}=\widehat{F}_{i}, \text { and } \widehat{F}_{i} \widehat{F}^{k}=0, k \neq t
$$

We may say that $\widehat{F}_{i}$ "belongs" to $\widehat{F}^{t}$

We define an equivalence relation on $\left\{\widehat{F}_{i}\right\}$ by: Two primitive idempotents are equivalent if they belong to the same idempotent $\widehat{F}^{t}$. That is:

$$
\widehat{F}_{i} \cong \widehat{F}_{j} \Longleftrightarrow \widehat{F}_{i} \widehat{F}^{t}=\widehat{F}_{i} \text { and } \widehat{F}_{j} \widehat{F}^{t}=\widehat{F}_{j} .
$$

We denote the equivalence class of indices of idempotents belonging to $\widehat{F}^{t}$ by $I_{t}$. We also denote by $I_{t^{*}}$ the equivalence class related to $s\left(\widehat{F}^{t}\right)$.

We show
Lemma: Let $\left\{\hat{\eta}_{j}\right\},\left\{\eta^{t}\right\}$ be the sets of normalized class sums in $D(H)$ and $H$ respectively. Then

$$
\Phi\left(\hat{\eta}_{j}\right)=\eta^{t} \Longleftrightarrow j \in I_{t} .
$$

## Important elements of $I_{t}$

Let $\widehat{\chi}_{j_{c t}}$ denote the character of the irreducible $D(H)$-module $\mathfrak{C}^{t}$. That is,

$$
\left\langle\widehat{\chi}_{j_{\mathfrak{e}^{t}}}, p \bowtie h\right\rangle=\operatorname{Trace}_{\left(\mathfrak{C}^{t}, \bullet\right)}(p \bowtie h) .
$$

Motivated by Zhu Shenglin et al we prove a key observation.
Theorem: Let $\mathfrak{C}^{t}$ be a conjugacy class of $H$ and $\eta^{t}$ its normalized class sum. Let $\widehat{\chi}_{\mathrm{c}^{t}} \in$ $R\left(D(H)\right.$ ) be the character of $\mathfrak{C}^{t}$ as an irreducible $D(H)$ module. Then

$$
\Phi f_{\widehat{Q}}\left(\frac{S \widehat{\chi}_{\mathrm{c}^{t}}}{\operatorname{dim} \mathfrak{C}^{t}}\right)=\Phi\left(S \widehat{\eta}_{j_{\mathrm{c}^{t}}}\right)=\eta^{t} .
$$

Hence by the previous Iemma

$$
j_{\mathfrak{C}^{t}} \in I_{t^{*}}
$$

Another equivalence relation arises from NicholsRichmond equivalence relation on characters.

Motivation: Hopf subalgebras of $(k G)^{*}$ are in $1-1$ correspondence with normal subgroups of $G$ via the representations of their quotients. Explicitly, each Hopf subalgebra $B \subset(k G)^{*}$ is of the form $k(G / N)^{*}$ for some normal group $N \triangleright G$.
Given a normal subgroup $N$ of $G$, we have a natural equivalence relation on the irreducible characters of $G$, where each equivalence class consists of all irreducible characters with the same restriction to $N$ (up to scalar multiplication by dimension).
This equivalence relation is expressed in the following Nichols-Richmond equivalence relation on simple subcoalgebras of $H^{*}$, with respect to a Hopf subalgebra $B$.

Let $B$ be a Hopf subalgebra of $H^{*}$. Define an equivalence relation on simple subcoalgebra of $H^{*}$ as follows:

$$
B_{j} \cong B_{k} \Longleftrightarrow B_{j} \subset B B_{k}
$$

Denote the equivalence class of $B_{j}$ by $\left[B_{j}\right]$. Note that $\left[B_{j}\right]=B B_{j}$.
Note that the Nichols-Richmond equivalence relation yields a decomposition of $H^{*}$

$$
H^{*}=\bigoplus_{\left[B_{t}\right]} B B_{t}
$$

where $\left\{B_{t}\right\}$ is a set of representatives of each equivalence class. Since each simple subcoalgebra $B_{j}$ is generated as a coalgebra by the irreducible character $\chi_{j}$, we have equivalently,

$$
\chi_{j} \cong{ }_{B} \chi_{k} \Longleftrightarrow \lambda_{B} \frac{\chi_{j}}{d_{j}}=\lambda_{B} \frac{\chi_{k}}{d_{k}}
$$

where $\lambda_{B}$ is the integral of the Hopf algebra $B$.

Back to $D(H)$. Set $\widehat{N}=D(H)^{c o \Phi}$, that is

$$
\widehat{N}=\left\{x \in D(H) \mid \sum x_{1} \otimes \Phi\left(x_{2}\right)=x \otimes 1\right\}
$$

In fact, this is the Hopf analogue of the grouptheory kernels. Set

$$
\widehat{B}=f_{\widehat{Q}}^{-1}(\widehat{N})
$$

by [CW], $\widehat{B}$ is a Hopf subalgebra of $D(H)^{*}$. Remark: When $T=\left(R^{\tau}\right)^{-1}$, then $(H, T)$ is quasitriangualr as well. To avoid ambiguity, we define $f_{T}, \Phi_{T}$ etc. as for $f_{R}, \Phi$, etc. We proved:

$$
\widehat{B}=\Phi_{T}^{*}\left(H^{*}\right)
$$

We show,
Proposition For any $\widehat{\chi}_{j}, \widehat{\chi}_{k} \in R(D(H))$,

$$
j, k \in I_{t} \Longleftrightarrow \widehat{\chi}_{j} \cong_{\widehat{B}} \widehat{\chi}_{k}
$$

equivqlently,

$$
\widehat{B}_{j} \cong_{\widehat{B}} \widehat{B}_{k} \Longleftrightarrow j, k \in I_{t}
$$

In particular, we can choose as a representative of each equivalence class the simple subcoalgebra $B_{j_{\mathbb{C}^{t}}}$.

We can show now our main result:

Main theorem: Let ( $H, R$ ) be a semisimple quasitriangular Hopf algebra, $\mathfrak{C}^{t}$ a conjugacy class and $\widehat{\chi}_{j_{c^{t}}} \in R(D(H))$ its corresponding irreducible character. Let $\widehat{B}_{j_{c t}}$ be the simple subcoalgebra of $D(H)^{*}$ generated by $\widehat{\chi}_{j_{e^{t}}}$. Then:

$$
D(H)^{*}=\bigoplus_{t} \Phi_{T}^{*}\left(H^{*}\right) \widehat{B}_{j_{\mathrm{ct}}} .
$$

Hence, each irreducible character of $D(H)$ is a constituent of

$$
\Phi_{T}^{*}\left(\chi_{i}\right) \widehat{\chi}_{j_{e^{t}}} .
$$

for some irreducible $H$-character $\chi_{i}$ and some conjugacy class $\mathfrak{C}^{t}$.
Equivalently, each irreducible $D(H)$-representation is a direct summand of $V_{i} \otimes \mathfrak{C}^{t}$ where $V_{i}$ is an irreducible $H$-representation and $\mathfrak{C}^{t}$ is some conjugacy class.

## The special case of 1-dimensional repre-

 sentations of $H$.For any Hopf algebra $H$, if $\eta \in G\left(H^{*}\right)$ (that is, $\eta$ is an algebra homomorphism in $\operatorname{Hom}(H, k))$ and $(M, \cdot)$ is an $H$-module, then we have a modified action of $H$ on $M$ given by

$$
h_{\dot{\eta}} m=(\eta \rightharpoonup h) \cdot m=\sum\left\langle\eta, h_{2}\right\rangle h_{1} \cdot m
$$

If $(M, \cdot)$ is an irreducible $H$-module, so is $(M, \dot{\eta})$. Moreover, any 1-dimension representation of $H$ is isomorphic to $k \wedge^{\eta^{-1}}=k\left(\wedge \leftharpoonup \eta^{-1}\right)$ where $\eta \in G\left(H^{*}\right)$ and so, for all $h \in H$,

$$
h \wedge^{\eta^{-1}}=\langle\eta, h\rangle \wedge^{\eta^{-1}}
$$

Consider $\left(f_{R}\left(\eta^{-1}\right) \otimes \eta\right) \in G\left(D(H)^{*}\right)$ [Radford], then the action • of $D(H)$ on $\mathfrak{C}^{s}$, gives rise to the modified $\left(f_{R}\left(\eta^{-1}\right) \otimes \eta\right)$-action of $D(H)$ on $\mathfrak{C}^{s}$, which we denote by •. Explicitly,

$$
(p \bowtie h)_{\dot{\eta}}^{\bullet} c=\left((\eta \rightharpoonup h)_{\dot{a d}} c\right) \leftharpoonup s\left(p \leftharpoonup f_{R}\left(\eta^{-1}\right)\right) .
$$

Note that when $H=k G$ then $R=1 \otimes 1$, hence the action $\underset{\eta}{\bullet}$ of $H^{*}$ on $\mathfrak{C}^{s}$ boils down to $\bullet$.

Based on the above, we obtain a family of irreducible $D(H)$-modules that are modifications of $\mathfrak{C}^{s}$ on one hand and have the form $V_{i} \otimes \mathfrak{C}^{s}$ on the other.
Proposition: Let $\eta \in G\left(H^{*}\right)$, then

$$
H \wedge^{\eta^{-1}} \otimes \mathfrak{C}^{s} \cong\left(\mathfrak{C}_{, \stackrel{\bullet}{s}}\right)
$$

as $D(H)$-modules. In particular,

$$
k \wedge \otimes \mathfrak{C}^{s} \cong \mathfrak{C}_{s}
$$

Remark If $\eta \neq \eta^{\prime}$ then $\wedge^{\eta} \neq \wedge^{\eta^{\prime}}$, yet, $H \wedge^{\eta} \otimes \mathfrak{C}^{s}$ and $H \wedge^{\eta^{\prime}} \otimes \mathfrak{C}^{s}$ may be isomorphic as $D(H)$ modules.

A common way to construct $D(k G)$ modules is known (e.g. [Di,Ma,Gou]). We present below our translated form.
Given a conjugacy classe $\mathfrak{C}^{\sigma}$ and an irreducible representations $M^{\sigma}$ of its centralizer $Z_{G}\left(\mathfrak{C}^{\sigma}\right)$, an irreducible $D(k G)$-representation $V^{\sigma}$ is constructed as:

$$
V^{\sigma}=k G \underset{k Z_{G}(\sigma)}{\otimes} M^{\sigma} .
$$

The action of $D(k G)$ on $V^{\sigma}$ is given by:

$$
\begin{gathered}
h_{D(k G)}^{\bullet}\left(a \underset{\left(k Z_{G}(\sigma), \cdot\right)}{\otimes} m\right)=h a \underset{\left(k Z_{G}(\sigma), \cdot\right)}{\otimes} m \\
p_{D(k G)}\left(a_{\left(k Z_{G}(\sigma), \cdot\right)}^{\otimes} m\right)=\left\langle s(p), a_{1} \sigma S a_{3}\right\rangle a_{2} \underset{\left(k Z_{G}(\sigma), \cdot\right)}{\otimes} m .
\end{gathered}
$$

Example - Representations of $D\left(k S_{3}\right)$ : In the following example we compare the Hopf approach and the common $D(k G)$ approach for the irreducible representations of $D\left(k S_{3}\right)$.

Set $x=(1,2)$ and $y=(1,2,3)$.
So $x^{2}=1, y^{3}=1$ and $x y=y^{2} x$.
Conjugacy classes of $S_{3}$ are given by:

$$
\mathfrak{C}_{1}=\{1\} \quad \mathfrak{C}_{x}=\left\{x, y x, y^{2} x\right\} \quad \mathfrak{C}_{y}=\left\{y, y^{2}\right\}
$$

Their centralizers are given by:
$Z_{G}(1)=S_{3} \quad Z_{G}(x)=\{1, x\} \quad Z_{G}(y)=\left\{1, y, y^{2}\right\}$
The irreducible representations of $k S_{3}$ are:

$$
\begin{gathered}
V_{1}=(k, \dot{\varepsilon}) \cong k \wedge \quad V_{2}=\left(k, s_{s \dot{g} n}\right) \cong k \wedge^{s g n} \\
V_{3}=H e_{\omega}=s p_{k}\left\{e_{\omega}, x e_{\omega}\right\}
\end{gathered}
$$

where $\omega$ a third root of unity and

$$
e_{\omega}=\frac{1}{3}\left(1+\omega y+\omega^{2} y^{2}\right)
$$

The irreducible representations of $D\left(k S_{3}\right)$ are constructed as follows. From $\mathfrak{C}_{1}$ with centralizer $k S_{3}$, we obtain 3 irreducible representations of $D\left(k S_{3}\right)$, which are actually the 3 irreducible representations of $S_{3}$.

1. $M_{1}=k S_{3} \otimes V_{1}=V_{1}$
2. $M_{2}=k S_{3 S_{3}}^{\otimes} V_{2}=V_{2}$
3. $M_{3}=k S_{3 S_{3}} \otimes V_{3}=V_{3}$

From $\mathfrak{C}_{x}$ with centralizer $Z_{G}(x)=\{1, x\}$, we obtain 2 irreducible representation of $D\left(k S_{3}\right)$ :

$$
\text { 4. } M_{4}=k S_{\left(k Z_{G}(x), \dot{\varepsilon}\right)}^{\otimes} k \cong\left(\mathfrak{C}_{x}, \bullet\right) \text {. }
$$

That is, $M_{4}$ is the module obtained from the trivial representation $(k, \dot{\varepsilon})$, of $k Z_{G}(x)$.

$$
\text { 5. } M_{5}=k S_{3} \underset{\left(k Z_{G}(x), \operatorname{sgn}\right)}{\otimes} k \cong\left(\mathfrak{C}_{x}, \stackrel{\bullet}{\operatorname{sgn}}\right) \text {. }
$$

That is, $M_{5}$ is the module obtained from the sign representation ( $k, \operatorname{sig}_{\mathrm{g} n}$ ) of $k Z_{G}(x)$. Note that $\operatorname{sgn} \in G\left(k S_{3}\right)^{*}$ and so $\left(\mathfrak{C}_{x}, \boldsymbol{\operatorname { s g n }}^{\bullet}\right)$ is a modified action of $D\left(k S_{3}\right)$ on $\mathfrak{C}_{x}$.

From $\mathfrak{C}_{y}$ with centralizer $Z_{G}(y)=\left\{1, y, y^{2}\right\}$, we obtain 3 irreducible representations of $D\left(k S_{3}\right)$,

$$
\text { 6. } M_{6}=k S_{3} \underset{\left(Z_{G}(y), \dot{\varepsilon}\right)}{\otimes} k \cong\left(\mathfrak{C}_{y}, \bullet\right)
$$

That is, $M_{6}$ is the module obtained from the trivial representation $(k, \dot{\varepsilon})$, of $k Z_{G}(y)$. Now,

$$
\text { 7. } M_{7}=k S_{3} \underset{\left(Z_{G}(y)_{, \dot{\omega}}\right)}{\otimes} k
$$

That is, $M_{7}$ is the module obtained from the $(k, \dot{\omega})$ representation of $k Z_{G}(y)$,

$$
y_{\dot{\omega}} \alpha=\omega \alpha, \alpha \in k
$$

Finally,

$$
\text { 8. } M_{8}=k S_{3} \underset{\left(Z_{G}(y), \omega^{2}\right)}{\otimes} k .
$$

That is, $M_{8}$ is the module obtained from the $\left(k, \omega^{2}\right)$ representation of $k Z_{G}(y)$, given by:

$$
y_{\omega^{2}} \alpha=\omega^{2} \alpha, \alpha \in k .
$$

The Hopf decomposition described in the main theorem into the irreducible $D\left(k S_{3}\right)$-representations, is given in the following:

> 1. $\mathfrak{C}_{x} \otimes V_{1}=\mathfrak{C}_{x} \cong M_{4}$
> 2. $\mathfrak{C}_{x} \otimes V_{2}=\left(\mathfrak{C}_{x}\right.$, sgn $) \cong M_{5}$
> 3. $\mathfrak{C}_{x} \otimes V_{3} \cong M_{4} \oplus M_{5}$
> 4. $\mathfrak{C}_{y} \otimes V_{1}=\mathfrak{C}_{y} \otimes V_{2} \cong \mathfrak{C}_{y} \cong M_{6}$
> 5. $\mathfrak{C}_{y} \otimes V_{3} \cong M_{7} \oplus M_{8}$

Note that, while $\mathfrak{C}_{x} \otimes V_{3}$ is a direct sum of already known deformations of $\mathfrak{C}_{x}$, this is no longer true for $\mathfrak{C}_{y} \otimes V_{3}$.

## NOT NECESSARILY FOR THIS LECTURER

Let $\sigma \in k G, \eta \in G\left((k G)^{*}\right)$.
Set $\bar{\eta}=\eta_{\mid k Z_{G}(\sigma)} \in G\left(k Z_{G}(\sigma)^{*}\right)$. Let $\bar{M}$ be a $k Z_{G}(\sigma)$-module. Denote by $\dot{\eta}^{\text {m }}$ the modified $k Z_{G}(\sigma)$ module action on $\bar{M}$

$$
y_{\dot{\bar{\eta}}} \bar{m}=(\eta \rightharpoonup y) \cdot \bar{m}
$$

for $\bar{m} \in \bar{M}, y \in k Z_{G}(\sigma)$.
Proposition: Let $\sigma \in k G, \eta \in G\left((k G)^{*}\right)$. Then

$$
k G \underset{\left(k Z_{G}(\sigma), \dot{\bar{\eta}}\right)}{\otimes} k \cong\left(\mathfrak{C}_{\sigma, \bullet}\right)
$$

as $D(k G)$-modules.

## Corollary:

$$
k G_{\left(k Z_{G}(\sigma), \dot{\bar{\eta}}\right)}^{\otimes} k \cong\left(\mathfrak{C}_{\sigma, \stackrel{\bullet}{\eta}}\right) \cong \mathfrak{C}_{s} \otimes k \wedge^{\eta^{-1}}
$$

## Remark:

If $\eta, \eta^{\prime} \in k G^{*}, \eta \neq \eta^{\prime}$, but $\eta_{\left.\mid k Z_{G}(\sigma)\right)}=\eta_{\left.k Z_{G}(\sigma)\right)}^{\prime}$, then the modules $\mathfrak{C}_{s} \otimes k \wedge^{\eta^{-1}}$ and $\mathfrak{C}_{s} \otimes k \wedge^{\eta^{\prime-1}}$ are isomorphic .

