# Quadrant Walks Starting <br> Outside the Quadrant 



Manuel Kauers • Institute for Algebra • JKU
Joint work with Manfred Buchacher and Amelie Trotignon

$P_{n}(x)^{2}-P_{n+1}(x) P_{n-1}(x) \geq 0$


$\bigcirc$






$\bigcirc$







Consider the generating function

$$
\begin{aligned}
& F(x, y,t)=\frac{1}{x y} \\
& \quad+\left(\frac{1}{x}+\frac{1}{x y^{2}}+\frac{1}{y}+\frac{1}{x^{2} y}\right) t \\
& \quad+\left(2+2 \frac{1}{x^{2}}+\frac{1}{x y^{3}}+2 \frac{1}{y^{2}}+2 \frac{1}{x^{2} y^{2}}+\frac{1}{x^{3} y}+2 \frac{1}{x y}+\frac{x}{y}+\frac{y}{x}\right) t^{2} \\
& \quad+\cdots \in \mathbb{Q}\left[x, x^{-1}, y, y^{-1}\right][[t]] .
\end{aligned}
$$

Consider the generating function

$$
\begin{aligned}
& F(x, y, t)=\frac{1}{x y} \\
& +\left(\frac{1}{x}+\frac{1}{x y^{2}}+\frac{1}{y}+\frac{1}{x^{2} y}\right) t \\
& +\left(2+2 \frac{1}{x^{2}}+\frac{1}{x y^{3}}+2 \frac{1}{y^{2}}+2 \frac{1}{x^{2} y^{2}}+\frac{1}{x^{3} y}+2 \frac{1}{x y}+\frac{x}{y}+\frac{y}{x}\right) t^{2} \\
& +\cdots \in \mathbb{Q}\left[x, x^{-1}, y, y^{-1}\right][[t]] \text {. } \\
& \text { Let } F_{x}(y, t)=\left[x^{0}\right] F(x, y, t) \text { and } F_{y}(x, t)=\left[y^{0}\right] F(x, y, t) \text {. }
\end{aligned}
$$

We have the functional equation

$$
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) F(x, y, t)=\frac{1}{x y}-\frac{t}{x} F_{x}(y, t)-\frac{t}{y} F_{y}(x, t)
$$

We have the functional equation

$$
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t)
$$

We have the functional equation

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t) & =1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right) & =1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right)=1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t)
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t) & =1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right) & =1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right) & =1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t) \\
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right) & =1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right)=1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) & \left(x y F(x, y, t)-\frac{1}{x} y F\left(\frac{1}{x}, y, t\right)\right. \\
& \left.+x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)-\frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)\right)=0 .
\end{aligned}
$$

We have the functional equation

$$
\begin{aligned}
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x y F(x, y, t)=1-t y F_{x}(y, t)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x} y F\left(\frac{1}{x}, y, t\right)=1-t y F_{x}(y, t)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t x F_{y}(x, t) \\
& \left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right) \frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)=1-t \frac{1}{y} F_{x}\left(\frac{1}{y}, t\right)-t \frac{1}{x} F_{y}\left(\frac{1}{x}, t\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(1-\left(x+y+\frac{1}{x}+\frac{1}{y}\right) t\right)( & x y F(x, y, t)-\frac{1}{x} y F\left(\frac{1}{x}, y, t\right) \\
& \left.+x \frac{1}{y} F\left(x, \frac{1}{y}, t\right)-\frac{1}{x y} F\left(\frac{1}{x}, \frac{1}{y}, t\right)\right)=0
\end{aligned}
$$

"Orbit sum"

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.
The theorem requires $F(x, y, t)$ to be analytic at $x=y=0$.

Famous theorem:

If the orbit sum is zero, the generating function is algebraic.

More or less.
The theorem requires $F(x, y, t)$ to be analytic at $x=y=0$.
In fact, our $F(x, y, t)$ is not algebraic.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.


Let

$$
\begin{aligned}
F_{1} & =\left[x^{<} y^{<}\right] F \\
F_{2} & =\left[x^{\geq} y^{<}\right] F \\
F_{3} & =\left[x^{<} y^{\geq}\right] F \\
F_{4} & =\left[x^{\geq} y^{\geq}\right] F \\
\text { so that } F & =F_{1}+F_{2}+F_{3}+F_{4} .
\end{aligned}
$$



Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.


Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.

Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.


Let

$$
\begin{aligned}
& F_{1}=\left[x^{<} y^{<}\right] F \\
& F_{2}=\left[x^{\geq} y^{<}\right] F \\
& F_{3}=\left[x^{<} y^{\geq}\right] F \\
& F_{4}=\left[x^{\geq} y^{\geq}\right] F
\end{aligned}
$$

so that $F=F_{1}+F_{2}+F_{3}+F_{4}$.


Then:

$$
F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}{1-\left(x+y+x^{-1}+y^{-1}\right) t}
$$

$$
F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{=: T}}{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=: S} t} t
$$

$$
\begin{aligned}
& F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{=T}}{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=S} t} \\
& F_{2}(x, y, t)=t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}(x, y, t)=\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{1-T}}{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=:} t} \\
& F_{2}(x, y, t)=t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right) \\
& F_{3}(x, y, t)=F_{2}(y, x, t)
\end{aligned}
$$

$$
\begin{aligned}
F_{1}(x, y, t) & =\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}_{=: S}})}{=: T} \\
F_{2}(x, y, t) & =t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right) \\
F_{3}(x, y, t) & =F_{2}(y, x, t) \\
F_{4}(x, y, t) & =\frac{1}{x y}\left[y^{>}\right]\left(\left(\left[x^{-1}\right] \frac{\left(y-y^{-1}\right)\left[y^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[x^{>}\right] \frac{x-x^{-1}}{1-S t}\right)\right) \\
& +\frac{1}{x y}\left[x^{>}\right]\left(\left(\left[y^{-1}\right] \frac{\left(x-x^{-1}\right)\left[x^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
F_{1}(x, y, t) & =\left[x^{<} y^{<}\right] \frac{\overbrace{x y-\frac{x}{y}-\frac{y}{x}+\frac{1}{x y}}^{1-\underbrace{\left(x+y+x^{-1}+y^{-1}\right)}} t}{=T} \\
F_{2}(x, y, t) & =t \frac{1}{y}\left[x^{<}\right]\left(\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\left(\left[y^{-1}\right] \frac{T}{1-S t}\right)\right) \\
F_{3}(x, y, t) & =F_{2}(y, x, t) \\
F_{4}(x, y, t) & =\frac{1}{x y}\left[y^{>}\right]\left(\left(\left[x^{-1}\right] \frac{\left(y-y^{-1}\right)\left[y^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[x^{>}\right] \frac{x-x^{-1}}{1-S t}\right)\right) \\
& +\frac{1}{x y}\left[x^{>}\right]\left(\left(\left[y^{-1}\right] \frac{\left(x-x^{-1}\right)\left[x^{-1}\right] \frac{T}{1-S t}}{1-S t}\right)\left(\left[y^{>}\right] \frac{y-y^{-1}}{1-S t}\right)\right) .
\end{aligned}
$$

So F is D-finite.

Marko Petkovšek

Herbert S. Wilf
DORON ZEILBERGER

Mut Fervelby Donalo E. Knuin

### 1.4 Proofs by example?

which shows that in order to prove that every integer is a sum of four squares it
suffices to prove it for primes, and

$$
\left(a_{1}^{2}+a_{1}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}=\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} .
$$

which immediately implies the Cauchy-Schwarz inequality in two dimensions, About our terminal logos:
Throughout this book, whenever you see the computer terminal logo in the margin, like this, and if its screen is white, it means that we are about to do something that is
 very computer-ish, so is if that collowa in. ifer skipped, if you're mainly
erested in the mathematics, or especially savored, if you are a computer type.
When the computer terminal logo appears with a darkened screen, the normal mathematical flow will resume, at which point you may either resume reading, or flee to the next terminal logo, again depending, respectively, on your proclivities

### 1.4 Proofs by example?

Are the following proofs accoptable?
Theorem 1.4.1 For all integers $n \geq 0$,

Using computer algebra, we can derive from these expressions that the sequence $a_{n}$ defined by

$$
F(1,1, t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

provably satisfies the recurrence

$$
\begin{aligned}
& (2+n)(4+n)(6+n)\left(-1+2 n+n^{2}\right) a_{n+2} \\
& -4(3+n)\left(-18+4 n+9 n^{2}+2 n^{3}\right) a_{n+1} \\
& -16(1+n)(2+n)(3+n)\left(2+4 n+n^{2}\right) a_{n}=0 .
\end{aligned}
$$

Using computer algebra, we can derive from these expressions that the sequence $a_{n}$ defined by

$$
F(1,1, t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

provably satisfies the recurrence

$$
\begin{aligned}
& (2+n)(4+n)(6+n)\left(-1+2 n+n^{2}\right) a_{n+2} \\
& -4(3+n)\left(-18+4 n+9 n^{2}+2 n^{3}\right) a_{n+1} \\
& -16(1+n)(2+n)(3+n)\left(2+4 n+n^{2}\right) a_{n}=0 .
\end{aligned}
$$

Its only asymptotic solutions are $\frac{4^{n}}{n}$ and $\frac{(-4)^{n}}{n^{3}}$, so $F(1,1, t)$ cannot be algebraic.





|  | Mon 21/6 | Tue 22/6 | Wed 23/6 | Thu 24/6 | Fri 25/6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 09.30 | 930-1000 <br> Virtualy shared coffeeftea wreke-upl (al tumes are <br> Pans time UTC+z) | $9.30-10.00$ Virtually shered coffee/toa wake-upt | $9.30-10: 00$ Virtually shared coffee) taa waka-upl | $930-10: 00$ Virtually shered coffeo/toa waka-upt | $930-10.00$ Virtually shared coffee/tas waka-upt |
|  | 10.00-1100 <br> Invanents for walks zvoiding a quadrant <br> Mirelle Bousquet-mélou | 1000-11:00 <br> Generalized pipe dreams and lower-upper scheme <br> Paulzinn-justin | 1000-11:00 <br> Nonintersacting Arownian bridges in tha flat-to-flat geometry | 1000-12:00 <br> How to prove or disprave the algebracity of a generating function using a computer | 10000-11:00 <br> Heaps and lattice paths <br> Xavier viennot |
| 10:30 | Chamnoncyur Eanderier | Choumanchrstion Krattenthaler | Satya Majumiar | Alin Bostan Chaimankilian Raschel | ChumaniEnica Duchu |
|  | $\begin{aligned} & 1100-1130 \\ & \text { Discussions } \end{aligned}$ | $11700.1130$ <br> Discussions | $\begin{aligned} & 11: 00-1130 \\ & \text { Discussions } \end{aligned}$ | $\begin{aligned} & 1100-1190 \\ & \text { Discussions } \end{aligned}$ | 1100.1130 Discuscione |
| 11:30 | 11.30-12.00 <br> Extracting asymptotics from serves coefficients <br> TonyGuttmann <br> 12:00-12:30 <br> Computation of tight enclosures for Laplacian eigenvalues | 11:30-12:30 <br> Winding of smple walks on the square lattice Timothy Budd Choumar:Christan Krattenthaler | 11:30-12:30 <br> Triangular ice combinatorics and linnit shapes Philippo Di Francasco | 11 30-12:00 <br> Boltzmann sampling in line ar tirme: ireducible context-fras structures 1200-1230 <br> Bijections between walks in a triangle and bounded Motzkin paths | 11 30-12:30 <br> The alternating sign matrices/clescending plane partitions relation $n+3$ pairs of equivalent statistics Ilae Fischer Chaiman:Michael Wainer |
| 12:30 | 12:30-13:30 Shared lunch (discussions/socialization) | $12: 30-1330$ Shared lunch (disoussions/socialization) | 12.30 .13 30 Shared lunch (discussions/socialization) | $1230-13$. 30 Shared lurch (discussions/socialization) | 1230-13.3n Shared lunch (discrussions/socialization) |
| 13:30 | 13:30-1430 Poster session | $13.30-1430$ Posterzession | $1330 \cdot 14: 30$ Postersession | $\begin{aligned} & 13: 3 \mathrm{Q}-14: 90 \\ & \text { Poster sessian } \end{aligned}$ | 13.3n-1430 Postersession |
| 14:30 | 1430-7500 <br> Counting lattice paths by the number of crossings and major index <br> 1500-1530 <br> A Markav chain on tableaux and an asymmetnc zero ranqe process | 14:30-1530 <br> The uniform spanning tree in 4 dimensions Perla Sousi Chouman:Wolfgang Woess | 14:30-1530 <br> Generating function technologies applications to lattice paths <br> Robin Pomantle <br> ChoumanMork Wigon | 1430-15.30 <br> Mating of discrete wees and walks in the quarterplane <br> Philippe Biane <br> ChoumanGWes Schaeffer | $1430-1500$ <br> Vectorial kemel method and lattice parths with pattems <br> $1500-1530$ <br> kukasiewicz waks and generalized tandem walks <br> Karen Yeats |
| 15:30 | $1530-1600$ Discussiong | $1530-1$ fina Discussions | 1530:18:no <br> Puzzle hunt! (family participation is OKI) <br> Vivien Ripol | $\begin{aligned} & 1530-1600 \\ & \text { Discussions } \end{aligned}$ | $1530-1500$ biscussions |
|  | 16:00-77:00 <br> Orthogonal polynomials, moments, and continued fractions | 16:00-17:00 <br> Percolation on tnangulations a bijective path 10 Liouville quantum gravity |  | 16:00-17:00 <br> Lattice walks and analytic combinatonics in several variables | 16:00-17:00 <br> Schmidt type partitions and partition analysis <br> George Andrews |
| 16:30 | Mourad EH. Ismail Chaurnan Bruce Sagan | Nina Holden |  | Stophan Melczar <br> Chauman Michael Drmota | Chaiman Ahharne Dousso |
|  | 17:00-18:00 <br> Redundant generating functions in lattice path enumeration | 1700-7800 <br> Addition of matrices at high temperature <br> Vadim Garin |  | 17.00-7800 <br> Differentially algebraic generating series forwaks in the quarter plane | 17:00-1800 <br> Ueing symbolie dynarnical programming in lattice paths combinatonics |
| 17:30 | ira Gessel <br> Charman:Bruce Sagan |  |  | MichaelF Singer Chauman Michael Dimota | Doron Zailbergar Chauman Neharne Dousse |
|  | maxnioman | n. 18 | nenn - \%ean | miman moan | henn - ${ }^{\text {enn }}$ |


|  | Mon 21/6 | Tue 22/6 | Wed 23/6 | Thu 24/6 | Fri 25/6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 09:30 | Vi.) | $\begin{aligned} & 930-10.00 \\ & \text { Virtually shared coffee/toa waks-upt } \end{aligned}$ | $9.30-10.00$ Virtually shared coffee/taa wake-upt | $\begin{aligned} & 930-10.00 \\ & \text { Virtually shered coffeo/toa waka-upt } \end{aligned}$ | $930-10.00$ Virtually shared coffee/tas waka-upt |
| , | 10:00-11:00 <br> Invariants for walks avoiding a quachant <br> Mireille Bousquet-mélou <br> Champancyni Banderier | $1000-11: 00$ <br> Generalized pipe cleams and lower-upper scheme <br> PaulZinn-justin <br> ChoumanChristian Krattenthaler | 1000 - 11:00 <br> Nonintersacting Arownian bridges in tho flat-to-flat goometry <br> Satya Majumdar | 10:00-11:00 <br> How to prove or disprove the algobracity of a generating function using a computer Alin Bostan Chaimankilian Raschel | $\begin{aligned} & \text { 10.00-11:00 } \\ & \text { Heaps and lattice paths } \\ & \text { Xavier viennot } \\ & \text { ChoumanEnnce Duch } \end{aligned}$ |
|  | $\begin{aligned} & 1100-1131 \\ & \text { Discussians } \end{aligned}$ | $11700.1130$ <br> Discussions | $\begin{aligned} & 11 \cdot \mathrm{Mo}-113 \mathrm{Ba} \\ & \text { Discussions } \end{aligned}$ | $\begin{aligned} & 1100-1130 \\ & \text { Discussions } \end{aligned}$ | 1100.1130 Discuscione |
| 11:30 | 11.30-12.00 <br> Extracting asymptotics from series coefficients <br> Tony Guttmann <br> 12:00-12:30 <br> Domputation of tight enclosures for Laplacian eigenvalues | 11:30-12:30 <br> Winding of smple walks on the square lattice Timothy Budd Choumar:Christan Krattenthaler | 11:30-12:30 <br> Triangular ice combinatorics and limit shapes Philippo Di Francesco | 11:30-12:00 <br> Boltzmann sampling in line ar time: arreducible context-frae structures $1200 \cdot 1230$ <br> Bijections between walks in a triangle and bounded Motzkin paths | 11 30-12:30 <br> The alternating sign matrices/clescending plane partitions relation $n+3$ pairs of equivalent statistics Ilae Fischer Chaiman:Michael Wainer |
| 12:30 | 12:30-13:30 <br> Shared lunch (discussions/socialization) | $123 \mathrm{an}-13$ 30 Shared lunch (disrussions/socialization) | $12.30-13.30$ Shared lunch (discussions/socialization) | $12.30-13$. 30 Shared lunch (discussions/socialization) | $1230-13$ 3n Shared lunch (discussions/socialization) |
| 13:30 | $13: 30-1430$ Poster session | $13.30-1430$ Postersessmon | $\begin{aligned} & 1330 \cdot 14: 30 \\ & \text { Poster session } \end{aligned}$ | $\begin{aligned} & 133 \mathrm{a}-14: 30 \\ & \text { Poster sessian } \end{aligned}$ | $\begin{aligned} & 133 \mathrm{n}-1430 \\ & \text { Poster session } \end{aligned}$ |
| 14:30 | 14.30-15.00 <br> Counting lattice paths by the number of crossings and major ndex $1500-15.30$ <br> A Markav chain on tableaux and an asymmetnc zero <br> range process | 14:30-1530 <br> The uniform spanning tree in $\mathbf{4}$ dimensians Perla Sousi Chouman. Wolfgang Woess | 14:30-1530 <br> Generating function technolagies applications to lattice paths Robin Pomantle ChaimanWark Wisan | $14: 30-15.30$ <br> Mating of discrete rees and walks in the quarter- <br> plane <br> Philippe Biane <br> Chaman:GMes Schzeffer | 1430-1500 <br> Vectorial kemel method and lattice parths with pattems <br> $1500-1530$ <br> kukasiewicz waks and generalized tandem walks <br> Karen Yeats |
| 15:30 | $1530-1600$ Diecussiong | $1530-1$ fina Discussions | Puzze fenunt (family participation is OKI) <br> Vivien Ripoll | $\begin{aligned} & 1530-1600 \\ & \text { Discissions } \end{aligned}$ | $1530-1500$ biscussions |
|  | 1600-77:00 <br> Orthogonal polynomials, moments, and conthued fractions | 16:00-17:00 <br> Percolation on thangulations a bijective path to Liduville quantum gravity |  | 16:00-17:00 <br> Lattice walks and analytic combinatonics in several variables | 16:00-17:00 <br> Schmidt type partitions and partition analysis George Andrews |
| 16:30 | Mourad E H. Ismail Chaurnan Bruce Sagan | Nina Holden |  | Stophon Melczor Chauman Michael Drmota | Chaimar Jhharne Dousse |
|  | 17:00-18:00 <br> Redundent generating functions in lattice path enumeration | 1700-7800 <br> Addition of matrices at high temperature <br> Vadim Garin |  | 37.0n-780u <br> Differentially algebraic generating senes for waks in the quarter plane | 17:00-1800 <br> Ueing symbolic dynanical programming in lattice paths combinatorics |
| 17:30 | ira Gessel Charman:Bruce Sagan |  |  | Michaelf Singer Chauman Michael Dmpta | Doron Zailbergar Chauman Neharne Dousse |
|  | mann | himn. | nenn - 1 enn | nemn. moan | nn- 10 n |


|  | Mon 21/6 | Tue 22/6 | Wed 23/6 | Thu 24/6 | Fri 25/6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 09:30 | 930-7n,03 | $9.30-10.00$ Virtually shared coffee/toa waka-upt | $9.30-10: 00$ <br> Virtually shared coffee/ taa waka-upl | 930-10:00 Virtually shered coffeo/toa waka-upl | $9: 30 \cdot 10.00$ <br> Virtually shared coffee/tas waka-upl |
| $10 \%$ | 10:00-11:00 <br> Invanants for walks avoiding a quacirant <br> Mireille Bousquet-mélou <br> ChampanCyni Banderier | 1000-11:00 <br> Generalized pipe creams and lower-upper scheme <br> Paul Zinn-fustn <br> Choumanchristion Krattenthaler | 1000-11:00 <br> Nonintersacting Brownian bridges in the flat-to-flat soometry <br> Satya Majumdar | 10000 - 11:00 <br> How to prove or disprove the algebracity of a <br> generating function using a computer <br> Alin Bostan <br> Chaimankutian Raschel | 10:00-11:00 <br> Heaps and lattice paths <br> Xavier Viennot <br> Choumantensica Duchs |
|  | $\begin{aligned} & 10.17 \mathrm{lin} \\ & \text { Discussions } \end{aligned}$ | 1:20-1130 Discussions | $\begin{aligned} & 11 \cdot n 0-1130 \\ & \text { Discussions } \end{aligned}$ | $\begin{aligned} & 11.00-1130 \\ & \text { Discussions } \end{aligned}$ | $1100.1130$ Discussions |
| 11:30 | 11.30-12.00 <br> Extracting asymptotics from serves coefficients <br> TonyGuttmann <br> 12:00-12:30 <br> Computation of tight enclosures for Laplacian eigonvalues | 11:30-12:30 <br> Winding of simple walks on the square lattice Timothy Budd Chouman:Chriatian Krattenthaler | 11:30-12:30 <br> Triangular ice combinatorics and limit shapes Philippo Di Francesco | 11:30-12:00 <br> Boltzmann sampling in linear time: areducble <br> context-frae structures <br> 1200-1230 <br> Bijections between walks in a triangle and bounded <br> Motzkin paths | 11 30-12:30 <br> The alternating sign matrices/clescending plane partitions relation $n+3$ pairs of oquivalent statistics Ilae Fischer Chaiman:Michael Wainer |
| 12:30 | $12: 30-13: 30$ <br> Sharedlunch (discussions/socialization) | 12:3a-1330 <br> Shared lunch (disrussions/socialization) | $\begin{aligned} & 1230.1330 \\ & \text { Shared lunch (discussions/sacialization) } \end{aligned}$ | $\begin{aligned} & 1230-1330 \\ & \text { Shared lunch (discussions/socialization) } \end{aligned}$ | $\begin{aligned} & 1230-133 \mathrm{nn} \\ & \text { Shared lunch (discussions/socialization) } \end{aligned}$ |
| 13:30 | $\begin{aligned} & 13.30-1430 \\ & \text { Poster session } \end{aligned}$ | $13.30-1430$ Postersessmon | $1330 \cdot 14: 30$ Poster session | 73:3n-14:90 Poster sessian | $133 n-1430$ <br> Poster session |
| 14:30 | 14.30-15.00 <br> Counting lattice paths by the number of crossings and major index 1500-15.30 <br> A Markav chain on tableaux and an asymmetnc zero ranqe process | 14:30-1530 <br> The uniform spanning tree in $\mathbf{4}$ dimensions Peria Sousi <br> Chouman:Wolfgang Woess | 14:30-1530 <br> Generating function technologies applications to lattice paths <br> RobinPemantle <br> Chaiman Mork Wlion | 14:30-1530 <br> Mating of discrete rees and waks in the quarter- <br> plane <br> Philippe Biane <br> ChommanGMes Schaeffer | 1430-1500 <br> Vectorial kemel method and lattice parths with pattems <br> $1500-1530$ <br> kukasiewicz waks and generalized tandem walks <br> Karen Yeats |
| $15: 30$ | $1530-1600$ Discussians | $1530-16000$ Discussions | 1530-18:10 <br> Puzzle hunt'(family participation is OKI) Vivien Ripoll | 1530 -1600 Discussions | 1530-150n biscussions |
|  | 16:00-77:00 <br> Orthogonal polynomials, moments, and contrued fractions | 16:00-17:00 <br> Percolation on tnangulations a bijective path 10 Liouville quantum gravity |  | 76:00-17:00 <br> Lattice walks and analytic combinatonics in several variables | 16:00-17:00 <br> Schmidt type partitions and partition analysis <br> George Andrews |
| 16:30 | Mourad E H. Ismail Charman Bruce Sagan | Nina Holden |  | Stophen Malczar Chauman Michael Drmpta | Chaimpur mantro Dousse |
|  | 17:00-18:00 <br> Redundant generating functions in lattice path enumeration | 1700-7800 <br> Addition of matrices at high temperature <br> Vadim Garin |  | 37.04-1800 <br> Differentially algebraic generating series for waks the quarter plane | 17:00-1800 <br> Jeing symbolic dynarnical programming in lattice <br> paths combinatorics |
| 17:30 | ira Gessel Chamnan:Bruce Sagan |  |  | Michaelf Singer Chauman Michael Dmota | Doron Zailbergar <br> *auman Neharne Dousse |




# Journal of Difference Equations and Applications 

The quasi-holonomic ansatz and restricted lattice walks

## 


(Revelved /2 Aprii 2007; janal version mecelind 12 Mav 2007),
Dedikated to Gerry Ladas on his Totu Birthadiy
Preface: A one-line prour of Kieweras quarte-plase wall bevem
See: hlipf/www.mathrulgers.e edu-zeilberghtoknniotiokreweras
Comunums. The great enumerator Kewerras empiricanly discovered this intriguing fast and then needed lots of pages [7], and lose of human ingemity, wo prove it Other great caumeratios.
 simpler proos Yer mane of them E si simple ns airs' Our proce (with the gencraus selp of our to follow ill the steps. But ascording to cur humble aesthetic taste, thiss poof is musch mure clegant, sisce it is tconceptuilly) one-line. So what if that line is rutbor lang (a hage partinlrecurreme equation stastied by the general counting function), it occupice less starage than a wery law-receluticn phdograph

## (Inrestricted Lattike malks

Suppose that ycu are walking in the dd dimensional byper -ubicic latice $Z$, tarting at the crigin,


$$
\left.S=\left(s_{1}, \ldots, \ldots\right)\right) .
$$

where exch fundamenul step can have arbitury inteqeer componemsts (i.e. negative. poxitive of vero) For example, for the simple latice ('random') walk on the line, we have $S=|-1,4|$ while
Taylor \& Francis
Taytor \& Frandis Group

Goal: if $a_{i, j, n}$ is the number of walks of length $n$ ending at $(i, j)$, show that $\sum_{n=0}^{\infty} a_{0,0, n} t^{n}$ is algebraic. (Or at least D-finite.)

Goal: if $a_{i, j, n}$ is the number of walks of length $n$ ending at $(i, j)$, show that $\sum_{n=0}^{\infty} a_{0,0, n} t^{n}$ is algebraic. (Or at least D-finite.)
Idea: Construct an annihilating operator

$$
P\left(n, S_{n}\right)+i Q\left(n, i, j, S_{n}, S_{i}, S_{j}\right)+j R\left(n, i, j, S_{n}, S_{i}, S_{j}\right)
$$

of $a_{i, j, n}$ with $P \neq 0$.

Goal: if $a_{i, j, n}$ is the number of walks of length $n$ ending at $(i, j)$, show that $\sum_{n=0}^{\infty} a_{0,0, n} t^{n}$ is algebraic. (Or at least D-finite.)
Idea: Construct an annihilating operator

$$
P\left(n, S_{n}\right)+i Q\left(n, i, j, S_{n}, S_{i}, S_{j}\right)+j R\left(n, i, j, S_{n}, S_{i}, S_{j}\right)
$$

of $a_{i, j, n}$ with $P \neq 0$.
Then $P\left(n, S_{n}\right)$ annihilates $a_{0,0, n}$ and we are done.

Goal: if $a_{i, j, n}$ is the number of walks of length $n$ ending at $(i, j)$, show that $\sum_{n=0}^{\infty} a_{0,0, n} t^{n}$ is algebraic. (Or at least D-finite.)
Idea: Construct an annihilating operator

$$
P\left(n, S_{n}\right)+i Q\left(n, i, j, S_{n}, S_{i}, S_{j}\right)+j R\left(n, i, j, S_{n}, S_{i}, S_{j}\right)
$$

of $a_{i, j, n}$ with $P \neq 0$.
Then $P\left(n, S_{n}\right)$ annihilates $a_{0,0, n}$ and we are done.
This worked well in 2011 for the quarter plane, but the $3 / 4$ plane is too hard even in 2021.

Goal: if $a_{i, j, n}$ is the number of walks of length $n$ ending at $(i, j)$, show that $\sum_{n=0}^{\infty} a_{0,0, n} t^{n}$ is algebraic. (Or at least D-finite.)
Idea: Construct an annihilating operator

$$
P\left(n, S_{n}\right)+i Q\left(n, i, j, S_{n}, S_{i}, S_{j}\right)+j R\left(n, i, j, S_{n}, S_{i}, S_{j}\right)
$$

of $a_{i, j, n}$ with $P \neq 0$.
Then $P\left(n, S_{n}\right)$ annihilates $a_{0,0, n}$ and we are done.
This worked well in 2011 for the quarter plane, but the $3 / 4$ plane is too hard even in 2021.

We have no doubt that such an operator exists, but it is so big that we were not able to find it.

Goal: if $a_{i, j, n}$ is the number of walks of length $n$ ending at $(i, j)$, show that $\sum_{n=0}^{\infty} a_{0,0, n} t^{n}$ is algebraic. (Or at least D-finite.)
Idea: Construct an annihilating operator

$$
P\left(n, S_{n}\right)+i Q\left(n, i, j, S_{n}, S_{i}, S_{j}\right)+j R\left(n, i, j, S_{n}, S_{i}, S_{j}\right)
$$

of $a_{i, j, n}$ with $P \neq 0$.
Then $P\left(n, S_{n}\right)$ annihilates $a_{0,0, n}$ and we are done.
This worked well in 2011 for the quarter plane, but the $3 / 4$ plane is too hard even in 2021.

We have no doubt that such an operator exists, but it is so big that we were not able to find it.

Any other ideas?

## PROCEEDIN

Mihuel T Lacy
Wen-Cling Wiraie LI
Mrite Iopes
Denal Rewes
Devid E. Ruteriks
Malicas Secjur
Moi CN Sirn
Mahail Slivein
Lame W. Smell
Mins R. Sicontridge Mibtael Stiltran
Danids-Tritiont
N Tivela Juponas
Bernd Ulich
EdwardC. Wigmer
MachaelL Whersteb
Ristint t Whasoith
Ine C. Willion

## Tontiency vicceiente ret

RKN ien) wif
Anallale electuesiatiy at weremanepprod

Quarter plane:

$$
\left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F(x, y, t)=1-\frac{t}{x} F(0, y, t)-\frac{t}{y} F(x, 0, t)
$$

Quarter plane:

$$
\begin{gathered}
\left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F(x, y, t)=1-\frac{t}{x} F(0, y, t)-\frac{t}{y} F(x, 0, t) \\
y=Y(x, t):=\frac{x-t-\sqrt{t^{2}-2 t x+x^{2}-4 t^{2} x^{3}}}{2 t x^{2}}
\end{gathered}
$$

Quarter plane:

$$
\begin{gathered}
\left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F(x, y, t)=1-\frac{t}{x} F(0, y, t)-\frac{t}{y} F(x, 0, t) \\
y=Y(x, t):=\frac{x-t-\sqrt{t^{2}-2 t x+x^{2}-4 t^{2} x^{3}}}{2 t x^{2}} \\
0=1-\frac{t}{x} F(0, Y(x, t), t)-\frac{t}{Y(x, t)} F(x, 0, t)
\end{gathered}
$$

Quarter plane:

$$
\begin{gathered}
\left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F(x, y, t)=1-\frac{t}{x} F(0, y, t)-\frac{t}{y} F(x, 0, t) \\
y=Y(x, t):=\frac{x-t-\sqrt{t^{2}-2 t x+x^{2}-4 t^{2} x^{3}}}{2 t x^{2}} \\
F(x, 0, t)=\frac{Y(x, t)}{t}-\frac{Y(x, t)}{x} F(0, Y(x, t), t)
\end{gathered}
$$

Quarter plane:

$$
\begin{gathered}
\left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F(x, y, t)=1-\frac{t}{x} F(0, y, t)-\frac{t}{y} F(x, 0, t) \\
y=Y(x, t):=\frac{x-t-\sqrt{t^{2}-2 t x+x^{2}-4 t^{2} x^{3}}}{2 t x^{2}} \\
F(x, 0, t)=\frac{Y(x, t)}{t}-\frac{Y(x, t)}{x} F(Y(x, t), 0, t)
\end{gathered}
$$

Quarter plane:

$$
\begin{gathered}
\left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F(x, y, t)=1-\frac{t}{x} F(0, y, t)-\frac{t}{y} F(x, 0, t) \\
y=Y(x, t):=\frac{x-t-\sqrt{t^{2}-2 t x+x^{2}-4 t^{2} x^{3}}}{2 t x^{2}} \\
F(x, 0, t)=\frac{Y(x, t)}{t}-\frac{Y(x, t)}{x} F(Y(x, t), 0, t)
\end{gathered}
$$

Guess and check!

Three quarter plane:

$$
\begin{aligned}
\mathrm{F}= & \mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}+\mathrm{F}_{4} \\
& +4+\square
\end{aligned}
$$

Three quarter plane:

$$
\begin{gathered}
\mathrm{F}=\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}+\mathrm{F}_{4} \\
+4+
\end{gathered}
$$

$$
\begin{aligned}
F_{1}(x, y, t)= & 0 \\
F_{2}(x, y, t)= & \frac{t}{x}\left[x^{0}\right] F_{4}(x, y, t)+\left(x y+\frac{1}{x}+\frac{1}{y}\right) t F_{2}(x, y, t) \\
& -\frac{t}{y}\left[y^{0}\right] F_{2}(x, y, t)-y t\left[x^{-1}\right] F_{2}(x, y, t) \\
F_{3}(x, y, t)= & F_{2}(y, x, t) \\
F_{4}(x, y, t)= & 1+y t\left[x^{-1}\right] F_{2}(x, y, t)+x t\left[y^{-1}\right] F_{3}(x, y, t) \\
& +\left(x y+\frac{1}{x}+\frac{1}{y}\right) t F_{4}(x, y, t) \\
& -\frac{t}{y}\left[y^{0}\right] F_{4}(x, y, t)-\frac{t}{x}\left[x^{0}\right] F_{4}(x, y, t)
\end{aligned}
$$

Three quarter plane:

$$
\begin{gathered}
F=F_{1}+F_{2}+F_{3}+F_{4} \\
+4+\square
\end{gathered}
$$

$$
\begin{aligned}
F_{1}(x, y, t)= & 0 \\
F_{2}(x, y, t)= & \frac{t}{x}\left[x^{0}\right] F_{4}(x, y, t)+\left(x y+\frac{1}{x}+\frac{1}{y}\right) t F_{2}(x, y, t) \\
& -\frac{t}{y}\left[y^{0}\right] F_{2}(x, y, t)-y t\left[x^{-1}\right] F_{2}(x, y, t) \\
F_{3}(x, y, t)= & F_{2}(y, x, t) \\
F_{4}(x, y, t)= & 1+y t\left[x^{-1}\right] F_{2}(x, y, t)+x t\left[y^{-1}\right] F_{3}(x, y, t) \\
& +\left(x y+\frac{1}{x}+\frac{1}{y}\right) t F_{4}(x, y, t) \\
& -\frac{t}{y}\left[y^{0}\right] F_{4}(x, y, t)-\frac{t}{x}\left[x^{0}\right] F_{4}(x, y, t)
\end{aligned}
$$

Three quarter plane:

$$
\begin{gathered}
F=F_{1}+F_{2}+F_{3}+F_{4} \\
+4+\square
\end{gathered}
$$

$$
\begin{aligned}
& \left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F_{2}(x, y, t) \\
& \quad=\frac{t}{x}\left[x^{0}\right] F_{4}(x, y, t)-\frac{t}{y}\left[y^{0}\right] F_{2}(x, y, t)-y t\left[x^{-1}\right] F_{2}(x, y, t) \\
& \left(1-t\left(x y+\frac{1}{x}+\frac{1}{y}\right)\right) F_{4}(x, y, t) \\
& \quad=1+y t\left[x^{-1}\right] F_{2}(x, y, t)+x t\left[y^{-1}\right] F_{2}(y, x, t) \\
& \quad-\frac{t}{y}\left[y^{0}\right] F_{4}(x, y, t)-\frac{t}{x}\left[x^{0}\right] F_{4}(x, y, t)
\end{aligned}
$$

Three quarter plane:

$$
\begin{gathered}
F=F_{1}+F_{2}+F_{3}+F_{4} \\
+4+\square
\end{gathered}
$$

$$
\begin{aligned}
{\left[y^{0}\right] F_{2}(x, y, t)=} & \frac{Y(x, t)}{x}\left[x^{0}\right] F_{4}(x, y, t) \\
& -Y(x, t)^{2}\left(\left[x^{-1}\right] F_{2}(x, y, t)\right)_{y=Y(x, t)} \\
{\left[x^{-1}\right] F_{2}(x, y, t)=} & X(y, t)^{-1}\left[x^{0}\right] F_{4}(x, y, t) \\
& -\frac{1}{y}\left(\left[y^{0}\right] F_{2}(x, y, t)\right)_{x=x(y, t)} \\
{\left[y^{0}\right] F_{4}(x, y, t)=} & \frac{Y(x, t)}{t}+Y(x, t)^{2}\left(\left[x^{-1}\right] F_{2}(x, y, t)\right)_{y=Y(x, t)} \\
& +x Y(x, t)\left[y^{-1}\right] F_{2}(y, x, t) \\
& -\frac{Y(x, t)}{x}\left(\left[x^{0}\right] F_{4}(x, y, t)\right)_{y=Y(x, t)}
\end{aligned}
$$

Three quarter plane:

$$
\begin{gathered}
F=F_{1}+F_{2}+F_{3}+F_{4} \\
\left.+4++x^{+}+y^{0}\right] \\
{\left[F_{2}(x, y, t)=x^{-1} t+x^{-2} t^{2}+x^{-3} t^{3}+\left(x^{-4}+7 x^{-1}\right) t^{4}\right.} \\
+\left(x^{-5}+11 x^{-2}\right) t^{5}+\left(x^{-6}+16 x^{-3}\right) t^{6}+\cdots \\
{\left[x^{-1}\right] F_{2}(x, y, t)=t+3 y t^{3}+7 t^{4}+10 y^{2} t^{5}+44 y t^{6}} \\
+\left(90+35 y^{3}\right) t^{7}+255 y^{2} t^{8}+\left(743 y+126 y^{4}\right) t^{4}+\cdots \\
{\left[y^{0}\right] F_{4}(x, y, t)=1+2 x t^{2}+4 t^{3}+6 x^{2} t^{4}+23 x t^{5}+\left(46+20 x^{3}\right) t^{6}} \\
115 x^{2} t^{7}+\left(353 x+70 x^{4}\right) t^{8}+\left(706+539 x^{3}\right) t^{9}+\cdots
\end{gathered}
$$

Three quarter plane:

$$
\begin{gathered}
F=F_{1}+F_{2}+F_{3}+F_{4} \\
+4+\square
\end{gathered}
$$

guess and check!


Here are guessed differential equations for these series:

Here are guessed differential equations for these series:

- $\left[y^{0}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 174 and $x$-degree 119 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb

Here are guessed differential equations for these series:

- $\left[y^{0}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 174 and $x$-degree 119 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb

Here are guessed differential equations for these series:

- $\left[y^{0}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 174 and $x$-degree 119 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb ( $\approx 66000$ postcards)

Here are guessed differential equations for these series:

- $\left[y^{0}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 174 and $x$-degree 119 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb ( $\approx 66000$ postcards)
- $\left[x^{-1}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 172 and $y$-degree 118 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb

Here are guessed differential equations for these series:

- $\left[y^{0}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 174 and $x$-degree 119 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb ( $\approx 66000$ postcards)
- $\left[x^{-1}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t -degree 172 and y -degree 118 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb
- $\left[y^{0}\right] F_{4}(x, y, t)$ appears to satisfy an equation of order 25 with t-degree 633 and $x$-degree 434 involving integers with up to 477 decimal digits.
Total file size: 694 Mb

Here are guessed differential equations for these series:

- $\left[y^{0}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t-degree 174 and $x$-degree 119 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb ( $\approx 66000$ postcards)
- $\left[x^{-1}\right] F_{2}(x, y, t)$ appears to satisfy an equation of order 13 with t -degree 172 and y -degree 118 involving integers with up to 127 decimal digits.
Total file size: 8.3 Mb
- $\left[y^{0}\right] F_{4}(x, y, t)$ appears to satisfy an equation of order 25 with t-degree 633 and $x$-degree 434 involving integers with up to 477 decimal digits.
Total file size: 694 Mb ( $\approx 34 \mathrm{~m}^{3}$ of postcards)

Unfortunately, this is not quite enough to complete the job.

Unfortunately, this is not quite enough to complete the job.
So far we only have differential equations with respect to $t$

Unfortunately, this is not quite enough to complete the job.
So far we only have differential equations with respect to $t$
The system of functional equations involves substitutions with respect to $x$ and $y$

Unfortunately, this is not quite enough to complete the job.
So far we only have differential equations with respect to $t$
The system of functional equations involves substitutions with respect to $x$ and $y$

For executing the "check" part, we therefore also need differential equations w.r.t. $x$ and $y$.

Unfortunately, this is not quite enough to complete the job.
So far we only have differential equations with respect to $t$
The system of functional equations involves substitutions with respect to $x$ and $y$

For executing the "check" part, we therefore also need differential equations w.r.t. $x$ and $y$.

We will try to have them ready before Doron's 80th birthday.

Unfortunately, this is not quite enough to complete the job.
So far we only have differential equations with respect to $t$
The system of functional equations involves substitutions with respect to $x$ and $y$

For executing the "check" part, we therefore also need differential equations w.r.t. $x$ and $y$.

We will try to have them ready before Doron's 80th birthday.
In any case, I am looking forward to the next ten years of guessing and checking!

