The Card Guessing Game: A generating function approach

Thotsaporn "Aek" Thanatipanonda (Joint work with Tipaluck Krityakierne)
Mahidol University International College
Nakhon Pathom, Thailand
thotsaporn@gmail.com
"A to Z" workshop July 26-29, 2021

Introduction

Blackjack: Riffle shuffle. As a player, we do card counting.

Guesithe

coming ard.
In this project (similar to Blackjack):
Original deck is $[1,2,3, \ldots, n]$.
Rule: Riffle shuffle k times, guess card \rightarrow reveal card, then repeat.
Goal: Try to make the correct guesses as many as possible.

We discuss the optimal guessing strategy and statistics of the number of correct guesses.

Gilbert-Shannon-Reeds (GSR) Model for Riffle Shuffles

1. Split the deck into two piles.

Each interleaving has probability $\frac{1}{2^{n}}$ to come up.

deck random.

Example of 1-time riffle shuffle of a deck of 5 cards

1-time riffle shuffle: examples

Optimal guessing strategy

Algorithm:

1:Start by guessing number 1. $\uparrow^{243:-}$
2:If true then continue to guess the next number in line.
3:If false then the deck is now split into two increasing subsequences. Guess the first element in the longer subsequence.
4:Continue to guess this way until until no cards remain.

This algorithm is proved to provide the maximum expected number of correct guesses.

All possible permutations after shuffling a 4-card deck once. The color indicates a correct guess under the optimal strategy.

Goal

The goal is to calculate the moments (i.e. mean, variance, etc) of the number of correct guesses (denote X_{n}) amongst all of the resulting permutations.

Generating functions and recurrences

Generating functions:

$$
D_{n}(q)=\sum_{i=0}^{\infty} a_{i} q^{i}
$$

where a_{i} denotes the number of permutations with i correct guesses.
Recurrence:
(Main recurrence)
where $D_{0}(q)=1$.

Example:

Part 1: the first card =1

Part 2: the first card >1

Recurrence structure $D_{4}(q)=\left(q^{4}+q D_{3}(q)\right)+F(1,2 ; q)+F(2,1 ; q)+F(3,0 ; q)$

The catch!

$$
\begin{equation*}
F(m, n ; q)=\underbrace{\stackrel{\downarrow}{q F(m-1, n ; q)}+\underbrace{F(m, n-1 ; q)}_{\text {next card from shorter subsq. }}, ~ . \quad \downarrow}_{\text {next card from longer subsq. }} \tag{1}
\end{equation*}
$$

for $m \geq n$, where $F(m, 0 ; q)=q^{m}$. Also, $F(m, n ; q):=F(n, m ; q)$ whenever $m<n$.

It is easy to show the formula of $F(m, n ; q)$ (once you know what it looks like).

Proposition

For $m \geq n$,

$$
F(m, n ; q)=\sum_{i=0}^{n}\left[\binom{m+n}{i}-\binom{m+n}{i-1}\right] q^{m+n-i}
$$

More catch!!

Assume $G_{n}(q)=q^{n}+\sum_{i=0}^{n-2} F(n-1-i, i ; q)$.
It can be shown that

Proposition

For $r \geq 1$, the closed-form formula for $\left.G_{n}^{(r)}(q)\right|_{q \neq 1}$ can be obtained by evaluating the binomial sums:

$$
\begin{aligned}
& \left.\left.G_{2 k}^{(r)}(q)\right|_{q=1}=(2 k)_{r}-(2 k-1)_{r}+2 \sum_{i=0}^{k-1}(k-i)\left[\begin{array}{c}
2 k-1 \\
i
\end{array}\right)-\binom{2 k-1}{i-1}\right](2 k-1-i)_{r}, \\
& \left.G_{2 k+1}^{(r)}(q)\right|_{q=1}=(2 k+1)_{r}-(2 k)_{r}+2 \sum_{i=0}^{k}\left(k+\frac{1}{2}-i\right)\left[\binom{2 k}{i}-\binom{2 k}{i-1}\right](2 k-i)_{r}, \sqrt{l}
\end{aligned}
$$

where $(a)_{r}$ is the falling factorial, i.e. $(a)_{r}=a(a-1)(a-2) \ldots(a-r+1)$.

Now the moments!

Procedure: Factorial Moment (fixed r, formula in n) Step 1: Compute $\left.G_{n}^{(r)}(q)\right|_{q=1}$ by the binomial sum, n symbolic/ Step 2: Use the method of undetermined coefficient to calculate $\left.D_{n}^{(r)}(q)\right|_{q=1}$.
Step 3: Apply (4) to obtain $E[X(X-1) \ldots(X-r+1)]$.

- Step 2 is acquired through the relation:

$$
\begin{align*}
& \qquad D_{n}(q)=q D_{n-1}(q)+G_{n}(q) . \\
& \underbrace{\left.\overbrace{n}^{(r)}(q)\right|_{q=1})=\left.D_{n-1}^{(r)}(q)\right|_{q=1}+\left.r D_{n-1}^{(r-1)}(q)\right|_{q=1}+\left.G_{n}^{(r)}(q)\right|_{q=1}}_{\text {Step } 3 \text { is acquired from the relation: }} \text { (3) } \tag{3}
\end{align*}
$$

$$
\begin{equation*}
E[X(X-1) \ldots(X-r+1)]=\frac{\left.D_{n}^{(r)}(q)\right|_{q=1}}{2^{r}} \tag{4}
\end{equation*}
$$

Example: The first moment $E[X]$

$$
r=1
$$

- Step 1:

$$
\begin{aligned}
\left.G_{2 k}^{\prime}(q)\right|_{q=1} & =\frac{k-1}{2} 4^{k}+k\binom{2 k}{k}+1, \\
\left.G_{2 k+1}^{\prime}(q)\right|_{q=1} & =\frac{2 k-1}{2} 4^{k}+\frac{4 k+1}{2}\binom{2 k}{k}+1
\end{aligned}
$$

Example: The first moment $E[X]$ (continue)

- Step 2:

$$
\begin{aligned}
\left.D_{2 k+1}^{\prime}(q)\right|_{q=1} & =\left.D_{2 k-1}^{\prime}(q)\right|_{q=1}+\frac{k}{2} 4^{k}+k\binom{2 k}{k}+1 \\
& +\frac{2 k+1}{2} 4^{k}+\frac{4 k+1}{2}\binom{2 k}{k}+1 .
\end{aligned}
$$

Simplifying the equation and writing expression in terms of n,

$$
\left.D_{n}^{\prime}(q)\right|_{q=1}=\left.D_{n-2}^{\prime}(q)\right|_{q=1}+\frac{3 n-1}{8} 2 p+\frac{3 n-2}{2}\binom{n-1}{(n-1) / 2}+2
$$

Example: The first moment $E[X]$ (continue)

- Step 2: method of undetermined coefficients

For the term $\frac{3 n-1}{8} 2^{n}$, we assume the solution to be in the form
$(a n+b) 2^{n}$. (ansatz1)
For the term $\frac{3 n-2}{2}\binom{n-1}{(n-1) / 2}$, we assume a solution of the form

$$
\left(a_{0} \sqrt{n}+\frac{a_{1}}{\sqrt{n}}+\frac{a_{2}}{n^{3 / 2}}+\ldots\right) 2^{n} .
$$

Example: The first moment $E[X]$ (continue)

$$
\begin{aligned}
\left.D_{n}^{\prime}(q)\right|_{q=1} & =(n-1) 2^{n-1}+\sqrt{2^{n}} \sqrt{\frac{2 n}{\pi}} \\
& \left(1-\frac{3}{4 n}-\frac{53}{96 n^{2}}-\frac{443}{384 n^{3}}-\frac{75949}{18432 n^{4}}-\frac{4621519}{221184 n^{5}}-\cdots\right) .
\end{aligned}
$$

- Step 3:

Now as $E[X]=\frac{\left.D_{n}^{\prime}(q)\right|_{q=1}}{2^{n} /}$, the expectation for the case when $n=2 k+1$ is given by

$$
\begin{aligned}
E[X] & =\left(\frac{\pi}{2}+\sqrt{\frac{2 n}{\pi}}-\frac{1}{2}-\sqrt{\frac{2}{\pi n}}\right. \\
& \left(\frac{3}{4}+\frac{53}{96 n}+\frac{443}{384 n^{2}}+\frac{75949}{18432 n^{3}}+\frac{4621519}{221184 n^{4}}+\ldots\right) .
\end{aligned}
$$

Some other results:

For $n=2 k$:

$$
\begin{gathered}
E[X]=\frac{n}{2}+\sqrt{\frac{2 n}{\pi}}-\frac{1}{2}-\sqrt{\frac{2}{\pi n}}\left(\frac{3}{4}+\frac{49}{96 n}+\frac{439}{384 n^{2}}+\frac{76709}{18432 n^{3}}+\ldots\right) . \\
E\left[(X-\mu)^{2}\right]=\left(\frac{3}{4}-\frac{2}{\pi}\right) n-\frac{3}{4}+\frac{3}{\pi}-\sqrt{\frac{2}{\pi n}}+\frac{11}{12 \pi n}+\ldots
\end{gathered}
$$

$$
E\left[(X-\mu)^{3}\right]=
$$

$$
\sqrt{\frac{2}{\pi}}\left(\left(\frac{4}{\pi}-\frac{5}{4}\right) n^{3 / 2}+\left(\frac{43}{16}-\frac{9}{\pi}\right) n^{1 / 2}-\frac{3 \sqrt{2 \pi}}{4}+3 \sqrt{\frac{2}{\pi}}+\ldots\right)
$$

Non-normal distribution

The skewness coefficient is given by $\frac{m_{3}}{m_{2}^{3 / 2}}$, where $m_{r}:=E\left[(X-\mu)^{r}\right]$. We see that the skewness of X_{n} does not tend to zero. Therefore, the number of correct guesses is not asymptotically normally distributed.

Probability histograms of the number of correct guesses when n varies. The red vertical line indicates the corresponding expected value $E\left[X_{n}\right]$.

Generalization to k Riffle Shuffles: Is it possible?

This problem seems very difficult at the moment.

References

目 Martin Aigner, Gunter M. Ziegler, Proofs from THE BOOK, Springer, 6th ed. 2018 edition.
Dave Bayer, Persi Diaconis. Trailing the dovetail shuffle to its lair, Ann. Appl. Probab. 2 (1992), 294-313.
(R. Ciucu, No-feedback card guessing for dovetail shuffles. Ann. Appl. Probab. 8(4) (1998), 1251-1269.

Pengda Liu On card guessing game with one time riffle shuffle and complete feedback. Discrete Applied Mathematics, 288 (2021), 270-278.

References (continue)

(1. Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, $A=B$, A.K. Peters, 1996.

Doron Zeilberger. The Automatic Central Limit Theorems Generator (and Much More!), Advances in Combinatorial Mathematics: Proceedings of the Waterloo Workshop in Computer Algebra 2008 in honor of Georgy P. Egorychev", chapter 8, pp. 165-174.

Doron Zeilberger. The method of creative telescoping, J. Symb. Comput. 11(3) (1991), 195-204.

