Superalgebras described by root data

Joint project: Maria Gorelik, Weizmann Institute of Science Vladimit Hinich, University of Haifa Vera Serganova, University of California, Berkeley

July 28, 2021

< 回 > < 回 > < 回 > .

Joint project: Maria Gorelik, Weizmann Institute of Science Vladin Superalgebras described by root data

Example

 \mathfrak{sl}_3 : Lie algebra of 3×3 matrices of trace 0 ([a, b] := ab - ba). $\mathfrak{sl}_3 = \tilde{\mathfrak{g}}/\mathfrak{r}$, where $\tilde{\mathfrak{g}} = \tilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \tilde{\mathfrak{n}}_+$: \mathfrak{h} is commutative, spanned by h_1, h_2 ; $\tilde{\mathfrak{n}}_+$ is a free Lie algebra generated by e_1, e_2 $\tilde{\mathfrak{n}}_-$ is a free Lie algebra generated by f_1, f_2 we fix $\alpha_1, \alpha_2 \in \mathfrak{h}^*$ by $\langle h_i, \alpha_j \rangle = a_{ij}$ for $(a_{ij}) := \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$

(**)
$$[h, e_i] = \alpha_i(h)e_i$$
, $[h, f_i] = -\alpha_i(h)f_i$, $[e_i, f_j] = \delta_{ij}h_i$.

- \mathfrak{r} is a maximal ideal satisfying $\mathfrak{r} \cap \mathfrak{h} = 0$ (\mathfrak{r} is unique).
- Serre relations: τ is generated by [e₁, [e₁, e₂]], [f₁, [f₁, f₂]]
 [e₂, [e₂, e₁]], [f₂, [f₂, f₁]].

Observation: for $e'_1 := f_1, e'_2 := [e_1, e_2], f'_1 := e_1, f'_2 := -[f_2, f_1]$ we have $[e_1, [e_1, e_2]] = [f'_1, e'_2], [f_1, [f_1, f_2]] = [e'_1, f'_2].$

More examples

Using the same procedure for another matrix $A = (a_{ij})$ we get:

- semisimple Lie algebra $\mathfrak{sl}_2 \times \mathfrak{sl}_2$ for $(a_{ij}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix};$
- fin.-dim. simple Lie algebras $\mathfrak{sp}_2 = \mathfrak{o}_3$ and G_2 for $\begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$ respectively;
- affine Lie algebras for $\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$;
- a Kac-Moody algebra with infinite GK dimension for $\begin{pmatrix} 2 & a_{12} \\ a_{21} & 2 \end{pmatrix}$ with $a_{12}, a_{21} \in \mathbb{Z}_{<0}, a_{12}a_{21} > 4$.

Remarks:

1. All semisimple Lie algebras can be obtained by this procedure (for some $A \in Mat_{n \times n}(\mathbb{Z})$)

2. The affine Lie algebras are the infinite-dimensional Kac-Moody algebras with finite Gelfand-Kirillov dimension.

Groupoid of root data

We will now define a groupoid of root data *R*.

Once and forever we fix a finite set *X*. The objects of *R* (root data) are the triples $(\mathfrak{h}, a : X \to \mathfrak{h}, b : X \to \mathfrak{h}^*)$ where \mathfrak{h} is a fin.-dim. vector space over \mathbb{C} and a, b are "injective maps". We have generating arrows of three types:

- 1. reflections $r_x : (\mathfrak{h}, a, b) \to (\mathfrak{h}, a', b')$ defined by the source (\mathfrak{h}, a, b) and reflectable elements $x \in X$;
- 2. tautological $t_{\theta} : (\mathfrak{h}, a, b) \to (\mathfrak{h}', a', b')$ determined by

 $\theta:\mathfrak{h}\overset{\sim}{\to}\mathfrak{h}'.$ Here $a':=\theta\circ a,\,b'=((\theta^*)^{-1})\circ b.$

3. homothety $h_{\lambda} : (\mathfrak{h}, a, b) \to (\mathfrak{h}, a', b)$ determined by

 $\lambda : X \to \mathbb{C}^*$, with $a'(x) = \lambda(x)a(x)$.

This collection of objects and arrows (=quiver) generates a free category \tilde{R} . The groupoid R is defined as the one with the same objects as \tilde{R} , and whose arrows are equivalence classes of the arrows above, where roughly speaking, two compositions of arrows (\mathfrak{h}, a, b) \rightarrow (\mathfrak{h}', a', b') are equivalent if they induce the same isomorphism $\mathfrak{h} \xrightarrow{\sim} \mathfrak{h}'$.

Reflections

<u>Cartan matrix</u>: $A = (a_{xy})$, where $a_{xy} := \langle a(x), b(y) \rangle$. An element $x \in X$ is called <u>reflectable</u> at $v = (\mathfrak{h}, a, b)$ if $a_{xx} \neq 0$ and $\frac{2a_{xy}}{a_{xx}} \in \mathbb{Z}_{\leq 0}$. The <u>reflection</u> $r_x : v = (\mathfrak{h}, a, b) \rightarrow v' = (\mathfrak{h}, a', b')$ is given by

$$a'(y) := a(y) - 2\frac{a_{yx}}{a_{xx}}a(x), \quad b'(y) := b(y) - 2\frac{a_{xy}}{a_{xx}}b(x).$$

One has $r_x^2 = Id$. Cartan matrices are preserved by r_x , t_θ ; for $h_\lambda : (\mathfrak{h}, a, b) \to (\mathfrak{h}, a', b)$ one has A' = DA, where *D* is an invertible diagonal matrix. In this talk we consider only connected components R_0 such that for each $v \in R_0$ each $x \in X$ is reflectable.

イロン 不良 とくほう 不良 とうほ

Let $v = (\mathfrak{h}, a, b) \in R$. We assign to v a Lie superalgebra $\tilde{\mathfrak{g}}(v)$ generated by $\mathfrak{h} = \mathfrak{h}(v)$, $\tilde{e}_x, \tilde{f}_x, x \in X$, subject to the relations

1. $[\mathfrak{h},\mathfrak{h}] = 0,$ 2. $[h, \tilde{e}_x] = \langle b(x), h \rangle \tilde{e}_x, \quad [h, \tilde{f}_x] = -\langle b(x), h \rangle \tilde{f}_x$ 3. $[\tilde{e}_x, \tilde{f}_y] = \delta_{xy} a(x).$

<u>Definition</u> Let $R_0 \subset R$ be a connected component. A root Lie algebra \mathfrak{g} supported on R_0 is a collection of Lie algebras $\mathfrak{g}(v), v \in R_0$ with epimorphisms $\psi_v : \tilde{\mathfrak{g}}(v) \twoheadrightarrow \mathfrak{g}(v)$ such that

- 1. Ker $\psi_{\mathbf{v}} \cap \mathfrak{h}(\mathbf{v}) = \mathbf{0}$
- 2. for any arrow $\gamma: v \to v'$ in R_0 there exists $\mathfrak{g}(v) \stackrel{\sim}{\to} \mathfrak{g}(v')$ extending the corresponding isomorphism $\mathfrak{h}(v) \stackrel{\sim}{\to} \mathfrak{h}(v')$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We call a component R_0 <u>admissible</u> if it admits a root algebra. If R_0 is admissible, one has the universal root algebra $\tilde{\mathfrak{g}}(v)/\mathfrak{s}$ and the smallest root algebra $\mathfrak{g}_{KM} := \tilde{\mathfrak{g}}(v)/\mathfrak{r}$: $\tilde{\mathfrak{g}}(v)/\mathfrak{s} \twoheadrightarrow \mathfrak{g}(v) \twoheadrightarrow \mathfrak{g}_{KM}$ for any root algebra $\mathfrak{g}(v)$. One has $\tilde{\mathfrak{g}}(v) = \bigoplus_{\alpha \in \mathfrak{h}^*} \tilde{\mathfrak{g}}(v)_{\alpha}$ and $\tilde{e}_x \in \tilde{\mathfrak{g}}(v)_{b(x)}$.

- s is generated by $[\tilde{\mathfrak{g}}(v)_{b'(x)}, \tilde{\mathfrak{g}}(v)_{b'(y)}]$ for $x \neq y$, where $v' = (\mathfrak{h}, a', b') \in R_0$;
- \mathfrak{r} is the maximal ideal of $\tilde{\mathfrak{g}}(v)$ satisfying $\mathfrak{r} \cap \mathfrak{h} = 0$.

We say that R_0 is <u>symmetrizable</u> if $a_{xy} = a_{yx}$ for each x, y for some $v \in R_0$.

<u>Theorem</u> (O. Gabber- V. Kac, 1981) If R_0 is symmetrizable, then R_0 admits a unique root algebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Superworld: Groupoid of root data

The objects of *R* (root data) are the quadruples $(\mathfrak{h}, a : X \to \mathfrak{h}, b : X \to \mathfrak{h}^*, p : X \to \mathbb{Z}_2)$ An element $x \in X$ is called *reflectable* at $v = (\mathfrak{h}, a, b, p)$ if the following conditions hold.

1. If
$$a_{xx} = 0$$
 then $p(x) = 1$;
2. If $a_{xx} \neq 0$ and $p(x) = 0$ then $\frac{2a_{xy}}{a_{xx}} \in \mathbb{Z}_{\leq 0}$.
3. If $a_{xx} \neq 0$ and $p(x) = 1$ then $\frac{a_{xy}}{a_{xx}} \in \mathbb{Z}_{\leq 0}$.
The reflection $r_x : v \to v' = (\mathfrak{h}, a', b', p')$ is defined as follows.
If $a_{xx} \neq 0$, then $p' := p$ and
 $a'(y) := a(y) - 2\frac{a_{yx}}{a_{xx}}a(x), \quad b'(y) := b(y) - 2\frac{a_{xy}}{a_{xx}}b(x).$
If $a_{xx} = 0$ then $p(x) = 1$ and $(a'(y), b'(y), p'(y))$ is given by
 $\begin{cases} (-a(x), -b(x), p(x)) & \text{if } x = y, \\ (a(y), b(y), p(y)) & \text{if } x \neq y, \quad a_{xy} = 0, \\ (a(y) + \frac{a_{yx}}{a_{xy}}a(x), b(y) + b(x), 1 + p(y)) & \text{if } a_{xy} \neq 0. \end{cases}$

We call a component R_0 <u>quasi-symmetric</u> if for all $v \in R_0$ $a_{xy} = 0$ implies $a_{yx} = 0$ for all $x, y \in X$.

Symmetricity \implies Quasi-symmetricity \iff Admissibility

The Kac-Moody superalgebras g_{KM} were classified in V. Kac in Adv. in Math., 1977, J. W. van de Leur Comm. in Algebra, 1989, and by C. Hoyt and V. Serganova ("Kac-Moody superalgebras and integrability", 2011).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Root (super)algebras: examples and classification

Example |X| = 1, p(x) = 1, $a_{xx} = 0$. In this case dim $\mathfrak{h} \ge 2$. For dim $\mathfrak{h} = 2$, $\tilde{\mathfrak{g}}(v) = \mathfrak{g}(v)$ is of dimension (4|2) and $\mathfrak{g}_{KM} = \mathfrak{gl}(1|1)$ has dimension (2|2). Root algebra is not unique!

Example If g is an indecomposable fin-dim. Kac-Moody algebra, then g is a root algebra for some admissible R_0 ; moreover, $g \cong g_{KM}$ if $g \neq gl(1|1)$.

Theorem (Hinich, Serganova, G. 2021)

- 1. Let R_0 be admissible and symmetrizable. The root superalgebra is unique if $\mathfrak{g}_{KM} \neq \mathfrak{gl}(1|1)$, $A(n|n)^{(i)}$. and is not unique if $\mathfrak{g}_{KM} = \mathfrak{gl}(1|1)$, $A(n|n)^{(1)}$.
- 2. In the non-symmetrizable affine cases the root superalgebra is unique for S(2|1, a) and is not unique for $q(n)^{(2)}$.

Remark: relations in [1] were studied in H. Yamane, PRIMS 1999.