A GENERALIZATION OF CONTINUED FRACTIONS

MAXWELL ANSELM AND STEVEN H. WEINTRAUB

ABSTRACT. We investigate a generalization of classical continuedtfons, where the
“numerator” 1 is replaced by an arbitrary positive inteyerWe find both similarities to
and surprising differences from the classical case.

Let N be an arbitrary positive integer. In this paper we considetioued fractions of
the form

N
aop + )

N
a; +
ag+

with ag @ nonnegative integer ard, a, as, . .. positive integers. We denote such a contin-
ued fraction bylag,a;,a2,as,...]n and refer to it as a gf expansion. While this seems to
us to be a natural generalization of classical continuedtifras, i.e., thé\ = 1 case, it has
not been much studied previously, though see [1, 2]. We #tatmain result of [1], in our
language, in 2.23 below.

As we shall see, thd > 1 case has both a number of similarities to and some surgrisin
differences from thé&l = 1 case.

In Section 1 of this paper, we establish foundational resoitt cfy expansions. We
show that every positive real numbey has a cf; expansion, though fax > 1 it always
has infinitely many. FolN > 1, every rational number has both finite and infinite (i.e.,
nonterminating) ¢f expansions, and faX > 2 it has nonperiodic expansions. Rér> 1,
every quadratic irrationality has both periodic and noiguic expansions. Here we use
the standard language and notatigg= [ap,a1,ay, . . .]n is periodic of periok fromi =m
if &,k =a foralli > m, and in this case we write) = [ag, ..., 8n-1,3m, - - -, @mrk_1]N-

We also develop a natural notion of a besg{ ekpansion of the real numbgg, which
we denote byo = [[ag, a1, 82, .. .]]N-

In Section 2 we turn our attention to quadratic irrationadit We show that, foN > 1,
every quadratic irrationality has periodigycéxpansions, and that in many cases the best
cfy expansion of a quadratic irrationality is periodic, but, te grounds of extensive
computational results, we conjecture (Conjecture 2.3)tthia isnot always the case. We
focus our attention on quadratic irrationalitigdE, whereE is an integer that is not a
perfect square. We establish here some notation and laagagwe will use throughout:
We letD = | VE|, so thatE = D? + awith 1 < a < 2D. We also say thal is small(for E)
if N < 2D andN is large (for E) otherwise. Note thall = 1 is always small. We show that
if [[V/E]]n is periodic, the period begins wiih= 1 if N is small, as in the classical case,
and withi = 2 if N is large. Also in the classical case the continued fractigaasion
of vE has a very special form, and we show tfj&E]]n has the same form fdx small,
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2 MAXWELL ANSELM AND STEVEN H. WEINTRAUB

in cases when it is periodic, but that it sometimes but noaggahas a similar form fax
large, in cases when it is periodic.

The theory of classical continued fractions is intimatediated to Pell's equation, and
in Section 3 we investigate the analog in tie> 1 case. In the classical case there is a
recursion for(pi, g ), whereCi = p; /g is thei-th convergent of/E. Settingw, = p? —E¢?,
we have thafw;} is periodic and that all solutions to Pell's equatigh— Eq? = 1 are to
be found amond (pi,qi)}. Part of this goes through for arbitral. We have a natural
generalization of periodicity that we cdltperiodicity (i.e., periodicity up to a factor df).

We again have a recursion fop;, gj), whenG; = pi/q; is thei-th convergent of/E, and
we show thaffw; = p? — E¢?} is f-periodic whenevej{v/E|]y is periodic. But foN > 1,
pi and g need not be relatively prime. WritinG; = f5;/6i, a fraction in lowest terms,
we conside{W, = p? — EG?}. We conjecture (Conjecture 3.11) thigi } is f-periodic
whenever[vE]]y is periodic. We show this is true in a number of cases, whereltain
precise information, and we give computational results itndicate the possibilities that
appear.

In this paper, we give three sorts of results: completelyeganresults, results on
[[VE]]n that hold for general families d andN, and results of[v/E]|n for particular
values ofE andN. The behavior of[v/E]]y is far more varied and intricate fo¢ > 1 than
it is in the classical case &f = 1, and so we have made a point of giving many examples
to illustrate the wide sort of behavior that can occur.

1. GENERAL RESULTS

Lemma 1.1. Let kpy be a nonnegative real number and lgt b ., b, be positive real num-
bers.

(a) [b07 b17 ceey bn]N = [b07 b17 AR bk,]_, [bka bk+l7 sty bn]N]N-
(b) [bo,by,....bn]n = [bo, by, ..., bn—1+N/bnn.
(c) for any positive integer m,

[b07mb_|.7b23 m@? s 7kbﬂ] mN — [bOa bl7 L] bn] N’
where k= 1if nis even and k= m if n is odd.

Proof. (a) and (b) are immediate and (c) is an easy inductive cortipota O

Theorem 1.2. Define sequenced®,} and{q,} inductively by

p_2=0, p_1=1, Pn=bnPr-1+pPn2N n>0
g-2=1/N, d1=0, Oh=bpOh1+0 2N n>0.

Let G, = pn/0n for n > 0. Then for every r» 0O,
Cn = [bo,by,...,bn]
Proof. Well-known forN = 1 and easily generalized. O
Theorem 1.3. In the situation of Theorem 1.2,
PnOn-1—GnPn1 = (—1)"IN", forn>1.

Proof. This is a special case of [4, page 8, formula (30)] and easllgw/s from an induc-
tive argument. O
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Theorem 1.4. Let g be a nonnegative integer and let,ay, ... be positive integers. Then
lao,a1,@2,... | = r!mo [a0,a1,8,... a0
exists.
Proof. By Lemma 1.1(c), for each,
[a0,x1, .. .,an] = [bo.b1,....bn];

with bj = & for i even andy = & /N for i odd. LetC, = [bo7bl7...,bn]l. The sequence
{Co,C2,Cs, ...} is strictly increasing and the sequen&®,Cs,Cs, ...} is strictly decreas-
ing, and every term in the first sequence is less than eveny itethe second sequence.
Thus the first sequence converges to its least upper bouaidd the second sequence con-
verges to its lower bounid,, with Le < L,. By [4, page 237, Satz 8] we have that= L,,
i.e., that the sequend€y,Cy,Cy, ...} converges, if and only if the serigs,_qb; diverges.
But since eacla; is an integery > 1/N fori > 1, so this is certainly the case.

In our situation it is easy to show convergence{6§,C;,Cy,...} directly. We have
that |Lo — Le| = Lo — Le < Con+1 — Con for everyn, and from Theorem 1.3 we have that
Con+1—Con = 1/02n+102n. Then, since als@y = [ap, &y, . . - ,an] Ny an inductive argument
shows thatp, 1 > (a1/N)(1+1/N)" andge, > (1+ 1/N)", so 1/goni102n — 0 asn —

0, a

We now present an algorithm to producg efkpansions.

Theorem 1.5. Let xp € R, X9 > 0.
(1) Leti=0
(2) Choose ac N such that x—N < g <[]
(3) Letri=x —aq
(4) If ri =0, terminate. Otherwise letx; = % increment i, and go to step (2).

Then x = [ap,a1,az,...]n (Where there may be only finitely many) a

Proof. We will first verify that this algorithm can be carried out assdribed. The only
difficulty that could arise is if%; < 1 for somei > 0 because then we would be unable to
chooseg; as the algorithm describes. We know thgis a positive number and since we
allow ag to be 0, we always have a valid choice fe 0 by choosinggy = [xo|. Assume
that we have chosem satisfying the inequalities in step (2). Then we have

0<x—[x|<x—a=r<x—(x—N)=N.

If ri = 0, the algorithm terminates. Otherwise, we get & < N thereforex ;1 = % >1
so we can make a valid choice far. ;. Thus, by induction, we can always chooseagas
described in step (2) if the algorithm has not terminated yet

The proof that this converges xg is similar to the classical case and we omit it. [J

Definition 1.6. If, in step (2) of the algorithm, we choosg= |x; |, we call this thebest
choicefor g;. If we make the best choice for evesythen we call the resulting continued
fraction expansion thbest expansiofor X.

We denote a bestgfexpansion by[ap,as,ay, . ..]|n. We will often us€[xo]]n to denote
the best gf expansion of the real numbxgy.
There is an easy criterion for deciding when g ekpansion is a bestgfexpansion.
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Lemma 1.7. An infinitecfy expansionfag, as, .. .|n is a bestcfy expansion if and only if
a > N for alli > 1. A finitecfy expansior|ag,ay, . ..,an]n is a bestcfy expansion if and
onlyifn=0,orn>0anda>Nforl<i<n—landg>N+1

Proof. We prove the infinite case. Suppdsg, a;, ...]n is the best 6§ expansion of some
real numbexg. Then for each > 0,8 = | X | so thatj < 1, and hencej 1 = [N/ri] > N.
Conversely, ifai+1 > N, then, since the expansion does not terminate, 1 and sog; =
LXiJ . O

In the classical case, a positive irrational number hasgueéntontinued fraction expan-
sion, and that is a fortiori its best;céxpansion. A positive rational number other than 1
has two cf expansions, of the forifag, ay, . .., an]1 with a, > 2 and[ag, as, . ..,an — 1,11,
and 1 has the two gfexpansion$l]; and[0,1];. In any case, the besticéxpansion is the
first of these.

Theorem 1.8. For N > 2, every positive irrational numbergxhas infinitely manycfy
expansions, and infinitely many of these expansions areaniamjic.

Proof. Given some expansion 6, [ap,a1,ay, ...y, we modify it in the following way:
choose som& > 0. Perform the algorithm org and create another expansif@j, a;,
a,...]n by choosingal = & for all i < k. Then choosey = x| (a valid choice). If
a, # ax we can continue choosing tt& in any way and we will have a new expansion
for xo. Suppose thaay = a. If ax;1 # X1, chooses ,; = [X«.1] and we have a new
expansion foxg. Suppose thady 1 = [Xk+1]. Thenrg = xx — [X] < 1 SOXk+1 = % >N
SOXc;1— N < a1 —1< [%q1]. Sowe can choosd, ; = a1 — 1 and we have a new
expansion foxg.

Every irrational number has at least one expansion (thesiesinsion) and the previous
method allows us to acquire from that a new expansion forygverN. Moreover, we can
apply this method to ensure that an expansiorx§as nonperiodic. Fix some < N and
perform the algorithm orxg, making any valid choice for eacy. Wheneveri +sis a
square, find the largegt< i such that; = x;. If no suchj exists, choose anything far,
otherwise choose; # a;j or a1 # aj41 by the previously described method. This ensures
that no finite sequence of choices will be repeated infinitedyny times. Thus for every
we have a nonperiodic expansion @t |

Lemma 1.9. The bestfy expansion of a positive rational number is finite.

Proof. If Xg is a rational number, then is rational for alli. Letr; = % whered; andg
are nonnegative integers with gcile) = 1. If we choose the best expansion fgr then
ri < 1foralli. Thus

N Ng —dig

lit1=X1—a41= " — 1= 7(}' =y

I |
Now gcdNeg — diaj;1,d;) is not necessarily 1, but in any cade; dividesNg — diaj1.
Thusd;1 < dj, so{d;} is a strictly decreasing sequence of nonnegative integbesefore
dj =0 for somej. Thusrj = 0 and the algorithm terminates. O

For a positive integem, we letmy denote a sequence kfms, and letm, denote a
sequence of infinitely many's.

Lemma 1.10. (a) Let N> 2. Then for any k> 0,

N = [(N= D]y,
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and also

N=[(N-1),],
(b) Let N> 4 be even. Then
N = [N—Z,(N—Z)/Z,N]N.
(c) Let N> 3 be odd. Then
N = [N—Z,(N—l)/Z,ZN—l,N]N.

Proof. Direct computation. d
Theorem 1.11. Let X be a positive rational number.

(a) For any N> 2, xp has finitecfy expansion of arbitrarily long lengths, and at least
one infinitecfy expansion.

(b) For any N> 3, xg has infinitely many distinct periodify, expansions and infinitely
many distinct nonperiodicfy expansions.

(c) For N = 2, every infinitecfy expansion of xis of the formjag,as, ..., a,1,1,1,...]n
for some k and some integerg a ., ax, and there are only finitely many such expansions.

Proof. Letxg have best ¢f expansion

X = [[a0,...an] |-
This expansion is finite by Lemma 1.9, aagd> N+ 1 by Lemma 1.7.
(a) Using Lemma 1.1 and Lemma 1.10(a), we have

Xo = I:a07~~~7an:|N: [an-wan—l,an_laN]N

= [a0,...,an-1,(N—1),N], foranyk>0
and also

Xo=[80,...,an-1,(N—= 1), -
(b) In caseN is even, using Lemma 1.1 and Lemma 1.10(b), we have
X0 = [@0,...,8]|y = [@0,---,8n 1,80 — LN]
= [a0,...,an-1,N—2,(N-2)/2,N]

= [a0,..-,an-1,N—2,(N—2)/2,(N—1),,N]

for anyk > 0.
Also for anyk > 0 we have the periodic expansion of perlod 2 given by

Xo = [ao,...,an,l,N—2,(N—2)/2,(N—l)k,N—Z,(N—Z)/Z,(N—1)k,...]N

and for any nonperiodic sequenkgks, ... of nonnegative integers we have the nonperi-
odic expansion

Xo = [ao,...,an_l,N—2,(N—2)/2,(N—1)kO,N—2,(N—2)/2,(N—1)k1,...]N.
In caseN odd, a similar construction works, using Lemma 1.10(c).
(c) Write xo = a/b, a fraction in lowest terms. We prove this by complete initurct
onb.
Supposé = 1, so thatxg = ais an integer. By inspection of our algorithm, it is easy to
see that any finite gfexpansion oky must be

a=[a,=[a—1,1,2|,forsomek>0=[a—21],if a>2,
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and that the only infinite gfexpansion ok is
a=[a—11.),.

Now letxop = a/bwith b > 1. Letc = |a/b|. Then the only ¢f expansions ofg are of
the form

a/b= [Cv [Xl]z}z or a/b= [C_l’ [Xll]z]z

In the first casex; = 2b/(a—bc) anda— bc < b, so by induction we are done. In the
second case, & x; < 2 and so this expansion must be of the form

a/b=[c-11, %]y,

with X, = 2(a—b(c—1))/(2b— (a—b(c—1))) and D— (a—b(c— 1)) < b, so by induction
we are done. O

Remarkl.12 There are only countably many periodic sequergea;, ... and a fortiori
any positive numbexgy has only countably many periodicycExpansions (possibly none).
The diagonalization argument of the proof of Theorem 1.8&wshibiat any irrationakg has
uncountably many nonperiodicygcExpansions for anil > 2, and the construction in the
proof of Theorem 1.11 shows that any ratiorghas uncountably many nonperiodigcf
expansions for ani{l > 3.

2. QUADRATIC IRRATIONALITIES
In this section we investigategexpansions of quadratic irrationalities.

Definition 2.1. Consider an arbitrary gfexpansiorap,as, ...]n. Themrinflation of this
expansion is the gfy expansion

Im([e0,a1,82,83,...|y) = [@0,Mag, 82, mas, ... |

Note that, by Lemma 1.1(c), o = [ag, a1, ...]n, then alsoxg = Im([ao, &, .. .n) for
anym.

Theorem 2.2. Let % be a quadratic irrationality. Then for any Ng)as a periodiccfy
expansion.

Proof. From the classical theory we know theat has a periodic gf expansion of some
periodk. Then theN-inflation of this expansion is agfexpansion ok, periodic of period
k (or, in exceptional casek/2) if k is even and periodic of periockZin all cases) ik is
odd. O

We observe that there is no reason to expect in general teatfijhexpansion ofxg
obtained in this way will be the bestycExpansion okg. Indeed from Lemma 1.7 we see
that this will never be the caseli is sufficiently large.

We will exhibit a number of families of periodic best\cExpansions of quadratic ir-
rationalities below, and a number of specific examples oifopdér best cf; examples of
guadratic irrationalities, but we make the following cartjee.

Conjecture 2.3. ForN > 2, the best 6§ expansion of a quadratic irrationality is not always
periodic.

As evidence for this conjecture we have the computationttiebest cf expansion of
V/124 is not periodic within its first 6,000 terms, and that tlesttcf expansion of/8 is
not periodic within its first 6,000 terms. (Such examplestatib)
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We remind the reader of our conventioris:is a positive integer that is not a perfect
squarep = |VE|, anda= E — D?, so thatE = D?+awith 1 < a< 2D. Also, N is said to
besmall(for E) if N < 2D andlarge (for E) otherwise. (Note tha¥l = 1 is always small.)

Lemma 2.4. Suppose that a divid&2DN. Then
VE = [D,2DN/a,2D],,

periodic of period2 if a # N and periodl if a = N. This is the bestfy expansion of/E
if and only if a and N are both small for E.

Proof. Direct calculation shows that this is always @& expansion of/E, and it follows
immediately from Lemma 1.7 that it is the besk axpansion of/E exactly when the
given conditions are satisfied. d

Remark2.5. Observe that ifidivides D, then
[D,2DN/a, 2D ], = In([D,2D/a,2D],).
But if not, this cfy expansion does not come from a ekpansion.

The casess=1,a= 2, ora= 4 andD even are covered by Lemma 2.4. In case 4
andD odd we have the following.

Lemma 2.6. Let D> 1 be odd, and let E= D? + 4. Then
VE =[[D,(D—-1)/2,1,1,(D—1)/2,2D]],, periodic of period,

and
VE = [[D,(D?-1)/2,D,2D2+2,D,(D?—1)/2,2D]] o: Periodic of periodb.

Proof. Direct computation and Lemma 1.7. O

Lemma2.7. (a) ForD > 1,ifa=2D —1, then
VE=[D,1D-112D], of period4
and

VE=[[D,D+1,2D3+2D2-2D,D+1,2D]],, of period4.
(b) For D> 4 even, if a= 2D — 3, then
VE=[D,1,(D-2)/2,2,(D-2)/2,1,2D], of period6

and

VE = [[D,D+2,(D2-2D)/2,D+2,2D]],, of period4

for D # 6 and of period2 for D = 6.
(c) ForD >5o0dd, if a= 2D — 3, then

VE=[D,1,(D-3)/2,1,2D], of period4.
(d) For D> 3 odd, if a= 2D, then
VE = [[D,2D +2,8D3+16D? + 6D, 2D + 3]

D+1 of period2

and

VE = [[D,2D +3,4D?+4D,2D + 4| of period2.

2D+2
Proof. Direct computation and Lemma 1.7. |
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Remark2.8 (a) Lemma 2.7(c) foD = 3 is covered by Lemma 2.4, verifying12 =
[37276]1 = [376]3-

(b) ForD > 5 odd anda = 2D — 3, numerical evidence suggests that the besegpan-
sion of /E is not always (perhaps never) periodic.

(c) If a= 2D andN is small, i.e.,N < 2D, then+/E is covered by Lemma 2.4, so the
two cases given in Lemma 2.7(d) are the first two caseblflarge. There does not appear
to be a similar result fol = 2D + 3, and this may be a nonperiodic case.

Example2.9. Here is one more family. Lea = 3 andN = 2. If D is divisible by 3 then
VE is covered by Lemma 2.4. Otherwise we have

V7=1[2,3,20,3,4]], of period 4

V19=[[4,53,4,34,43,5,8]], of period 8

V28=[[5,6,2,6,10]], of period 4

V52=[[7,9,4,9,14]], of period 4

V67=[[8,10,2,3,2,3,6,2,2,2,64,2,2,2,6,3,2,3,2,10,16] |, of period 20
v103= [[10,134,3,9,3,4,13,20]], of period 8
V124=[[11,14,2,3,17,6,4,15,2,2,2,35,59,71,8,3,...]], apparently not periodic
V172= [[1317,4,2,7,7,...,7,7,2,4,17,26]], of period 38

VA487=[[22,29,5,7,16,...,16,7,5,29,44]],, of period 136

Example2.10 Just as whelN = 1, cases oN > 1 when[[vE]|y has odd period seem to
be rarer, but definitely occur. For example:

v22=[[4,2,2,8]], has period 3
V162=[[12,2,2,2,2,24]], has period 5
V241=[[15,3,2,4,4,2,320]], has period 7
V/393=[[19,2,4,2,2,9,9,2,2,4,2,38]], has period 11

Also, [[v/457]], has period 9}[v/139]3 has period 5[v/331)]3 has period 9][+/181]]4 has
period 5,[[v/1997]4 has period 35, anflv/524]]g has period 3.

In fact, we have the following families of gfexpansions with odd period.
Lemma2.11.(a) Forany j>1,letD=3j+1,a=6j, E=D?+a=9j>+12j+1. Then
VE=[[D,2(D~1)/32(D~1)/3,2D] ,, 5 Of periods3.

(b) Forany j>1,letD=3j+1,a=4j+2 E=D?+a=9j2+10j+3. Then
VE =[[D,2,2,2D]],, of periods3.
Proof. Careful but routine computation. O

Not only is the classical continued fraction expansior/& periodic, it has additional
structure. We investigate the analog of this structure[[fgE ]y in the situation where
this cfy expansion is periodic. In this situation we obtain a peréawlog to theN = 1
case whem is small forg, but we will see different behavior wheis large forE. The
arguments parallel those in the classical case, but welggéra in reasonable detail to show
what modifications have to be made and where the differeieést] [3, Chapter 11]).
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Definition 2.12. A quadratic irrationalityx is N-reducedif x > N and—1 < X < 0, where
X is the Galois conjugate of

Lemma2.13.(a) Letx be N-reduced. LetA |x] andy=N/(x—A). Thenyis N-reduced.
Also,|—N/y| = A.
(b) Let x be N-reduced. Thenyy—N/X is N-reduced.

Proof. Analogous to thé\ = 1 case, and routine. O

Theorem 2.14. Let % be N-reduced and suppose thib]|n is periodic of period k. Then
[[%o]In = [@0,@1, -, &_1)N, I-e., the period begins withya

Proof. We have thaky = [Xo]n = [0, X1]n = [@0,a1,X2]n = --- @and from Lemma 2.13 we
have that; is N-reduced for every > 0. Now by hypothesis we have that, for some

Xo = I:aO;alv'"aajflaaja"'angrkfl]N-

Setz= Xj = Xj+tk- Thenz= Xj = N/(xj,l—aj,l) and similarlyz: Xj+k = N/(Xj+k—1_
aj1k—1). Thus

Xji-1=aj-1+N/z,  Xjyk1=2ajk1+N/z
Xji-1=aj-1+N/Z  Xje1=ajk-1+N/2

and henc&;_; — Xj;x—1 = @j_1 — aj4x—1. But —1 < x < O for everyi, so—1 < Xj_1 —
Xj+k-1 < 1. Butaj_; andaj _; are both integers, so the forcgs 1 = Xjk—1 and hence
aj_1 = aj,x—1. Proceeding by downward induction we obtain, = aj x_2,...,8 = a
and so the period begins wity. O

Corollary 2.15. Let N be small. Suppose th#t/E||y is periodic of period k. Then
[[WVE]IN = [0,31,- -, a|n With a = 2ag. In particular, the period begins witha

Proof. Letx = D+ vE. Then[[X|]n = [2a0,a1,8,...]n. Butx is N-reduced sd[x]]y is
periodic beginning with &, by Theorem 2.14. O

Corollary 2.16. Let N be large. Suppose th&t/E]]y is periodic of period k. Let
h=|N/(D++VE)| > 1. Then[[VE]|n = [a0,a1,83,..-, 81N With &1 =a; +h. In
particular, the period begins with,a

Proof. Let x = VE. Then|[X]]n = [a0,a1,%]n With ag = D, X1 = N

a ﬁ’ & =
IN/(VE—D)] >N, andx, = N/(x, —ay). Certainlyx, > N.

Now X = N/(X; —a1) andx; = % <0, 50% < 0. Also, —1/% = (a; — X1 ) /N >
a1/N > 1, so—1 < %. Thusxy is N-reduced, and so, by Theorem 2.14]|n = [az,
as,...|n is periodic of periodk beginning withay.

We now apply the argument in the proof of Theorem 2.14 to eatecthatk; — X, 1 =
a —ax11. SinceXy. 1 is N-reduced,—1 < X 1 < 0. Butxg = N/(\@— D) sox; =
—N/(vVE+D) and hence-(h+1) < %; < —h, so we must have tha — ay,; = —h and
henceay, 1 = a; +h. ]

The converse of Theorem 2.14 is also true.

Theorem 2.17. Suppose thaf[xo]]n is periodic of period k beginning atoa [[Xo]]n =
[0,a1, -, a&_1)n- Then X is N-reduced.
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Proof. First observe thatg > ag = ax > N.

Now Xg = Xy = %, showing thakg is a root of the polynomiaf (x) = x?q +
(Gk-1N — pr)X — px-1N = 0. Now f(0) = —px_1N < 0 andf(—1) = ok — ok 1N+ px —
Pk—1N = (ax — N)Ok—1 + Ok—2 + (8 — N) px—1 + Pk—2 > 0 asax > N. Hence the other root
of this polynomial, which ixg, must lie between-1 and 0. O

Lemma 2.18. Let[[xo]|n = [@0,---,a&_1]n be periodic of period k beginning wittlyaand
let yo = —N/Xo. Then[[yo]|Nn = [&_1,---,@0]N-

Proof. Write xo = [Xo]n = [@0,X1]n = [80,81,%2]n = - - . Note that, by Theorem 2.1%; is
N-reduced, and hence by Lemma 2.13, eqdk N-reduced. Also, by Lemma 2.1%; is
N-reduced. Now

Xo=a+N/x1, xx=a+N/X, ..., Xe1=a-1+N/X%
or equivalently

—N/X1=a—%o,..., —N/RX=a 1—R1.
Setz = —N/X%,i=0,...,k. Then we have
20 =-1—X-1, AU =& 2—X-2,---, Z-1=38—Xo.
But0< —% < landz.1 = N/(z —ax_1_i)for eachi, so we see that
2 = [ZO}N = [akaZl]N = [ak—laak—2722]N == [akflw-waOaZk}N-

But xx = Xp S0z = 75 and hence

Zp = [[E—la"w%]]Nv
this being the best expansion as> N for eachi. But by definition,yo = 7. (Also, if
Yo = [YoIn = [&-1,Y1]N = [&-1,8-2,Y2|n = -+ -, we havey; = z for eachi.) O

Theorem 2.19. Let N be small and suppose tHay/E|]y is periodic of period k. Then
[[VE]]y = 0,81, &-1.280],, Witha =ac, i=1... k-1
Proof. As we have seen
[[VE+D]] = [2a0,a1,-.-,a1]
so
[VE-DJ] = [0.a5, & 1,2%],
and hence
N/(VE-D) = [ar,....ac1,280] .
Butif xo=N/(VE—-D),yo=—N/% = vVE+D, so
[VE+D]]y = 20,1, ar),
and comparing the two expressions farE + D]]y yields the theorem. O

Definition 2.20. A sequence of integers, . .., ¢ is palindromicif it reads the same from
right-to-left as it does from left-to-right, i.e. i = ¢, 1j fori =1,...,k. A sequence

is semipalindromioof type (j,Kk) if it is the concatenation of a palindromic sequence of
length j followed by a palindromic sequence of lendgh.e., if it is of the formc, ..., ¢;j,
d,...,d¢with cg,...,cj anddy,...,dg each palindromic.
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Remark2.21 By Theorem 2.19, we see that fiirsmalll, if [[v/E]]x is periodic of period
k with periodic part given by, ..., ax (which is always true foN = 1), then eithek = 1
oray,...,a is semipalindromic of typék — 1, 1).

Now suppose thall is large and[/E]] is periodic of periok with periodic part given
by ap,...,ax 1. In this case the situation is more complicated.

Example2.22 (a) The cf expansions in Lemma 2.7(d) are semipalindromic of iipé).
(b) We have the semipalindromic expansions

V8=[2,9,12441210|], oftype(3,1)
V53=[[7,399132132406]],,, oftype(2,1)
V65= [[8,2312149 702 184,341 180,341 184,702 149 2320] |

144 Oftype(9,1).
(c) We have the semipalindromic expansions
V7= [[2,15,20,17,65,17]],, of type(1,3)
V23= [[4,5515260,1856860]],, of type(1,3).
(d) We have the semipalindromic expansions
V13= [[3,196,231,247996231,214,7854214|],,, of type(3,3)
v129=[[11,108 39,176,204,176,39,109,52,98,42,98,52,109 |

4

3 Oftype(5,7).

(e) We have the nonsemipalindromic expansions
V3i= (52214265623,
V187= [[13,85,60,63,232 84,332 87| 58
V215= [[14,116,480,77,128 429112 118]] .

Note that, as long as at least onej@ndk is odd, a semipalindromic expansion of type
(j,k) differs from a semipalindromic expansion of typje+ k— 1,1) only by a phase shift.
Numerical evidence seems to indicate that most perig¢iE]]y expansions are semi-
palindromic of type(j,1) or (1,k), with semipalindromic expansions of tyge k) with
j > 1 andk > 1 being rare, and nonsemipalindromic expansions being sétle

Remark2.23 cfy expansions were previously studied in [1], though the corecef that
paper are considerably different than ours. We restate #ia results of [1] in our lan-
guage: For ang, there exists al such that the best gfexpansion of/E is periodic of
period 1, and furthermore the converge@Gt®f that expansion are a subset of the conver-
gents of the classical continued fraction expansioxy'Bt

3. PELL’S EQUATIONS AND RELATED EQUATIONS

Given any cf; expansion oky = /E, we have itsth convergenC = pi/gi wherep
andgq; are given by the recursion in Theorem 1.2. In the classicsé ¢his is intimately
related to the solutions of Pell's equatiph— E¢f = 1.

In this section we investigate the analog for arbitrisity

Lemma 3.1. Let [VE]n = [Xo]n = [@0,X1]n = [@0,81,%2]n = - -+ be anycfy expansion of
VE.
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u|+N'

Then x= VE for integers y, v; defined inductively by

Up = O7 vwo=1
Uir1 = N(aVv —u)
N2+2E _ (Ui+1)2
Vig1 = T\ﬁ

Proof. By definition, x; = g + —— X{ i.e., X1 = N - and simple algebra shows this is

1’

equal to
N(aVvi—u) +N*VE g +NHVE
NZE — (avi —uj)° Vier
Vi

Clearly ui,1 is an integer. We prove that,; is an integer by induction. Note that
u; = Nay, v1 = E —aj sovp andv, are integers. Thew1 € Z < Vi |[N?E — (Vv — Uj)? <
vi [IN?E —

Butv, = NjE—“ € 7Z by induction, 507 N2v,_1 € Z as required. O
Lemma 3.2. Let [ﬁ] = [Xo]n = [@0,X1]n = [a0,a1,%2]n = -+ be anycfy expansion of
VE. Then B—E? = (—1)" v 1.

Proof. By induction oni. Fori= -1, p?—E¢ = (1)2—-E(0)2=1=v,. Fori=0,

~Ef=2a-E(1?=—(E-a)’= 1.
Assume true for. Then
[\/E]N = [307 . 'aaivxi+1]N
SO
_ Xip1Pi NP1
Xi+10i +NG_1
But
_ Uipa + Ni+l\@
B Vit .
Substituting, we obtain
N*1EqG = Ui 1pi + pi_1vipaN *)
Ui1G +Gi-1vitN = N p;. (**)
Now p;(+x) — () gives
N1 (p? — Ef) = NViy1(pigi-1 — Pi-1Gi).-

But we know thatp. 01— pi_1G = (—1)'"IN' and substituting and cancelling we ob-
tain p? — E¢f = (—1)"*v,. 0

Theorem 3.3. Let N be small and suppose tHayE]] is periodic. In this cas€[v/E]]y is
periodic beginning with & Let[[v/E]]n have period K|[[VE]]n = [a0,a1,---,a]n- In this
case, @=2ap=2D. Theny=NK ie, F ; —E@ ; = (-N)¥ and y = agN¥ = DNX.

Conversely, if y= NX and y is divisible by N, then[[\/E]]y is periodic of period k
beginning with &, and g = 2ay.
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Proof. First supposé[v/E]]\ is periodic of period.

Thenxq = [ar, -~ a&]n SO [[ao, X1]|In = [[@0, a1, - .-, &, Xa]In = [[@0, @4, - - -, 8k, Xkra]]N
and hencey,1 = Xj.

But X = ak + N/Xi 1, Xk — & = N /Xy 1, andxo = ag +N/X1, X0 — ap = N/X1, SOX —
ay =Xo—ao, i.e., X = a—ao+ VE.

But x, = “k“\' “VE 50 we must have, = N¥ and alsau /v = ax — ag, an integer. But in
this case we know thai, = 2ag sou, = agNX.

Conversely suppose that = N and thatu, = mN for some integem. Thenx, =

uk+N KVE _ =m+ VE soa, = m+ag. But thenx 1 = Xkyak = (m+\@)'\i(m+ao) - \E,\iao -
N

%ooa0 = Xt SO[Xcra]ln = [[xa]]n, and hencey.1 = ao, a2 = 82, Bk = Ak, Bpk+1 =
ak+1:a1,...50

[VE]] = [a0.81, ]
and we have seen that in this case we must hpve 2ag. O
Remark3.4. Note in caséN = 1 the condition thaty be divisible byNK is automatic. But

in caseN > 1 itis not, and it is possible thag = N¥ but uy is not divisible byNK, so that
[[V/E]]n does not have peridk For example:

For[[v41],, vs=4> butthis expansion has period 6

For [[m]]z, ve=2%  but this expansion has period.12
For[[v209],, Vve=3° butthis expansion has period.30
For[[v590],, Ve=3° butthis expansion has period.28
For [[V777],,, Vs=12° butthis expansion has period.28
For[[v1692],, va=5" butthis expansion has period.24

We have the following generalization of periodicity.

Definition 3.5. A sequencdd } is f-periodicof periodk from i = mif d;,« = fd; for all
i >m.

We also adopt the notation that = p? — E¢? fori > —1. (Notew_; = 1.)

Theorem 3.6. Supposé[vE||y is periodic of period k. Thefiw;} is (—N)*-periodic of
period k. If N is small the period begins witk=i —1, while if N is large the period begins
with i = 1.

Proof. By Lemma 3.2, the theorem is equivalent to the claim the} is NX-periodic of
periodk beginning withi = 0 if N is small and = 2 if N is large.

SupposeN is small. By Theorem 3.3j = DNK andvi = NK, while up = D andvp = 1
Fori > 1, X1 = % by the periodicity of/[v/E]]n, which, by Corollary 2.15, begins with
a,i.e.,

U1 +NVE  u+NWVE
Viti Vi ’

soV.i = Ny and theru,; = NKu;.
If N is large, the same argument works, again using the peripditi[+/E]]n, which,
in this case, by Corollary 2.16, begins wih. O
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Corollary 3.7. If Cj = pi/q; is the ith convergent of afy expansion, themcd pi,q;)
divides N for alli > 0.

Proof. Immediate from Theorem 1.3. O

Lemma 3.8. Let N < 2D and suppose that N arD are relatively prime. Set E- D>+ N
and consider/E = [[D,2D]]n. Then for all i> 0, gcd(pi, i) = 1, and w = (—N)'*L.

Proof. As easy induction, beginning witly = 1, shows that = 1 (modN) for all i >0, so
gcd pi,gi) = 1 by Corollary 3.7. The second claim follows immediatelynfrdheorem 3.6.
([

Lemma 3.8 shows thgt, and g, may be relatively prime. Here are some examples
to show that the upper bound on delgi) in Corollary 3.7 is realized. Examples are
plentiful fori = 1, so we merely give examples fop 2.

Example3.9.
For[[V13],,  gcd(pz.qp) =2°.  For[[v3050],, gcd(ps o) =3"
For [[V57],.  gcd(ps,ds) = 23- For [[V499],,  gcd(pz.az) =42
For [[V603],, gcd(ps,qs) =2  For[[V1580],, gcd(ps,qs) = 4°
For [[v/3263],. gcd(ps,ds) = 25. For [[V185],, gcd(pz,qp) =52
For [[V41]],,  gcd(pz,02) =3%.  For [[V1878],, gcd(pz,dz) = 6°.
For [[V207],, gcd(ps,qs) =3°.  For[[v697],,  gcd(pz,ap) =72

Definition 3.10. Let i anddj be the positive integers defined ®y= p;/qi = i /G where
pi /Gi is in lowest terms, i.e., g¢@;, Gi) = 1.

We may then similarly define the sequerd@e} by W, = 7 — EG?. The sequencéw; }
is a natural one to investigate, and of coursg; i="1 we have a solution of Pell’s equation.

Conjecture 3.11. Suppose thafv/E]|y is periodic. Then{W;} is f-periodic for somef.

Of course by Theorem 3.6 this is true whenepeandq; are relatively prime, e.g., in
the case of Lemma 3.8. Here is a more involved case.

Lemma 3.12. Forany j> 1, letD=3j—1, a=4j—1, E=D?+a=9j2—2j, and
N=2a=8j—2. Then

[[VE]]y=[[D.,4D+1,8D+4,4D+2]],.
Also,

p-1=1, g-1=0, Wop=1=W_1
pO:Da CIO:L WOZ_aZWO
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and fori> 1:

pipi_1—Eqgg_1=—a(2D+1)(—N)"!

—a(=N)  forieven
w =p} —Eq = ( ) .

a?(—N)"~1 foriodd
a(2/?) for i even
a(20-Y/2) foriodd

ged(pi,q) {

W= p7 - Eq = (—a)' .
In particular, W, = 1 and{W;} is (—N/2)-periodic of periodl beginning with i= 1.
Proof. This follows from a careful, lengthy, but elementary induetargument. |

Since we will be comparing gf expansions with gf expansions, we must introduce
more complicated notation. For fixdg] and anyN, we letCiy = fi n/Gin @andwin =
p?y — EG%y. But whenN is clear from the context, we use our simpler notation.

“Given the classical theory of continued fractions, thernis easy case.

Lemma 3.13. LetVE = [ap,a5,-.-, a1 be periodic of period k.
Let N< min(ap,as,as,...,a) ifkis even, and let N min(ag, ap, as, . . ., a) if k is odd.
Then

Wim-1n = (=1)K™  for every m
and every solution of9- E? = +1 in nonnegative integers arises in this way.
Proof. By Lemma 1.7, this condition oN gives
[[VE]]y = In([VE])

(where theN-inflation operatody was defined in Definition 2.1), and then in this case
Cin = G 1 for everyi. But this result folN = 1 is the basic relationship between classical
continued fractions and solutions to Pell’'s equation. |

Here is another interesting general case in which we obtaisolutions from a cf
expansion witiN > 1, and moreover more quickly than in the classical case.

Lemma 3.14. Let E= D?+4 for D > 1 odd, and consider the best expansions given by
Lemma 2.6,

VE=[[D.(D-1)/2,1,1,(D-1)/2,2D]], of period5

and

VE =[[D,(D?-1)/2,D,2D?+2,D, (D?—1)/2,2D]], of periods.

ThenW_1p =—1,Wop = —4, Wip= 2D2+1, and{W; p } is (—1)-periodic of period3
beginning at i= —1. In particular

V~V3m—1,D =Wgm-11= (71)m for every m

and every solution of9- E? = +1 in nonnegative integers arises in this way.
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Proof. It is easy to compute th&lsp = Cs1 = ((D*+3D)/2)/((D?+1)/2), giving the
polynomial family of solutions

3 2 2 2
(D ;3[)) —(D2+4)(D2+1) Y

and thatCs p = Cy01 = ((D®+6D*+9D? +2)/2) /((D°+4D3+3D)/2), giving the poly-
nomial family of solutions

6 4 6 2 5 3 2
D®+46D"+4-9D° 42 —(D2+4) D°+4D°+3D _1,
2 2
and then proceed by induction. O

Lemma 3.15. (a) For the expansion, for D- 3 odd,

v/D?+2D = [[D,2D+2,8D3+ 16D2 1 6D, 2D+ 3] | ;.

W_1 =1, Wp = —2D, and{W; } is periodic of period® from i= —1.
(b) For the expansion, for D> 3 odd,

V/D242D = [[D,2D+3,4D?+4D,2D +4]] ;. .

W_1 =1, Wo = —2D, W; = 2D + 4, and{W, } is periodic of period from i = 0.
(c) For the expansion

VD?+2D—1= [[D,D+1,2D%+2D?—2D,D+1,2D]],,

W_1 =1, W = —(2D —1), and{W; } is periodic of period from i= —1.
(d) For the expansion, for D 4 even,

vD2+2D 3= [[D,D+2,(D2-2D)/2,D+2,2D]],,

W_1=1Wo=—(2D—3),W; =D+ 3,Wp = —(2D — 3), and{W; } is periodic of period4
fromi= -1

Proof. We prove (a). The other parts are similar.

To begin with we havgp_1 =1,9.1=0,s0p_1=1, 1 =0andw_; =w_1 = 1.
We also havepg = D, gp = 1, sopp = D, o = 1 andwp = wp = —2D. We then compute
pr=2D%+4D+1,0; = 2D+ 2, Sop1 = p1, G1 = Gz, andwi = wy = 1.

We then compute inductively that, for &> 0,

Pai1= Pk = (2D+1)(-1)D  (mod(2D + 1)),
Oaki1= Qo= (2D+1)"(—1)*  (mod(2D +1)**1).
In particular this implies thagi;»/gj is divisible by D + 1, whereg; = gcd(p;i, g;), and
hence thawi,»/w; is divisible by (2D + 1)2. But by Theorem 3.6vi;2/w; = (2D +1)2.

Henceg; 2/g = 2D + 1 for eachi, and then thé2D + 1)2-periodicity of {w;} of period 2
fromi = —1 gives the 1-periodicity (i.e., periodicity) ¢f; } of period 2 fromi = —1. O

We conclude by giving a number of illustrations of the sortntficate and varied be-
havior we see. This behavior is indicated by extensive cdatjpms, but has not been
proved.
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Conjectural Example8.16 (a) [[v/335]; is periodic of period 4, and so we obtain all
nontrivial solutions ofp? — 335¢2 = 1 from (p,q) = (Psi—1.1,d4i-1.1) fori > 1. [v/335]e

is periodic of period 26 fromm= —1, and{W; ¢} is periodic of period 26 from= —1. We
obtain solutiong(p,q) of p? — 3352 = 1 from (e, Gke) for k= 3,21, or 25(mod 26.
Note these solutions are not evenly spaced an{ong}. Also, for everyj >0

(626j+3‘6aq26j+3,6) = (p28j+3,1aQZ8j+3,1)
(f)26j+2],67q26j+2l6) = (p28j+23,17QZ8j+3,1)
(ﬁ26j+25,67q26j+25,6) = (p28j+27.17QZ8j+27.1)

so that the solutions we obtain frojin/335]s are not evenly spaced among the solutions
to Pell's equation.

(b) [[vV/393]2 is periodic of period 11 fromh= —1. {W} is (—2)-periodic of period 11
fromi = 32. Also,wi5 = W31 = 1, yielding two solutions to Pell's equation.

(c) [[v/331]]3 is periodic of period 9 from = —1. {W;} is (—3)-periodic of period 9
fromi = 23. Also,wo3 = 1.

(d) [[v/397)), is periodic of period 10 from = —1. {W} is (—1)-periodic of period 15
fromi = —1. Hencewi = —1 fork = 14 (mod 30 andwi = 1 for k = 29 (mod 30.

(e) [[v'1858] is periodic of period 40 fromm= —1. {W; } is periodic of period 20 from
i =—1. Also,Wi =1 fork =9 or 19(mod 20.

(f) [[v/118]6 is periodic of period 3 from = —1. {W;} is (—3)8-periodic of period 24
fromi=2.

(9) [[V61)]4 is periodic of period 3 from= —1. {W} is (—1)-periodic of period 9 from
=-1

(h) [[V/407]12 is periodic of period 24 from= —1. {W} is periodic of period 24 from

i =—1. Also,Wii = 1 fori = 3 (mod4).

() [[V283]2 is periodic of period 21 fromi= —1. {W} is periodic of period 42 from
i =—1. Also,wii = 1 fori = 13 (mod 14.

(i) [[V/464)]30 is periodic of period 10 fromi = —1. {W;} is 25-periodic of period 10
fromi=11. Also,wy; = 1.

(K) [[v/401]s0 is periodic of period 12 from = 1. {W;} is periodic of period 12 from
i =0. Also,w; = —1 fori =0,2, or 10(mod12.

() [[v'1410Q]; is apparently not periodic, ad = 1 fori = 3,9,13,17, 25.

Note that in all parts of this example (except part (I)) theiguiicity of [[vE]]y is

proved, and the computationswaf for individual values ok are correct. Itis the remaining
claims that are conjectural.
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