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I.

SUMMARY AND INTRODUCTION

Comyutation by the use of difference equations in the backward direction
was introduced by J.C.P. Miller (1952). In this reference, he applied the
.method, now sometimes called Miller's algorithm, to the calculation of Bessel
functions, and it proceeds essentially as follows.¥*

Consider the difference equation
.+.
y(n) - giﬁull y(n+l) - y(n#2) =0, x>0, n=20, (L.1)

which is satisfied by the modified Bessel functions I, (x) and (—)nKn(x) X%

Let m be an integer 2 0 . Put

Am+l(m) =0, Am(m) =1 (1.2)
and calculate A (m) for O ¢n <m-1 from (L.1), i.e.,

A (m) = i(fﬁ Appp(m) + A n(m) , 0sns<ml. (1.3)

Now the series

» :;i 5 - H 1,k=0 , | ;
o P (=) Sklgk(‘) > € T (1.4)

2,k>0 ,

* Miller has stated that he first used the method as an aid in the computa-
tion of Airy integrals, see Miller (1946).
*%  All special functions in this work are defined as in Erdeljl et al (1953).

if



is known (Erdélyi et al (1953), v. II, p. 7).

Iet
£V I
am) = > (=) ehpi(m) , (1.5)
k=0 k
vhere [m/2] means the largest integer not greater than m/2 . Then, by

using the known asymptotic properties of I, , K, for large n , one can show

that

lim An(myﬂ(m) =I(x) ,n20,x>0. tl.ﬁ)

nm-s»om
In fact, the asymptotic estimates

n

I(x) = -(Xﬁ) [1+0a)] , () 0 = Qé_x)ﬂ rn) o] (1.7)

follow from the ascending series representations of I, and K, , and, since
Ay(m) satisfies (1.1), it cen be represented as a linear combination of the

(linearly independent) solutions (1.7), see the Appendix. This means that
Ap(m) = E3(m) T (x) + €p(m) () K, (x) . (1.8)
From (1.2) and
I (%) K g (%) + T (K (x) = 1/x, (1.9)

we conclude that



gl(m) = KKﬁ+1(X) ) §2(m) = X(')m1m+1(x) . (1.10)
Thus

Ay(m) = m.'(2/x)mIn(x) I:l + O(m"l)] , m>o (1.11)

a(m) = n!(2/x)" [1+ om™)] , noe

so (1.6) follows.

The above analysis shows clearly why the process converges, and also why
it converges to I, and not to (-)nKh: In is very small compared to Kp
as n->o . This characteristic of Miller's algorithm, namely, that the solu-
tion of the difference equation to which the process converges, if it converges,
must, in a certain sense be the smallest solution, remains true when the algo-
rithm is applied to general homogeneous difference equations, see our Theorem
4.3.

A remarkable feature of the Miller algorithm is that no tabular values of
I, are needed in the computations, only a normalization relationship, such as
(1.4). Tabulaer values would be required, of course, if (1.1) were used in the
forward direction, and moreover, when (1.1) is used in the forward direction
to compute I, starting with initial values of I, and I;, those small errors

inevitably introduced in the course of the computation grow rapidly with n .



Such a phenomenon is called instability.¥*

The method proposed by Miller created enormous interest, and a number of
papers subsequently appeared in which the writers either further treated the
application of the method to Bessel functions, or else showed that the method
could be used to compute other special. functions. Stegun and Abramowitz
(1957), Randels and Reeves (1958), Goldstein and Thaler (1959), Corbatd and
Uretsky (1959), and Makinouchi (1965a,b) all treated the computation of Bessel
functions. Rotenberg (1960) showed how the algorithm could be used to compute
toroidal harmonics (i.e., Legendre functions) and Miller himself applied the
method to parabolic eylinder functions (1964).

Gaultschi (lQSla} discﬁssed the computation of repeated integralé of’ the

error functiocn

o«
2
y(n) = i? ecfcx = (2/ ﬂ n.') f (t-x)"e"t"at , n =20, (1.12)
& ;
which satisfy

* The coimputetion of (—)nKh by using (1.1) in the forward direction with
initial values of K, and K; is stable, i.e., random errors intro-
duced during the computations do not grow with n . In general, a differ-
ence equation can be used efficiently in the forward direction only to
ccmpute the "largest" solution of the equation. However, the analysis of
the forward procedure is rather less of a problem than the analysis of
Miller's algorithm, see Goutschi (ca 1262), and will occupy none of our
attention here.



y(n) - 2xy(n+l) - 2(n+2)y(n+2) = 0 , (1.13)

and in a later paper (1961b) discussed the computation by backward recursion
of a number of other functions defined by definite integrals.

The Miller algorithm can be applied tc problems other than the computa-
tion of the special Tunctions. Recently, it has been employed in such diverse
problems as the calculation of successive derivatives of [f(z)/z] , vhere f
is. an arbitrary analytic function (Gautschi (1966)) and the computation of
coefficients for the Chebyshev polynomial expansions of functions which satisfy
differential equations with polynomial coefficients (Clenshaw (1957),(1962)).

Of course, any numerical. technique of such general gpplicability demands
a thorough theoretical investigation. Gautschi (lQGlb), who analyzed its con-
vergence when applibd to an arbitrary second order difference equation, scems
to have been the first writer to discuss the Miller algorithm from a general
point of view. IHe continues this analysis in two unpublished works (ca 1962,
1963) using as his main tools the theory of continued fractions and the classi-
cal asymptotic theory of linear difference equations (e.g., the theorems of
Poincaré, Perron, and Kreuser), and he applies his findings to the ccmputation
of Bessel functions, Legendre functions, the incomplete Beta function and the
numerical computation of Fourier coeflficients.

By now a great deal is knoun about the application of Miller's algorithm
to sccond order difference egquations. Conditions on the solutions of the equa-

tion which will guarantee the convergence of the algorithm have been given by



Gautschi (1961b) and by Olver (1964). Methods of increasing the efficiency
of the algorithm by using the adjoint equation to generate auxiliary sequences
have been given by Shintani (1965). (Our Theorem 2.7 is a generalization of
one of this author's results.)

On the other hand, little is known concerning application of the algorithm
to difference equations of arbitrary order. Gautschi (ca 1962) has touched
briefly on the use of difference equations of order o > 2 , but, uwnfortunately,
the classical asymptotic theory on which his analysis is based does not give
very realistic conditions for convergence of the algorithm. More specifically,
Gautschi found it necessary to assume the existence of a fundamental set for
the equation (see the Appendix) whose members exhibited radically dissimilar

behaviour as n->e , namely if {yh(n)} were the set in question, and

" :
h
yh(n+l)/yh(n)-v thn T, by £0 , Ve > Vg T e >V, (1.24)

nse ,1<h<g,

then it could be shown that Miller's algorithm converged (to y1(n)) , provided,
of course, that a suitable normalization relationship was known. Teedless to
say, this condition is excessively stringent, at least for a very wide class
of difference equations (ef our Theorem 4.2).

The purposé of this work is to examine the application of Miller's algo-
rithm, as well as several related algorithms, to homogeneous linear difference
cquations of arbitrary order with coefficients of a fairly general type.
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(The related algorithms are modifications of Miller's algorithm which can be
used when the equation has no smallest solution.)

First, in Chapter II, we formulate the algorithms as they are applied to
difference equations with arbitrary coefficients, and investigate their con-
vergence properties. Conditions for convergence take the form of rather
unwieldy restrictions on the growth of solutions of the equation and determi-

nants involving them. To obtain more practical conditions, it is necessary

=te

to restrict somehow the form of the coefficients in the cquation. This is
done in the chapters following by requiring that the coefficients possess
certain asymptotic representations as n-»e . Ve are then able to use as our
principal investigational tool the analytic theory of singular difference
equations wvhich was developed by Birkhoff and Trjitzinsky. Virtually all
difference equations encountered in practical applicationsare of the specified
forrm, including all equations with coefficients rational in n . In particular,
the computational procedurees discussed by the preceding authors are included

in our analysis.

Chapter III is devoted exclusively to an asymplotic analysis of the solu-
tions of this differcnce cquation, starting with the above-mentioned theory of
Birkhoff and Trjitzinsky. We then prove two new theorems concerning the repre-
sentation of those solutions whose growth can be described with only algebraic
and logarithmic terms.

In Chapter IV, we apply the asymptotic results of the previous chapter

to the problem of determining more tractable conditions Tor the convergence

1



of the algorithms given in Chapter II. One result is that, for the type of
difference equation considered, at least onec of the algori#hms will converge
to a solution of that equation, provided that one can find a fundamental set
Tor the adjoint equation in which no mére than two solutions have the same
rate of growth (in absolute value) as n->o ., A consequence of this theorem
is that, for a second order difference equation of the specified type,
Miller's algorithm, or a suitable modification of it, will always converge.

Chapter IV contains a number of examples, among which are the computation
of the integral

o

y(n) = u/’ exp {-td - P(t)} £t , n =0, (1.15)
o
¢ an integer =2 , P(t) a polynomial of degree (¢-1) , and the computation
of a class of hypergeometric functions.

In the Appendix of this work are contained definitions, notation, and
those properties of difference equations which are frequently used in the pre-
ceding chapters. (References to material in the Appendix are preceded by an

A, as A.2, A-VI, etec.)



IIU

In this chapter, we will discuss computation by backward recursion based

on the linear homogeneous difference equation of order o =2 2

g

> Cy(n)y(n+v) =0 , Gy =1, Cgln) £0 , (2.1)
v=0

where n is an integer = 0 .

The first algorithm proceeds as follows. ILet m be an integer 2 0 .

Aptro-1(m) = Appgoo(m) = cov = Apg(m) =0, Ap(m) =1, (2.2)

and calculate A,(m) for O <n < m-1 by recursion from

qQ

> Cy(n)App(m) = 0 . ‘ (2.3)

=0

< ™

Suppose we are given the convergent series (called a normelization rela-
tionship)

oW

1= Lyy(x) (2.4)
=0

b

vhere y;(n) is a solution of (2.1).



Define

—
=

Q(m) = Y LAg(m) , (2.5)
k=0
and
T, (m) = An(m)/Q(m) " (2.8)
Definition 2.1
& %
lim Ip(m) = y9(n) , n 20, ‘(2.7)
m->

then ve say the computation of yj(n) by backward recursion based on (2.1)

and (2.4) converges.

Let us analyze the above algorithm. First, by A-IV we note that (2.1)
possesses a fundamental set, {yh(n)} , and since An(m) satisfies the equa-

tion, we can write

o
A(m) = > gp(m)yp(n) , | (2.8)
- h=1
wvhere €, is independent of n . By setting n=m ,m+ 1, ... ,m+ o -1

in (2.8) it is found that

10



gn(m) = Th(mVD(m) 5 (2.9)

wvhere Ty , D are defined in A-V, A-VI. D is not zero because of properties
A-I, A-V, and the fact that Cgy(n) # 0 .

Thus

o
>y, (m)yp(n)

h=1

o m
> Tp(m) Y Liyn(k)

h=1 k=0

(2.10)

Fn(m) &

and this formulation leads to

Theorem 2.1

Let Tl(m) #0 for m sufficiently large.

Define
_ Ty, (m) . m
%=RMW=§F§JSh:%W):Z:%%@):15h5°° (2.11)
' k=0 .
ow suppose
lim Rp = lim RS, = 0 , 2 <h <0 . (2.12)
- mn-»w

Then the computation of y;(n) by backvward recursion based on (2.1) and (2.4)

converges.

11



If yl(O) is known from some source, the algorithm and the conditions for
its validity simplify considerably. This means we can take Iy = 0 for

k>0, and I = ]/yl(o) . We have

Corcllary 2.1

Let yl(o) be known and non-zero and let

limBR, =0, 2sh<g. {2.13)

m— e

Then

1im An(m) e Yl(n)

; B E D (2.14)
n>e holm)  ¥1(0)

In the application of Theorem 2.1 one will find it more convenient, for

large m , to calculate Q using the following result, rather than (2.5).

Theorem 2.2

1 satisfies

*}
2 Coy(m™)Q(mtv) = Lo , m20 (2.15)
v=0

with the initial values (as obtained from (2.2) - (2.5))

Q(0) = L, , Q1) = -C1(0)L, + Ly ,
(2.16)
Q(2) = L, [cl(o)cl(:l_) - 02(0)] - 1nC1(1) + Ip ,

. . -

12



Proof:

By (2.8) and A-VI we have, for k , m 20 ,

o
L Cc_v(m*-\_))hk(lmv) =0, (2. 17,
v=0
S0
mtg g
Z Z Co._v(m+v)ka\k(m+\J) =0 . (2.18)
k=0 v=0

Now MAp(m+v) = 0 for mtv+l < k = m+vio-l , so if empty sums are inter-

preted as zero, we can write (2.18) as

g m+v m+o
Z CU_N(m-'-\J) Z .LkAk(m+v) + Z Lkﬁk(mﬂ;)
v=0 k=0 =mtvie
- :
= Ipighprg(m)Colm) + Z Cqy (m+v)Q(m+v) (2.19)
v=0

o
= = Lo * Z(:} Cooy(miv)Q(m+v) = 0 .
V=

For o = 2 , this result is given by Shintani (1965).
Now suppose that u of the Ry's behave similarly as m->« , but that

the ratio of any one of these to each of the g-u other Rh's approaches



zero as m->o . A gencralization of a method due to Iuke (unpublished),which
was in turn suggested by Clenshaw (1964) for a three-term recursion relation,
can often be used to obtain any cne of the first u solutions corresponding
to the u Rp's . Clenshav (1962) originally used this method, for o¢=2 , to
compute coefficients for the Chebyshev polynomial expansions of certain mathe-
matical functions.
Without loss of generality, we may assume yy(n) is the solution of

(2.1) that we wish to compute. The algorithm is then described by the follow-

ing theoren.

Theorem 2.3

Let the constants Lk,j be given for 0 €= k< ew , 1 £ j <£u, and define

" |
Sy, = 5, 5m) = ) Iy (k) ,2<hso,1<jsu,2suso.,
k=0
(2.20)

Let Rh be bounded and bounded away from zero as m->o for 2 =h Su,
while BRy>0 as m>o for utl Sh <o . Let I ,(m) be as in (2.6) with
Ly = I,1 and let Q(m) , T1(m) Dbe non-zero for m sufficiently large. Iet

also

a,
m—=>om
_
= © < < = < <
ilm Sh,j Ah,j <ew,2shsu, Al 1, L=j=<u,; IAh Jll #0

14



Then for m; sufficiently large, we can determine my for 2 <h <u,

m <my <mg < ...<m , SO that the system of equationé

u By
Z HVZ Lk,jr'k(mv) = Log ) =88 vunssil

v=1 =0
(2.23)
u
EE: Ty =1,
v=1
has a unique solution {qu} (depending, of course, on the my, ).
u
Let IRh(mj)ll be bounded away from zero as my—> . Then
u
lim Z wylp(my) = y3(n) , n20. (2.24)

my—> e v=1

Proof':

Note that since Tj(my), Q(my) are not zero for m; sufficiently large,
the system (2.23) is well-defined.

Equation (2.23) is

au o g
7 nv*_[z Rlltmv>shgj<mv>] =1,1sj%u,

v=1 h=1 (2.25)

The determinant of (2.25) is

15



IP.h(mj)Iz lAh:JC (l + o(l)) ) M>o . (2.286)

The m, can be chosen so that (2.26) is not zero, else the Ry, are
u
linearly dependent, by A-I, A-II. Since lAh’ ‘jll 94 0 , we conclude that
(2.23) uniquely determines my for my sufficiently large. Furthemo;*e,
when (2.25) is solved for m, , one finds that this quantity (and hence ™,

itself) is bounded as m->e .

We write
u ol
Z () = Z cg¥s(n) , cg = cglmy,mo,.e.,my) (2.27)
v=1 s=1
Then
u .
g5y mRs(my) . (2.28)
v=1 & '
> Ry(my)Sy 1 (my)
h=1
Clearly
m e =0 ,u+lSesg, (2.29)
-> o '

b

Also, from (2.25) and the boundedness of the m we have

u
l;t. Ah’:}ch = l + O(l) ) ml—}w 2 l = j <1 y . (2.30)

16



and since Ay ; = 1 , we conclude from this system of equations that

»J

Ly 8wy
lim cg = : (2.31)
my > 0, 2<ss=<u,

which, when used with (2.29) in (2.27), gives the theorem.

The application of the above theorem requires that we know u normaliza-
tion relations for the desired solution, y;(n) . If, instead, we know u

values of y; , then the following result can be used.

Theorem 2.4

Let

limR, =0 ,u+l1l<hs<g, (2.32)
m->o

while R, is bounded and bounded away from zero as m->® for 1 =h=u.
Then we can determine k, , L<hsu, 05k <ko < kz<...<ky,

so that

|yh(k3)|z #0 | | (2!3;)

and for m; sufficiently large, m, can be detemined, mj <mp < ... <My ,

so that the system of equations

17



u

zi: nvhkj(mv}/akl(mv) = yl(kj) yLl 53 En, (2.34)

v=1

u
has a unique solution, m, , 1 <h < u . TFurthermore, suppose IRh(mj)ll is

bounded away from zero as mj—>e . Then

4 , _
lim Z Trvhn(mv/f\kl(mv) =yy(n) ,n=20. (2.35)

mp—>o v=1

Proof:

As for Theorem 2.3.

Unless additional assumptions are made about the nature of the coeffi-
cients Cy(n) in the difference equation, it may not be possible to find a
fundamental sct so that Tl(m) is non-zero for m large. However, in most
applied problems, in particular in all those examples of computation by back-
ward recursion which we discussed in the introduction of this work, the dif-
ference equation in question possessed coefficients which were rational func-
tions of n . If this is the case, as we shall see, a fundamental set can
-always be chosen so that Tl(m) is non-zero for m suffidsntly large, and
the Miller algorithm at least has a chance of converging. Even if it is only

: . : ; ~-1/w
required that Cv(n) possess an asymptotic series in powers of n / , B an

18



integer = 1 , the same is true.

It is thus natural that we turn our attention to this kind of equation.

19



II1I.

In this and the following chapters of this work, the standard form for

the difference equation will be

o]

> cya)y(ntv) =0, Co=1,C,#03;022,n20, (3.1)

<
Il
o

-1/w -2/w ,
Co,y * 1,0 * ey yn + ...} , n—>o, (3.2)

wvhere X, 1is an integer, w 1s an integer =2 1 , and o,V # 0 unless

Cy = 0. We also assume that the coefficients are written with the smallest
possible value of w . Note that the equation adjoint to (3.1) also has co-
efficients of the same general form as (3.2). By (A.12), equation (3.1) has

a unigue solution y(n) satisfying
y(ngty) = @y , 1<j<0,n,20 . (5.5)

Thus, for n=n, = 0, (3.1) has a fundamental set.

o}
We shall see that there exists a certain fundamental set for (3.1).

whose members share an unusual property: each has an asympﬁotic expansion,

valid as n—« , which consists of an exponential leading term multiplied by

a descending series of the kind (3.2) (where, however, w may be replaced by

.an integral multiple of w , see (3.4)-(3.7) beldw). Essentiélly, these

series are thehsame as the so-called subnormal series encountéred in the study

of ordinary linear differential equations with polynomial coefficients near

20



singular points, see Ince (1956, Ch. 17). This is another example of the
close analogy between differential equations and difference ecuations.

For our purposes, the existence of solutions of the difference equation
(3.1) which have such asymptotic representations is quite important, since the
very form of the asymptotic series enables us tb determine much more practical
conditions for the convergence of the class of algorithms discussed in
Chapter II.

However, we will have to examine the properties, algebraic and analytic,
of these solutions in great detail before we can attack the convergence prob-
lem directly, and the present chapter is devoted entirely to this study.

We begin with several definitions.

Consider the series

) (oin) O (s.4)
p plo)
Q(n)=Q(p;n) = pn Inn + zz: pyn P 5 (3.5)
=1
) L 3 rt—-,j/p
s(1)= s(psn) = 0 > (1 n)n ¥V g (pin) (3.6)
3=0
a;(psn) = -5 i
josm) = gym) = 2 g yn (3.7)

where p , Ty o ko are integers, p 2 1, ”j v 8 3 b are complex param-

S,d

eters, bo,j # 0, unless b =0 forall 0ss<®,r =0,

S,J o]

-msImpyp <.
21



Definition 3.1

The series (3.4), called a formal series (F.S.), will be called a formal

series solution (F.S5.S.) of (3.1) if, when it is substituted in (3.1), the

Q(n)

~equation is divided by e

and the obvious algebraic manipulations (see

below) are performed, then the coefficient of each quantity
O+r/pts
n x/p /w(ln n)J ; DR &€, B8 = 0,20,8, (3.8)

is equal to zero.

A concept of formal equality between two F.S. can be defined by requiring
that, when the series are written with the same value of p (as is always pos-

sible), then the parameters t , 0 , b for both series are the

853 2 T3 4 W
same. Formal equality of formal solutions also arises in the theory of or-

dinary differential equations (see Coddington and Levinson (1955), p. 114 ff).

The construction of F.S.S. may be carried out by using the identities

o) ) @

' +4- ] - +7 -3

eg.(n v)© oM [l & z oy jnli(é 1)+1 J] , (3.9)
Kyd=L

(mvﬁénw)=

(3.1.0)

(n+v)% = d“[l + 24 ...] , © (3.11)

22



[ln(n+v)]r = {ln n + E - EE— A 3 5 (3.12)

although, in practice, it is difficult to obtain by hand other than the first
few terms this way, see Birkhoff (1930).%

Very often, we shall let "Q(n)," "s(n)," be generic symbols for the
series (3.5), (3.6). The series so denoted do not necessarily have the same
values of the parameters 6 , t , bs,j > By when the series occur in dif-
ferent equations. If, however, it is necessary to differentiate between two
such series, we shall do so with subscripts, e.g., Qy(n) , sy(n) , Q(n) ,
sp(n), etc. With this convention understood, we see that F.S. possess the

following properties:

eQ(n+v)sl(n+v) = eQ(n)se(n) PR O - P (3.13)
Q,(p;sn) Q,(p';n) Q(p*;n)
e sy(psn) - e sp(p'sn) = e sz(p*;n) , (3.14)
where p* is the least common multiple of p and p' .

The sum of two F.S. is not in general a F.S., but if Q(n) , @ are the

same for both series, we have

* J.C.P. Miller has brought to our attention the fact that the determination
of these series can be done very efficiently by computers.

23



)% (p5m) + 4P, (p5n) = MMl (p%;n) (5.15)

Definition 3.2

f(n) ~eQ(n)s(n) , n—>® (3.18)

means that, for every k = 1 , we can determine functilons Ak,j(n) 3

0<j=<t, such that

Q(n) - &, v afp EL s
e A )n Eaf(n) = L (1n n)‘jn t-J SZO bg s /e

3=0

6-3/P

t T
+ n_k/p Z (1n n)Jn Ak,j(n) ; (3.17)
j=0

and |Ak,,j| is bounded as n-—>« , for all k,j .

See Birkhoff and Trjitzinsky (1932, p. 62). If t = 0, this definition
coincides with (A.7)-(A.8). Also (3.17) is unique, since it is readily veri-

fied that zero has no non-trivial representation of the form (3.16).

Definition 3.3

Let

. T X
eQa( "9 )sh(n+j ) ; (3.18)

% 1

24



By (3.12)-(3.14), W, is a F.S., and

k —
Wy, = exp {Zl Qj(n) s(n) = eQ(n)g(n) . (3.19)
J= .

We say the Kk F.S.

{th(n)

sh(n)}_ are formally linearly independent if

s(n) # 06 . Otherwise, they are formally linearly dependent.

Definition 3.4

There exist exactly r F.S.S. of a certain type (e.g., with Q(n) = 0)

for the equation (3.1) means r F.S. of that type can be constructed which are
formally linearly independent, and any r+lL such F.S5.S. are formally linearly

dependent.

Now we mey formulate two very important questions aﬁout the difference
equation (3.1). Does the equation always possess exactly o F.S.S. of the
general type (3.4)? If so, what relationship do these F.S.S. bear to the
fundamental sets for the equation?

These questions were answered partially by a number of mathematiclans,
see Adams (1928) and the references given there. However, only with the ad-
vent of two papers, the first by Birkhoff (1930) and the second by Birkhoff
and Trjitzinsky (1932) was the theory completed. The results of these two
writers yield
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Theorem 3.1 (Birkhoff-Trjitzinsky)

There exist exactly o F.S.S. of equation (3.1) of type (3.4), where
p = »w , for some integer ¥'= 1 , and each F.S.S5. represents asymptotically
some solution of the equatioﬁ in the sense of (3.16). The o solutions so

represented constitute a fundamental set for the equation.

Definition 3.5

The particular fundamental sets mentioned in Theorem 3.1 will be called

Birkhoff sets. Bach member of a Birkhoff set is called a Birkhoff solution.

Now let {yh(n)} , L < h <o, be a Birkhoff set for (3.1), i.e., let

Q‘-’h(p;n) . -
Yh(n) e Sh(Pin) , i—>® , 1L <hs<g , (3.20)

which is permissible, since we can write all the F.S.S. of Theorem 3.1 with a
common value of p

Then none of the determinants

u

ylsm<m<...<m S0 , (3.21)
5

W =

ymh(n"rj )

can be zero for n sufficiently large, and in particular, y,(n) #0 for n
sufficiently large, L £ h < ¢ . In fact, since the F.S5.S. are formally

linearly independent,

3
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Q
wmu = ce (n)n? In n)r[l - & O(l)] y Ar=e ., e % o , (3-22)

so ultimately Wmu is monotonic in n , as is |yh(n)| .

We now examine more closely the structure of the F.S.S. (3.4).

Theqrem S

ILet (3.1)-(3.2) hold, and let

k b of
a(m) = P8 S7 i nyle,,  (psmdn Py ar
« 50 (3.23)

0Oskst ,

rj an integer.

Then if ¢4 (n) is a F.S.S. of (3.1), so are ¢u(n) , 0 <h < t-1.

Proof:

Let

oe(n) = X 0) , ym) = M5y (5.24)

Then

eQ(n+v)—Q(n) 2 npove(u0+ul)v[l + cn._l/p + ...] ; (3.25)
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o 1is of the form m/p , m ean integer, so the difference equation for
y(n) will be of the same kind as (3.1), except with w replaced by p . Let

E;(n) be the ccefficient of the transformed equation and

(1n n)zqt+£_k(p;n)nrk'ﬁ/p(t+l—k)z/zf 5 (3.28)

M=

CEk'(n ) = ne
1=0

5£(n) being, by hypothesis, a F.S.S. of that equation. Substituting (3.26)

with k =t into (3.1) and setting to zero the coefficient of (ln n) gives

g _ t-u -lr il
S o) > a )] P () e = o,
= & (3.27)
g gunsEt >
Let u = t-j :
g_ _ j 2 T / A
S G 3 apupoglnm)(an) 3 (6415), in(iv/m)] /at =0,
¥R b (3.28)
0O<sjst .
Now writing
: )
[ln(1+v/n)J£ = [ln(n+v) - 1n n] 5 (3.29)

and expanding by the binomial theorem, we get
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—l

> Sy’ Z T T Sy O
v=0 2—0
(3.30)
£
X ft+l—j)£+u[ln(n+v)] J4! =0 ,0=2] 5t
From (3.26) we have
= U pr
gy =00 > (Qnnag,, e I Heneg) /e, (3.51)
4=0

and so

\/]q

E(n)z;()%hnﬂ(tﬂJLﬁJunWVW“O,(3SJ$t. (3.32)

Il
O

\J

Now suppose @6(n),§l(n),...,5k(n) are F.S.S. of the transformed equa-

tion, and let j = k+l in (3.32). We have

g
;Z_ n)fyyp(atv) =0 . (3.33)

But for j = 0, (3.28) gives

g g

ST, ) g (ntv) = > G (nkpolatv) =0 (3.34)

v=0 v=0

so the induction is complete, and the ¢h(n) 5 10 %R £ & 5 satisfy (3.1):
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Birkhoff (1930) has noted that, once a maximum value of t is found so

Qp(n) ;
that e sg(n) 1is a F.8.8. of (3.1), then there are t other F.S.S.,

Qy(n)

5 sp(n) , L<h <t , and in s, (n) , Inn occurs to the t-h power.

However, the explicit form of the series, i.e., (3.23), seems to be new.
We will need information about the number and form of those F.S5.S. of

(3.1) whose exponential leading terms are constant. The necessary results

are contained in

Theorem 3.3

Let (3.1)-(3.2) hold, and define

ag
_ g ok _

P = P(n) = > CVE, k=1,2,...,

v=1
( (3.35)

9

Py= Poln) = > ¢ -
v=0

Then we can write

czk/w[

-1 -2
Pk ~ N a + al)k n /w +* ae,k n /w + o--] 3 n—w 3 (3.36)

o,k

@) an integer, a5,k 74 0 unless P = 0, in which case ve interpret

Wy = = Let,
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T = ‘mex (/0 - x) , (3.37)
O<k =g

and let

ko <k <kp < .hl < Ky (3.38)
be those values of k for which

/v -k=T, 0sk<e . (3.39)

Then k, < ¢ , and there exist exactly k¢ F.S.S. of (3.1) of the form

¥
s(p;n) , and p = » . FEach represents asymptotically a solution of (3.1) as
n—>» , the k, solutions so represented being linearly independent.

¥
Furthermore, 8 = 9, 1is one of the k¢ values satisfying

4 k.
Go(8) = >~ (-) J(—B)kjao,kj/kjl =0, (3.40)
J=0

and if no two of the Op's differ by integral multiples of 1/w , then the

F.S5.5. take the form

s(n) = ne[bo - bln"l/“’ + ] s 2G4 (3.41)

Logarithmic solutions can occur only if some of the roots of GO(G) differ

by integral multiples of 1/w .
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Preview of Proof:

First, we show that p = w 1in any purely algebraic-logarithmic F.S.S.
of the difference egquation (3.1).

Second, by considering (3.35) as a system of equations in the "unknowns"
C,{n) , 0<v <o, we show there exists a finite 7 satisfying (3.37) and
that k¢ S0 .

Third, the existence of F.S.S. is shown by actual construction, using
Frobenius' method, first for the case where none of the roots of GO(S)
differ by integral multiples of 1/w , and next for the case where none of
the roots of GO(G) are equal, but where there exists a subset of roots
differing from each other by integral multiplies of lfm . It is then shown
that in these two cases, any purely algebraic-logarithmic F.S.S. of (3.1) can
be expressed as a linear combination of the solutions already constructed,

i.e., for these two cases, there are exactly k, such F.S.S.

‘3
ILastly, we indicate briefly how similar results are obtained when some

of the roots of G,(8) are equal, and the solutions for this case are

displayed.

Proof:
Iet
6 .

A r.o. /p '
Gy (n) = n (1n n)fa X% g (psn) , (3.42)

M

T
C
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be a F.5.S. of (3.1). By the Buclidean algorithm, we have

r:=vms; +t v

J

wvhere 1. ms
A

5 0=y =K iy O 'V

y s w1,

i J

are integers, and v 1is as in Theorem 3.1.

We can also effect the decomposition

Vi /P : - ZE% i/e- Py P -
n : . 3
q'e pin a q,},z w
Jj=0
or
5 -1
(?k(n) = Z J k(u:n)
J=0
k * /
o f BT 4 Tx-p,5'% .
sj)k(ru,n) =n Z_(ln n) n s qj,‘g(:u,n) s
£=0
where
* _ B *
rk'f'aj N mk"e' pJ:'a pj:k- ( 0,J 0) ’
*
= - +
6% =0 - p; i/p
and s is a series of the type (3.6) with p =w and 9

Jrk

multiple of 1/w .

llote that some of these series can be zZero.

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

an integral



The difference equation is unchanged by replacing n by neEhTriuj y h

an integer, so each of the functions ak[neeh”lm] is also a F.S.S. of (3.1).
An application of Theorem 3.2, or a result of Birkhoff (1930, section 2),

shows, furthermore, that each of the functions
»-1 . /
a e hnij /¥ .
@h,k(n) .go e sj,k(u,n) (3.48)
- 3=

is a F.S.S8. of (3.1). We can determine unique constants Ap 5 » OShsv-1,

where v 1s the number of non-zero S5,k » SO that
2

<
i
l_l

A -

=
1l
C

since the determinant of the system of equations (3.48) is a Vandermonde
determinant which is non-zero.

But (3.49), when substituted in (3.45), shows that every purely algebraic
logarithmic F.S.S. of (3.1) can be expressed as a finite linear combintation
of similar solutions, each of which can be written with p = w , and the
first step of the proof is completed.

Not all the P, 's , 0 sk <o, can be zero unless Cy =Cy = ... =

o)
Cc = 0, since the determinant
,j C'
|h ll = VIR it | (3.50)
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does not vanish.

and therefore a finite

for k = 1,2,...,

or

[a0+k/w - (U+k)] < max

and k. =0 .
¥

Now assume

T satisfying (3.37).

1sjso

gtk
g

L 'g’o,kPU ?

[aj/w » jl y k= 1,20,

Ilence there exists at lecast one finite ¢ , O0skso,

Also, from (3.35), we have

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)



y(n+v) e B :E: bsn—s/uJ :E: (s/w—@)k(—)kvk/k!nk g (3.56)

5=0 k=0
Substituting (3.56) in (3.1) gives

(=+]

o Z{: bsn's/UJ Ei; (s/w~e)k(~)kpk/k.'nk =0 . (3.57)

s=0

We can write

S (s/o-0) (<) B/xin® =0T > ¢ (6-s/w™V® (5.58)
k=0 m=0 '
and so
> cyy(ntv) i ¥ > n /o > b, g(0-5/w) = 0 . (3.59)
v=0 =0 5=0

We must have

m
> beGng(e-s/w) =0, m=0,1,2,... . (3.60)
s=0

If none of the roots, 0 , of Gy(0) differ by integral multiples of l/w ,
then the construction of the k¢ solutions can proceed directly from (3.60).
If some of the roots of GO(S) do differ by integral multiples of l/w , then

the construction of solutions is done by the method of Frobenius, as follows.
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Consider the difference equation

Z%: Cv¢(n+v) = cne+TGo(0) (3.61)
- v=0
Where
y(n) 0 Z BS(B)n"S/“’ se 0 (3.62)
s=0

Then the B,'s satisfy the recurrence relation

=]

1}

0, m=12,..., 8,(8) =c . (3.63)

> Bs(0)6, ¢ (6-s/w)

s=0

By putting © =6, , L <h < kw , in (3.62)-(3.63) we obtain the previous
k¢ solutions, provided none of the Gh's differ by integral multiples of

1/w . We can solve the system (3.63) to obtain

S

B (0) = Es(e)/ 1T 6,(0-3/w) , s 21, (3.6¢)

J=1
where E; 1is a polynomial in 6 . Now suppose that

8, =08y * Lj/w, 05 =0 + Ly/n, ... 28y = 81+Lx/w 5 KFL ky (3.85)

vhere I, 1s a positive integer and
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0< L <Ip<...<L ,IL,=0, (3.68)

but that eh-al is not an integral multiple of l/w for At2 <h sk

#’ .
Define
Bs(0) = Bg(8) TT Go(6-3/w) , s 20 , (3.67)
_ 4ui
or
LX
B (0) = cE(8) ]‘r Gy(8-3/w) , 0ss s Lol - (3.68)
Jj=st+l
Then B,(€) is well defined when 8 =8, , 1 sh < XxtL . We can write
5 o+T Lx
> cyilmtv) = e T 6 (6-3/w) (3.69)
v=0 3=0
e A+L ,
= cn TIX(G) ]_[ (G—BJ)J (3.70)
J=1
where
[==]
) =n® > B om (5.71)
s=0

Ix(a) a polynomial in 9 .



We now differentiate (3.69) h times with respect to 8 , set 0 = 84,

and use the fact that

. |
i_—e_-l; B(8) e 0; 08 & Lp-L-l ; (3.72)
+

to obtain the K+1 F.S5.8.

=

8 . i L,/
@) =0 5> (n)y()m n) ey s e, (518
£=0

[+=]
L
_ -s/w -
gg,n(n) = > bs, 4,00 2 Y5 40 = 7 Bsir, -1,,(0) ;

S=0 ae 9=9h+l

OLh X (3.74)
Since
P = :
Y, h,h = e Bo(0) £0 , (3.75)

36 8=0p4+1

the above solutions are clearly formally linearly independent, by A-VII.

Let (3.42), with p = w , be a F.S.S. of (3.1), and let G,(8) contain
no multiple roots. We wish to show %R(n) can be expressed as a linear com-
bination of the solutions already constructed. Denote by ds,£ the coeffi-

cient of n—s/w in qy(n) . We can write
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kK 4 r, Jw

A . o

B(n) = > i;;mf’)q,a(w;n)n K= (3.76)
£=0

and substituting this in (3.1), we find that 6 and dg 4 must be such that

v ® m ") _
- COctl-g) T0 ST nf 2" L Hk
Ziw C(v+l-4) = EE: n :E: ds,k—£ aev_£ Cy-s o W 0y

4=0 m=0 s=0

0Osvsk . (3.77)

For v = 0, the above equation demands that Go(e) = 0 . Thus assume
9 =8, , since the cases B =198, , 2 sh =< X*tl , can be treated similarly,
as can the cases where 6 belongs to any other group of roofs of Gy(9)
which differ by integral multiples of 1/w . .If 0 = Gu ; where Gu differs
from no other root of G,(0) by an integral multiple of 1/w , then the
analysis is quite simple: we must have k = 0O in (3.76), and the result is
one of the purely algebraic F.S.S. (3.41).

One can show by induction, using formula (3.77), that the r,'s cannot

be arbitrary, but must satisfy the relations

O=rr~L-<r1=L-<r2=L-<...<rk=LJKSL y (3.78)

and k ¥, Jy<dp < v . (To avoid double subscripts on the rh's ol b
is assumed that any Ty which corresponds to a qk_h(n) = 0 1is deleted from
the chain (3.78).)
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Now let @ be the highest power of 1n n which occurs in any of the

functions @h(n) , L <h < xtlL . Note that the last term in @, (n) is

8ty /w

gh,h(n) ) 811)11(“’) £0 . (3.79)

9. +r, /w
# L~k

Hence we may select a ¢ (n) which contains the term gy’y(n) .

and subtracting a constant multiple of this function from $k(n) leaves a

el'i'r;:/w *
series of the same kind whose lead term is either zero or n ao(n) ,
rﬁ <7ry . But, by (3.78), rﬁ must be one of the Lj . Hence we can find
*
017k

another @h(n) with lead term n and subtract a constant multiple of

this series from the above series so that the initial power of n in the

A : e]_+r§* W ¥* =
lead term is again diminished, to n » T” < 1y . This may be con-
tinued until $k(n) is reduced to
A
(Pk(n) = fk_(n) * gk(n) ’ (3.80)

where gy (n) 1is a linear combination of the ¢, (n) and

0 T ,/w
fi(n) =n 1 (1n n)ﬁﬁz(w;n)n ; k= max{?,u] 5 (3.81)

also satisfies the difference eguation. It is our intention to prove that

any F.S.S. of the form (3.81) must be identically zero.

in q,(n) . Since d, =0,
£

-s/w
4 5,0

Denote by d.

= the coefficient of
D;:e

the result of writing out (3.77) for (3.81) and k =v = k 1is



o, (3.8)

= iy 2 mo_ K- 7,8
£ 3 -m/w _ b} ; £
; B £ 2 Z__ ds,k-£ G- (é * 5 :)‘B—G
2 L

|
i
i
I—l‘
~
=]

and setting to zero the coefficient of the highest power of n (n

gives

- d S ¥ ”
do 1 = Go(8+ri_1/w) 0=0, =0 (3.83)

which is only possible, since Go(e) has no double roots, if EE 1 =0.
7

Hence, by (3.7), ai(n =0 . The sun (3.81) becomes a sum from £ =2 to k.

(i

Now write out (3.77) for v = k-1 = k-1 to show that aé(n)EE 0 . Eventually,

1l
Il

we arrive at Ei(n) = Eé(n) Ei(n)sz 0, or fi(n)=0, so $k(n)
is a linear combination of the ¢,(n) , 1 <h < x+l , and hence k < p .

Thus, if none of the roots of G (8) are equal, there exist exactly k¢
algebraic logarithmic solutions of (3.1).

The same analysis can be conducted when some of the Gh's are allowed
to be equal, and the construction of the solutions in this case again is
analogous to the procedure used for differential equations, see Ince (1956,
Ch. XVI) or Forsyth (1902, Ch. II). Here we simply display the solutions,
since their forms will be of importance later.

Iet 6, be as in (3.65)-(3.66), and, furthermore, let it be a root of

Go,(8) of multiplicity &, = 1 . Define



8 = by F b * svn ¥ Gy 5 55 =0 . (3.84)

The 6, F.S5.8. corresponding to 0, are

6 ( J) ( i vV o— -
Ph, j-s* 1(“)”1}12 d /025 )
7¢"h-1 V=0 5=0 36" 6=8),
g 23 =4d-L . (3.85)
Note that
3 = -
i Bo(e) £0,32 ‘Sh_]_ ’ (3.86)
3¢ 8=6,

since the multiplicity of (8-8,) in 55(8) is exactly 6;_1 .

The linear independence of the above solﬁtions can be shown by the same
arguments used by Ince, p. 402, and the proof that there are always exactly
k¢ such F.5.5. requires the same type of reasoning as when the roots of
GO(B) are simple, but the details are considerably more messy.

Theorem 3.1 1s now applied to show that the F.S.S5. constructed above

represent asymptotically k, linearly independent solutions of (3.1), and

v

the proof of Theorem 3.3 is complete.

Definition 3.6

A Birkhoff set {yh(n)} for equation (3.1) is a canonical ‘set if
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yp(n) ='cth(n)[l + o(l)] , n—>® , ¢ #0 , (3.87)

where

Q,.(n) @ :
My(n) = e h( n h(ln n)ph P (3.88)

P, & positive integer, and M, = Mj for n=1,2,3,..., if and only if

By the construction (3.85) and Theorem 3.1, every equation (3.1) has a
canonical set, and so does the equation adjoint to (3.1). No two members of
a canonical set display the same asymptotic behaviour as n—« , so not

every Birkhoff set is canonical, e.g., {l,ne,n2+n} is a Birkhoff set for

Yn = Sp+l * SVpip - Ypiz = O (3.89)

but not a canonical set, as is {l,n,ng} or {l,n+1,n2+n} g

Also, let S denote a subset of a canonical set, all the members of
which correspond to the same Q(n) and to a group of 9y's which differ by
integral miltiples of 1/w . Then S contains a smallest member zl(n)

and a largest member 2z,(n) , i.e.,

Z n ’ n
lim 1(n) 1im 2(n) 0

. 3.90)
n—>o y1.(n)  p e Zp(n) ( )
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where yj(n) is any member of § other than 2z; and y,(n) is any member
of S other than 2o .
For the construction (3.85), z; and 2z, correspond to F.S.S. cpl,l(n)

and P+l s (n) , respectively, and

i
!
zl(n) = cyn [l + o(l)] 5 (3.91)
0 6ypq-L
z5(n) = con M (1 a) ¥ 1+ o(1)] . (3.92)
(In the general case, a term eQ(n) will appear on the right-hand side

of (3.91)-(3.92).)

Theorem 3.4

Let {yh(n)} be a Birkhoff set for (3.1),
splpsn) , L<h<g . (3.93)

Then:

1) B(a) ~e DO oy (3.94)

where in Q(n)

=
I

13 X /w
Klw e o (“)ce‘oj [ % Bs ™ 'wcl,cr/ [(“’“l)"'o,o] ’

(3.95)

. @ 2 2
Bz = Too) [(Cl,g/eco,c;) B (Ce,o;lco,c)] 4 el
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where c. is as in (3.2), and s(w;n) is free from logarithms;

4,0
g .
i1) Q(w;n) = > Qu(psn) (3.96)
h=1
_— * 'Qh(n) * :
iii) Yh(n) = Th(n)/D(n) ~ € Sh(pin) s Lshs=<ag, (3.97)

are a set of Birkhoff solutions for the equation adjoint to (3.1).

Proof:

The proofs of i) and iii) are purely computational, i) following from
the difference equation for D(n) , (A.15). No logarithms appear in s(w;n)
since, by Theorem 3.2, the F.S.S. of a first order difference equation can
never contain logarithms.

To prove iii), note that from A-VI,

{Th(n-!-j—l)/D(nﬁ—l)]:X [yj(n+h—-l?]i = [ejh]z g (3.98)
where
L;3d=h,
esp = (3.99)
0, h>j,
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and so

5 ag
' .Yh(n'l':j'l) ]

- D(n)_l . (3.1.00)

Since the yz(n) can be represented by the F.S. (3.97) which are
formally linearly independent, by (3.100), it follows that they are Birkhoff

solutions.

We close this chapter with a theorem on exponential sums.

Theorem 3.5
Let
n
S=s) =) f£(k),nz20, (3.101)
k=0
where
£(n) = eQ(n)v(n)[l + o(l)] , n—e (3.102)
v(n) = ne(ln n)t , (3.103)

r 1is a non-negative integer, and Q(n) is given by (3.5).
Let p* be the first non-zZero element in the sequence {Re uh}',

h=01,2,...,p and w*¥ = 0 if all the Re ¥y, are zero.
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Then:

i) if p*< 0, we can write

[==]

A=) £(k), (3.101)
=0
and
S(n) =A + 0 {eQ(n+l)nv(n)} , n—w (3.105)
YA p¥F o0,
S(n) = 0 {eQ(n)nv(n)} , n—® (3.108)

i) 2 Wh=0,
0 {nv(n)} , Re 8 > -1 ;
= — Tl o -
S(n) =40 {(1n n) } , Re 8 = -1 ; (3.107)

0(L) , Re 8 < -1 .

Proof :

We can write
f(n) = ceQ(n)v(n)[l + K(n)] g H 2L, (3.108)
where K(n)—>0 as n—>o .
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For p*¥ < 0, the series converges absolutely. Define

T(n) = > £(x) . (3.109)

k=n+1

We have
-Q(n+1) = -V

|e T(n)| s |cf D gk Il + K(x)| (3.110)

k=n+1
< c! Z g™ , (3.111)

k=n+1

where
v Re Q(k)-Re Q(n+l)

g(k) = |v(k)| x’e (3.112)

and we take v real and > 1 .

Now

dg(x) _ g(x) {Re Q' (x) + 1 R T €)} . (3.113)

ax x \ln x

But g(x) # 0 for x > 1, and any zero of the quantity in brackets
above cannot depend on n . Since g(x)—0 as x—>« , it follows that g

is monotone decreasing, x > Xg » OF, for n sufficiently large

g(k) = (n+1)’|v(n+l)| < M |v(n)| , k = n+l , (3.114)
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and so

le_g(n+l)T(n)l <M [ v(n)] n’ Z{: K (3.115)
k=n+1l
o v P =W . Mnv (n
<M |v(n)| n }{. % aK = Ty p (3.116)

wvhich gives i).
The result ii) follows by a simple majorization, while for iii) it

suffices to consider

3 Re 0

lv(x)| < (Inn)" > , (5.117)
k=1 k=1

When Re 8 = 0 , the series on the right is easily bounded. Otherwise

We use

n n
S %1+ L 5%, re0<0 . (3.118)
k=1 1
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Iv.

By using the asymptotic theory of the last chapter, we can now apﬁly the
general theory of computation by backward recursion, as developed in Chapter
II, to difference equations of the kind (3.1).

Throughout this chapter, we assume the difference equation in question

to be (3.1).

Theorem 4.1
There exists a canonical set {¢ﬁ(n)} for the equation adjoint to (3.1)
and an integer u = 1 such that
cn #0,l<h=<u,

Llim |<p:(m)/cpi(m)| = : (4.1)
m—> 0 ,; uktl = h <.g «

Furthermore, if wu = L then for some n* , 0 < n* < o-1,

Llim An(m)/hn*(m) = y(n) , n = n*, (4.2)
n—s o

exists, is not identically zero and satisfies (3.1), while, if u =2 , then
my , my can be chosen so that (2.35) holds for some solution, yi(n) , of
(3.1). Furthermore, yl(n) , the function to which the algorithm converges,

is independent of the particular set @ﬁ(n) i
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Proof:

Equation (4.1) is obvious, since, clearly, the absolute value of the
ratib of any two canonical solutions must either approach zero, a constant,
or infinity. Iet {yh(n)} be that (unique) fundamental set for the original
equation (3.1) which is obtained by letting Th(n)/D(n) B @ﬁ(n) In (A.18),
then solving for y,(n) for n 2 ¢g-1, and finally using (3.1) to compute

yp(n) forall n20, L<h <o . Wehave
g ¥
A (m) = hzl op (m)y, (n) (4.3)

and the statement for uw =1 follows immediately. Note that A, x(m) cannot
be zero for more than o-1 consecutive values of n¥, for it satisfies (3.1)
and i1s not identically zero. Since Ay(m) is fully determined by the condi-

tions (2.2), it is independent of @;(n) , and so is y;(n) .

Now
2 i aelQ(ml)mie(l + 0(1))
a(my) = th(m-) = ; ) (2.4)
J iQ(m, #
L by gt d)mge(i + o(1))
where Q , 8 are real, [a] =c¢y , and pgy in Q 1is zero. Also we may

assume -1 S pg < 7, oOr else replace iQ by iQ * 2rpi , r a suitably

chosen integer.

o2



One finds

Q(m,)-Q(m; ) |
|f.\(ml)| = 2c [sin {“’2—2_};_ + g (1n my-1n ml)} + o(l) . (4.5)
First, assume Q(m) ¥ const., By =0, so
p 5 l.}.k.?.
Q(m)=Z|-er p,25ksp,pk%0. (4'6)
r=k
Let
k-1 k-1
m2=[ml+Kmlp}=ml+Kmlp +O(l)’
> (4.7)

K=

2

o)

and [x] means the largest integer not greater than x . We have

1- 1= y
Qmy)-Q(my) | B L m1+—p-‘1
2 Hp (Mo 1

r:

o=
e

k-1

P k-1
= 1K Z o (l + 1‘-5-1—‘- mlp (IL - O(mil/p))
r=k

W
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lim |A(ml)] =l201 > (4¢.9)
ml*%* @

which assures us that (2.34) has a unique solution M, Tp, and also that
(2.35) holds.
Next, we note that if Q is constant, we cannot have 8 = 0, else @3

is proportional to @T . Thus, let

my = [mleﬂ/|9q = mleﬂ/lel + 0o(1) . (4.10)

Then (4.9) again holds.

Lastly, if By #0 in Q , let my = mytr, r a positive integer.

irul

I&(ml)l = ¢y |e -1 # o(l)l . (4:231)

irpy :
Since r can be chosen so that e # 1, (4.9) dgain follows, and,

by Theorem 2.4, the proof is complete.

Theorem 4.2

Let there exist a canonical set {yh(n)} for (3.1) such that one of its

members, sa n has the following property:
’ yyl ’ P o f



Llim Yl(n)n}{/yh(n) =0,2<h=o¢ , (4‘]-2)
n—w

for all X . Then

Lim  Ay(n)/A x(m) = yy(n)/y; (n*) (4.13)

m—o

for all n 2 n* and some n*, 0 s n* <o-1.

If, in addition to (4.12) we are given the series

1=) Lyx) , (4.14)
k=0
where
Um KMy (k) = 0 (4.15)
k—®

for all ¥ , then the computation of yj(n) by backvard recursion based on

(3.1) and (4.14) converges.

Proof':
Note that Yy, , if it exists, is unique, apart from a constant multiple,

by A-VII. Since

S5



| Q,.(n) 6
y(n) = cpe a )n B(1n n)h (1 +0(1)) (4.16)
ve héve, by (3.97)

o
h
T, (m)/2(n) = (3 (m)/y(m)) Om ™) , 2 shso. (4.17)
for some real o , and the first part of (2.12) follows.
Now, from (4.15), we deduce

-Re Q, (k)
1P » k>0, B=-o-2-Re 8, , (4.18)

]Lkl < Me

SO

|Sh(m)| < M i o (9 ()2, ()) e E311+§3(]_n )’ (4.19)
k=1

eand we may apply ii) of Theorem 3.5, since (4.12) implies that Bo g < Bgp -
2 3

The result is that we can determine constants X, so that,for m > n )

o -1
|s,(m) | < Ky (m)m B /yl(m) : (4.20)
Thus, by (4.17)
lim RS, =0, 2=shsgo (4.21)
m—

and the proof is complete.
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The condition (4.12) is rather stringent, and for ¢ =2 or 3 it can be

weakened considerably. We have, in fact,

Theorem 4.3

Iet o=2 or 3, and let ~{yl(n),y2(n)} be a fundamental set for (3.1)
if o =2 and let '{yl(n),ye(n),ys(n)} 'ge a canonical set for (3.1) if
g =8 |

Let

lim nL(U)(ln n)0-2yl(n%/&h(n) =0,2=<hs<og , (4.22)
n—so

wvhere L(c) is a positive number depending only on o , L(2) =0, L(3) =1 .

* *

Then for some n" , O £ n” <g¢g-1,

lim hn(m)/nn*(m) = yl(n)/yl(n*) , n=n* . (4.23)

Let, in addition to the above, (4.14) hold, with

L, =0 (eQ(k)ka) (4.24)

for some Q(k) , @ such that

AUV )9 Yy (k) =0(1) . (4.25)
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Then the calculation of y,(n) by backwvard recursion based on (3.1) and

(4.14) converges.

Proof':
We have, from Theorem 3.5,

A+ o(1) , 2Ly (k) convergent,
5, (m) = Q).+l (4.26)
O(e M)n¥ 10 m yh(m)) , Otherwise .

It remains only to show that

(4.27)

Rh(m) =0 (mL(c)ln m _eyl(m) yh(m)) ,2<hsg

Then (2.12), and hence the Theorem, will follow from (4.22) and (4.25).

For =2, (4.27) is obvious, since
. \h-l S X _
Ty(m) = (=) “yz_p(m+l), h = 1,2 .: (4.28)

Let, then, ¢ =3 . It suffices to consider only R, . Now {yh(n)}

is canonical, so, by the construction of Theorem 3.3, we can write

P, (n) a 3
yp(n) =e [1 + hll’g - (1;21,:)2 " ] , (4.29)

Ph(n) = Qh(n) + 8, lnn+p, In(ln n) + 1n e, - | (4.30)
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Since

(4.31)

il
=y
|—d
=
o
—_
1
e
||._.||
[}
+
—d

[ln(n+l)]

we have

P (n
Y (0t1)/ 5, (n) e%lﬂ 11+0(;aft?>] ) (4.52)

where A, 1is the forward difference operator, Milne-Thomson (1960). Thus

Ro(n-1) = - ()G [ra(in()] (4.53)

oy = T eﬁn (P]_(n)‘PS(n)) [l + o(._l__> } s (4.34)

n(1ln n)°

B(n)

1}
=
]

D (Ba(n)-P4(n)) _1 . 0( ! )1
; n(

1n n)2
\ (4.35)

L n 2k n(ln n)

L. o (95 (n)-q5(n)) [, %) () 0( N 2>} .

If By, # W, » then (4.22) shows that oy < Hgp and so Re(m)-»o ;
Hence assume Mgo) = Ko - If Bgy # hoz » then Koy < Koz and the leading
term of both A(n),B(n) is unity, so again, by (4.22), Ry(m)—>0 . Hence
assume g = Poz - Then A(n) is bounded, and B(n) is asymptotically

smallest in the case where Q5 =Qz , 05 = 8z . Then it approaches zero as
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1/(n In n) , since we cannot have, furthermore, p, = pz . Thus (4.27)

follows, and Ry , RySy , h = 2,5, approach zero. This proves the theorem.

We conjecture that Theorem 4.3 is true for all ¢ , i.e., that there
exists an L(g) for (4.22) which will insure (4.23) and (2.7).

For ¢ =2, (4.23) follows from a result Gautschi (1961) proved for a
second order difference equation with arbitrary coefficients, and also for
this equation, Olver (1964 ) has determined other conditidns on yj,¥p Wwhich
will guarantee the convergence of Miller's algorithm, based on (4.14), to
y,(n) -

We now present several examples of applications of the previous mate-

rial.
Let

[==]

g
y(n) = [ &° PELBs L n= 0,1,8,000 (4.36)

0
o-1

Bt) =D atf ,e22 . (4.37)
r=1

A single integration by parts shows that y(n) satisfies the difference

equation



o
-1
y(n) - (n+l) Z{: vavy(n+v) =05 8. =L ; (4.38)
v=1

From de Bruijn (1961 , p. 119) we have

I‘<1*l) 1-1L 1-2 1
y(n) ~ expibon  +psn 9+ oot pn® ba(o,n), nse,
% 1,
bp = - a0 , ¢ (4.39)
2 2.
a 2 = -1
.| o=k 1 (&}

bz = [ o (} & E) aG*E] o 2

When o =2 , y(n) is essentially the parabolic cylinder function
U(n+%,al/fJ§) , the theory and computation of which are discussed by Miller
(1964 ).

Now, by Birkhoff (1930, section 2) , we know there exists a fundamental
set for (4.38), -{yh(n)} , where y, has as an asymptotic expansion the F.S.

on the right of (4.39) with n replaced by ne2"i(h-1)

L<h=<g. This
gives ¢ F.5.5., so there are no more. Furthermore, by Definition 3.6,

{ yh(n)} is capnonical. We can identify y(n) with y;(n) .

We have

7103y (1) | = exo {elac,_ll(n/c)l"]‘/ % (01 + o<n'l/°)]] , (4.40)
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£,(¥) = sin(y-hn/c) sin(hn/c) , Y = arg 5.1 - (4.41)

For [Y| < m , f;, has zeros only at the points hn/G and hit/o -1, SO

1

Ty, 1is of one sign for Y @between these points. Since

£,(0) = - sin®(hm/o) < 0 , (4.42)
we have
fy)<o, hr/o -n< 'y < hit/o | (4.43)
or
f,(y)<0, -n/lo<y<nu/o, L<h<ol . (4.44)

and so, for these values of arg aj_j , condition (4.12) of Theorem 4.2 is
fulfilled.

Let

P(t) - r(141/0) i LS (4.45)
k=0

Since the left-hand side is an entire function of order o-1 , we have,

by Boas (1954, p. 10) ,

L)< ¢ Y T - (4.48)
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¥+l/o-%

kK|Lk||yl(k)| < Mjk exp {- § (1+1n c)[l+M2k“l{0] ] =o(1) , (4.47)

for all X .
Also

@

Inyi(k) = ZE: Ly(k) =1 ‘ (4.48)
0 k=0

k=

Thus, by Theorem 4.2, the computation of the integral (4.36) by backward

recursion based on (4.38) and (4.48) converges when |arg ag.y| < /o .

Our next example is a class of hypergeometric functions. (For notation,

see Erdélyi et al, 1953; v. I.) Iet

Q+l
(-7, 11 Gl ntay, ... nveg
y(n) = L F, ( X i i) (4.49)
(Y)op, Q Q27Q*L\ ntby, . . . ,ntbg,2nty+L :
(b:)
j’n
j=1

vhere Q,n are non-negative integers, g+l , Y , a3 bj are complex con-
stants, (&Q+2 = B+1) , none of which are negative integers or zero, and A\

is a complex variable, finite, # 0, |arg(l-A)|<m .
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Then (Wimp (1966)) y(n) satisfies the difference equation

Qt2

> [m, N,/A] y(ntv) =0, (4.50)

v=0

vhere M,y =1, Ny =1TNgyp =0, and

Q Q2
(=) (enty)qys ] (nryiv-as)
- J=L
M, = e

r(@+3-v)(enty+v), ]T (n+a.j )
5=1

v-Q-2,2n+Yy+v,n+y+tvtl-a. , ... ,nty+vil

1’ “AQi2

Fars(
X Q47 Q+3\ 2nty+2v+l, n+YtV-ag, ..., ntYIV-ag 5

1) ,  (4.51)

for 1 =v <£Q+2 , and

Q
Q
(-) (2nty )Q+3 j|:l[ (n'l'Y"'V"'l"bj )

N, =

Q2
r(Q+2-v)(2nty+v+l), TT (ntay)
j=1

v~Q~l,2n+Y+v+l,n+Y+v+2—bl,...,n+Y+v+24qQ‘:> ( )
i ; 4.52

F,
>< Q+2 Q+l(;2n+y+2v+1’n+y+v+l-bl,...,n+Y+v+l~bQ

for 1 v <Q+l .
Note that (4.51)-(4.52) are terminating hypergeometric functions, and
for any value of v , they are rational functions of n . Thus (4.50) is of

the form (3.1) with w = 1 .



A result of Wimp and Luke (1962, the Corollary on p. 7, with m = 0 and

then ® = 0 ) shows that

1= %y(k) .

%=0 k!
Since
(-@-2) 5
iy = = 4 o), nse
4(-Q)V-l -1
NU=T*O(D ), n—>w

(4.53)

(4.54)

(4.55)

there are two linearly independent solutions of (4.50) with the behaviour

n

@) ~ (e )] sy@) 5 ne

.Vg(n) o~ (")n :Ge(l):nsg(n) 3 D=—> .

see Wimp (1966), where

e =1~ R/ S ) - [1+ 53] /2

and we define

VIx = [1-2]%e , 0< arg(A-1) <21 .
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It can be verified that (y maps the A plane cut along the real axis
from L to ® , (i.e., |arg(l-A)| < m ) onto the interior of the unit circle
[\] <1, while (, maps the cut plane onto |[A| > 1 . Thus for the values

of arg A considered,
lei <1, )| >, (4.60)

and so (4.12) holds not only for h =2 , but also vhen Y, is any purely
algebraic-logarithmic solution of (4.50). We now proceed to show that all
the remaining members of any canonical set {yh(n)} to which y;,yo belong
are purely algebraic-logarithmic.
Consider
Q+2

Oy(m) = Z (-v)M, » Osms@Qr , (4.61)

V=

Q+1
Qy(m) = Z (-v) N, , O<msQ+L . (4.82)
V=m

Using (4.51) in (4.61), interchanging the order of summation and evaluat-

ing a 5F1 of unit argument, we have,

Il

Q (a;-y-m-x)

_ ()mi(enty)ous  (Qreem){g=l  °

Qy(m) = Q+2 Ax (2x+yHm) g _— (ki)

1T (n+a;)r@+3-m)
I ey
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(Q+2-m)

where Ay is the forwvard difference operator, see Milne-Thomson
(1960). But the quantity in brackets above may be decomposed into a poly-
nomial of degree Q+l-m in x , the indicated difference of which is zero,

and a sum of terms

dJ/(2x+Y+m+j) . | (4.64)

M

J=0

The d; may be calculated by multiplying the bracketed quantity in (4.63) by

ox+y+m+j and letting x—>-(y+m*tj)/2 . Then substituting (4.64) in (4.63)

gives
qt+2
Y+m+r>
't n+ +tm-r-2a..
(-)InQ(Erl'fY)Q+v n (-m), * = U it 3
3 1 j=1
ST g P 7 TG )
L A5
J=L
and an order estimate for this sum is easily obtained by using
= s _o-B -1
I(n+a)/T(n+g) = n [}. + o(n )] . . (4.66)
The result is
Q2
Qtm p-Q-2, (m -1
Q) = (-)¥ @2, () [T tv2ey) [L+oa™] . (aen)
. J=
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Similarly, one finds thﬁt

Q
4(_)Q+mnm—Q&£{m) TT (re-2v))  [1v0a™)], 0 sm s,
5=1

Q (m) = (4.68)
o(L) , m=Q+L .

Next, we have

k_ < (-m)
vi=> —=—TLp , (4.69)

the B's being Bernoulli numbers, see Norlund (1954, p. 150).
We may use the above results to finally arrive at the estimate for Pk

in Theorem 3.3,

Q
R0 ] e ot o< s
J=l |

n”p, = . (4.70)
Thus, in Theorem 3.3 we have p =1 , T = -Q , kj = i 5 k¢ =Q , and
Q_ (-0), J_ (-3), 8 '
o oay-Lle A9 J r
G0(9) =4x 7(-) ZE: 3! ZE: ! ]ﬁr (Y+r+2'2bs)
: j=0 . r=0 s=1 .
3 (4.71)

Q
o N TT (yroe-2ng)

s=1 )

and so
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6, =2b, -y -2, h=1L2,...,Q . (4.72)

According to that theorem, there are exactly Q algebraic-logarithmic
solutions of (4.50), and, if none of the 8, differ by integers, these .are

of the form
) %
Ypto(n) = n [1 + 0(n )] i L.ER<] (4.73)

Otherwise, logarithmic terms may appear.

We have thus determined a canonical set for (4.50), {yh(n)} . A result
of Luke (1968), which is a generalization of Watson's result fora F; (see
Erdélyi et al (1.953); v. I, p. 77, formula (168)), ensbles us to identify
y(n) with a constant multiple of y;(n) . Lastly, by exemining My, as
given by (4.51), we see that if

a4 # -y-Q-2,-y-Q-3,..., L £ j sQt2 , (4.74)

then MQ+2 £#0 for n = 0. If this condition is satisfied, as well as the
conditions immediately following (4.49), then Theorem 4.2 may be invoked:

the hypergeometric functions (4.49) may be computed by backward recursion

from (4.50) and (4.53).

In particular, we have demonstrated a way of computing Gauss' function
wherever it is analytic, i.e., for |arg(l-k)| < 17 , as is seen by letting

Q=0,a =a, a =ptL =bytl =c in (4.49)-(4.52):
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Sa) = (=) (a), (), ¥ (ma n+b[ ) fi.75)

(c—l)2n 2n+e

(2n+c-1)[2n2+2n(c+1)+c(a+b+1)-2ab]

My = Ry M= 5 (en+c)(n+a )(nt+b) i
¢ (4.76)
_ (ntetl-a)(nte+l-b)(2ntc-1)(2n+c) _ (2nte-1)(2ntc)
M (n+a)(n+b)(entet2 )(2nt+ct+3) > 7L 7 (n+a)(n+b) )

To further illustrate the power of the method, we compute the function at a

point on the circle of convergence of its Taylor series

mi/3

A E e = (1L +A31)/2 , (4.77)

with a=2/3 , b=1, ¢c =4/3 . It is known, e.g., Erdélyi et al (1953,

v. I; v« 1B (55))

y(0) =2F1_< 4X3

ni/G ‘
”1/€> Q“F(lﬁs).u 0.88331 9376+ 0.50998 46791 .(4.78)
ar(z2/3)°

Computation of y(0) by backward recurrence using (4.50), (4.53) yields the

following table:
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Folm) ep = ¥(0)-Ty(m)

E
5 0.88239 8541 + 0.50945 30361 (9.2 + 5.31) x 1072
9 0.88331 4192 + 0.50998 16871 (5.2 + 3.01) x 1076
13 0.8833L 9347 + 0.50998 46631 (3.0 + 1.81) x 1078

and ro(15) agrees with y(o) to all the places (4.78).

The series for y(0) converges only conditionally, Knopp (1947,p. 40l),
but this is irrelevant, because the Miller algorithm will work whether the
Taylor series converges or not, as long as |arg(l-1)|<m , and, as is easily

seen from the formulation (2.10), the convergence is exponential,
y(a) = @) L + 0 ()™)], m—se . (4.79)
In this case
g1 () = i(2 -43) , [¢ (x)]| = 0.268 .- 5 (4.80)

As our final example, we take the confluent hypergeometric function

28 (v),.(5)

yy(n) = oy (nts,s+L-b30) . (4.81)

(Our notation and subsequent analysis draw heavily on the material contained
in Erdélyi et al (1953, v. I, Ch. 6).)

yl(n) satisfies the difference equation
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(n+l)[(2n+6+b+l)+h]

- ST o e e "
y(n) (n+6)(n+b) y( l) (n+6)(n+b) -Y( 2) =0 b § (*'82)
and
B d "
y (n) = \r(;\)n(f’ﬂ”)/g"f’fq‘e'En A [1 + O(n_é)} 5 (4.83)
lerg Al s 7, V() =1Jﬁ'h(6+b)/2"%éh/2/ r(s)r() , (4.84)
L=> y(k), |ag | <n . (4.85)
k=0
Another function satisfying (4.82) is
Yp(n) = (:Zn ¢ (n+6,8+L-b;1) (4.86)
- %;_ P(In(er1-b)v( )l Y2 = 5/42A53 T, 5,72 ] ,

|arg A| =7 ‘ (4.87)

It is thus seen from Theorem 4.2 that the computation of y; by backward
recursion based on (4.82), (4.85) converges for |arg A | < m . To illustrate

this, let § =b =%, so

y2(0) = A%(3,151) = A%e"felfo(x/m/ﬁ ; (4.88)

2



=
M-

&

y1(1) ¥(3/2,1;1) = A gx[;\,%v(l/e,l;x)] (4.89)

2 /e
L [k (V/2)K,(0/2) (141 /3)] . (4.90)

For X =4 , standard tables give
yl(O) = 0.94960 8042 +-- , yl(l) = 0.04171 2616 --- . (4.91)"
Taking m = 10 in (2.2) to (2.6) yields
Iy(10) = 0.¢4961 1302 -.- , 1(1.0) = 0.04171 2759 --. , (4.92)

with approximate absoclute errors of 3.3 x 1076 and 1.4 x 1077 , respec-
tively. It is interesting that the difference equation (4.82) serves to
compute K, , while the usual recursion relation does not.

If arg A = w , then we can define

i 1
. . 3
¢f(m) = mCe2dmeIN] [l + O(m'2)] j (4.93)
by
ORI PR Y (4.98)
1
and Theorems 4.1 and 2.4 apply, with p =k =2 , Mo = A1l > B =0, and

m, = [ml " nm"%'/@m%)] : (4.95)
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Thus both the functions (4.81) and (4.86) can be computed in this case,

provided that suitable normalization relationships (or initial values) are

known, since it is clear the series (4.85) will, in general, no longer suffice.
An even more efficient algorithm for the calculation of the Y function

can be based on the third order difference equation satisfied by the functions

sli) = (-)n(2n+a-l)rtn+a-l) 31 iL-n,n+a
i) I'(2)r(8)r(n+v) G23 ("' a,8,b ) (4.9)
- (6)n nta giﬂ

(enta-1)(nta-1)r

{15“a¥(n+a,a+1—b;x)} p (4.97)
I'(a) a\?

(see Wimp (1966, 1967) and Luke and Wimp (1963)). This is because (4.96)

behaves as

1/3 2/3
~3 n -1/3
z(n) = ¢ nde ™A [l + 0(n / )] , N—> (4.98)
for some c¢ , d (independent of n ),.|arg A| < 3m/2 . (A canonical. set for
5 5 ; 2R ; Zhrrl
the equation is readily obtained by replacing n above by ne s

h =12 .)
In fact, the hypergeometric functions discussed in the above three ref-

erences, which are of the form

l-n,nt+y+l,b
P+1,1 2 b Q.
GQ+2:P+1(:% ap,ptl j) 3 A= Gy LPyaie 5 (4.99)
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can all be computed by Miller's algorithm, using the recursion relations and
normalization series given by Wimp (1966), provided |arg A| < m for

P> Q+Ll , and |arg(l+h_l) | <7 for P =Q+L, in which case (4.99) is
related to (4.49). For PI> Q+l , the difference equation for (4.99) has Q
algebraic-logarithmic solutions with the same values of 0Oy as given by
(4.72), plus an additional P+1-Q anormal F.S.S.

o 2hmi )l/(ﬁl—Q)

3 _
Yp(n) ~ ¢yn b exp {H(P+1—Q)(n re , h=0,1,...,P-Q ,(4.100)

while if P<Q , then p =w =1 in all the F.S.S. of the difference equa-
tion. Thus the recursion relation for (4.99) has canonical sets whose com-

ponents exhibit widely varying behaviour, depending on the relation between

P and Q , and the equation may be expected to furnish a number of addi-

tional interesting applications of the theory developed in this work.
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APPENDIX

Here we set forth the notation used in the body of the thesis, and list
some frequently invoked results from the theory of linear difference equa-
tions.

For determinants and matrices, we use the notation

i1 =@t T ®ip
. '{%ey  Mee t 2T ey
oy =] 0 ] (5.1)
31 O * - Yrr
(@ @p ot g |
. a’?l C!%e . Q’%T
["’j..h]f . . ) ’ (a.2)
| ¥r1 I " - %7 |

h nth

o5 p always denoting the element in the jt row and colum of the de-

dJs

terminant or matrix.

Iet ?, 2 Vn be (complex-valued) functions of n = 0,1,2,... . We write

s O(il}?n) y D@ b (A'S)

if §, # 0 for n>n, and if a positive A exists for which
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I‘Pn/‘i'nk A, n>ng

and

if, given ¢ > 0 , there exists an N(e¢) = n

(0]

such that

I¢n/¢n|< € forall n>N .

Iet p Dbe an integer = 1 .

(Pn - ¢’n[00+'cln"l/p+cen_2/p+ . .‘l 9 co ié 0 ) n—>¢w »

means that

for each r = 0,1,2,... .

r
Oty = > e P | 0@ ) nse

(A.4)

(A.5)

(A.8)

(A.7)

(A.8)

Occasionally ¢ , ¢ will be functions of a complex variable ) belong-

ing to some sector S in the complex plane.

Then

o(1) = oA )s A== , res

ete., are interpreted similarly.

details.

(A.9)

See Erddlyi (1956) or de Bruijn (1961) for

7



Suppose we have a set of (complex-valued) functions {yh(n)} 5
L =h<¢g, defined for n = 0,1,2,... . The functions are called linearly

dependent if and only if a relation
clyl(n) * Gaysla) & ower # cgyc(n) = 0w o= 0l g (A.10)

holds for some constants (independent of n ) cj which are not all zero.
Otherwise, the functions are linearly independent.
Good sources for the following material are Gautschi (ca 1962), Milne-

Thomson (1260) and Norlund (1954 ).

A-I. The functions {@h(n)} s L £h < g are linearly dependent if and only

if

p(n) = |¢h(n+j—l)|z =0, n=01,... . (A.11)

A-II. The functions in any subset of linearly independent functions are

linearly independent.

A-ITII. TFor any integer k = 0 , the difference equation of order o(= 1)
a
ZE: C,(n)y(ntv) =0, n=0,1,2,..., C; =1, Cy(n) 0, (A.12)
v=0 .
possesses a unigue solution satisfying the conditions
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y(ktv) =a, , v = 0,1,2,...,0-1 . (A.13)

A-IV. Equation (A.12) possesses a linearly independent set of solutions
{ yh(n)} , L <h <0, called a fundamental set, and any solution of (A.12),

such as (A.13), can be expressed as a linear combination of these functions.

A"V. I!et

D(n) = ]yh(n+,j-l)lz . (A.14)

Then

a
D(n+l) = (-)'D(n)/Cy(n) , n = 0,1,2,... . (A.15)
A-VI. The equation
g
> Coy(mvly¥(atv) =0, n =0,1,2,... , (4:16)
v=0 :

is called the equation adjoint to (A.12), and the functions Th(n)/D(n) ,
1 <h <o are linearly independent and satisfy (A.16) where

Yl(m"l PR }’h_}_(n+l);yh+l(n+1-): e ,yo.(ﬂ'l'l)

e - . (a.17)

T (n) = (

yl(n+0'~l), i yh_l(n+c_l)}y11+l(n+0-l)} R )yc(n+0_l)
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Thus

’

l, r =0,
g
Z Ty, (n)y, (n*r)/D(n) = {0, L sr < 0-1,
h=L

"]./Co,(n) 5] r = g .

A-VII. Let the functions {yh(n)} » L =h s o, be such that

lim Yh(n)/yh.‘.]_(n) =0, l<h<og-1 .
n—s

Then the functions are linearly independent.
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