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Joint work with Y. Karasik

We learned that if A is a (f.d.) k-central simple algebra and
F = k̄ , then A⊗k F ∼= Mn(F ), some n.

In fact this characterizes central simple algebras, We say
central simple algebras are forms of matrix algebras.

In particular finite dimensional k-central division algebras D
are forms of matrix algebras.
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Less obvious, but still well known, every f.d. simple algebra
over F = F̄ (i.e. ∼= Mn(F ), some n), has a division algebra
form D.

In particular the “generic object corresponding to Mn(F )” is a
division algebra. This is the well known “generic division
algebra” of degree n.
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Main problem: What happens in the G - graded case? (G is a
group)

Replace “f.d. simple” with “f.d. G -graded simple”, that is,
A · A 6= 0 and A has no nontrivial G -graded 2-sided ideals.

Replace “division algebra form” with “G -graded division
algebra form”, that is, nonzero homogeneous elements in D
are invertible.
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⇒ If D is a f.d. G -graded division algebra over its e-center k
and F = k̄ , then D ⊗k F is G -graded simple.

⇐ One may ask (following the ungraded case): Does every
f.d. G -graded simple algebra have a graded division algebra
form? The answer is No!

Main question: Which G -graded simple algebras A do admit a
G -graded division algebra form?

Address the problem in case char(F ) = 0 and G a finite group
for good reasons.
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Approach: Construct the generic G -graded algebra attached
to A.

We use PI theory, Kemer’s theory and more specifically
G -graded Kemer’s theory.
(char(F ) = 0 and G -finite, joint work with Belov).
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Few words about motivation: Group grading on central simple
algebras is key for studying them, e.g.

Crossed product grading realizes Br(k) ∼= H2(Gk , k
∗
s ).

Every k-central simple algebra is Brauer equivalent to a
crossed product algebra
(K/k,G = Gal(K/k), α ∈ H2(G ,K ∗))

Symbol algebras ∼= kαZn × Zn: If µn ⊂ k∗, Brn(k) (n-torsion)
is generated by symbol algebras (Merkurjev-Suslin)

Some of the main open problems in Brauer groups theory are
related to these gradings. e.g. Is every Brauer class
represented by an abelian crossed product? (i.e. G is abelian)
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Recall: construction of generic Azumaya algebras and
generic division algebras (the ungraded case)

Polynomial identities: A polynomial p(x1, . . . , xn) ∈ F 〈X 〉
(the free associative algebra over F on a countable set X ) is
an identity of an algebra A if p/xi=ai∈A ≡ 0.

[x , y ] = xy − yx is an identity of any commutative algebra.

[[x , y ]2, z ] ∈ Id(M2(F )).

s2n =
∑

σ∈S2n(−1)σxσ(1) · · · xσ(2n) ∈ Id(Mn(F )) (Amitsur -
Levitzki).

The set of identities Id(A) is a T -ideal of F 〈X 〉.
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Let A = Mn(F ) where F is algebraically closed.

The field Q is a field of definition for Mn(F ):

Mn(Q)⊗Q F ∼= Mn(F )

(Q is unique minimal).

Let UQ be the algebra of generic n × n-matrices over Q:

〈(Xm(i , j))i ,j : m = 1, 2, . . .〉.

Equivalently take UQ ∼= Q〈X 〉/Id(Mn(Q)). Get a domain.
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Let f = f (x1, . . . , xs) be a central polynomial of Mn(F ),
coefficients in Q. (scalar values and not all are zero)
Example: Regev Polynomial!

f vanishes on Mn−1(F )
· · · · 0
· · · · 0
· · · · 0
· · · · 0
0 0 0 0 0


n×n

Invert f central, A = f −1UQ. Note that if

A� B 6= 0

then Id(B) ⊇ Id(Mn(F ))) but Id(B) + Id(Mn−1(F ))) 3 f .

Artin - Procesi: A is Azumaya of degree n over its center R.
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A specializes precisely to all forms of Mn(F ).

Localizing the center: S = Z (UQ) \ {0}

D = S−1UQ
is the so called generic division algebra of degree n over the
rationals.
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Construction of generic Azumaya algebras (the graded case)

How finite dimensional G -simple algebras look like? (two
examples)

1 Twisted group algebra (fine grading):

FαH, H ≤ G , α ∈ H2(H,F ∗), uh1uh2 = α(h1, h2)uh1h2 .

2 Elementary grading on Mr (F ) by g = (g1, . . . , gr ) ∈ G (r):
· · · · ·
· · · · ·
· · · g−1i gj ·
· · · · ·
· · · · ·


r×r
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Bahturin, Sehgal and Zaicev: Classification of f.d. G -simple
algebras A over F , char(F ) = 0 and F̄ = F .

Every f.d. G -simple algebra combines fine and elementary
gradings, i.e.

A ∼= FαH ⊗Mr (F )

More precisely . . .
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Grading presentation (may assume connected):

PA = (H ≤ G , α ∈ H2(H,F ∗), (g1, . . . , gr ) ∈ G (r))

FαH ⊗


· · · · ·
· · · · ·
· · · g−1i gj ·
· · · · ·
· · · · ·


r×r

Basis: {uh ⊗ ei ,j : h ∈ H, 1 ≤ i , j < r}

The homogeneous degree of uh ⊗ ei ,j is: g−1i hgj .

e-center of A: F = Z (A) ∩ Ae
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Given A (G -graded simple), want to construct a generic
G -graded Azumaya algebra A that maps precisely to all
G -graded forms of A.

Main steps in the construction:

Show existence and find explicitly a unique minimal field of
definition k for A ∼= FαH ⊗Mr (F ).
k turns out to be a cyclotomic extension of Q.

More precisely . . .
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By the Universal Coefficient Theorem

H2(H,F ∗) ∼= Hom(M(H),F ∗)

so α corresponds to ηα : M(H)→ F ∗ and we let µ = Im(ηα),
M(H) is the Schur multiplier of H.

Schur’s theory: Q(µ) is a minimal field of definition for FαH
and hence a field of definition for A ∼= FαH ⊗Mr (F ) but
possibly not minimal!

Surprisingly, the matrices can lower the field of definition.
(main tools-PI theory).
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Let k - the minimal field of def’n for A, and k〈XG 〉 the free
G -graded algebra.

Divide by Γ = Idk,G (A) and get k〈XG 〉/Γ. Note: The T -ideal
Γ is defined over k .

Construct an e-central polynomial fe (combination of Regev’s
polynomial and group representation). Invert fe .

Theorem

1 A = f −1e k〈XG 〉/Γ is G -graded Azumaya in the sense of
Artin-Procesi.

2 A specializes precisely to all G -graded forms of A.

Invert the entire e-center of A and obtain DA, the generic
G -graded simple algebra over k corresponding to A.
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When is DA a G -graded division algebra?
There are 3 conditions (necessary and sufficient) on the
presentation of A

PA = (H ≤ G , α ∈ H2(H,F ∗), (g1, . . . , gr ) ∈ G (r))

1 H is normal in G .

2 Every H-coset is represented the same number of times in
(g1, . . . , gr ) ∈ G (r).

and the 3rd condition . . .
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(3) The cohomology class α is G -invariant. What does it mean?

G acts on H so it acts on the Schur multiplier M(H).

If ηα : M(H)→ F ∗ (corresponds to α ∈ H2(H,F ∗)) and

Bα = ker(ηα) ⊆ M(H), then α invariant means Bα is G -invariant.
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We may ask “When does A admit a division algebra form which is
G -graded?”.

Well, this is another story.
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THANK YOU FOR YOUR ATTENTION!

And once again Congratulations Amitai and Doron!
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