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ABSTRACT. We investigate a generalization of classical continued fractions, where the
“numerator” 1 is replaced by an arbitrary positive integerN. We find both similarities to
and surprising differences from the classical case.

Let N be an arbitrary positive integer. In this paper we consider continued fractions of
the form

a0 +
N

a1 +
N

a2 +
N

a3 + · · ·

,

with a0 a nonnegative integer anda1,a2,a3, . . . positive integers. We denote such a contin-
ued fraction by[a0,a1,a2,a3, . . .]N and refer to it as a cfN expansion. While this seems to
us to be a natural generalization of classical continued fractions, i.e., theN = 1 case, it has
not been much studied previously, though see [1, 2]. We statethe main result of [1], in our
language, in 2.23 below.

As we shall see, theN > 1 case has both a number of similarities to and some surprising
differences from theN = 1 case.

In Section 1 of this paper, we establish foundational results on cfN expansions. We
show that every positive real numberx0 has a cfN expansion, though forN > 1 it always
has infinitely many. ForN > 1, every rational number has both finite and infinite (i.e.,
nonterminating) cfN expansions, and forN > 2 it has nonperiodic expansions. ForN > 1,
every quadratic irrationality has both periodic and nonperiodic expansions. Here we use
the standard language and notation:x0 = [a0,a1,a2, . . .]N is periodic of periodk from i = m
if ai+k = ai for all i ≥ m, and in this case we writex0 = [a0, . . . ,am−1,am, . . . ,am+k−1 ]N.

We also develop a natural notion of a best cfN expansion of the real numberx0, which
we denote byx0 = [[a0,a1,a2, . . .]]N.

In Section 2 we turn our attention to quadratic irrationalities. We show that, forN > 1,
every quadratic irrationality has periodic cfN expansions, and that in many cases the best
cfN expansion of a quadratic irrationality is periodic, but, onthe grounds of extensive
computational results, we conjecture (Conjecture 2.3) that this isnot always the case. We
focus our attention on quadratic irrationalities

√
E, whereE is an integer that is not a

perfect square. We establish here some notation and language that we will use throughout:
We letD = ⌊

√
E⌋, so thatE = D2+a with 1≤ a≤ 2D. We also say thatN is small(for E)

if N ≤ 2D andN is large (for E) otherwise. Note thatN = 1 is always small. We show that
if [[

√
E]]N is periodic, the period begins withi = 1 if N is small, as in the classical case,

and with i = 2 if N is large. Also in the classical case the continued fraction expansion
of

√
E has a very special form, and we show that[[

√
E]]N has the same form forN small,
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in cases when it is periodic, but that it sometimes but not always has a similar form forN
large, in cases when it is periodic.

The theory of classical continued fractions is intimately related to Pell’s equation, and
in Section 3 we investigate the analog in theN > 1 case. In the classical case there is a
recursion for(pi ,qi), whereCi = pi/qi is thei-th convergent of

√
E. Settingwi = p2

i −Eq2
i ,

we have that{wi} is periodic and that all solutions to Pell’s equationp2−Eq2 = 1 are to
be found among{(pi ,qi)}. Part of this goes through for arbitraryN. We have a natural
generalization of periodicity that we callf -periodicity (i.e., periodicity up to a factor off ).
We again have a recursion for(pi ,qi), whenCi = pi/qi is thei-th convergent of

√
E, and

we show that{wi = p2
i −Eq2

i } is f -periodic whenever[[
√

E]]N is periodic. But forN > 1,
pi and qi need not be relatively prime. WritingCi = p̃i/q̃i , a fraction in lowest terms,
we consider{w̃i = p̃2

i −Eq̃2
i }. We conjecture (Conjecture 3.11) that{w̃i} is f -periodic

whenever[[
√

E]]N is periodic. We show this is true in a number of cases, where weobtain
precise information, and we give computational results that indicate the possibilities that
appear.

In this paper, we give three sorts of results: completely general results, results on
[[
√

E]]N that hold for general families ofE andN, and results on[[
√

E]]N for particular
values ofE andN. The behavior of[[

√
E]]N is far more varied and intricate forN > 1 than

it is in the classical case ofN = 1, and so we have made a point of giving many examples
to illustrate the wide sort of behavior that can occur.

1. GENERAL RESULTS

Lemma 1.1. Let b0 be a nonnegative real number and let b1, . . . ,bn be positive real num-
bers.

(a) [b0,b1, . . . ,bn]N = [b0,b1, . . . ,bk−1, [bk,bk+1, . . . ,bn]N]N.
(b) [b0,b1, . . . ,bn]N = [b0,b1, . . . ,bn−1 +N/bn]N.
(c) for any positive integer m,

[

b0,mb1,b2,mb3, . . . ,kbn
]

mN =
[

b0,b1, . . . ,bn
]

N,

where k= 1 if n is even and k= m if n is odd.

Proof. (a) and (b) are immediate and (c) is an easy inductive computation. ¤

Theorem 1.2. Define sequences{pn} and{qn} inductively by

p−2 = 0, p−1 = 1, pn = bnpn−1 + pn−2N n≥ 0

q−2 = 1/N, q−1 = 0, qn = bnqn−1 +qn−2N n≥ 0.

Let Cn = pn/qn for n≥ 0. Then for every n≥ 0,

Cn =
[

b0,b1, . . . ,bn
]

N.

Proof. Well-known forN = 1 and easily generalized. ¤

Theorem 1.3. In the situation of Theorem 1.2,

pnqn−1−qnpn−1 = (−1)n−1Nn, for n≥ 1.

Proof. This is a special case of [4, page 8, formula (30)] and easily follows from an induc-
tive argument. ¤
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Theorem 1.4. Let a0 be a nonnegative integer and let a1,a2, . . . be positive integers. Then
[

a0,a1,a2, . . .
]

N = lim
n→∞

[

a0,a1,a2, . . . ,an
]

N

exists.

Proof. By Lemma 1.1(c), for eachn,
[

a0,a1, . . . ,an
]

N =
[

b0,b1, . . . ,bn
]

1

with bi = ai for i even andbi = ai/N for i odd. LetCn = [b0,b1, . . . ,bn
]

1. The sequence
{C0,C2,C4, . . .} is strictly increasing and the sequence{C1,C3,C5, . . .} is strictly decreas-
ing, and every term in the first sequence is less than every term in the second sequence.
Thus the first sequence converges to its least upper boundLe and the second sequence con-
verges to its lower boundLo, with Le ≤ Lo. By [4, page 237, Satz 8] we have thatLe = Lo,
i.e., that the sequence{C0,C1,C2, . . .} converges, if and only if the series∑∞

n=0bi diverges.
But since eachai is an integer,bi ≥ 1/N for i ≥ 1, so this is certainly the case.

In our situation it is easy to show convergence of{C0,C1,C2, . . .} directly. We have
that |Lo−Le| = Lo−Le < C2n+1−C2n for everyn, and from Theorem 1.3 we have that
C2n+1−C2n = 1/q2n+1q2n. Then, since alsoCn = [a0,a1, . . . ,an

]

N, an inductive argument
shows thatq2n+1 ≥ (a1/N)(1+ 1/N)n andq2n ≥ (1+ 1/N)n, so 1/q2n+1q2n → 0 asn→
∞. ¤

We now present an algorithm to produce cfN expansions.

Theorem 1.5. Let x0 ∈ R, x0 > 0.

(1) Let i = 0
(2) Choose ai ∈ N such that xi −N ≤ ai ≤ ⌊xi⌋
(3) Let ri = xi −ai

(4) If r i = 0, terminate. Otherwise let xi+1 = N
r i

, increment i, and go to step (2).

Then x0 = [a0,a1,a2, . . .]N (where there may be only finitely many ai ).

Proof. We will first verify that this algorithm can be carried out as described. The only
difficulty that could arise is ifxi < 1 for somei > 0 because then we would be unable to
chooseai as the algorithm describes. We know thatx0 is a positive number and since we
allow a0 to be 0, we always have a valid choice fori = 0 by choosinga0 = ⌊x0⌋. Assume
that we have chosenai satisfying the inequalities in step (2). Then we have

0≤ xi −⌊xi⌋ ≤ xi −ai = r i < xi −
(

xi −N
)

= N.

If r i = 0, the algorithm terminates. Otherwise, we get 0< r i < N thereforexi+1 = N
r i

> 1
so we can make a valid choice forai+1. Thus, by induction, we can always choose anai as
described in step (2) if the algorithm has not terminated yet.

The proof that this converges tox0 is similar to the classical case and we omit it. ¤

Definition 1.6. If, in step (2) of the algorithm, we chooseai = ⌊xi⌋, we call this thebest
choicefor ai . If we make the best choice for everyai then we call the resulting continued
fraction expansion thebest expansionfor x0.

We denote a best cfN expansion by[[a0,a1,a2, . . .]]N. We will often use[[x0]]N to denote
the best cfN expansion of the real numberx0.

There is an easy criterion for deciding when a cfN expansion is a best cfN expansion.
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Lemma 1.7. An infinitecfN expansion[a0,a1, . . .]N is a bestcfN expansion if and only if
ai ≥ N for all i ≥ 1. A finitecfN expansion[a0,a1, . . . ,an]N is a bestcfN expansion if and
only if n= 0, or n> 0 and ai ≥ N for 1≤ i ≤ n−1 and an ≥ N+1.

Proof. We prove the infinite case. Suppose[a0,a1, . . .]N is the best cfN expansion of some
real numberx0. Then for eachi ≥ 0, ai = ⌊xi⌋ so thatr i < 1, and henceai+1 = ⌊N/r i⌋ ≥ N.
Conversely, ifai+1 ≥ N, then, since the expansion does not terminate,r i < 1 and soai =
⌊xi⌋. ¤

In the classical case, a positive irrational number has a unique continued fraction expan-
sion, and that is a fortiori its best cf1 expansion. A positive rational number other than 1
has two cf1 expansions, of the form[a0,a1, . . . ,an]1 with an ≥ 2 and[a0,a1, . . . ,an−1,1]1,
and 1 has the two cf1 expansions[1]1 and[0,1]1. In any case, the best cf1 expansion is the
first of these.

Theorem 1.8. For N ≥ 2, every positive irrational number x0 has infinitely manycfN
expansions, and infinitely many of these expansions are nonperiodic.

Proof. Given some expansion ofx0, [a0,a1,a2, . . .]N, we modify it in the following way:
choose somek > 0. Perform the algorithm onx0 and create another expansion[a′0,a

′
1,

a′2, . . .]N by choosinga′i = ai for all i < k. Then choosea′k = ⌊xk⌋ (a valid choice). If
a′k 6= ak we can continue choosing thea′i in any way and we will have a new expansion
for x0. Suppose thatak = a′k. If ak+1 6= ⌊xk+1⌋, choosea′k+1 = ⌊xk+1⌋ and we have a new
expansion forx0. Suppose thatak+1 = ⌊xk+1⌋. Thenrk = xk−⌊xk⌋ < 1 soxk+1 = N

rk
> N

soxk+1−N ≤ ak+1−1≤ ⌊xk+1⌋. So we can choosea′k+1 = ak+1−1 and we have a new
expansion forx0.

Every irrational number has at least one expansion (the bestexpansion) and the previous
method allows us to acquire from that a new expansion for every k∈ N. Moreover, we can
apply this method to ensure that an expansion forx0 is nonperiodic. Fix somes∈ N and
perform the algorithm onx0, making any valid choice for eachai . Wheneveri + s is a
square, find the largestj < i such thatxi = x j . If no such j exists, choose anything forai ,
otherwise chooseai 6= a j or ai+1 6= a j+1 by the previously described method. This ensures
that no finite sequence of choices will be repeated infinitelymany times. Thus for everys
we have a nonperiodic expansion forx0. ¤

Lemma 1.9. The bestcfN expansion of a positive rational number is finite.

Proof. If x0 is a rational number, thenr i is rational for alli. Let r i = di
ei

wheredi andei

are nonnegative integers with gcd(di ,ei) = 1. If we choose the best expansion forx0, then
r i < 1 for all i. Thus

r i+1 = xi+1−ai+1 =
N
r i
−ai+1 =

Nei −diai+1

di
< 1.

Now gcd(Nei −diai+1,di) is not necessarily 1, but in any casedi+1 dividesNei −diai+1.
Thusdi+1 < di , so{di} is a strictly decreasing sequence of nonnegative integers.Therefore
d j = 0 for somej. Thusr j = 0 and the algorithm terminates. ¤

For a positive integerm, we let mk denote a sequence ofk m’s, and letm∞ denote a
sequence of infinitely manym’s.

Lemma 1.10. (a) Let N≥ 2. Then for any k≥ 0,

N =
[

(N−1)k,N
]

N,
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and also

N =
[

(N−1)∞
]

N.

(b) Let N≥ 4 be even. Then

N =
[

N−2,(N−2)/2,N
]

N.

(c) Let N≥ 3 be odd. Then

N =
[

N−2,(N−1)/2,2N−1,N
]

N.

Proof. Direct computation. ¤

Theorem 1.11. Let x0 be a positive rational number.
(a) For any N≥ 2, x0 has finitecfN expansion of arbitrarily long lengths, and at least

one infinitecfN expansion.
(b) For any N≥ 3, x0 has infinitely many distinct periodiccfN expansions and infinitely

many distinct nonperiodiccfN expansions.
(c) For N= 2, every infinitecfN expansion of x0 is of the form[a0,a1, . . . ,ak,1,1,1, . . .]N

for some k and some integers a0, . . . ,ak, and there are only finitely many such expansions.

Proof. Let x0 have best cfN expansion

x0 =
[[

a0, . . . ,an
]]

N.

This expansion is finite by Lemma 1.9, andan ≥ N+1 by Lemma 1.7.
(a) Using Lemma 1.1 and Lemma 1.10(a), we have

x0 =
[

a0, . . . ,an
]

N =
[

a0, . . . ,an−1,an−1,N
]

N

=
[

a0, . . . ,an−1,(N−1)k,N
]

N for anyk≥ 0

and also

x0 =
[

a0, . . . ,an−1,(N−1)∞
]

N.

(b) In caseN is even, using Lemma 1.1 and Lemma 1.10(b), we have

x0 =
[

a0, . . . ,an
]

N =
[

a0, . . . ,an−1,an−1,N
]

N

=
[

a0, . . . ,an−1,N−2,(N−2)/2,N
]

N

=
[

a0, . . . ,an−1,N−2,(N−2)/2,(N−1)k,N
]

N

for anyk≥ 0.
Also for anyk≥ 0 we have the periodic expansion of periodk+2 given by

x0 =
[

a0, . . . ,an−1,N−2,(N−2)/2,(N−1)k,N−2,(N−2)/2,(N−1)k, . . .
]

N

and for any nonperiodic sequencek0,k1, . . . of nonnegative integers we have the nonperi-
odic expansion

x0 =
[

a0, . . . ,an−1,N−2,(N−2)/2,(N−1)k0
,N−2,(N−2)/2,(N−1)k1

, . . .
]

N.

In caseN odd, a similar construction works, using Lemma 1.10(c).
(c) Write x0 = a/b, a fraction in lowest terms. We prove this by complete induction

onb.
Supposeb = 1, so thatx0 = a is an integer. By inspection of our algorithm, it is easy to

see that any finite cf2 expansion ofx0 must be

a = [a]2 =
[

a−1,1k,2
]

2 for somek≥ 0 = [a−2,1]2 if a≥ 2,
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and that the only infinite cf2 expansion ofa is

a =
[

a−1,1∞
]

2.

Now let x0 = a/b with b > 1. Letc = ⌊a/b⌋. Then the only cf2 expansions ofx0 are of
the form

a/b =
[

c,
[

x1
]

2

]

2 or a/b =
[

c−1,
[

x′1
]

2

]

2.

In the first case,x1 = 2b/(a− bc) anda− bc < b, so by induction we are done. In the
second case, 1< x′1 < 2 and so this expansion must be of the form

a/b =
[

c−1,1,
[

x′2
]

2

]

2

with x′2 = 2(a−b(c−1))/(2b−(a−b(c−1))) and 2b−(a−b(c−1)) < b, so by induction
we are done. ¤

Remark1.12. There are only countably many periodic sequencesa0,a1, . . . and a fortiori
any positive numberx0 has only countably many periodic cfN expansions (possibly none).
The diagonalization argument of the proof of Theorem 1.8 shows that any irrationalx0 has
uncountably many nonperiodic cfN expansions for anyN ≥ 2, and the construction in the
proof of Theorem 1.11 shows that any rationalx0 has uncountably many nonperiodic cfN

expansions for anyN ≥ 3.

2. QUADRATIC IRRATIONALITIES

In this section we investigate cfN expansions of quadratic irrationalities.

Definition 2.1. Consider an arbitrary cfN expansion[a0,a1, . . .]N. Them-inflation of this
expansion is the cfmN expansion

Im
([

a0,a1,a2,a3, . . .
]

N

)

=
[

a0,ma1,a2,ma3, . . .
]

mN.

Note that, by Lemma 1.1(c), ifx0 = [a0,a1, . . .]N, then alsox0 = Im([a0,a1, . . .]N) for
anym.

Theorem 2.2. Let x0 be a quadratic irrationality. Then for any N, x0 has a periodiccfN
expansion.

Proof. From the classical theory we know thatx0 has a periodic cf1 expansion of some
periodk. Then theN-inflation of this expansion is a cfN expansion ofx0, periodic of period
k (or, in exceptional cases,k/2) if k is even and periodic of period 2k (in all cases) ifk is
odd. ¤

We observe that there is no reason to expect in general that the cfN expansion ofx0

obtained in this way will be the best cfN expansion ofx0. Indeed from Lemma 1.7 we see
that this will never be the case ifN is sufficiently large.

We will exhibit a number of families of periodic best cfN expansions of quadratic ir-
rationalities below, and a number of specific examples of periodic best cfN examples of
quadratic irrationalities, but we make the following conjecture.

Conjecture 2.3. ForN≥ 2, the best cfN expansion of a quadratic irrationality is not always
periodic.

As evidence for this conjecture we have the computation thatthe best cf2 expansion of√
124 is not periodic within its first 6,000 terms, and that the best cf7 expansion of

√
8 is

not periodic within its first 6,000 terms. (Such examples abound.)
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We remind the reader of our conventions:E is a positive integer that is not a perfect
square,D = ⌊

√
E⌋, anda= E−D2, so thatE = D2+a with 1≤ a≤ 2D. Also,N is said to

besmall(for E) if N ≤ 2D andlarge (for E) otherwise. (Note thatN = 1 is always small.)

Lemma 2.4. Suppose that a divides2DN. Then
√

E =
[

D,2DN/a,2D
]

N,

periodic of period2 if a 6= N and period1 if a = N. This is the bestcfN expansion of
√

E
if and only if a and N are both small for E.

Proof. Direct calculation shows that this is always a cfN expansion of
√

E, and it follows
immediately from Lemma 1.7 that it is the best cfN expansion of

√
E exactly when the

given conditions are satisfied. ¤

Remark2.5. Observe that ifa divides 2D, then
[

D,2DN/a,2D
]

N = IN
([

D,2D/a,2D
]

1

)

.

But if not, this cfN expansion does not come from a cf1 expansion.

The casesa = 1, a = 2, ora = 4 andD even are covered by Lemma 2.4. In casea = 4
andD odd we have the following.

Lemma 2.6. Let D> 1 be odd, and let E= D2 +4. Then
√

E =
[[

D,(D−1)/2,1,1,(D−1)/2,2D
]]

1, periodic of period5,

and
√

E =
[[

D,(D2−1)/2,D,2D2 +2,D,(D2−1)/2,2D
]]

D, periodic of period6.

Proof. Direct computation and Lemma 1.7. ¤

Lemma 2.7. (a) For D > 1, if a = 2D−1, then
√

E =
[

D,1,D−1,1,2D
]

1 of period4

and
√

E =
[[

D,D+1,2D3 +2D2−2D,D+1,2D
]]

D, of period4.

(b) For D≥ 4 even, if a= 2D−3, then
√

E =
[

D,1,(D−2)/2,2,(D−2)/2,1,2D
]

1 of period6

and
√

E =
[[

D,D+2,(D2−2D)/2,D+2,2D
]]

D, of period4

for D 6= 6 and of period2 for D = 6.
(c) For D≥ 5 odd, if a= 2D−3, then

√
E =

[

D,1,(D−3)/2,1,2D
]

1 of period4.

(d) For D≥ 3 odd, if a= 2D, then
√

E =
[[

D,2D+2,8D3 +16D2 +6D,2D+3
]]

2D+1 of period2

and
√

E =
[[

D,2D+3,4D2 +4D,2D+4
]]

2D+2 of period2.

Proof. Direct computation and Lemma 1.7. ¤
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Remark2.8. (a) Lemma 2.7(c) forD = 3 is covered by Lemma 2.4, verifying
√

12 =
[3,2,6]1 = [3,6]3.

(b) ForD ≥ 5 odd anda= 2D−3, numerical evidence suggests that the best cfD expan-
sion of

√
E is not always (perhaps never) periodic.

(c) If a = 2D andN is small, i.e.,N ≤ 2D, then
√

E is covered by Lemma 2.4, so the
two cases given in Lemma 2.7(d) are the first two cases forN large. There does not appear
to be a similar result forN = 2D+3, and this may be a nonperiodic case.

Example2.9. Here is one more family. Leta = 3 andN = 2. If D is divisible by 3 then√
E is covered by Lemma 2.4. Otherwise we have
√

7 =
[[

2,3,20,3,4
]]

2 of period 4
√

19=
[[

4,5,3,4,34,4,3,5,8
]]

2 of period 8
√

28=
[[

5,6,2,6,10
]]

2 of period 4
√

52=
[[

7,9,4,9,14
]]

2 of period 4
√

67=
[[

8,10,2,3,2,3,6,2,2,2,64,2,2,2,6,3,2,3,2,10,16
]]

2 of period 20
√

103=
[[

10,13,4,3,9,3,4,13,20
]]

2 of period 8
√

124=
[[

11,14,2,3,17,6,4,15,2,2,2,3,5,59,71,8,3, . . .
]]

2 apparently not periodic
√

172=
[[

13,17,4,2,7,7, . . . ,7,7,2,4,17,26
]]

2 of period 38
√

487=
[[

22,29,5,7,16, . . . ,16,7,5,29,44
]]

2 of period 136.

Example2.10. Just as whenN = 1, cases ofN > 1 when[[
√

E]]N has odd period seem to
be rarer, but definitely occur. For example:

√
22=

[[

4,2,2,8
]]

2 has period 3
√

162=
[[

12,2,2,2,2,24
]]

2 has period 5
√

241=
[[

15,3,2,4,4,2,3,20
]]

2 has period 7
√

393=
[[

19,2,4,2,2,9,9,2,2,4,2,38
]]

2 has period 11.

Also, [[
√

457]]2 has period 9,[[
√

139]]3 has period 5,[[
√

331]]3 has period 9,[[
√

181]]4 has
period 5,[[

√
1997]]4 has period 35, and[[

√
524]]8 has period 3.

In fact, we have the following families of cfN expansions with odd period.

Lemma 2.11. (a) For any j≥ 1, let D= 3 j +1, a= 6 j, E = D2+a= 9 j2+12j +1. Then
√

E =
[[

D,2(D−1)/3,2(D−1)/3,2D
]]

2(D−1)/3, of period3.

(b) For any j≥ 1, let D= 3 j +1, a= 4 j +2, E = D2 +a = 9 j2 +10j +3. Then
√

E =
[[

D,2,2,2D
]]

2, of period3.

Proof. Careful but routine computation. ¤

Not only is the classical continued fraction expansion of
√

E periodic, it has additional
structure. We investigate the analog of this structure for[[

√
E ]]N in the situation where

this cfN expansion is periodic. In this situation we obtain a perfectanalog to theN = 1
case whenN is small forE, but we will see different behavior whenN is large forE. The
arguments parallel those in the classical case, but we give them in reasonable detail to show
what modifications have to be made and where the differences lie (cf. [3, Chapter 11]).



A GENERALIZATION OF CONTINUED FRACTIONS 9

Definition 2.12. A quadratic irrationalityx is N-reducedif x > N and−1 < x < 0, where
x is the Galois conjugate ofx.

Lemma 2.13. (a) Let x be N-reduced. Let A= ⌊x⌋ and y= N/(x−A). Then y is N-reduced.
Also,⌊−N/y⌋ = A.

(b) Let x be N-reduced. Then y= −N/x is N-reduced.

Proof. Analogous to theN = 1 case, and routine. ¤

Theorem 2.14. Let x0 be N-reduced and suppose that[[x0]]N is periodic of period k. Then
[[x0]]N = [a0,a1, . . . ,ak−1]N, i.e., the period begins with a0.

Proof. We have thatx0 = [x0]N = [a0,x1]N = [a0,a1,x2]N = · · · and from Lemma 2.13 we
have thatxi is N-reduced for everyi ≥ 0. Now by hypothesis we have that, for somej,

x0 =
[

a0,a1, . . . ,a j−1,a j , . . . ,a j+k−1
]

N.

Setz= x j = x j+k. Thenz= x j = N/(x j−1−a j−1) and similarlyz= x j+k = N/(x j+k−1−
a j+k−1). Thus

x j−1 = a j−1 +N/z, x j+k−1 = a j+k−1 +N/z

x j−1 = a j−1 +N/z, x j+k−1 = a j+k−1 +N/z

and hencex j−1− x j+k−1 = a j−1−a j+k−1. But −1 < xi < 0 for everyi, so−1 < x j−1−
x j+k−1 < 1. Buta j−1 anda j+k−1 are both integers, so the forcesx j−1 = x j+k−1 and hence
a j−1 = a j+k−1. Proceeding by downward induction we obtaina j−2 = a j+k−2, . . . ,a0 = ak

and so the period begins witha0. ¤

Corollary 2.15. Let N be small. Suppose that[[
√

E]]N is periodic of period k. Then
[[
√

E]]N = [a0,a1, . . . ,ak ]N with ak = 2a0. In particular, the period begins with a1.

Proof. Let x = D +
√

E. Then[[x]]N = [2a0,a1,a2, . . .]N. But x is N-reduced so[[x]]N is
periodic beginning with 2a0, by Theorem 2.14. ¤

Corollary 2.16. Let N be large. Suppose that[[
√

E]]N is periodic of period k. Let
h = ⌊N/(D +

√
E)⌋ ≥ 1. Then[[

√
E]]N = [a0,a1,a2, . . . ,ak+1 ]N with ak+1 = a1 + h. In

particular, the period begins with a2.

Proof. Let x =
√

E. Then [[x]]N = [a0,a1,x2]N with a0 = D, x1 = N
x0−a0

= N√
E−D

, a1 =

⌊N/(
√

E−D)⌋ ≥ N, andx2 = N/(x1−a1). Certainlyx2 > N.
Now x2 = N/(x1−a1) andx1 = N

−
√

E−D
< 0, sox2 < 0. Also,−1/x2 = (a1−x1)/N >

a1/N ≥ 1, so−1 < x2. Thusx2 is N-reduced, and so, by Theorem 2.14,[[x2]]N = [a2,
a3, . . .]N is periodic of periodk beginning witha2.

We now apply the argument in the proof of Theorem 2.14 to conclude thatx1−xk+1 =
a1 − ak+1. Sincexk+1 is N-reduced,−1 < xk+1 < 0. But x1 = N/(

√
E −D) so x1 =

−N/(
√

E +D) and hence−(h+1) < x1 < −h, so we must have thata1−ak+1 = −h and
henceak+1 = a1 +h. ¤

The converse of Theorem 2.14 is also true.

Theorem 2.17. Suppose that[[x0]]N is periodic of period k beginning at a0, [[x0]]N =
[a0,a1, . . . ,ak−1]N. Then x0 is N-reduced.
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Proof. First observe thatx0 > a0 = ak ≥ N.
Now x0 = xk =

x0pk−1+Npk−2
x0qk−1+Nqk−2

, showing thatx0 is a root of the polynomialf (x) = x2qk +

(qk−1N− pk)x− pk−1N = 0. Now f (0) = −pk−1N < 0 and f (−1) = qk −qk−1N + pk−
pk−1N = (ak−N)qk−1 +qk−2 +(ak−N)pk−1 + pk−2 > 0 asak ≥ N. Hence the other root
of this polynomial, which isx0, must lie between−1 and 0. ¤

Lemma 2.18. Let [[x0]]N = [a0, . . . ,ak−1 ]N be periodic of period k beginning with a0, and
let y0 = −N/x0. Then[[y0]]N = [ak−1, . . . ,a0 ]N.

Proof. Write x0 = [x0]N = [a0,x1]N = [a0,a1,x2]N = · · · . Note that, by Theorem 2.17,x0 is
N-reduced, and hence by Lemma 2.13, eachxi is N-reduced. Also, by Lemma 2.13,y0 is
N-reduced. Now

x0 = a0 +N/x1, x1 = a1 +N/x2, . . . , xk−1 = ak−1 +N/xk

or equivalently

−N/x1 = a0−x0, . . . , −N/xk = ak−1−xk−1.

Setzk−i = −N/xi , i = 0, . . . ,k. Then we have

z0 = ak−1−xk−1, z1 = ak−2−xk−2, . . . , zk−1 = a0−x0.

But 0< −xi < 1 andzi+1 = N/(zi −ak−1−i)for eachi, so we see that

z0 =
[

z0
]

N =
[

ak−1,z1
]

N =
[

ak−1,ak−2,z2
]

N = · · · =
[

ak−1, . . . ,a0,zk
]

N.

But xk = x0 sozk = z0 and hence

z0 =
[[

ak−1, . . . ,a0
]]

N,

this being the best expansion asai ≥ N for eachi. But by definition,y0 = z0. (Also, if
y0 = [y0]N = [ak−1,y1]N = [ak−1,ak−2,y2]N = · · · , we haveyi = zi for eachi.) ¤

Theorem 2.19. Let N be small and suppose that[[
√

E]]N is periodic of period k. Then
[

[
√

E]
]

N =
[

a0,a1, . . . ,ak−1,2a0
]

N with ai = ak−i , i = 1, . . . ,k−1.

Proof. As we have seen
[

[
√

E +D]
]

N =
[

2a0,a1, . . . ,ak−1
]

N

so
[

[
√

E−D]
]

N =
[

0,a1, . . . ,ak−1,2a0
]

N

and hence

N/(
√

E−D) =
[

a1, . . . ,ak−1,2a0
]

N.

But if x0 = N/(
√

E−D), y0 = −N/x0 =
√

E +D, so
[

[
√

E +D]
]

N =
[

2a0,ak−1, . . . ,a1
]

N

and comparing the two expressions for[[
√

E +D]]N yields the theorem. ¤

Definition 2.20. A sequence of integersc1, . . . ,ck is palindromicif it reads the same from
right-to-left as it does from left-to-right, i.e. ifci = ck+1−i for i = 1, . . . ,k. A sequence
is semipalindromicof type ( j,k) if it is the concatenation of a palindromic sequence of
length j followed by a palindromic sequence of lengthk, i.e., if it is of the formc1, . . . ,c j ,
d1, . . . ,dk with c1, . . . ,c j andd1, . . . ,dk each palindromic.
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Remark2.21. By Theorem 2.19, we see that forN small, if [[
√

E]]N is periodic of period
k with periodic part given bya1, . . . ,ak (which is always true forN = 1), then eitherk = 1
or a1, . . . ,ak is semipalindromic of type(k−1,1).

Now suppose thatN is large and[[
√

E]]N is periodic of periodk with periodic part given
by a2, . . . ,ak+1. In this case the situation is more complicated.

Example2.22. (a) The cfN expansions in Lemma 2.7(d) are semipalindromic of type(1,1).
(b) We have the semipalindromic expansions
√

8 =
[[

2,9,12,44,12,10
]]

8 of type(3,1)
√

53=
[[

7,399,132,132,406
]]

112 of type(2,1)
√

65=
[[

8,2312,149,702,184,341,180,341,184,702,149,2320
]]

144 of type(9,1).

(c) We have the semipalindromic expansions
√

7 =
[[

2,15,20,17,65,17
]]

10 of type(1,3)
√

23=
[[

4,55,152,60,18568,60
]]

44 of type(1,3).

(d) We have the semipalindromic expansions
√

13=
[[

3,196,231,247996,231,214,7854,214
]]

119 of type(3,3)
√

129=
[[

11,108,39,176,204,176,39,109,52,98,42,98,52,109
]]

39 of type(5,7).

(e) We have the nonsemipalindromic expansions
√

31=
[[

5,22,14,26,56,23
]]

13√
187=

[[

13,85,60,63,232,84,332,87
]]

58√
215=

[[

14,116,480,77,128,429,112,118
]]

77.

Note that, as long as at least one ofj andk is odd, a semipalindromic expansion of type
( j,k) differs from a semipalindromic expansion of type( j +k−1,1) only by a phase shift.

Numerical evidence seems to indicate that most periodic[[
√

E]]N expansions are semi-
palindromic of type( j,1) or (1,k), with semipalindromic expansions of type( j,k) with
j > 1 andk > 1 being rare, and nonsemipalindromic expansions being rarer still.

Remark2.23. cfN expansions were previously studied in [1], though the concerns of that
paper are considerably different than ours. We restate the main results of [1] in our lan-
guage: For anyE, there exists anN such that the best cfN expansion of

√
E is periodic of

period 1, and furthermore the convergentsCi of that expansion are a subset of the conver-
gents of the classical continued fraction expansion of

√
E.

3. PELL’ S EQUATIONS AND RELATED EQUATIONS

Given any cfN expansion ofx0 =
√

E, we have itsith convergentCi = pi/qi wherepi

andqi are given by the recursion in Theorem 1.2. In the classical case this is intimately
related to the solutions of Pell’s equationp2−Eq2 = 1.

In this section we investigate the analog for arbitraryN.

Lemma 3.1. Let [
√

E]N = [x0]N = [a0,x1]N = [a0,a1,x2]N = · · · be anycfN expansion of√
E.
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Then xi = ui+Ni
√

E
vi

for integers ui , vi defined inductively by

u0 = 0, v0 = 1

ui+1 = N
(

aivi −ui
)

vi+1 =
N2i+2E−

(

ui+1
)2

N2vi
.

Proof. By definition, xi = ai +
N

xi+1
, i.e., xi+1 = N

xi−ai
and simple algebra shows this is

equal to

N
(

aivi −ui
)

+Ni+1
√

E

N2iE−
(

aivi −ui
)2

vi

=
ui+1 +Ni+1

√
E

vi+1
.

Clearly ui+1 is an integer. We prove thatvi+1 is an integer by induction. Note that
u1 = Na0, v1 = E−a2

0 sov0 andv1 are integers. Thenvi+1 ∈Z⇔ vi |N2iE−(aivi −ui)
2 ⇔

vi | N2iE−u2
i .

But vi =
N2iE−u2

i
N2vi−1

∈ Z by induction, soN2iE−u2
i

vi
= N2vi−1 ∈ Z as required. ¤

Lemma 3.2. Let [
√

E]N = [x0]N = [a0,x1]N = [a0,a1,x2]N = · · · be anycfN expansion of√
E. Then p2i −Eq2

i = (−1)i+1vi+1.

Proof. By induction oni. For i = −1, p2
i −Eq2

i = (1)2 −E(0)2 = 1 = v0. For i = 0,
p2

i −Eq2
i = a2

0−E(1)2 = −(E−a0)
2 = −v1.

Assume true fori. Then

[
√

E]N =
[

a0, . . . ,ai ,xi+1
]

N

so
√

E =
xi+1pi +Npi−1

xi+1qi +Nqi−1
.

But

xi+1 =
ui+1 +Ni+1

√
E

vi+1
.

Substituting, we obtain

Ni+1Eqi = ui+1pi + pi−1vi+1N (*)

ui+1qi +qi−1vi+1N = Ni+1pi . (**)

Now pi(∗∗)−qi(∗) gives

Ni+1(p2
i −Eq2

i

)

= Nvi+1
(

piqi−1− pi−1qi
)

.

But we know thatpiqi−1− pi−1qi = (−1)i−1Ni and substituting and cancelling we ob-
tain p2

i −Eq2
i = (−1)i+1vi . ¤

Theorem 3.3. Let N be small and suppose that[[
√

E]]N is periodic. In this case,[[
√

E]]N is
periodic beginning with a1. Let [[

√
E]]N have period k,[[

√
E]]N = [a0,a1, . . . ,ak ]N. In this

case, ak = 2a0 = 2D. Then vk = Nk, i.e., p2
k−1−Eq2

k−1 = (−N)k, and uk = a0Nk = DNk.
Conversely, if vk = Nk and uk is divisible by Nk, then[[

√
E]]N is periodic of period k

beginning with a1, and ak = 2a0.
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Proof. First suppose[[
√

E]]N is periodic of periodk.
Thenx1 = [a1, . . . ,ak ]N so [[a0,x1]]N = [[a0,a1, . . . ,ak,x1]]N = [[a0,a1, . . . ,ak,xk+1]]N

and hencexk+1 = x1.
But xk = ak +N/xk+1, xk−ak = N/xk+1, andx0 = a0 +N/x1, x0−a0 = N/x1, soxk−

ak = x0−a0, i.e.,xk = ak−a0 +
√

E.

But xk = uk+Nk
√

E
vk

so we must havevk = Nk and alsouk/vk = ak−a0, an integer. But in

this case we know thatak = 2a0 souk = a0Nk.
Conversely, suppose thatvk = Nk and thatuk = mNk for some integerm. Thenxk =

uk+Nk
√

E
vk

= m+
√

E soak = m+a0. But thenxk+1 = N
xk−ak

= N
(m+

√
E)−(m+a0)

= N√
E−a0

=
N

x0−a0
= x1, so [[xk+1]]N = [[x1]]N, and henceak+1 = a0, ak+2 = a2, . . . ,a2k = ak, a2k+1 =

ak+1 = a1, . . . so
[

[
√

E]
]

N =
[

a0,a1, . . . ,ak
]

N

and we have seen that in this case we must haveak = 2a0. ¤

Remark3.4. Note in caseN = 1 the condition thatuk be divisible byNk is automatic. But
in caseN > 1 it is not, and it is possible thatvk = Nk but uk is not divisible byNk, so that
[[
√

E]]N does not have periodk. For example:

For
[

[
√

41]
]

4, v3 = 43 but this expansion has period 6.

For
[

[
√

43]
]

2, v6 = 26 but this expansion has period 12.

For
[

[
√

209]
]

3, v6 = 36 but this expansion has period 30.

For
[

[
√

590]
]

3, v6 = 36 but this expansion has period 28.

For
[

[
√

777]
]

12, v5 = 125 but this expansion has period 28.

For
[

[
√

1692]
]

5, v4 = 54 but this expansion has period 24.

We have the following generalization of periodicity.

Definition 3.5. A sequence{di} is f -periodicof periodk from i = m if di+k = f di for all
i ≥ m.

We also adopt the notation thatwi = p2
i −Eq2

i for i ≥−1. (Notew−1 = 1.)

Theorem 3.6. Suppose[[
√

E]]N is periodic of period k. Then{wi} is (−N)k-periodic of
period k. If N is small the period begins with i= −1, while if N is large the period begins
with i = 1.

Proof. By Lemma 3.2, the theorem is equivalent to the claim that{vi} is Nk-periodic of
periodk beginning withi = 0 if N is small andi = 2 if N is large.

SupposeN is small. By Theorem 3.3,uk = DNk andvk = Nk, while u0 = D andv0 = 1.
For i ≥ 1, xk+1 = xi by the periodicity of[[

√
E]]N, which, by Corollary 2.15, begins with

a1, i.e.,

uk+1 +Nk+i
√

E
vk+i

=
ui +Ni

√
E

vi
,

sovk+i = Nkvi and thenuk+i = Nkui .
If N is large, the same argument works, again using the periodicity of [[

√
E]]N, which,

in this case, by Corollary 2.16, begins witha2. ¤
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Corollary 3.7. If Ci = pi/qi is the ith convergent of acfN expansion, thengcd(pi ,qi)
divides Ni for all i ≥ 0.

Proof. Immediate from Theorem 1.3. ¤

Lemma 3.8. Let N≤ 2D and suppose that N and2D are relatively prime. Set E= D2+N
and consider

√
E = [[D,2D ]]N. Then for all i≥ 0, gcd(pi ,qi) = 1, and wi = (−N)i+1.

Proof. As easy induction, beginning withq0 = 1, shows thatqi ≡ 1 (modN) for all i ≥ 0, so
gcd(pi ,qi) = 1 by Corollary 3.7. The second claim follows immediately from Theorem 3.6.

¤

Lemma 3.8 shows thatpi and qi may be relatively prime. Here are some examples
to show that the upper bound on gcd(pi ,qi) in Corollary 3.7 is realized. Examples are
plentiful for i = 1, so we merely give examples fori ≥ 2.

Example3.9.

For
[

[
√

13]
]

2, gcd
(

p2,q2
)

= 22. For
[

[
√

3050]
]

3, gcd
(

p4,q4
)

= 34.

For
[

[
√

57]
]

2, gcd
(

p3,q3
)

= 23. For
[

[
√

499]
]

4, gcd
(

p2,q2
)

= 42.

For
[

[
√

603]
]

2, gcd
(

p4,q4
)

= 24. For
[

[
√

1580]
]

4, gcd
(

p3,q3
)

= 43.

For
[

[
√

3262]
]

2, gcd
(

p5,q5
)

= 25. For
[

[
√

185]
]

5, gcd
(

p2,q2
)

= 52.

For
[

[
√

41]
]

3, gcd
(

p2,q2
)

= 32. For
[

[
√

1878]
]

6, gcd
(

p2,q2
)

= 62.

For
[

[
√

207]
]

3, gcd
(

p3,q3
)

= 33. For
[

[
√

697]
]

7, gcd
(

p2,q2
)

= 72.

Definition 3.10. Let p̃i andq̃i be the positive integers defined byCi = pi/qi = p̃i/q̃i where
p̃i/q̃i is in lowest terms, i.e., gcd(p̃i , q̃i) = 1.

We may then similarly define the sequence{w̃i} by w̃i = p̃2
i −Eq̃2

i . The sequence{w̃i}
is a natural one to investigate, and of course if ˜wi = 1 we have a solution of Pell’s equation.

Conjecture 3.11. Suppose that[[
√

E]]N is periodic. Then{w̃i} is f -periodic for somef .

Of course by Theorem 3.6 this is true wheneverpi andqi are relatively prime, e.g., in
the case of Lemma 3.8. Here is a more involved case.

Lemma 3.12. For any j≥ 1, let D = 3 j − 1, a = 4 j − 1, E = D2 + a = 9 j2 − 2 j, and
N = 2a = 8 j −2. Then

[

[
√

E]
]

N =
[[

D,4D+1,8D+4,4D+2
]]

N.

Also,

p−1 = 1, q−1 = 0, w−1 = 1 = w̃−1

p0 = D, q0 = 1, w0 = −a = w̃0
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and for i≥ 1:

pi pi−1−Eqiqi−1 = −a(2D+1)(−N)i−1

wi = p2
i −Eq2

i =

{

−a(−N)i for i even

a2(−N)i−1 for i odd

gcd
(

pi ,qi
)

=

{

a
(

2i/2
)

for i even

a
(

2(i−1)/2
)

for i odd

w̃i = p̃2
i −Eq̃2

i = (−a)i−1.

In particular, w̃1 = 1 and{w̃i} is (−N/2)-periodic of period1 beginning with i= 1.

Proof. This follows from a careful, lengthy, but elementary inductive argument. ¤

Since we will be comparing cfN expansions with cf1 expansions, we must introduce
more complicated notation. For fixedE, and anyN, we letCi,N = p̃i,N/q̃i,N and w̃i,N =

p̃2
i,N −Eq̃2

i,N. But whenN is clear from the context, we use our simpler notation.
Given the classical theory of continued fractions, there isone easy case.

Lemma 3.13. Let
√

E = [a0,a1, . . . ,ak ]1 be periodic of period k.
Let N≤min(a2,a4,a6, . . . ,ak) if k is even, and let N≤min(a1,a2,a3, . . . ,ak) if k is odd.

Then

w̃km−1,N = (−1)km for every m,

and every solution of p2−Eq2 = ±1 in nonnegative integers arises in this way.

Proof. By Lemma 1.7, this condition onN gives
[

[
√

E]
]

N = IN
(

[
√

E]1
)

(where theN-inflation operatorIN was defined in Definition 2.1), and then in this case
Ci,N = Ci,1 for everyi. But this result forN = 1 is the basic relationship between classical
continued fractions and solutions to Pell’s equation. ¤

Here is another interesting general case in which we obtain all solutions from a cfN
expansion withN > 1, and moreover more quickly than in the classical case.

Lemma 3.14. Let E= D2 + 4 for D > 1 odd, and consider the best expansions given by
Lemma 2.6,

√
E =

[[

D,(D−1)/2,1,1,(D−1)/2,2D
]]

1 of period5

and
√

E =
[[

D,
(

D2−1
)

/2,D,2D2 +2,D,
(

D2−1
)

/2,2D
]]

D of period6.

Thenw̃−1,D =−1, w̃0,D =−4, w̃1,D = 2D2+1, and{w̃i,D} is (−1)-periodic of period3
beginning at i= −1. In particular

w̃3m−1,D = w5m−1,1 = (−1)m for every m,

and every solution of p2−Eq2 = ±1 in nonnegative integers arises in this way.
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Proof. It is easy to compute thatC3,D = C5,1 = ((D3 + 3D)/2)/((D2 + 1)/2), giving the
polynomial family of solutions

(

D3 +3D
2

)2

−
(

D2 +4
)

(

D2 +1
2

)2

= −1,

and thatC6,D = C10,1 = ((D6+6D4+9D2+2)/2)/((D5+4D3+3D)/2), giving the poly-
nomial family of solutions

(

D6 +6D4 +9D6 +2
2

)2

−
(

D2 +4
)

(

D5 +4D3 +3D
2

)2

= 1,

and then proceed by induction. ¤

Lemma 3.15. (a) For the expansion, for D≥ 3 odd,
√

D2 +2D =
[[

D,2D+2,8D3 +16D2 +6D,2D+3
]]

2D+1,

w̃−1 = 1, w̃0 = −2D, and{w̃i} is periodic of period2 from i = −1.
(b) For the expansion, for D≥ 3 odd,

√

D2 +2D =
[[

D,2D+3,4D2 +4D,2D+4
]]

2D+2,

w̃−1 = 1, w̃0 = −2D, w̃1 = 2D+4, and{w̃i} is periodic of period2 from i = 0.
(c) For the expansion

√

D2 +2D−1 =
[[

D,D+1,2D3 +2D2−2D,D+1,2D
]]

D,

w̃−1 = 1, w̃0 = −(2D−1), and{w̃i} is periodic of period2 from i = −1.
(d) For the expansion, for D≥ 4 even,

√

D2 +2D−3 =
[[

D,D+2,
(

D2−2D
)

/2,D+2,2D
]]

D,

w̃−1 = 1, w̃0 = −(2D−3), w̃1 = D+3, w̃2 = −(2D−3), and{w̃i} is periodic of period4
from i = −1.

Proof. We prove (a). The other parts are similar.
To begin with we havep−1 = 1, q−1 = 0, so p̃−1 = 1, q̃−1 = 0 andw̃−1 = w−1 = 1.

We also havep0 = D, q0 = 1, so p̃0 = D, q̃0 = 1 andw̃0 = w0 = −2D. We then compute
p1 = 2D2 +4D+1, q1 = 2D+2, sop̃1 = p1, q̃1 = q1, andw̃1 = w1 = 1.

We then compute inductively that, for allk≥ 0,

p2k+1 ≡ p2k ≡ (2D+1)k(−1)kD
(

mod(2D+1)2k+1),

q2k+1 ≡ q2k ≡ (2D+1)k(−1)k (

mod(2D+1)2k+1).

In particular this implies thatgi+2/gi is divisible by 2D+1, wheregi = gcd(pi ,qi), and
hence thatwi+2/wi is divisible by(2D + 1)2. But by Theorem 3.6wi+2/wi = (2D + 1)2.
Hencegi+2/gi = 2D+1 for eachi, and then the(2D+1)2-periodicity of{wi} of period 2
from i =−1 gives the 1-periodicity (i.e., periodicity) of{w̃i} of period 2 fromi =−1. ¤

We conclude by giving a number of illustrations of the sort ofintricate and varied be-
havior we see. This behavior is indicated by extensive computations, but has not been
proved.
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Conjectural Example3.16. (a) [[
√

335]]1 is periodic of period 4, and so we obtain all
nontrivial solutions ofp2−335q2 = 1 from (p,q) = (p4i−1,1,q4i−1,1) for i ≥ 1. [[

√
335]]6

is periodic of period 26 fromi = −1, and{w̃i,6} is periodic of period 26 fromi = −1. We
obtain solutions(p,q) of p2−335q2 = 1 from (p̃k,6, q̃k,6) for k ≡ 3,21, or 25(mod26).
Note these solutions are not evenly spaced among{w̃k,6}. Also, for everyj ≥ 0

(

p̃26j+3,6, q̃26j+3,6
)

=
(

p28j+3,1,q28j+3,1
)

(

p̃26j+21,6, q̃26j+21,6
)

=
(

p28j+23,1,q28j+3,1
)

(

p̃26j+25,6, q̃26j+25,6
)

=
(

p28j+27,1,q28j+27,1
)

so that the solutions we obtain from[[
√

335]]6 are not evenly spaced among the solutions
to Pell’s equation.

(b) [[
√

393]]2 is periodic of period 11 fromi = −1. {w̃i} is (−2)-periodic of period 11
from i = 32. Also,w̃15 = w̃31 = 1, yielding two solutions to Pell’s equation.

(c) [[
√

331]]3 is periodic of period 9 fromi = −1. {w̃i} is (−3)-periodic of period 9
from i = 23. Also,w̃23 = 1.

(d) [[
√

397]]2 is periodic of period 10 fromi = −1. {w̃i} is (−1)-periodic of period 15
from i = −1. Hence ˜wk = −1 for k≡ 14 (mod30) andw̃k = 1 for k≡ 29 (mod30).

(e) [[
√

1856]]6 is periodic of period 40 fromi = −1. {w̃i} is periodic of period 20 from
i = −1. Also,w̃k = 1 for k≡ 9 or 19(mod20).

(f) [[
√

118]]6 is periodic of period 3 fromi = −1. {w̃i} is (−3)8-periodic of period 24
from i = 2.

(g) [[
√

61]]4 is periodic of period 3 fromi =−1. {w̃i} is (−1)-periodic of period 9 from
i = −1.

(h) [[
√

407]]12 is periodic of period 24 fromi = −1. {w̃i} is periodic of period 24 from
i = −1. Also,w̃i = 1 for i ≡ 3 (mod4).

(i) [[
√

283]]2 is periodic of period 21 fromi = −1. {w̃i} is periodic of period 42 from
i = −1. Also,w̃i = 1 for i ≡ 13 (mod14).

(j) [[
√

464]]30 is periodic of period 10 fromi = −1. {w̃i} is 25-periodic of period 10
from i = 11. Also,w̃11 = 1.

(k) [[
√

401]]50 is periodic of period 12 fromi = 1. {w̃i} is periodic of period 12 from
i = 0. Also,w̃i = −1 for i ≡ 0,2, or 10(mod12).

(l) [[
√

1410]]2 is apparently not periodic, and ˜wi = 1 for i = 3,9,13,17,25.

Note that in all parts of this example (except part (l)) the periodicity of [[
√

E]]N is
proved, and the computations of ˜wk for individual values ofk are correct. It is the remaining
claims that are conjectural.
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