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INTRODUCTION
or: Why Am I Doing What I Am Doing?
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FROM PDEs TO RAMSEY
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“Most speakers have no clue how to give a general talk. They start out, 
very nicely, with ancient history, and motivation, for the first five minutes, 

but then they start racing into technical lingo that I doubt even the 
experts can fully follow.

Please! Expand these first five minutes into fifty minutes, tell us about the 
history, background, motivation, and you don't have to even mention 

your own results.
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1980: Some Comments on Rota’s Umbral Calculus

⬢ The shift operator is at the heart of umbral calculus.

⬢ Discusses relationship with Fourier analysis
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Connection > Szemerédi’s Theorem. Let A be a subset of integers with
positive upper density. Then A contains arbitrarily long
arithmetic progressions.

> Furstenberg’s Multiple Recurrence Theorem. For any finite
measure space, let A be a measurable set with positive measure
and let T be the shift operator. Then there exists a positive integer
d such that
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has positive measure.

> Gowers develops new Fourier analysis tools to give a new proof
of Szemerédi’s Theorem and, consequentially, a significantly
improved upper bound for the minimal integer n=w(k;r) such that
every r-coloring of [1,n] admits a monochromatic k-term
arithmetic progression.
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1983:  A Direct Combinatorial Proof of a Positivity Result

⬢ Co-authored with Joe Gillis

⬢ Given a prescribed number of each of 4 types of hats (colors) 
from n people, it is more likely that a redistribution of hats to the 
n people has an even number of incorrect types than odd 
number of incorrect types.

⬢ If we have an equal number of each type of hat, we have an 
equinumerous 4-coloring of [1,n].
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Connection > On the Existence of Rainbow 4-Term Arithmetic Progressions

Conlon,	Jungić,	and	Radoi5cić

> For any n, there exists an equinumerous 4-coloring of [1,n] that
admits no 4-term arithmetic progression with 4 distinct colors
(rainbow arithmetic progression).

> (However, earlier Jungić and Radoi5cić had shown that equi-
numerous 3-colorings always admit rainbow 3-term arithmetic
progressions.)

> Canonical van der Waerden Theorem. Every coloring of the
positive integers (with, perhaps, infinitely many colors) admits
arbitrarily long arithmetic progressions that are either
monochromatic or rainbow.
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1985:  A Combinatorial Approach to Matrix Algebra

⬢ Views matrices not as linear transformations but as weights of 
graph edges

⬢ A matrix is the “blueprint” of all possible edges one can draw on 
n given vertices

⬢ Uses two “types” of edges – in other words, colors
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3> Ramsey’s Theorem. For all positive integers k
and r, there exists a minimal integer n=R(k;r) such
that every r-coloring of the edges of the complete
graph on n vertices admits a monochromatic
complete graph on k vertices.
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Connection
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1985:  Some Asymptotic Bijections

⬢ Translates k-colorings to set partitions to give bijections related 
to the Bell numbers

⬢ Works with signed permutations  – in other words, 2-colored 
permutations
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Connection > Alon uses the Gallai-Witt Theorem to prove:

> Every r-coloring of the edges of the complete graph on n
vertices contains, for n sufficiently large, k vertices v1<v2<...<vk
such that the differences between consecutive vertices follow any
prescribed permutation pattern and all edges between these
vertices have the same color.

> (
Gallai-Witt Theorem. Let S⊆ ℤ𝑚 be a finite set. Every r-
coloring of the points in [-n,n]m admits, for n sufficiently large, a
monochromatic set of the form a+dS for some a ∈ ℤ𝑚 and d ∈ ℤ.

Also used to prove the Canonical van der Waerden Theorem.
)
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1987:  Enumerating Totally Clean Words

⬢ Generating function for words over a finite alphabet that do not 
contain a subsequence of a given set of forbidden words.
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Connection

11...11, 11...12, 11...122, ..., 22...22. Two must
have the same color. Hence, there exists a
variable word of the form w(x)=11...xx...xx..22
such that w(1) and w(2) have the same color.

> Motivation. To analyze multidimensional tic-
tac-toe.  They showed that for a board of 
sufficiently large dimension (HJ(k;2)), the first 
player can always win.  For example,
we know that HJ(3;2)>2 since 
standard  tic-tac-toe does not 
guarantee a winner. 

> Hales-Jewett Theorem. Let k, r ∈ ℤ. Let W(m)
be the set of all variable words of length m over
the alphabet {1, 2,..., k}∪{x}. There exists a
minimal positive integer H = HJ(k;r) such that for
any h ≥ H, every r-coloring of the elements of
[1, k]h admits w(x) ∈ W(h) with {w(i) : i ∈ [1, k]}
monochromatic.

> Variable word. A word over any given
alphabet that includes a variable (x). For
example, 12x is a variable word, but 312 is not.

> Example. Color each word over the alphabet
{1,2} of length r with one of r colors (so we have
22𝑟 possible colorings). Consider the r+1 words
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1989:  On a Conjecture of R.J. Simpson About Exact Covering Sequences

⬢ Exact covering system: A set of non-intersecting bi-directional infinite arithmetic 
progressions that cover ℤ. Call the common difference of terms in an arithmetic 
progression the modulus.

⬢ Conjecture: Let D = {𝑑1, 𝑑2, ..., 𝑑𝑛} such that ∑!"#$ #
%#

= 1.  Then there exists an exact 
covering system with moduli set equal to D if and only if there exists a specified (p+1)-

coloring of D for every prime p such that ∑ #
%#

is constant on p of the color classes.

⬢ Mirsky-Newman result shows that not all 𝑑𝑖 can be distinct.

⬢ Zeilberger provides counterexamples to the conjecture.
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Connection

> Consider the 2-coloring of ℤ+:

011000011111111 ...
i.e.,

01 12 04 18 016 ...

> Any infinite arithmetic progression of modulo d
with 2n-1 ≤ d < 2n has a term in a color block of
length 2n, meaning one of the next two terms has
the opposite color and hence cannot be mono-
chromatic.

> Exact covering systems give a well-defined
finite coloring of the positive integers by infinite
monochromatic arithmetic progressions.

> Addressing a related coloring converse,
although van der Waerden’s Theorem informs us
that every finite coloring of ℤ+ contains arbitrarily
long monochromatic arithmetic progressions,
there is no guarantee of an infinite monochromatic
arithmetic progression.
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⬢ Co-authored with Jane Friedman and Ira Gessel

⬢ Counts paths from (0,0) to (a,b) and partitions these paths by 

the number of points below the line 𝑦 = !
"
𝑥 and dealing with 

points on the line.

⬢ Proof uses partial sums of sequences and what to do with equal 
partial sums.
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1994:  Talmudic Lattice Path Counting



Connection
> Consider this little gem:

> Let a1, a2, ..., an be a sequence of n integers. Then there
exists a subsequence whose sum is divisible by n.

> Let si = a1+a2+ ... +ai. Assume none of the si, 1 ≤ i ≤ n,
are divisible by n. Then two of them are congruent modulo
n, say sx and sy with y > x.

> Then
sy – sx = ax+1 + ax+2 + ... + ay

shows that ax+1, ax+2, ..., ay is the desired subsequence.

> (This is from the area of zero-sum Ramsey theory.)
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⬢ The conjecture: Consider the complete bipartite graph Kn,n. Assume 
each edge has a list of n allowed colors from a pool of m ≥ n possible 
colors.  Then there exists a color assignment for each edge such that 
no 2 edges with a common vertex are assigned the same color.

⬢ This paper contains the first explicit mention of coloring (as a type of 
dual of the above description, coloring vertices instead of edges).
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1996:  The Method of Undetermined Generalization and Specialization 
Illustrated with Fred Galvin’s Amazing Proof of the Dinitz Conjecture



Connection
> An edge-coloring of a graph is called a proper coloring if no
two adjacent edges have the same color. This is precisely the
coloring in the conclusion of Dinitz’s Conjecture.

> Rainbow Ramsey Theorem. Historically (Erdős, Sim-
onovits, Sós; 1973) started as an anti-Ramsey property:
AR(G,H) is the maximal number of colors allowed to color the
edges of G such that every subgraph H has at least two edges of
the same color.

> A proper coloring adds the restriction that the edges are
adjacent.

> For the Dinitz Conjecture, creating an inflated star graph S
(replace each vertex of a star graph by n vertices, using no edges
instead of the usual Kn) containing all possible color
combinations of edges (defined by those allowed by each edge’s
assigned list), we are searching for a properly colored Kn,n .
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⬢ Co-authored with AR.

⬢ Schur Triple is {x, y, z} such that x + y = z.

⬢ Prize awarded from Ron Graham (shared with Schoen, who 
independently solved this at the same time) 

21

1998:  A 2-coloring of [1,n] Can Contain n2/22 + O(n) 
Monochromatic Schur Triples, But Not Less!



Connection
> Trivial
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THANKS!
Any questions?

You can find me at:

⬢ http://math.colgate.edu/~aaron
⬢ arobertson@colgate.edu


