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Classical Symmetric Functions

 A symmetric polynomial in n variables 𝑓(𝑥1, … , 𝑥𝑛) is one that satisfies 
𝑓 𝑥1, … , 𝑥𝑛 = 𝑓(𝑥𝜎 1 , … , 𝑥𝜎 𝑛 ) for all permutations.

 I think of a symmetric function as the analogous object in infinitely many 

variables, allowing infinite sums of variables, but not infinite products.

 More technically, a symmetric function can be defined as an infinite 

sequence 𝑓𝑛 𝑥1, … , 𝑥𝑛 𝑛
of symmetric polynomials such that for every n, 

𝑓𝑛+1 𝑥1, … , 𝑥𝑛, 0 = 𝑓𝑛(𝑥1, … , 𝑥𝑛)



Classical Symmetric Functions

 The elementary symmetric functions are generated by

 𝑒𝑛 = ∑{𝑥𝑖1⋯𝑥𝑖𝑛|𝑖1 < ⋯ < 𝑖𝑛}

 And for partition λ= (𝜆1, … , 𝜆𝑘)

 𝑒𝜆 = 𝑒𝜆1⋯𝑒𝜆𝑘



 The complete symmetric functions are generated by

 ℎ𝑛 = ∑{𝑥𝑖1⋯𝑥𝑖𝑛|𝑖1 ≤ ⋯ ≤ 𝑖𝑛}

 And, again, for a partition λ

 ℎ𝜆 = ℎ𝜆1 ⋯ℎ𝜆𝑘



 The power symmetric functions are generated by

 𝑝𝑛 = ∑𝑥𝑖
𝑛

 And for each partition λ

 𝑝𝜆 = 𝑝𝜆1 ⋯𝑝𝜆𝑘



 The Schur functions 𝑆𝜆 can be defined as a determinant using the 

elementary or complete symmetric functions, or using semistandard Young 

tableaux.  I will not give the details here, but I will mention that they are 

important because they are characters of irreducible representations of the 

general linear group.



 If the number of variables in infinite then each of the sets 

{𝑒𝜆}, {ℎ𝜆}, {𝑝𝜆} 𝑎𝑛𝑑 {𝑆𝜆} gives a basis for the ring of symmetric functions.  And 

each of the sets 𝑒𝑛 , ℎ𝑛 𝑎𝑛𝑑 {𝑝𝑛} is an algebraically independent set of 

generators.

 There are many interesting algebraic relations between these functions, see 

MacDonald’s book “Symmetric Functions and Hall Polynomials,” and many 

of them have gorgeous combinatorial proofs.



Classical Symmetric Polynomials

 What if there are only finitely many variables?

 Consider for example the elementary symmetric functions 𝑒𝑛 𝑦1, … , 𝑦𝑘 :

 This would equal ∑ 𝑦𝑖1⋯𝑦𝑖𝑛 𝑖1 < ⋯ < 𝑖𝑛 . Clearly this is zero if k < n.

 Not obviously, {𝑒1, … , 𝑒𝑘} are still algebraically independent and generate 

the ring of symmetric polynomials.  So the relations 𝑒𝑛 = 0 𝑤ℎ𝑒𝑛 𝑛 > 𝑘
generate all relations among the elementary symmetric functions.  Also, 
{𝑒𝜆} where 𝜆 is restricted to have all parts less than or equal to k form a basis.

 Relations among the other symmetric functions can be derived from these 

and are known.  In particular, for Schur functions 𝑆𝜆 = 0 precisely when the 

partition has more than k parts.  And the Schur functions 𝑆𝜆 for partitions 

with k or fewer parts form a basis for symmetric polynomials in k variables.



Specialized Symmetric Polynomials

 Starting with the symmetric polynomials in 𝑦1, … , 𝑦𝑛 and given 𝑑1 +⋯+ 𝑑𝑘 =
𝑛 we specialize 𝑦1, … , 𝑦𝑑1 ↦ 𝑥1, 𝑦𝑑1+1, … , 𝑦𝑑1+𝑑2

↦ 𝑥2, …

 Denoting these specializations with a superscript (𝑑):

 Example: (d) = (3,1), then 𝑝𝑛 = 𝑦1
𝑛 + 𝑦2

𝑛 + 𝑦3
𝑛 + 𝑦4

𝑛 specializes to pn
d
= 3𝑥1

𝑛 +
𝑥2
𝑛. 𝑒𝑛 is zero if 𝑛 > 4, so we will just look at 𝑒3 = 𝑦1𝑦2𝑦3 + 𝑦1𝑦2𝑦4 + 𝑦1𝑦3𝑦4 +

𝑦2𝑦3𝑦4 specializes to 𝑒3
𝑑
= 𝑥1

3 + 3𝑥1
2𝑥2. The ℎ𝑛 have many terms, so lets just 

do n=2.  ℎ2 = 𝑦1
2 + 𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦1𝑦4 + 𝑦2

2 + 𝑦2𝑦3 + 𝑦2𝑦4 + 𝑦3
2 + 𝑦3𝑦4 + 𝑦4

2. This 

specializes to ℎ2
𝑑
= 6𝑥1

2 + 3𝑥1𝑥2 + 𝑥2
2



 Here would be the general formulas

 𝑝𝑖
(𝑑)

= 𝑑1𝑥1
𝑖 +⋯+ 𝑑𝑘𝑥𝑘

𝑖

 𝑒𝑖
(𝑑)

= ∑ ൜ 𝑑1
𝑖1

⋯ 𝑑𝑘
𝑖𝑘

𝑥1
𝑖1 ⋯𝑥𝑘

𝑖𝑘 |𝑖1 +⋯+ 𝑖𝑘 = 𝑖}

 ℎ𝑖
(𝑑)

= ∑ ൜ 𝑑1+𝑖1−1
𝑖1

⋯ 𝑑𝑘+𝑖𝑘−1
𝑖𝑘

𝑥1
𝑖1 ⋯𝑥𝑘

𝑖𝑘 |𝑖1 +⋯+ 𝑖𝑘 = 𝑖}



 These formulas make sense even if the d_i are not positive, are not integers, 

are not real!  Can define specialized symmetric polynomials for any d_i

 I always take the d_i to be non-zero, but not every one does

 Can also define 𝑆𝜆
(𝑑)

for any (d), using either tableaux or determinants

 All of the relations from MacDonald's book that hold between the classical 

symmetric functions in infinitely many variable continue to hold among their 

specializations. 

 The main question I wish to study is:

 Question:  What are the algebraic relations among the specialized 

symmetric polynomials?



 I mean what are the identities other than the ones known for symmetric 

functions in infinitely many variables?

 For example, in infinitely many variables the 𝑝𝜆 are linearly independent.  So 

I want to find linear relations among the 𝑝𝜆
𝑑

 The problem is not solved, but I do have some results.  Maybe you want to 

work on it.



For personal reasons, a sad slide

 Using the language of plethysms or Λ-calculus, if 𝑑 = (𝑑1
𝑚1 , … , 𝑑𝑘

𝑚𝑘) then 

𝑒𝜆
𝑑
= 𝑒𝜆[𝑑1𝑋

1 +⋯+ 𝑑𝑘𝑋
𝑘 ], ℎ𝜆

𝑑
= ℎ𝜆[𝑑1𝑋

1 +⋯+ 𝑑𝑘𝑋
𝑘 ],𝑝𝜆

𝑑
= 𝑝𝜆[𝑑1𝑋

1 +

⋯+ 𝑑𝑘𝑋
𝑘 ], and 𝑆𝜆

𝑑
= 𝑆𝜆[𝑑1𝑋

1 +⋯+ 𝑑𝑘𝑋
𝑘 ], where each 𝑋𝑖 is a set of 𝑚𝑖

variables 



Example

 If 𝑑1 +⋯+ 𝑑𝑘 = 𝑛, an integer, then 𝑒𝑚
𝑑
= 0 for 𝑚 > 𝑛. But if n is not an 

integer then no 𝑒𝑚
𝑑

is zero.

 If 𝑑 = (𝑑1, 𝑑2) then we have the identities

 𝑑1𝑑2
3 + 2𝑑1

2𝑑2
2 + 𝑑1

3𝑑2 𝑝3,3 − 6 𝑑1𝑑2
2 + 𝑑1

2𝑑2 𝑝3,2,1 + 4𝑑1𝑑2𝑝3,13 + 4൫−𝑑1
3 + 𝑑1

2𝑑2 +



Example

 I did most of my computations using the 𝑝𝜆 because they are the easiest to 

program.  In the classical case it is much easier to describe the relations 

between the 𝑒𝜆 or 𝑆𝜆 . I don’t know if it would be easier in this case, but it is 

not obvious.  Here are the smallest relations in Λ 𝑑1,𝑑2 in terms of the 

specialized elementary and Schur polynomials ((d) superscipts surpressed):

 4𝑑1𝑑2 𝑑1 + 𝑑2 𝑒4 − 4𝑑1𝑑2 𝑑1 + 𝑑2 − 3 𝑒3,1 − 2൫𝑑1𝑑2
2 + 𝑑1

2𝑑2 − 2𝑑1
2 − 2𝑑2

2 +



Field Dependence

 We usually assume that the d_i lie in the base field, but we can be more 

general.   Given fields 𝐹 ⊂ 𝐾 we can assume that 𝑑𝑖 ∈ 𝐾 and ask for 

identities with coefficients in F.  For example, if 𝑑1, 𝑑2 = ( 2, 1), then we 

have this identity with coefficients in Q:

 −6𝑝7 − 16𝑝6,1 − 22𝑝5,2 + 20𝑝4,12 + 30𝑝4,3 + 40𝑝4,2,1 − 18𝑝4,13 − 50𝑝32,1 + 9𝑝3,22 +

40𝑝3,2,12 + 𝑝3,3 − 18𝑝23,1 − 11𝑝22,13 + 𝑝17

 This is not an absolute identity

 One way to think of absolute identities is that the d_i are algebraically 

independent over F, and that we are looking for relations with coefficients 

from F



Absolute Identities

 Let 𝑑 = (𝑑1,… , 𝑑𝑘) have k parts.

 Let 𝑎1,… , 𝑎𝑘+1 and 𝑏1,… , 𝑏𝑘+1 be sequences of distinct positive integers

 Then the determinant |𝑝𝑎𝑖+𝑏𝑗
(𝑑)

| is an (absolute) identity. We will call it a 

determinental identity.

 Proof:  We will use the notation Λ 𝑑 for the algebra of specialized symmetric 
polynomials and 𝐷 𝑑 for the algebra of diagonal matrices with trace

tr

𝑥1 0
0 𝑥2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
0 𝑥𝑘

= 𝑑1𝑥1 +⋯+ 𝑑𝑘𝑥𝑘

 With respect to this trace 𝑡𝑟 𝑋𝑛 = 𝑝𝑛
𝑑

𝑥1,… , 𝑥𝑘



 Since the algebra of diagonal matrices is k dimensional

∑𝒔𝒈𝒏 𝝈 𝒕𝒓 𝒙𝝈 𝟏 𝒚𝟏 ⋯𝒕𝒓(𝒙𝝈 𝒌+𝟏 𝒚 𝒌+𝟏 ) = 𝟎

For any trace function, since it is alternating in k+1 variables.

Now let 𝑥𝑖 = 𝑋
𝑎𝑖 and 𝑦𝑗 = 𝑋𝑏𝑗 ▌

 This theorem is exercise 2.9 in Lascoux’s book and it generalizes a theorem of G. 
Bellavitis, 1857.

 Call the above identity (in x and y) 𝐶𝑘+1 𝑥; 𝑦 . It is an analogue of the Capelli
identity

 One variable pure trace identities in 𝐷 𝑑 correspond to algebraic relations 

among the 𝑝𝜆
𝑑



Some results

 Λ 𝑑 has rank 𝑘, so any 𝑘 + 1 elements are algebraically dependent.

 For any 𝑛1 < ⋯ < 𝑛𝑘 each of these sets is algebraically independent:  

𝑒𝑛𝑖 , 𝑝𝑛𝑖 , ℎ𝑛𝑖

 The above assumes that each 𝑑𝑖 is in the base field.  On the other extreme, 

if the 𝑑𝑖 are algebraically independent, then the rank is 2𝑘

 In this case there is a Δ ∈ Λ 𝑑 such that Λ 𝑑 ⊆ 𝐹[𝑝0, … , 𝑝2𝑘−1, Δ
−1]



Connections to PI

 Let X be an n×n diagonal matrix with entries 𝑥1, … , 𝑥𝑛. Then the usual trace 

of 𝑋𝑘 is the power symmetric function 𝑝𝑘(𝑥1, … , 𝑥𝑛).

 So, an algebraic relation among the symmetric functions in n variables can 

be interpreted as a trace identity for n×n diagonal matrices in one variable.

 In 1996 I proved that all trace identities for diagonal matrices (in any 

number of variables) are consequences of commutativity and the Cayley-

Hamilton theorem.



 May generalize to the weighted trace function to get 𝑝𝜆
𝑑

instead of 𝑝𝜆

 For example, the absolute identity for 𝑑 = (𝑑1, 𝑑2) from four slides back  translates 

to 𝑡𝑟 𝑥5 𝑡𝑟 𝑥3 𝑡𝑟 𝑥 + 2𝑡𝑟 𝑥4 𝑡𝑟 𝑥3 𝑡𝑟 𝑥2 − 𝑡𝑟 𝑥3
2
− 𝑡𝑟 𝑥4 2𝑡𝑟 𝑥 − 𝑡𝑟 𝑥5 𝑡𝑟 𝑥2

2

 If the d_i are all positive integers then we are studying trace identities among 
block scalar matrices, i.e., diagonal matrices with diagonal of the form 
(𝑥1,… , 𝑥1,… , 𝑥𝑘,… , 𝑥𝑘).

 The case in which the 𝑑𝑖 are each ±1 was studied by Kantor and Trishin in 1999.  
It is related to the theory of supersymmetric functions.

 From the point of view of p.i. algebras there is no reason to stick to one variable 
identities.  In fact, in the general case not all identities follow from the single 
variable ones.



 Theorem:  All absolute identities in Λ 𝑑 are consequences of the 

determinental ones.

 Just to clarify:  I mean either identities involving the 𝑝𝜆
(𝑑)

or one variable 

trace identities for 𝐷(𝑑).  I don’t know about the general identities of 𝐷(𝑑), 

although I conjecture that all absolute identities are consequences of 

𝐶𝑘+1(𝑥; 𝑦) and commutativity.

 The determinental identity of minimal degree has degree 𝑘2 + 𝑘. This is not 

the identity of minimal degree in the k=2 case, and probably is not in 

general.  I do not know the degree of the minimal identity.



Some Results and Questions

 Ioppolo, Koshlukov and La Matina studied the case of k=2 in JPAA, 2021.  

Although they studied the mixed trace identities 𝐷 𝑑1,𝑑2 their results can be 

translated to symmetrized symmetric polynomials to prove that all relations 

between the 𝑝𝜆
𝑑

are consequences of these:

𝑑1𝑑2 𝑑1 + 𝑑2 𝑝𝑛+3 − 3𝑑1𝑑2𝑝𝑛+2,1 − 𝑑1
2 − 𝑑1 𝑑2+ 𝑑2

2 𝑝𝑛+1,2
+ 𝑑1 + 𝑑2 𝑝𝑛+1,1,1 − 𝑑1𝑑2𝑝𝑛,3 + 𝑑1 + 𝑑2 𝑝𝑛,2,1 − 𝑝𝑛,1,1,1

And

𝑑1𝑑2 𝑑1 + 𝑑2
2𝑝3,3 − 6𝑑1𝑑2 𝑑1 + 𝑑2 𝑝3,2,1 + 4𝑑1𝑑2𝑝3,13

− 𝑑1 − 𝑑2
2 𝑑1 + 𝑑2 𝑝23 + 3 𝑑1

2 + 𝑑1𝑑2 + 𝑑2
2 𝑝22,12

−3 𝑑1 + 𝑑2 𝑝2,14 + 𝑝16



Some Results and Questions

 Let X be a generic diagonal matrix.  I know that X is algebraic over Λ 𝑑 but I 

don’t know if it is integral.  I’m thinking that this would be an analogue of 

the Cayley-Hamilton equation.

 For example, if 𝑑 = 𝑑1, 𝑑2 then we have the identity

𝑑1𝑑2 𝑑1 + 𝑑2 𝑋3 − 3𝑑1𝑑2𝑝1𝑋
2 − 𝑑1

2 − 𝑑1𝑑2 + 𝑑2
2 𝑝2𝑋 + 𝑑1 + 𝑑2 𝑝1,1𝑋 − 𝑑1𝑑2𝑝3

+ 𝑑1 + 𝑑2 𝑝2,1 − 𝑝13 = 0

 I think that it is and I have a conjecture about the degree.  Let 𝑑 =

𝑑1
𝑚1 , … , 𝑑𝑡

𝑚𝑡 . Then I conjecture that the degree should be ∏ 𝑚𝑖 + 1 − 1

 I checked it in the cases 𝑑𝑚 , 𝑑1, 𝑑2 , (𝑑1, 𝑑1, 𝑑2) and (𝑑1, 𝑑2, 𝑑3)



 Take another look at the identity 

 𝑑1𝑑2 𝑑1 + 𝑑2 𝑋3 − 3𝑑1𝑑2𝑝1𝑋
2 − 𝑑1

2 − 𝑑1𝑑2 + 𝑑2
2 𝑝2𝑋 + 𝑑1 + 𝑑2 𝑝1,1𝑋 − 𝑑1𝑑2𝑝3 +

𝑑1 + 𝑑2 𝑝2,1 − 𝑝13 = 0

 If we just take the trace of both sides of the equation we get 0.  But if we 

multiply both sides by X and take trace we get a relation among the 𝑝𝜆 .
Note that the last term will be −𝑝14 , which equals 𝑝1

4. This implies that 𝑝1 is 

monic algebraic over 𝐹[𝑝2, 𝑝3, … ].

 Using the technique called multilinearization, this implies that 

𝑡𝑟 𝑎 𝑡𝑟 𝑏 𝑡𝑟 𝑐 𝑡𝑟(𝑑) can be written as a linear combination of terms each 

with three or fewer traces.



 The computations that I did supporting the conjecture about the Cayley-

Hamilton type equation also suggest that 𝑝1 is monic over 𝐹 𝑝2, 𝑝3, … and 

so 𝐷 𝑑 satisfies a trace identity of the form

𝑡𝑟 𝑥1 ⋯𝑡𝑟 𝑥𝑚 =

A linear combination of terms with fewer than m traces, and

𝑚 = ∏(𝑚𝑖 + 1)



A Crash Course In Codimensions and 

Cocharacters

 Let 𝑋𝑖 =diag(𝑥𝑖1, … , 𝑥𝑖𝑘) be a generic diagonal matrix

 Let 𝑉𝑛 ⊂ 𝐹[𝑥11, … , 𝑥𝑛𝑘] be the vector space of the evaluations of all degree 

n, multilinear pure trace polynomials in 𝑋1, … , 𝑋𝑛

 For example, 𝑉3 is spanned by 

𝑡𝑟 𝑋1𝑋2𝑋3 , 𝑡𝑟 𝑋1𝑋3𝑋2 , 𝑡𝑟 𝑋1𝑋2 𝑡𝑟 𝑋3 , 𝑡𝑟 𝑋1𝑋3 𝑡𝑟 𝑋2 , 𝑡𝑟 𝑋2𝑋3 𝑡𝑟(𝑋1) and 

𝑡𝑟 𝑋1 𝑡𝑟 𝑋2 𝑡𝑟 𝑋3

 If the trace is the (d)-trace, then the dimension of this space is the n-th pure 

trace codimension of 𝐷 𝑑 , denoted 𝑐𝑛 (𝐷
𝑑 )

 𝑉𝑛 is also a module for the symmetric group 𝑆𝑛, which acts by permuting the 

𝑋𝑖.  The character is called the n-th cocharacter of 𝐷 𝑑 , denoted 𝜒𝑛(𝐷
𝑑 )



Trace Codimensions

 If 𝑑 = (𝑑1, 𝑑2), distinct, then 𝑐𝑛 𝐷 𝑑 = 2𝑛 − 𝑛

 If 𝑑 = (1𝑘), the classical case, then 𝑐𝑛 𝐷 𝑑 ≃
𝑘𝑛

𝑘!
.  In fact, 𝑐𝑛(𝐷

𝑑 ) in this case 

is related to the Stirling numbers and equals the number of ways to place n 

distinguished objects into k indistinguished boxes, some possibly empty.

 In general, 𝑐𝑛 𝐷 𝑑 is asymptotic to 𝑎𝑘𝑛 for some constant a, where a is 

between 1/𝑘! And 1/∏𝑚𝑖! Note that the (𝑑1, 𝑑2) case is consistent with the 

latter estimate and the (1𝑘) case is consistent with both.  My guess is that 𝑎
= 1/∏𝑚𝑖!



Trace Cocharacters

 The irreducible characters of the symmetric group 𝑆𝑛 are indexed by the 

partitions of n, and are denoted 𝜒λ

 The cocharacter 𝜒𝑛(𝐷
𝑑 ) can be decomposed into a sum of irreducible 

parts ∑𝑚𝜆𝜒
𝜆 . We are interested in the multiplicities 𝑚𝜆

 In the classical case, 𝑑 = (1𝑘) the pure trace cocharacter has a number 

of nice descriptions, computed by Regev and myself, 1995

 𝑚𝜆 will be zero if 𝜆 has more than k parts.

 Let 𝑊𝜆(𝑘) be the irreducible GL(k)-module corresponding to the partition 𝜆.
The symmetric group 𝑆𝑘 is contained in GL(k) as the permutation matrices. 

Then the multiplicity 𝑚𝜆 equals the dimension of 𝑊𝜆 𝑆𝑘
, the subspace of 𝑊𝜆

invariant under the 𝑆𝑘-action.



 Another description of 𝜒𝑛 𝐷𝑘 can be gotten from Molien’s theorem.

 A third description from my new paper is an estimate:  𝑚𝜆 is bounded 

above by the number of semistandard tableaux of shape 𝜆 whose type is a 

partition with at most k parts, and bounded below by the number of 

semistandard tableaux of shape λ whose type is a strict partition with at 

most k parts.

 In the case of 𝑑 = 𝑑1, 𝑑2 , 𝑑1 ≠ 𝑑2 and 𝜆 = (𝜆1, 𝜆2) the multiplicities equal 

𝜆1 − 𝜆2 + 1, if 𝜆2 ≥ 2, and equal 𝜆1 − 𝜆2, if 𝜆2 ≤ 1.



 In general if A and B are any two algebras with trace, then 𝐴⊕𝐵 also has a 

trace and the trace cocharacters are related by 𝜒𝑛 𝐴⊕𝐵 ≤ ∑𝜒𝑖 𝐴 ⊗
𝜒𝑛−𝑖 𝐵 .  We will write 𝜒 𝐴⊕ 𝐵 ≤ 𝜒 𝐴 ⊗ 𝜒 𝐵 , for short

 If 𝑑 = 𝑑1
𝑚1 , … , 𝑑𝑘

𝑚𝑘 , then 𝐷 𝑑 = 𝐷(𝑑1
𝑚1) ⊕⋯⊕𝐷(𝑑

𝑘

𝑚𝑘)

 Also, the cocharacter of 𝐷 𝑑𝑚 is independent of d.  Also, the cocharacter

of 𝐷 1𝑚 , which I will denote 𝐷𝑚 , is known from the previous slides.

 This gives the upper bound 𝜒 𝐷 𝑑 ≤ 𝜒 𝐷𝑚1
⊗⋯⊗𝜒 𝐷𝑚𝑘

.

 A lower bound is 𝜒 𝐷𝑚 ≤ 𝜒(𝐷 𝑑 )


