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A 4n LOWER BOUND ON THE COMBINATIONAL COMPLEXITY OF
CERTAIN SYMMETRIC BOOLEAN FUNCTIONS OVER THE BASIS

OF UNATE DYADIC BOOLEAN FUNCTIONS*

URI ZWICK?

Abstract. A simple, and easy-to-check, property of a symmetric boolean function is shown to imply a
4n- O(1) lower bound on the circuit complexity of the function over U2 B2-{03, =}, the basis of unate
dyadic boolean functions. Among the functions to which this lower bound applies are the modular functions

MODk (n) for any fixed k>-3 (MODk (n) is the function which returns if and only if (Y xi) mod k=0).
Finally, a 5n upper bound is obtained on the circuit complexity over Uz of the function MOD4 (n).

Key words, combinational complexity, boolean functions, lower bounds

AMS(MOS) subject classification. 68Q15

1. Introduction. In 1949, Shannon [Sh] showed that the circuit complexity of
almost all boolean functions is exponential. However, attempts to obtain concrete
lower bounds for functions in NP (see [KM], [HHS], [Sc-1], [Sc-2], [P], [St], [B])
yielded only linear results. The best lower bound of this kind known today over Be,
the full binary basis, is a 3n lower bound obtained by Blum [B]. Surveys of these
results may be found in [BS], [D], [W].

In this note, we show that a 4n- O(1) lower bound may be proved if the linear
functions XOR and its complement are removed from the basis. The best previous
lower bound over this basis, denoted by Ue, was a 3n lower bound on the circuit
complexity of the function MODe (n) obtained by Schnorr [Sc-1]. The result presented
here is, in a sense, a generalization of Schnorr’s result. Another result which is close
in spirit to the result presented here is the 2.5n lower bound (over Be) obtained by
Stockmeyer [St]. Some of the ideas in this work were inspired by the work of Lai and
Muroga [LM].

For additional lower bounds over the bases {I}, {v,-}, {v, ^,-a}, see [So] and
[Re] (the symbol denotes the NAND operation).

In proving the 4n-O(1) lower bound we use a simple variation of the elimination
method. It is very unlikely that this method will enable us to produce significantly
better (for example, nonlinear) lower bounds. In order to achieve such an improvement,
a major breakthrough, like the one recently obtained in the theory of monotone circuits
(see IRa], [A], [AB]), is probably needed.

2. Preliminaries. A circuit (over Ue) is a directed acyclic graph whose nodes have
indegree 0 or 2. Nodes with indegree 0 are called inputs and they are labeled by
variables or constants. Nodes with indegree 2 are called gates and they are labeled by
functions from Ue. Note that we may assume, without loss of generality, that all the
gates are labeled by the eight nondegenerate U2-functions (X ^ yb)C, where x xa.

Each gate in a circuit computes a function by applying the function labeling it to
the functions computed by the nodes feeding it. Since we are interested in this note
in the computation of scalar functions, we consider only those circuits in which just
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500 U. ZWICK

one gate has outdegree 0. This gate is called the output gate of the circuit, and the
function computed by it is defined to be the function computed by the circuit.

The size of a circuit/3, denoted by C(/3), is the number of gates contained in it.
The circuit complexity of a function f, denoted by Ct:2(f) or simply by C(f), is the
minimal size of a circuit computing f

If/3 is a circuit and A is a gate in/3, we denote by do(A) the outdegree of A, and
by res0 (A) the function computed at A (the subscript/ is omitted when no confusion
arises). If x is a variable, we denote by do(x) the sum of the outdegrees of the input
nodes labeled by x. Actually, we can assume that each variable labels only one input
node and then do(x) is simply the outdegree of the input node labeled by x.

Finally, we denote by d1(/3) the number of variables whose outdegree in /3 is
exactly 1. The numbers d1(/3) play a central role in the proof of the 4n lower bound.

If a gate A in a circuit/3 is fed by the node B and res (B) is constant, then we
can obtain a smaller circuit which computes f in the following way: If res (A) is also
constant, then we simply remove the incoming edges of A from the circuit and turn
A into a constant input node. Otherwise, res (A)-res (C)a, where C is the second
node in the circuit feeding A and a {0, 1}. In this case we remove the node A and
all its incoming and outgoing edges from the circuit. The gates which were fed by A
will now be fed directly by C. If a 1, a complement must be incorporated into these
gates. (We assume here that A is not the output gate of the circuit.) This process can
be carried on until a simplified circuit is obtained, i.e., a circuit with no constant input
nodes and no gates with constant output.

In the next section, we encounter many situations in which we are given a circuit,
some of whose gates are fed by constants. In each such case we explicitly identify a
subset of these gates and remove them one by one, as explained in the previous
paragraph.

If g(x, y) U2, then there exists a constant c {0, 1} such that g(c, y) is a constant.
We say that the constant c blocks the function g. Note that this property does not hold
for B2 and this is why proving lower bounds over this base is a harder problem.

3. The lower bound. We begin by defining the set of functions for which our lower
bound applies.

DEFINITION 3.1. The sets S(n), Mk(n), N(n), MN,,(n) are defined in the follow-
ing way:

(1) fS(n) if and only if f(x,... ,x,) depends only on Ei=I xi. Functions
belonging to S(n) are called symmetric functions. If f S(n) and f(xl," , x,) Vk,

where k xi, we associate with f the binary word v(f) roY1 v,. The word v(f)
is called the value vector of f

(2) f Mk(n) if and only if f S(n) and every restriction of f to a subset of k
variables is not constant. It is easy to see that f Mk(n) if and only if v(f) does not
have a constant subword (i.e., 000. or 111...) of length k + 1.

(3) f Nl(n) if and only iff S(n) and every restriction offto a subset {yl,. , y}
of f’s variables is not linear, i.e., not y03.. 03yl or its complement. It is easy to see
thatf Nl(n) if and only if v(f) does not have an alternating subword (i.e., 0101
or 1010 .) of length + 1.

(4) Finally, we define: MNk,l(n)= Mk(n) Nl(n). In other words, f MNk,l(n)
if and only if v(f) does not have a constant subword of length k + 1 or an alternating
subword of length l+ 1.

The structure of the sets Mk(n), Nl(n), MNk,l(n) for small k and is very simple.
It is easy to check that M(n) contains only the two linear functions x03" "x, 03 c
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A 4n LOWER BOUND 501

that have the value vectors 0101 and 1010. and that Nl(n) contains only the
two constant functions that have the value vectors 000. and 111 .. Consequently,
the sets MNk,1 (n) for n _-> k _-> 1 and MNl,l(n) for n -> _-> 1 are empty. The first nonempty
set of the form MNk,(n) is MN2,2(n). Iff MN2,2, then v(f) does not contain the
subwords 000, 111, 010, 101. The only words with this property are 00110011...,
0110011 ..., 11001100..., and 1001100..., and therefore:

MN22 {[(Yxi+c)mod4J }"c=0,1,2,3
2

As a further example, we note that MODk (n) MNk-l,3(n) for k > 2.

Iff MNk,I(n) for some n _-> k, l, then v(f) has a subword from the set {001,110,
100, 011}. In particular, for every two variables x, y {Xl,"’’, xn} the function f has
a restriction of the form (x ^ ya)b. It is also obvious that if f MNk,l(n) for some
n > k, l, then every restriction off obtained by fixing the value of one variable belongs
to MNk,I( n 1).

We can now prove that iff MNk,(n) and n ->_ k+ 1, l, then Cu2(f)>-4(n m)- 1,
where m max { k + 1, l}.

LEMMA 3.2. Let fl be a circuit which computes afunctionf MNk,l( n for n > k + 1, l.
There exists a circuit 3 which computes a function f’6 MNk,I(n- 1) and which satisfies
C(6) dl(6)] -<- C(fl) d1(3)] -4.

Proof Let 3 be a circuit which computes a function f6 MNk,l(n), where n >
k + 1,/. If/3 is not simplified, then simplify it and denote the simplified circuit obtained
by y. It is easy to check that [C(y)-dl(y)]<=[C(/3)-dl([3)] (in every elementary
simplification step described in the previous section, the size of the circuit decreased
by 1 and dl could have increased by at most 1). In y there exists a gate B, which is
fed by two input variables. Let x, y be the variables feeding B. The outdegrees of x
and y must be at least 2 (since otherwise we can assign a value to one of them and
make the output independent of the other).

We say that the circuit y is degenerate if it contains the situation shown in Fig.
3.1 (or the symmetrical situation with the roles of x and y switched). It is easy to
transform y into a nondegenerate circuit y’ which also computes f and which satisfies
C(y’) <- C(y), dl(y’) all(y). This can be accomplished by either deleting A from the
circuit, if its output does not depend on both x and y, or by replacing the edge B -> A
by an edge y-* A, and by adjusting the gate A if necessary, otherwise. Notice that in
the latter case res (A)=(x ^ y)C since in order to compute (x@y)d at least three
U2-gates are needed. The only variables whose outdegree could have been changed
by these actions are x and y. But the outdegrees of x and y were, and must remain,
at least 2, and therefore dl(")= dl(y).

FG. 3.1

We may therefore assume, without loss of generality, that the circuit y is nondegen-
erate. We consider the following three cases.

Case 1. dv(x)_-> 3 or dv(y) >= 3.
Assume without loss of generality that dv(x) _-> 3. Let A, C be two additional gates

fed by x, as shown in Fig. 3.2. Let D be a gate fed by B. Since y is nondegenerate,
D A, C. We assign to x the constant c which blocks B and delete the gates A, B, C,
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502 u. ZWICK

A

FIG. 3.2

D from/3 as explained in the previous section. Denote by 6 the new circuit obtained.
The circuit 6 computes the function fx:=e MNk,t(n 1). Note that if dr(z) 1, then z
does not feed A, C, or D in 3’ (since otherwise choosing the right values for x and y
would make the output of 3’ independent of z and this is a contradiction since n > k + 1).
Therefore, d(z) remains 1 and thus we have C(6)=C(y)-4 and dl(6)>-_dl(y) as
required.

If Case 1 does not hold, then dr(x) dr(y 2. Denote by A, B the gates fed by
x and recall that B is also fed by y.

Case 2. dr B >= 2.
Denote by C, D two distinct gates fed by B (see Fig. 3.3). Since y is nondegenerate

C, D A. We assign to x the constant c which blocks B. As in the previous case, we
delete the gates A, B, C, D and we are left with a circuit 6 which satisfies C(6) C (3’) 4
and d1(6)>= d(y), as required.

A B

FG. 3.3

The last case we have to consider is Case 3.
Case 3. dr B 1.
We break this case into two subcases.
Case 3.1. There exists an edge y--> A in 3’.
If dr(A)_-> 2, then after switching the roles of x and y we are back in Case 2. We

therefore assume that dr(A)= dr(B)= 1. Denote by C the only gate fed by B, and by
D the only gate fed by A. We claim that C D, for otherwise the output of y depends
on x and y only through the gate C D. If res (C) is constant or of one of the forms
Xa, yb, (xa^ yb)e, then one of x or y may block the other, and this is clearly a
contradiction. The only possibility left is that res (C)= (xy)d but this also leads to
a contradiction, forin this casef cannot have a restriction to {x, y} ofthe form (x ^ ya)b.

The situation in this subcase is therefore as shown in Fig. 3.4. We assign to x the
constant which blocks B, and delete the gates A, B, C from the circuit. Denote the
resulting circuit by 3. Note that d(y)= 1 since y feeds in 6 only the gate D. Once
again, if dr(z)= 1, then also d(z)= 1, and therefore C(6)<=C(y)-3 and d1(6)>=
dl (3,) + 1, as required.

FIG. 3.4
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A 4n LOWER BOUND 503

Case 3.2. There is no edge y- A in y.
Denote by C the unique gate fed by B. Denote by D the second gate fed by y.

By the nondegeneracy of 7 we obtain that C # A, D. We assume in this case that
D # A, thus the situation is as shown in Fig. 3.5. As usual, we assign to x the constant
which blocks B, and delete the gates A, B, C from the circuit. We can now repeat the
arguments of the previous subcase.

In each one of the above cases we obtained a circuit which satisfies the conditions
required and thus the proof is complete. El

THEOREM 3.3. If fMNk,l(n), then Cuz(f)>=4(n-m)-l, where m=
max {k + 1, 1}.

Proof We prove by induction on n that if/3 is a circuit which computes f6
MNk,(n), then [C(fl)-dl(fl)]>_-4(n m)-1. The basis of the induction for n m
follows from the fact that C (/3) _-> m 1, dl (/3) _-< m, and therefore C (fl) dl (/3) 1.
The induction step follows immediately from Lemma 3.2. El

In fact, this theorem can be slightly improved to Ct2(f) ->_4(n- m)+(m- k) using
the following lemma.

LEMMA 3.4. Iff Mk(n) and fl is a simplified circuit computing f, then dl(fl)% k.
Proof Suppose on the contrary that dt(Xl d(Xk) 1. Denote by Ai the

unique gate fed by xi for iN k. Since/3 is a simplified circuit, the second input of A
is not constant. Denote by V the set of variables on which this second input depends.
Since, by assigning appropriate values to the variables of V we can block x and thus
obtain a constant restriction, we immediately get that [V[ => n- k+ 1. Thus each V
contains at least one variable from the set {x,..., Xk}. Denote one such variable by
x=(). For each 1 _-< _-< k there exists a directed path in/3 from x() to Ai and therefore
also from A,r(i to A. But this is a contradiction since it implies the existence of a
directed circuit in 13. [3

4. An upper bound. In this section, we present U2-circuits of size 5n-7 which
compute the functions MOD4(n) (for n->3). This shows that 4n-O(1)_-<

Cc2(MOD4)<=5n-O(1).
Using the same methods, it is easy to see that any symmetric boolean func-

tion f(xl,’’" ,xn) which depends only on (x)mod2k can be computed using
(7 23-)n + o(2k/k) U2-gates or (5 23-k)n + O(2/k) Ba-gates. In particular, any
symmetric boolean function can be computed using 7n + o(n) Ua-gates or 5n + o(n)
B2-gates.

The basic building block in our circuits is the binary full adder (FA) shown in
Fig. 4.1(a). In Figs. 4.1(b) and 4.1(c) it is shown how an FA can be implemented using
five B2-gates or seven Ua-gates. It is easy to check that both implementations are
optimal.

We now present the circuits for MOD4 (n). If (S-l,"" ", So) is the binary rep-
resentation of x +. + xn, then MOD4 (x, x) NOR (s, So). The circuits com-
pute Sl, So using a tree of FAs.

A

FIG. 3.5
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504 u. ZWICK

carry- FA-sum

sum

carry

sum carry
(a) (b) (c)

FIG. 4.1. Implementation offull adders.

Assume for simplicity that n ->_ 3 is odd. Construct a trenary tree of FAs in which
every FA is fed by three inputs which are either input variables or sum outputs of
previous FAs (this is possible since n is odd). The exact structure of the tree is
immaterial. The number of FAs in the tree is (n- 1)/2. The output of the root FA is
So. The function Sl is obtained by computing the XOR of all the carries produced by
the (n-1)/2 FAs. This XOR can be computed using 3. ((n-1)/2)-3 U2-gates. The
value of the function MOD4 (n) is now obtained using one additional NOR gate. The
total size of the circuit is 7 ((n- 1)/2)+(3 ((n 1)/2)-3)+ 1 5n-7.

The same construction yields Bz-circuits of size 3n- 3 for the functions MOD4 (n).
Stockmeyer [St] constructed more efficient circuits for MOD4 (n) over B2 and showed
that CB2 (MOD4 (n)) 2.5n O(1).

Over U2 there is still an unresolved gap between the 4n lower bound and the 5n
upper bound presented for MOD4 (n). We believe that the upper bound is closer to
the truth and that the function MOD4 (n) is the easiest function among the functions
to which the lower bound presented in this note applies.

Acknowledgment. The author would like to thank Noga Alon for his help and
supervision during the preparation of this work.
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