A GENERALIZATION OF CONTINUED FRACTIONS

MAXWELL ANSELM AND STEVEN H. WEINTRAUB

Abstract

We investigate a generalization of classical continued fractions, where the "numerator" 1 is replaced by an arbitrary positive integer N. We find both similarities to and surprising differences from the classical case.

Let N be an arbitrary positive integer. In this paper we consider continued fractions of the form

$$
a_{0}+\frac{N}{a_{1}+\frac{N}{a_{2}+\frac{N}{a_{3}+\cdots}}},
$$

with a_{0} a nonnegative integer and $a_{1}, a_{2}, a_{3}, \ldots$ positive integers. We denote such a continued fraction by $\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]_{N}$ and refer to it as a cf_{N} expansion. While this seems to us to be a natural generalization of classical continued fractions, i.e., the $N=1$ case, it has not been much studied previously, though see [1, 2]. We state the main result of [1], in our language, in 2.23 below.

As we shall see, the $N>1$ case has both a number of similarities to and some surprising differences from the $N=1$ case.

In Section 1 of this paper, we establish foundational results on cf_{N} expansions. We show that every positive real number x_{0} has a cf_{N} expansion, though for $N>1$ it always has infinitely many. For $N>1$, every rational number has both finite and infinite (i.e., nonterminating) cf_{N} expansions, and for $N>2$ it has nonperiodic expansions. For $N>1$, every quadratic irrationality has both periodic and nonperiodic expansions. Here we use the standard language and notation: $x_{0}=\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{N}$ is periodic of period k from $i=m$ if $a_{i+k}=a_{i}$ for all $i \geq m$, and in this case we write $x_{0}=\left[a_{0}, \ldots, a_{m-1}, \overline{a_{m}, \ldots, a_{m+k-1}}\right]_{N}$.

We also develop a natural notion of a best cf_{N} expansion of the real number x_{0}, which we denote by $x_{0}=\left[\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right]_{N}$.

In Section 2 we turn our attention to quadratic irrationalities. We show that, for $N>1$, every quadratic irrationality has periodic cf_{N} expansions, and that in many cases the best cf_{N} expansion of a quadratic irrationality is periodic, but, on the grounds of extensive computational results, we conjecture (Conjecture 2.3) that this is not always the case. We focus our attention on quadratic irrationalities \sqrt{E}, where E is an integer that is not a perfect square. We establish here some notation and language that we will use throughout: We let $D=\lfloor\sqrt{E}\rfloor$, so that $E=D^{2}+a$ with $1 \leq a \leq 2 D$. We also say that N is small (for E) if $N \leq 2 D$ and N is large (for E) otherwise. Note that $N=1$ is always small. We show that if $[[\sqrt{E}]]_{N}$ is periodic, the period begins with $i=1$ if N is small, as in the classical case, and with $i=2$ if N is large. Also in the classical case the continued fraction expansion of \sqrt{E} has a very special form, and we show that $[[\sqrt{E}]]_{N}$ has the same form for N small,

[^0]in cases when it is periodic, but that it sometimes but not always has a similar form for N large, in cases when it is periodic.

The theory of classical continued fractions is intimately related to Pell's equation, and in Section 3 we investigate the analog in the $N>1$ case. In the classical case there is a recursion for $\left(p_{i}, q_{i}\right)$, where $C_{i}=p_{i} / q_{i}$ is the i-th convergent of \sqrt{E}. Setting $w_{i}=p_{i}^{2}-E q_{i}^{2}$, we have that $\left\{w_{i}\right\}$ is periodic and that all solutions to Pell's equation $p^{2}-E q^{2}=1$ are to be found among $\left\{\left(p_{i}, q_{i}\right)\right\}$. Part of this goes through for arbitrary N. We have a natural generalization of periodicity that we call f-periodicity (i.e., periodicity up to a factor of f). We again have a recursion for $\left(p_{i}, q_{i}\right)$, when $C_{i}=p_{i} / q_{i}$ is the i-th convergent of \sqrt{E}, and we show that $\left\{w_{i}=p_{i}^{2}-E q_{i}^{2}\right\}$ is f-periodic whenever $[[\sqrt{E}]]_{N}$ is periodic. But for $N>1$, p_{i} and q_{i} need not be relatively prime. Writing $C_{i}=\tilde{p}_{i} / \tilde{q}_{i}$, a fraction in lowest terms, we consider $\left\{\tilde{w}_{i}=\tilde{p}_{i}^{2}-E \tilde{q}_{i}^{2}\right\}$. We conjecture (Conjecture 3.11) that $\left\{\tilde{w}_{i}\right\}$ is f-periodic whenever $[[\sqrt{E}]]_{N}$ is periodic. We show this is true in a number of cases, where we obtain precise information, and we give computational results that indicate the possibilities that appear.

In this paper, we give three sorts of results: completely general results, results on $[[\sqrt{E}]]_{N}$ that hold for general families of E and N, and results on $[[\sqrt{E}]]_{N}$ for particular values of E and N. The behavior of $[[\sqrt{E}]]_{N}$ is far more varied and intricate for $N>1$ than it is in the classical case of $N=1$, and so we have made a point of giving many examples to illustrate the wide sort of behavior that can occur.

1. GENERAL RESULTS

Lemma 1.1. Let b_{0} be a nonnegative real number and let b_{1}, \ldots, b_{n} be positive real numbers.
(a) $\left[b_{0}, b_{1}, \ldots, b_{n}\right]_{N}=\left[b_{0}, b_{1}, \ldots, b_{k-1},\left[b_{k}, b_{k+1}, \ldots, b_{n}\right]_{N}\right]_{N}$.
(b) $\left[b_{0}, b_{1}, \ldots, b_{n}\right]_{N}=\left[b_{0}, b_{1}, \ldots, b_{n-1}+N / b_{n}\right]_{N}$.
(c) for any positive integer m,

$$
\left[b_{0}, m b_{1}, b_{2}, m b_{3}, \ldots, k b_{n}\right]_{m N}=\left[b_{0}, b_{1}, \ldots, b_{n}\right]_{N}
$$

where $k=1$ if n is even and $k=m$ if n is odd.
Proof. (a) and (b) are immediate and (c) is an easy inductive computation.
Theorem 1.2. Define sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ inductively by

$$
\begin{array}{rlll}
p_{-2}=0, & p_{-1}=1, & p_{n}=b_{n} p_{n-1}+p_{n-2} N & n \geq 0 \\
q_{-2}=1 / N, & q_{-1}=0, & q_{n}=b_{n} q_{n-1}+q_{n-2} N & n \geq 0
\end{array}
$$

Let $C_{n}=p_{n} / q_{n}$ for $n \geq 0$. Then for every $n \geq 0$,

$$
C_{n}=\left[b_{0}, b_{1}, \ldots, b_{n}\right]_{N}
$$

Proof. Well-known for $N=1$ and easily generalized.
Theorem 1.3. In the situation of Theorem 1.2,

$$
p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n-1} N^{n}, \quad \text { for } n \geq 1 \text {. }
$$

Proof. This is a special case of [4, page 8, formula (30)] and easily follows from an inductive argument.

Theorem 1.4. Let a_{0} be a nonnegative integer and let a_{1}, a_{2}, \ldots be positive integers. Then

$$
\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{N}=\lim _{n \rightarrow \infty}\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]_{N}
$$

exists.
Proof. By Lemma 1.1(c), for each n,

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right]_{N}=\left[b_{0}, b_{1}, \ldots, b_{n}\right]_{1}
$$

with $b_{i}=a_{i}$ for i even and $b_{i}=a_{i} / N$ for i odd. Let $C_{n}=\left[b_{0}, b_{1}, \ldots, b_{n}\right]_{1}$. The sequence $\left\{C_{0}, C_{2}, C_{4}, \ldots\right\}$ is strictly increasing and the sequence $\left\{C_{1}, C_{3}, C_{5}, \ldots\right\}$ is strictly decreasing, and every term in the first sequence is less than every term in the second sequence. Thus the first sequence converges to its least upper bound L_{e} and the second sequence converges to its lower bound L_{o}, with $L_{e} \leq L_{o}$. By [4, page 237, Satz 8] we have that $L_{e}=L_{o}$, i.e., that the sequence $\left\{C_{0}, C_{1}, C_{2}, \ldots\right\}$ converges, if and only if the series $\sum_{n=0}^{\infty} b_{i}$ diverges. But since each a_{i} is an integer, $b_{i} \geq 1 / N$ for $i \geq 1$, so this is certainly the case.

In our situation it is easy to show convergence of $\left\{C_{0}, C_{1}, C_{2}, \ldots\right\}$ directly. We have that $\left|L_{o}-L_{e}\right|=L_{o}-L_{e}<C_{2 n+1}-C_{2 n}$ for every n, and from Theorem 1.3 we have that $C_{2 n+1}-C_{2 n}=1 / q_{2 n+1} q_{2 n}$. Then, since also $C_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]_{N}$, an inductive argument shows that $q_{2 n+1} \geq\left(a_{1} / N\right)(1+1 / N)^{n}$ and $q_{2 n} \geq(1+1 / N)^{n}$, so $1 / q_{2 n+1} q_{2 n} \rightarrow 0$ as $n \rightarrow$ ∞.

We now present an algorithm to produce cf_{N} expansions.
Theorem 1.5. Let $x_{0} \in \mathbb{R}, x_{0}>0$.
(1) Let $i=0$
(2) Choose $a_{i} \in \mathbb{N}$ such that $x_{i}-N \leq a_{i} \leq\left\lfloor x_{i}\right\rfloor$
(3) Let $r_{i}=x_{i}-a_{i}$
(4) If $r_{i}=0$, terminate. Otherwise let $x_{i+1}=\frac{N}{r_{i}}$, increment i, and go to step (2).

Then $x_{0}=\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{N}$ (where there may be only finitely many $\left.a_{i}\right)$.
Proof. We will first verify that this algorithm can be carried out as described. The only difficulty that could arise is if $x_{i}<1$ for some $i>0$ because then we would be unable to choose a_{i} as the algorithm describes. We know that x_{0} is a positive number and since we allow a_{0} to be 0 , we always have a valid choice for $i=0$ by choosing $a_{0}=\left\lfloor x_{0}\right\rfloor$. Assume that we have chosen a_{i} satisfying the inequalities in step (2). Then we have

$$
0 \leq x_{i}-\left\lfloor x_{i}\right\rfloor \leq x_{i}-a_{i}=r_{i}<x_{i}-\left(x_{i}-N\right)=N
$$

If $r_{i}=0$, the algorithm terminates. Otherwise, we get $0<r_{i}<N$ therefore $x_{i+1}=\frac{N}{r_{i}}>1$ so we can make a valid choice for a_{i+1}. Thus, by induction, we can always choose an a_{i} as described in step (2) if the algorithm has not terminated yet.

The proof that this converges to x_{0} is similar to the classical case and we omit it.
Definition 1.6. If, in step (2) of the algorithm, we choose $a_{i}=\left\lfloor x_{i}\right\rfloor$, we call this the best choice for a_{i}. If we make the best choice for every a_{i} then we call the resulting continued fraction expansion the best expansion for x_{0}.

We denote a best cf_{N} expansion by $\left[\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right]_{N}$. We will often use $\left[\left[x_{0}\right]\right]_{N}$ to denote the best cf_{N} expansion of the real number x_{0}.

There is an easy criterion for deciding when a cf ${ }_{N}$ expansion is a best cf_{N} expansion.

Lemma 1.7. An infinite cf_{N} expansion $\left[a_{0}, a_{1}, \ldots\right]_{N}$ is a best cf_{N} expansion if and only if $a_{i} \geq N$ for all $i \geq 1$. A finite cf_{N} expansion $\left[a_{0}, a_{1}, \ldots, a_{n}\right]_{N}$ is a best cf_{N} expansion if and only if $n=0$, or $n>0$ and $a_{i} \geq N$ for $1 \leq i \leq n-1$ and $a_{n} \geq N+1$.
Proof. We prove the infinite case. Suppose $\left[a_{0}, a_{1}, \ldots\right]_{N}$ is the best cf_{N} expansion of some real number x_{0}. Then for each $i \geq 0, a_{i}=\left\lfloor x_{i}\right\rfloor$ so that $r_{i}<1$, and hence $a_{i+1}=\left\lfloor N / r_{i}\right\rfloor \geq N$. Conversely, if $a_{i+1} \geq N$, then, since the expansion does not terminate, $r_{i}<1$ and so $a_{i}=$ $\left\lfloor x_{i}\right\rfloor$.

In the classical case, a positive irrational number has a unique continued fraction expansion, and that is a fortiori its best cf_{1} expansion. A positive rational number other than 1 has two cf_{1} expansions, of the form $\left[a_{0}, a_{1}, \ldots, a_{n}\right]_{1}$ with $a_{n} \geq 2$ and $\left[a_{0}, a_{1}, \ldots, a_{n}-1,1\right]_{1}$, and 1 has the two cf_{1} expansions $[1]_{1}$ and $[0,1]_{1}$. In any case, the best cf_{1} expansion is the first of these.

Theorem 1.8. For $N \geq 2$, every positive irrational number x_{0} has infinitely many cf_{N} expansions, and infinitely many of these expansions are nonperiodic.

Proof. Given some expansion of $x_{0},\left[a_{0}, a_{1}, a_{2}, \ldots\right]_{N}$, we modify it in the following way: choose some $k>0$. Perform the algorithm on x_{0} and create another expansion $\left[a_{0}^{\prime}, a_{1}^{\prime}\right.$, $\left.a_{2}^{\prime}, \ldots\right]_{N}$ by choosing $a_{i}^{\prime}=a_{i}$ for all $i<k$. Then choose $a_{k}^{\prime}=\left\lfloor x_{k}\right\rfloor$ (a valid choice). If $a_{k}^{\prime} \neq a_{k}$ we can continue choosing the a_{i}^{\prime} in any way and we will have a new expansion for x_{0}. Suppose that $a_{k}=a_{k}^{\prime}$. If $a_{k+1} \neq\left\lfloor x_{k+1}\right\rfloor$, choose $a_{k+1}^{\prime}=\left\lfloor x_{k+1}\right\rfloor$ and we have a new expansion for x_{0}. Suppose that $a_{k+1}=\left\lfloor x_{k+1}\right\rfloor$. Then $r_{k}=x_{k}-\left\lfloor x_{k}\right\rfloor<1$ so $x_{k+1}=\frac{N}{r_{k}}>N$ so $x_{k+1}-N \leq a_{k+1}-1 \leq\left\lfloor x_{k+1}\right\rfloor$. So we can choose $a_{k+1}^{\prime}=a_{k+1}-1$ and we have a new expansion for x_{0}.

Every irrational number has at least one expansion (the best expansion) and the previous method allows us to acquire from that a new expansion for every $k \in \mathbb{N}$. Moreover, we can apply this method to ensure that an expansion for x_{0} is nonperiodic. Fix some $s \in \mathbb{N}$ and perform the algorithm on x_{0}, making any valid choice for each a_{i}. Whenever $i+s$ is a square, find the largest $j<i$ such that $x_{i}=x_{j}$. If no such j exists, choose anything for a_{i}, otherwise choose $a_{i} \neq a_{j}$ or $a_{i+1} \neq a_{j+1}$ by the previously described method. This ensures that no finite sequence of choices will be repeated infinitely many times. Thus for every s we have a nonperiodic expansion for x_{0}.

Lemma 1.9. The best cf_{N} expansion of a positive rational number is finite.
Proof. If x_{0} is a rational number, then r_{i} is rational for all i. Let $r_{i}=\frac{d_{i}}{e_{i}}$ where d_{i} and e_{i} are nonnegative integers with $\operatorname{gcd}\left(d_{i}, e_{i}\right)=1$. If we choose the best expansion for x_{0}, then $r_{i}<1$ for all i. Thus

$$
r_{i+1}=x_{i+1}-a_{i+1}=\frac{N}{r_{i}}-a_{i+1}=\frac{N e_{i}-d_{i} a_{i+1}}{d_{i}}<1
$$

Now $\operatorname{gcd}\left(N e_{i}-d_{i} a_{i+1}, d_{i}\right)$ is not necessarily 1 , but in any case d_{i+1} divides $N e_{i}-d_{i} a_{i+1}$. Thus $d_{i+1}<d_{i}$, so $\left\{d_{i}\right\}$ is a strictly decreasing sequence of nonnegative integers. Therefore $d_{j}=0$ for some j. Thus $r_{j}=0$ and the algorithm terminates.

For a positive integer m, we let \bar{m}_{k} denote a sequence of $k m$'s, and let \bar{m}_{∞} denote a sequence of infinitely many m 's.

Lemma 1.10. (a) Let $N \geq 2$. Then for any $k \geq 0$,

$$
N=\left[\overline{(N-1)}_{k}, N\right]_{N}
$$

and also

$$
N=\left[\overline{(N-1)}_{\infty}\right]_{N} .
$$

(b) Let $N \geq 4$ be even. Then

$$
N=[N-2,(N-2) / 2, N]_{N}
$$

(c) Let $N \geq 3$ be odd. Then

$$
N=[N-2,(N-1) / 2,2 N-1, N]_{N}
$$

Proof. Direct computation.
Theorem 1.11. Let x_{0} be a positive rational number.
(a) For any $N \geq 2$, x_{0} has finite cf_{N} expansion of arbitrarily long lengths, and at least one infinite cf_{N} expansion.
(b) For any $N \geq 3$, x_{0} has infinitely many distinct periodic cf_{N} expansions and infinitely many distinct nonperiodic cf_{N} expansions.
(c) For $N=2$, every infinite cf_{N} expansion of x_{0} is of the form $\left[a_{0}, a_{1}, \ldots, a_{k}, 1,1,1, \ldots\right]_{N}$ for some k and some integers a_{0}, \ldots, a_{k}, and there are only finitely many such expansions.

Proof. Let x_{0} have best cf_{N} expansion

$$
x_{0}=\left[\left[a_{0}, \ldots, a_{n}\right]\right]_{N}
$$

This expansion is finite by Lemma 1.9 , and $a_{n} \geq N+1$ by Lemma 1.7.
(a) Using Lemma 1.1 and Lemma 1.10(a), we have

$$
\begin{aligned}
x_{0} & =\left[a_{0}, \ldots, a_{n}\right]_{N}=\left[a_{0}, \ldots, a_{n-1}, a_{n}-1, N\right]_{N} \\
& =\left[a_{0}, \ldots, a_{n-1}, \overline{(N-1)}_{k}, N\right]_{N} \quad \text { for any } k \geq 0
\end{aligned}
$$

and also

$$
x_{0}=\left[a_{0}, \ldots, a_{n-1}, \overline{(N-1)}_{\infty}\right]_{N}
$$

(b) In case N is even, using Lemma 1.1 and Lemma 1.10(b), we have

$$
\begin{aligned}
x_{0} & =\left[a_{0}, \ldots, a_{n}\right]_{N}=\left[a_{0}, \ldots, a_{n-1}, a_{n}-1, N\right]_{N} \\
& =\left[a_{0}, \ldots, a_{n-1}, N-2,(N-2) / 2, N\right]_{N} \\
& =\left[a_{0}, \ldots, a_{n-1}, N-2,(N-2) / 2, \overline{(N-1)_{k}}, N\right]_{N}
\end{aligned}
$$

for any $k \geq 0$.
Also for any $k \geq 0$ we have the periodic expansion of period $k+2$ given by

$$
x_{0}=\left[a_{0}, \ldots, a_{n-1}, N-2,(N-2) / 2, \overline{(N-1)}_{k}, N-2,(N-2) / 2, \overline{(N-1)}_{k}, \ldots\right]_{N}
$$

and for any nonperiodic sequence k_{0}, k_{1}, \ldots of nonnegative integers we have the nonperiodic expansion

$$
x_{0}=\left[a_{0}, \ldots, a_{n-1}, N-2,(N-2) / 2, \overline{(N-1)}_{k_{0}}, N-2,(N-2) / 2, \overline{(N-1)}_{k_{1}}, \ldots\right]_{N} .
$$

In case N odd, a similar construction works, using Lemma 1.10(c).
(c) Write $x_{0}=a / b$, a fraction in lowest terms. We prove this by complete induction on b.

Suppose $b=1$, so that $x_{0}=a$ is an integer. By inspection of our algorithm, it is easy to see that any finite cf_{2} expansion of x_{0} must be

$$
a=[a]_{2}=\left[a-1, \overline{1}_{k}, 2\right]_{2} \text { for some } k \geq 0=[a-2,1]_{2} \text { if } a \geq 2,
$$

and that the only infinite cf_{2} expansion of a is

$$
a=\left[a-1, \overline{1}_{\infty}\right]_{2}
$$

Now let $x_{0}=a / b$ with $b>1$. Let $c=\lfloor a / b\rfloor$. Then the only cf_{2} expansions of x_{0} are of the form

$$
a / b=\left[c,\left[x_{1}\right]_{2}\right]_{2} \quad \text { or } \quad a / b=\left[c-1,\left[x_{1}^{\prime}\right]_{2}\right]_{2} .
$$

In the first case, $x_{1}=2 b /(a-b c)$ and $a-b c<b$, so by induction we are done. In the second case, $1<x_{1}^{\prime}<2$ and so this expansion must be of the form

$$
a / b=\left[c-1,1,\left[x_{2}^{\prime}\right]_{2}\right]_{2}
$$

with $x_{2}^{\prime}=2(a-b(c-1)) /(2 b-(a-b(c-1)))$ and $2 b-(a-b(c-1))<b$, so by induction we are done.

Remark 1.12. There are only countably many periodic sequences a_{0}, a_{1}, \ldots and a fortiori any positive number x_{0} has only countably many periodic cf_{N} expansions (possibly none). The diagonalization argument of the proof of Theorem 1.8 shows that any irrational x_{0} has uncountably many nonperiodic cf_{N} expansions for any $N \geq 2$, and the construction in the proof of Theorem 1.11 shows that any rational x_{0} has uncountably many nonperiodic cf_{N} expansions for any $N \geq 3$.

2. Quadratic irrationalities

In this section we investigate cf_{N} expansions of quadratic irrationalities.
Definition 2.1. Consider an arbitrary cf_{N} expansion $\left[a_{0}, a_{1}, \ldots\right]_{N}$. The m-inflation of this expansion is the $\mathrm{cf}_{m N}$ expansion

$$
I_{m}\left(\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]_{N}\right)=\left[a_{0}, m a_{1}, a_{2}, m a_{3}, \ldots\right]_{m N}
$$

Note that, by Lemma 1.1(c), if $x_{0}=\left[a_{0}, a_{1}, \ldots\right]_{N}$, then also $x_{0}=I_{m}\left(\left[a_{0}, a_{1}, \ldots\right]_{N}\right)$ for any m.

Theorem 2.2. Let x_{0} be a quadratic irrationality. Then for any N, x_{0} has a periodic cf_{N} expansion.

Proof. From the classical theory we know that x_{0} has a periodic cf_{1} expansion of some period k. Then the N-inflation of this expansion is a cf_{N} expansion of x_{0}, periodic of period k (or, in exceptional cases, $k / 2$) if k is even and periodic of period $2 k$ (in all cases) if k is odd.

We observe that there is no reason to expect in general that the cf_{N} expansion of x_{0} obtained in this way will be the best cf_{N} expansion of x_{0}. Indeed from Lemma 1.7 we see that this will never be the case if N is sufficiently large.

We will exhibit a number of families of periodic best cf_{N} expansions of quadratic irrationalities below, and a number of specific examples of periodic best cf_{N} examples of quadratic irrationalities, but we make the following conjecture.

Conjecture 2.3. For $N \geq 2$, the best cf_{N} expansion of a quadratic irrationality is not always periodic.

As evidence for this conjecture we have the computation that the best cf_{2} expansion of $\sqrt{124}$ is not periodic within its first 6,000 terms, and that the best cf_{7} expansion of $\sqrt{8}$ is not periodic within its first 6,000 terms. (Such examples abound.)

We remind the reader of our conventions: E is a positive integer that is not a perfect square, $D=\lfloor\sqrt{E}\rfloor$, and $a=E-D^{2}$, so that $E=D^{2}+a$ with $1 \leq a \leq 2 D$. Also, N is said to be small (for E) if $N \leq 2 D$ and large (for E) otherwise. (Note that $N=1$ is always small.)

Lemma 2.4. Suppose that a divides $2 D N$. Then

$$
\sqrt{E}=[D, \overline{2 D N / a, 2 D}]_{N}
$$

periodic of period 2 if $a \neq N$ and period 1 if $a=N$. This is the best cf_{N} expansion of \sqrt{E} if and only if a and N are both small for E.

Proof. Direct calculation shows that this is always a cf_{N} expansion of \sqrt{E}, and it follows immediately from Lemma 1.7 that it is the best cf_{N} expansion of \sqrt{E} exactly when the given conditions are satisfied.

Remark 2.5. Observe that if a divides $2 D$, then

$$
[D, \overline{2 D N / a, 2 D}]_{N}=I_{N}\left([D, \overline{2 D / a, 2 D}]_{1}\right)
$$

But if not, this cf_{N} expansion does not come from a cf_{1} expansion.
The cases $a=1, a=2$, or $a=4$ and D even are covered by Lemma 2.4. In case $a=4$ and D odd we have the following.

Lemma 2.6. Let $D>1$ be odd, and let $E=D^{2}+4$. Then

$$
\sqrt{E}=[[D, \overline{(D-1) / 2,1,1,(D-1) / 2,2 D}]]_{1}, \quad \text { periodic of period } 5
$$

and

$$
\sqrt{E}=\left[\left[D, \overline{\left(D^{2}-1\right) / 2, D, 2 D^{2}+2, D,\left(D^{2}-1\right) / 2,2 D}\right]\right]_{D}, \quad \text { periodic of period } 6 .
$$

Proof. Direct computation and Lemma 1.7.
Lemma 2.7. (a) For $D>1$, if $a=2 D-1$, then

$$
\sqrt{E}=[D, \overline{1, D-1,1,2 D}]_{1} \quad \text { of period } 4
$$

and

$$
\sqrt{E}=\left[\left[D, \overline{D+1,2 D^{3}+2 D^{2}-2 D, D+1,2 D}\right]\right]_{D}, \quad \text { of period } 4 .
$$

(b) For $D \geq 4$ even, if $a=2 D-3$, then

$$
\sqrt{E}=[D, \overline{1,(D-2) / 2,2,(D-2) / 2,1,2 D}]_{1} \quad \text { of period } 6
$$

and

$$
\sqrt{E}=\left[\left[D, \overline{D+2,\left(D^{2}-2 D\right) / 2, D+2,2 D}\right]\right]_{D}, \quad \text { of period } 4
$$

for $D \neq 6$ and of period 2 for $D=6$.
(c) For $D \geq 5$ odd, if $a=2 D-3$, then

$$
\sqrt{E}=[D, \overline{1,(D-3) / 2,1,2 D}]_{1} \quad \text { of period } 4
$$

(d) For $D \geq 3$ odd, if $a=2 D$, then

$$
\sqrt{E}=\left[\left[D, 2 D+2, \overline{8 D^{3}+16 D^{2}+6 D, 2 D+3}\right]\right]_{2 D+1} \quad \text { of period } 2
$$

and

$$
\sqrt{E}=\left[\left[D, 2 D+3, \overline{4 D^{2}+4 D, 2 D+4}\right]\right]_{2 D+2} \text { of period } 2 .
$$

Proof. Direct computation and Lemma 1.7.

Remark 2.8. (a) Lemma 2.7(c) for $D=3$ is covered by Lemma 2.4, verifying $\sqrt{12}=$ $[3, \overline{2,6}]_{1}=[3, \overline{6}]_{3}$.
(b) For $D \geq 5$ odd and $a=2 D-3$, numerical evidence suggests that the best cf_{D} expansion of \sqrt{E} is not always (perhaps never) periodic.
(c) If $a=2 D$ and N is small, i.e., $N \leq 2 D$, then \sqrt{E} is covered by Lemma 2.4, so the two cases given in Lemma 2.7(d) are the first two cases for N large. There does not appear to be a similar result for $N=2 D+3$, and this may be a nonperiodic case.

Example 2.9. Here is one more family. Let $a=3$ and $N=2$. If D is divisible by 3 then \sqrt{E} is covered by Lemma 2.4. Otherwise we have

$$
\begin{aligned}
\sqrt{7} & =[[2, \overline{3,20,3,4}]]_{2} \quad \text { of period } 4 \\
\sqrt{19} & =[[4, \overline{5,3,4,34,4,3,5,8}]]_{2} \quad \text { of period } 8 \\
\sqrt{28} & =[[5, \overline{6,2,6,10}]]_{2} \quad \text { of period } 4 \\
\sqrt{52} & =[[7, \overline{9,4,9,14}]]_{2} \quad \text { of period } 4 \\
\sqrt{67} & =[[8, \overline{10,2,3,2,3,6,2,2,2,64,2,2,2,6,3,2,3,2,10,16}]]_{2} \quad \text { of period } 20 \\
\sqrt{103} & =[[10, \overline{13,4,3,9,3,4,13,20}]]_{2} \quad \text { of period } 8 \\
\sqrt{124} & =[[11,14,2,3,17,6,4,15,2,2,2,3,5,59,71,8,3, \ldots]]_{2} \quad \text { apparently not periodic } \\
\sqrt{172} & =[[13, \overline{17,4,2,7,7, \ldots, 7,7,2,4,17,26}]]_{2} \quad \text { of period } 38 \\
\sqrt{487} & =[[22, \overline{29,5,7,16, \ldots, 16,7,5,29,44}]]_{2} \quad \text { of period } 136 .
\end{aligned}
$$

Example 2.10. Just as when $N=1$, cases of $N>1$ when $[[\sqrt{E}]]_{N}$ has odd period seem to be rarer, but definitely occur. For example:

$$
\begin{aligned}
\sqrt{22} & =[[4, \overline{2,2,8}]]_{2} \quad \text { has period } 3 \\
\sqrt{162} & =[[12, \overline{2,2,2,2,24}]]_{2} \quad \text { has period } 5 \\
\sqrt{241} & =[[15, \overline{3,2,4,4,2,3,20}]]_{2} \quad \text { has period } 7 \\
\sqrt{393} & =[[19, \overline{2,4,2,2,9,9,2,2,4,2,38}]]_{2} \quad \text { has period } 11 .
\end{aligned}
$$

Also, $[[\sqrt{457}]]_{2}$ has period 9, $[[\sqrt{139}]]_{3}$ has period 5, $[[\sqrt{331}]]_{3}$ has period 9, $[[\sqrt{181}]]_{4}$ has period 5, $[[\sqrt{1997}]]_{4}$ has period 35 , and $[[\sqrt{524}]]_{8}$ has period 3 .

In fact, we have the following families of cf_{N} expansions with odd period.
Lemma 2.11. (a) For any $j \geq 1$, let $D=3 j+1, a=6 j, E=D^{2}+a=9 j^{2}+12 j+1$. Then

$$
\sqrt{E}=[[D, \overline{2(D-1) / 3,2(D-1) / 3,2 D}]]_{2(D-1) / 3}, \quad \text { of period } 3 .
$$

(b) For any $j \geq 1$, let $D=3 j+1, a=4 j+2, E=D^{2}+a=9 j^{2}+10 j+3$. Then

$$
\sqrt{E}=[[D, \overline{2,2,2 D}]]_{2}, \quad \text { of period } 3 .
$$

Proof. Careful but routine computation.
Not only is the classical continued fraction expansion of \sqrt{E} periodic, it has additional structure. We investigate the analog of this structure for $[[\sqrt{E}]]_{N}$ in the situation where this cf_{N} expansion is periodic. In this situation we obtain a perfect analog to the $N=1$ case when N is small for E, but we will see different behavior when N is large for E. The arguments parallel those in the classical case, but we give them in reasonable detail to show what modifications have to be made and where the differences lie (cf. [3, Chapter 11]).

Definition 2.12. A quadratic irrationality x is N-reduced if $x>N$ and $-1<\bar{x}<0$, where \bar{x} is the Galois conjugate of x.

Lemma 2.13. (a) Let x be N-reduced. Let $A=\lfloor x\rfloor$ and $y=N /(x-A)$. Then y is N-reduced. Also, $\lfloor-N / \bar{y}\rfloor=A$.
(b) Let x be N-reduced. Then $y=-N / \bar{x}$ is N-reduced.

Proof. Analogous to the $N=1$ case, and routine.
Theorem 2.14. Let x_{0} be N-reduced and suppose that $\left[\left[x_{0}\right]\right]_{N}$ is periodic of period k. Then $\left[\left[x_{0}\right]\right]_{N}=\left[\overline{a_{0}, a_{1}, \ldots, a_{k-1}}\right]_{N}$, i.e., the period begins with a_{0}.

Proof. We have that $x_{0}=\left[x_{0}\right]_{N}=\left[a_{0}, x_{1}\right]_{N}=\left[a_{0}, a_{1}, x_{2}\right]_{N}=\cdots$ and from Lemma 2.13 we have that x_{i} is N-reduced for every $i \geq 0$. Now by hypothesis we have that, for some j,

$$
x_{0}=\left[a_{0}, a_{1}, \ldots, a_{j-1}, \overline{a_{j}, \ldots, a_{j+k-1}}\right]_{N}
$$

Set $z=x_{j}=x_{j+k}$. Then $z=x_{j}=N /\left(x_{j-1}-a_{j-1}\right)$ and similarly $z=x_{j+k}=N /\left(x_{j+k-1}-\right.$ $\left.a_{j+k-1}\right)$. Thus

$$
\begin{array}{ll}
x_{j-1}=a_{j-1}+N / z, & x_{j+k-1}=a_{j+k-1}+N / z \\
\bar{x}_{j-1}=a_{j-1}+N / \bar{z}, & \bar{x}_{j+k-1}=a_{j+k-1}+N / \bar{z}
\end{array}
$$

and hence $\bar{x}_{j-1}-\bar{x}_{j+k-1}=a_{j-1}-a_{j+k-1}$. But $-1<x_{i}<0$ for every i, so $-1<\bar{x}_{j-1}-$ $\bar{x}_{j+k-1}<1$. But a_{j-1} and a_{j+k-1} are both integers, so the forces $\bar{x}_{j-1}=\bar{x}_{j+k-1}$ and hence $a_{j-1}=a_{j+k-1}$. Proceeding by downward induction we obtain $a_{j-2}=a_{j+k-2}, \ldots, a_{0}=a_{k}$ and so the period begins with a_{0}.

Corollary 2.15. Let N be small. Suppose that $[[\sqrt{E}]]_{N}$ is periodic of period k. Then $[[\sqrt{E}]]_{N}=\left[a_{0}, \overline{a_{1}, \ldots, a_{k}}\right]_{N}$ with $a_{k}=2 a_{0}$. In particular, the period begins with a_{1}.

Proof. Let $x=D+\sqrt{E}$. Then $[[x]]_{N}=\left[2 a_{0}, a_{1}, a_{2}, \ldots\right]_{N}$. But x is N-reduced so $[[x]]_{N}$ is periodic beginning with $2 a_{0}$, by Theorem 2.14.

Corollary 2.16. Let N be large. Suppose that $[[\sqrt{E}]]_{N}$ is periodic of period k. Let $h=\lfloor N /(D+\sqrt{E})\rfloor \geq 1$. Then $[[\sqrt{E}]]_{N}=\left[a_{0}, a_{1}, \overline{a_{2}, \ldots, a_{k+1}}\right]_{N}$ with $a_{k+1}=a_{1}+h$. In particular, the period begins with a_{2}.

Proof. Let $x=\sqrt{E}$. Then $[[x]]_{N}=\left[a_{0}, a_{1}, x_{2}\right]_{N}$ with $a_{0}=D, x_{1}=\frac{N}{x_{0}-a_{0}}=\frac{N}{\sqrt{E}-D}, a_{1}=$ $\lfloor N /(\sqrt{E}-D)\rfloor \geq N$, and $x_{2}=N /\left(x_{1}-a_{1}\right)$. Certainly $x_{2}>N$.

Now $\bar{x}_{2}=N /\left(\bar{x}_{1}-a_{1}\right)$ and $\bar{x}_{1}=\frac{N}{-\sqrt{E}-D}<0$, so $\bar{x}_{2}<0$. Also, $-1 / \bar{x}_{2}=\left(a_{1}-\bar{x}_{1}\right) / N>$ $a_{1} / N \geq 1$, so $-1<\bar{x}_{2}$. Thus x_{2} is N-reduced, and so, by Theorem 2.14, $\left[\left[x_{2}\right]\right]_{N}=\left[a_{2}\right.$, $\left.a_{3}, \ldots\right]_{N}$ is periodic of period k beginning with a_{2}.

We now apply the argument in the proof of Theorem 2.14 to conclude that $\bar{x}_{1}-\bar{x}_{k+1}=$ $a_{1}-a_{k+1}$. Since x_{k+1} is N-reduced, $-1<\bar{x}_{k+1}<0$. But $x_{1}=N /(\sqrt{E}-D)$ so $\bar{x}_{1}=$ $-N /(\sqrt{E}+D)$ and hence $-(h+1)<\bar{x}_{1}<-h$, so we must have that $a_{1}-a_{k+1}=-h$ and hence $a_{k+1}=a_{1}+h$.

The converse of Theorem 2.14 is also true.
Theorem 2.17. Suppose that $\left[\left[x_{0}\right]\right]_{N}$ is periodic of period k beginning at $a_{0}, \quad\left[\left[x_{0}\right]\right]_{N}=$ $\left[\overline{a_{0}, a_{1}, \ldots, a_{k-1}}\right]_{N}$. Then x_{0} is N-reduced.

Proof. First observe that $x_{0}>a_{0}=a_{k} \geq N$.
Now $x_{0}=x_{k}=\frac{x_{0} p_{k-1}+N p_{k-2}}{x_{0} q_{k-1}+N q_{k-2}}$, showing that x_{0} is a root of the polynomial $f(x)=x^{2} q_{k}+$ $\left(q_{k-1} N-p_{k}\right) x-p_{k-1} N=0$. Now $f(0)=-p_{k-1} N<0$ and $f(-1)=q_{k}-q_{k-1} N+p_{k}-$ $p_{k-1} N=\left(a_{k}-N\right) q_{k-1}+q_{k-2}+\left(a_{k}-N\right) p_{k-1}+p_{k-2}>0$ as $a_{k} \geq N$. Hence the other root of this polynomial, which is \bar{x}_{0}, must lie between -1 and 0 .

Lemma 2.18. Let $\left[\left[x_{0}\right]\right]_{N}=\left[\overline{a_{0}, \ldots, a_{k-1}}\right]_{N}$ be periodic of period k beginning with a_{0}, and let $y_{0}=-N / \bar{x}_{0}$. Then $\left[\left[y_{0}\right]\right]_{N}=\left[\overline{a_{k-1}, \ldots, a_{0}}\right]_{N}$.

Proof. Write $x_{0}=\left[x_{0}\right]_{N}=\left[a_{0}, x_{1}\right]_{N}=\left[a_{0}, a_{1}, x_{2}\right]_{N}=\cdots$. Note that, by Theorem 2.17, x_{0} is N-reduced, and hence by Lemma 2.13, each x_{i} is N-reduced. Also, by Lemma 2.13, y_{0} is N-reduced. Now

$$
x_{0}=a_{0}+N / x_{1}, \quad x_{1}=a_{1}+N / x_{2}, \ldots, \quad x_{k-1}=a_{k-1}+N / x_{k}
$$

or equivalently

$$
-N / \bar{x}_{1}=a_{0}-\bar{x}_{0}, \ldots, \quad-N / \bar{x}_{k}=a_{k-1}-\bar{x}_{k-1}
$$

Set $z_{k-i}=-N / \bar{x}_{i}, i=0, \ldots, k$. Then we have

$$
z_{0}=a_{k-1}-\bar{x}_{k-1}, \quad z_{1}=a_{k-2}-\bar{x}_{k-2}, \ldots, \quad z_{k-1}=a_{0}-\bar{x}_{0}
$$

But $0<-\bar{x}_{i}<1$ and $z_{i+1}=N /\left(z_{i}-a_{k-1-i}\right)$ for each i, so we see that

$$
z_{0}=\left[z_{0}\right]_{N}=\left[a_{k-1}, z_{1}\right]_{N}=\left[a_{k-1}, a_{k-2}, z_{2}\right]_{N}=\cdots=\left[a_{k-1}, \ldots, a_{0}, z_{k}\right]_{N}
$$

But $x_{k}=x_{0}$ so $z_{k}=z_{0}$ and hence

$$
z_{0}=\left[\left[\overline{a_{k-1}, \ldots, a_{0}}\right]\right]_{N}
$$

this being the best expansion as $a_{i} \geq N$ for each i. But by definition, $y_{0}=z_{0}$. (Also, if $y_{0}=\left[y_{0}\right]_{N}=\left[a_{k-1}, y_{1}\right]_{N}=\left[a_{k-1}, a_{k-2}, y_{2}\right]_{N}=\cdots$, we have $y_{i}=z_{i}$ for each i.)

Theorem 2.19. Let N be small and suppose that $[[\sqrt{E}]]_{N}$ is periodic of period k. Then

$$
[[\sqrt{E}]]_{N}=\left[a_{0}, \overline{a_{1}, \ldots, a_{k-1}, 2 a_{0}}\right]_{N} \quad \text { with } a_{i}=a_{k-i}, i=1, \ldots, k-1
$$

Proof. As we have seen

$$
[[\sqrt{E}+D]]_{N}=\left[\overline{2 a_{0}, a_{1}, \ldots, a_{k-1}}\right]_{N}
$$

so

$$
[[\sqrt{E}-D]]_{N}=\left[0, \overline{a_{1}, \ldots, a_{k-1}, 2 a_{0}}\right]_{N}
$$

and hence

$$
N /(\sqrt{E}-D)=\left[\overline{a_{1}, \ldots, a_{k-1}, 2 a_{0}}\right]_{N}
$$

But if $x_{0}=N /(\sqrt{E}-D), y_{0}=-N / \bar{x}_{0}=\sqrt{E}+D$, so

$$
[[\sqrt{E}+D]]_{N}=\left[\overline{2 a_{0}, a_{k-1}, \ldots, a_{1}}\right]_{N}
$$

and comparing the two expressions for $[[\sqrt{E}+D]]_{N}$ yields the theorem.
Definition 2.20. A sequence of integers c_{1}, \ldots, c_{k} is palindromic if it reads the same from right-to-left as it does from left-to-right, i.e. if $c_{i}=c_{k+1-i}$ for $i=1, \ldots, k$. A sequence is semipalindromic of type (j, k) if it is the concatenation of a palindromic sequence of length j followed by a palindromic sequence of length k, i.e., if it is of the form c_{1}, \ldots, c_{j}, d_{1}, \ldots, d_{k} with c_{1}, \ldots, c_{j} and d_{1}, \ldots, d_{k} each palindromic.

Remark 2.21. By Theorem 2.19, we see that for N small, if $[[\sqrt{E}]]_{N}$ is periodic of period k with periodic part given by a_{1}, \ldots, a_{k} (which is always true for $N=1$), then either $k=1$ or a_{1}, \ldots, a_{k} is semipalindromic of type $(k-1,1)$.

Now suppose that N is large and $[[\sqrt{E}]]_{N}$ is periodic of period k with periodic part given by a_{2}, \ldots, a_{k+1}. In this case the situation is more complicated.

Example 2.22. (a) The cf_{N} expansions in Lemma 2.7(d) are semipalindromic of type $(1,1)$.
(b) We have the semipalindromic expansions

$$
\begin{aligned}
\sqrt{8} & =[[2,9, \overline{12,44,12,10}]]_{8} \quad \text { of type }(3,1) \\
\sqrt{53} & =[[7,399, \overline{132,132,406}]]_{112} \quad \text { of type }(2,1) \\
\sqrt{65} & =[[8,2312, \overline{149,702,184,341,180,341,184,702,149,2320}]]_{144} \quad \text { of type }(9,1) .
\end{aligned}
$$

(c) We have the semipalindromic expansions

$$
\begin{aligned}
\sqrt{7} & =[[2,15, \overline{20,17,65,17}]]_{10} \quad \text { of type }(1,3) \\
\sqrt{23} & =[[4,55, \overline{152,60,18568,60}]]_{44} \quad \text { of type }(1,3) .
\end{aligned}
$$

(d) We have the semipalindromic expansions

$$
\begin{aligned}
\sqrt{13} & =[[3,196, \overline{231,247996,231,214,7854,214}]]_{119} \quad \text { of type }(3,3) \\
\sqrt{129} & =[[11,108, \overline{39,176,204,176,39,109,52,98,42,98,52,109}]]_{39} \quad \text { of type }(5,7) .
\end{aligned}
$$

(e) We have the nonsemipalindromic expansions

$$
\begin{aligned}
\sqrt{31} & =[[5,22, \overline{14,26,56,23}]]_{13} \\
\sqrt{187} & =[[13,85, \overline{60,63,232,84,332,87}]]_{58} \\
\sqrt{215} & =[[14,116, \overline{480,77,128,429,112,118}]]_{77} .
\end{aligned}
$$

Note that, as long as at least one of j and k is odd, a semipalindromic expansion of type (j, k) differs from a semipalindromic expansion of type $(j+k-1,1)$ only by a phase shift.

Numerical evidence seems to indicate that most periodic $[[\sqrt{E}]]_{N}$ expansions are semipalindromic of type $(j, 1)$ or $(1, k)$, with semipalindromic expansions of type (j, k) with $j>1$ and $k>1$ being rare, and nonsemipalindromic expansions being rarer still.

Remark 2.23. cf_{N} expansions were previously studied in [1], though the concerns of that paper are considerably different than ours. We restate the main results of [1] in our language: For any E, there exists an N such that the best cf_{N} expansion of \sqrt{E} is periodic of period 1, and furthermore the convergents C_{i} of that expansion are a subset of the convergents of the classical continued fraction expansion of \sqrt{E}.

3. PELL'S EQUATIONS AND RELATED EQUATIONS

Given any cf_{N} expansion of $x_{0}=\sqrt{E}$, we have its i th convergent $C_{i}=p_{i} / q_{i}$ where p_{i} and q_{i} are given by the recursion in Theorem 1.2. In the classical case this is intimately related to the solutions of Pell's equation $p^{2}-E q^{2}=1$.

In this section we investigate the analog for arbitrary N.
Lemma 3.1. Let $[\sqrt{E}]_{N}=\left[x_{0}\right]_{N}=\left[a_{0}, x_{1}\right]_{N}=\left[a_{0}, a_{1}, x_{2}\right]_{N}=\cdots$ be any cf_{N} expansion of \sqrt{E}.

Then $x_{i}=\frac{u_{i}+N^{i} \sqrt{E}}{v_{i}}$ for integers u_{i}, v_{i} defined inductively by

$$
\begin{aligned}
u_{0} & =0, \quad v_{0}=1 \\
u_{i+1} & =N\left(a_{i} v_{i}-u_{i}\right) \\
v_{i+1} & =\frac{N^{2 i+2} E-\left(u_{i+1}\right)^{2}}{N^{2} v_{i}}
\end{aligned}
$$

Proof. By definition, $x_{i}=a_{i}+\frac{N}{x_{i+1}}$, i.e., $x_{i+1}=\frac{N}{x_{i}-a_{i}}$ and simple algebra shows this is equal to

$$
\frac{N\left(a_{i} v_{i}-u_{i}\right)+N^{i+1} \sqrt{E}}{\frac{N^{2 i} E-\left(a_{i} v_{i}-u_{i}\right)^{2}}{v_{i}}}=\frac{u_{i+1}+N^{i+1} \sqrt{E}}{v_{i+1}} .
$$

Clearly u_{i+1} is an integer. We prove that v_{i+1} is an integer by induction. Note that $u_{1}=N a_{0}, v_{1}=E-a_{0}^{2}$ so v_{0} and v_{1} are integers. Then $v_{i+1} \in \mathbb{Z} \Leftrightarrow v_{i} \mid N^{2 i} E-\left(a_{i} v_{i}-u_{i}\right)^{2} \Leftrightarrow$ $v_{i} \mid N^{2 i} E-u_{i}^{2}$.

But $v_{i}=\frac{N^{2 i} E-u_{i}^{2}}{N^{2} v_{i-1}} \in \mathbb{Z}$ by induction, so $\frac{N^{2 i} E-u_{i}^{2}}{v_{i}}=N^{2} v_{i-1} \in \mathbb{Z}$ as required.
Lemma 3.2. Let $[\sqrt{E}]_{N}=\left[x_{0}\right]_{N}=\left[a_{0}, x_{1}\right]_{N}=\left[a_{0}, a_{1}, x_{2}\right]_{N}=\cdots$ be any cf_{N} expansion of \sqrt{E}. Then $p_{i}^{2}-E q_{i}^{2}=(-1)^{i+1} v_{i+1}$.

Proof. By induction on i. For $i=-1, p_{i}^{2}-E q_{i}^{2}=(1)^{2}-E(0)^{2}=1=v_{0}$. For $i=0$, $p_{i}^{2}-E q_{i}^{2}=a_{0}^{2}-E(1)^{2}=-\left(E-a_{0}\right)^{2}=-v_{1}$.

Assume true for i. Then

$$
[\sqrt{E}]_{N}=\left[a_{0}, \ldots, a_{i}, x_{i+1}\right]_{N}
$$

so

$$
\sqrt{E}=\frac{x_{i+1} p_{i}+N p_{i-1}}{x_{i+1} q_{i}+N q_{i-1}}
$$

But

$$
x_{i+1}=\frac{u_{i+1}+N^{i+1} \sqrt{E}}{v_{i+1}}
$$

Substituting, we obtain

$$
\begin{align*}
& N^{i+1} E q_{i}=u_{i+1} p_{i}+p_{i-1} v_{i+1} N \tag{*}\\
& u_{i+1} q_{i}+q_{i-1} v_{i+1} N=N^{i+1} p_{i} \tag{**}
\end{align*}
$$

Now $p_{i}(* *)-q_{i}(*)$ gives

$$
N^{i+1}\left(p_{i}^{2}-E q_{i}^{2}\right)=N v_{i+1}\left(p_{i} q_{i-1}-p_{i-1} q_{i}\right)
$$

But we know that $p_{i} q_{i-1}-p_{i-1} q_{i}=(-1)^{i-1} N^{i}$ and substituting and cancelling we obtain $p_{i}^{2}-E q_{i}^{2}=(-1)^{i+1} v_{i}$.

Theorem 3.3. Let N be small and suppose that $[[\sqrt{E}]]_{N}$ is periodic. In this case, $[[\sqrt{E}]]_{N}$ is periodic beginning with a_{1}. Let $[[\sqrt{E}]]_{N}$ have period k, $[[\sqrt{E}]]_{N}=\left[a_{0}, \overline{a_{1}, \ldots, a_{k}}\right]_{N}$. In this case, $a_{k}=2 a_{0}=2 D$. Then $v_{k}=N^{k}$, i.e., $p_{k-1}^{2}-E q_{k-1}^{2}=(-N)^{k}$, and $u_{k}=a_{0} N^{k}=D N^{k}$.

Conversely, if $v_{k}=N^{k}$ and u_{k} is divisible by N^{k}, then $[[\sqrt{E}]]_{N}$ is periodic of period k beginning with a_{1}, and $a_{k}=2 a_{0}$.

Proof. First suppose $[[\sqrt{E}]]_{N}$ is periodic of period k.
Then $x_{1}=\left[\overline{a_{1}, \ldots, a_{k}}\right]_{N}$ so $\left[\left[a_{0}, x_{1}\right]\right]_{N}=\left[\left[a_{0}, a_{1}, \ldots, a_{k}, x_{1}\right]\right]_{N}=\left[\left[a_{0}, a_{1}, \ldots, a_{k}, x_{k+1}\right]\right]_{N}$ and hence $x_{k+1}=x_{1}$.

But $x_{k}=a_{k}+N / x_{k+1}, x_{k}-a_{k}=N / x_{k+1}$, and $x_{0}=a_{0}+N / x_{1}, x_{0}-a_{0}=N / x_{1}$, so $x_{k}-$ $a_{k}=x_{0}-a_{0}$, i.e., $x_{k}=a_{k}-a_{0}+\sqrt{E}$.

But $x_{k}=\frac{u_{k}+N^{k} \sqrt{E}}{v_{k}}$ so we must have $v_{k}=N^{k}$ and also $u_{k} / v_{k}=a_{k}-a_{0}$, an integer. But in this case we know that $a_{k}=2 a_{0}$ so $u_{k}=a_{0} N^{k}$.

Conversely, suppose that $v_{k}=N^{k}$ and that $u_{k}=m N^{k}$ for some integer m. Then $x_{k}=$ $\frac{u_{k}+N^{k} \sqrt{E}}{v_{k}}=m+\sqrt{E}$ so $a_{k}=m+a_{0}$. But then $x_{k+1}=\frac{N}{x_{k}-a_{k}}=\frac{N}{(m+\sqrt{E})-\left(m+a_{0}\right)}=\frac{N}{\sqrt{E}-a_{0}}=$ $\frac{N}{x_{0}-a_{0}}=x_{1}$, so $\left[\left[x_{k+1}\right]\right]_{N}=\left[\left[x_{1}\right]\right]_{N}$, and hence $a_{k+1}=a_{0}, a_{k+2}=a_{2}, \ldots, a_{2 k}=a_{k}, a_{2 k+1}=$ $a_{k+1}=a_{1}, \ldots$ so

$$
[[\sqrt{E}]]_{N}=\left[a_{0}, \overline{a_{1}, \ldots, a_{k}}\right]_{N}
$$

and we have seen that in this case we must have $a_{k}=2 a_{0}$.
Remark 3.4. Note in case $N=1$ the condition that u_{k} be divisible by N^{k} is automatic. But in case $N>1$ it is not, and it is possible that $v_{k}=N^{k}$ but u_{k} is not divisible by N^{k}, so that $[[\sqrt{E}]]_{N}$ does not have period k. For example:

$$
\begin{array}{lll}
\text { For }[[\sqrt{41}]]_{4}, & v_{3}=4^{3} & \text { but this expansion has period } 6 . \\
\text { For }[[\sqrt{43}]]_{2}, & v_{6}=2^{6} & \text { but this expansion has period } 12 . \\
\text { For }[[\sqrt{209}]]_{3}, & v_{6}=3^{6} & \text { but this expansion has period } 30 . \\
\text { For }[[\sqrt{590}]]_{3}, & v_{6}=3^{6} & \text { but this expansion has period } 28 . \\
\text { For }[[\sqrt{777}]]_{12}, & v_{5}=12^{5} & \text { but this expansion has period } 28 . \\
\text { For }[[\sqrt{1692}]]_{5}, & v_{4}=5^{4} & \text { but this expansion has period } 24 .
\end{array}
$$

We have the following generalization of periodicity.
Definition 3.5. A sequence $\left\{d_{i}\right\}$ is f-periodic of period k from $i=m$ if $d_{i+k}=f d_{i}$ for all $i \geq m$.

We also adopt the notation that $w_{i}=p_{i}^{2}-E q_{i}^{2}$ for $i \geq-1$. (Note $\left.w_{-1}=1.\right)$
Theorem 3.6. Suppose $[[\sqrt{E}]]_{N}$ is periodic of period k. Then $\left\{w_{i}\right\}$ is $(-N)^{k}$-periodic of period k. If N is small the period begins with $i=-1$, while if N is large the period begins with $i=1$.

Proof. By Lemma 3.2, the theorem is equivalent to the claim that $\left\{v_{i}\right\}$ is N^{k}-periodic of period k beginning with $i=0$ if N is small and $i=2$ if N is large.

Suppose N is small. By Theorem 3.3, $u_{k}=D N^{k}$ and $v_{k}=N^{k}$, while $u_{0}=D$ and $v_{0}=1$. For $i \geq 1, x_{k+1}=x_{i}$ by the periodicity of $[[\sqrt{E}]]_{N}$, which, by Corollary 2.15 , begins with a_{1}, i.e.,

$$
\frac{u_{k+1}+N^{k+i} \sqrt{E}}{v_{k+i}}=\frac{u_{i}+N^{i} \sqrt{E}}{v_{i}},
$$

so $v_{k+i}=N^{k} v_{i}$ and then $u_{k+i}=N^{k} u_{i}$.
If N is large, the same argument works, again using the periodicity of $[[\sqrt{E}]]_{N}$, which, in this case, by Corollary 2.16 , begins with a_{2}.

Corollary 3.7. If $C_{i}=p_{i} / q_{i}$ is the ith convergent of $a \operatorname{cf}_{N}$ expansion, then $\operatorname{gcd}\left(p_{i}, q_{i}\right)$ divides N^{i} for all $i \geq 0$.

Proof. Immediate from Theorem 1.3.

Lemma 3.8. Let $N \leq 2 D$ and suppose that N and $2 D$ are relatively prime. Set $E=D^{2}+N$ and consider $\sqrt{E}=[[D, \overline{2 D}]]_{N}$. Then for all $i \geq 0, \operatorname{gcd}\left(p_{i}, q_{i}\right)=1$, and $w_{i}=(-N)^{i+1}$.

Proof. As easy induction, beginning with $q_{0}=1$, shows that $q_{i} \equiv 1(\bmod N)$ for all $i \geq 0$, so $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$ by Corollary 3.7. The second claim follows immediately from Theorem 3.6.

Lemma 3.8 shows that p_{i} and q_{i} may be relatively prime. Here are some examples to show that the upper bound on $\operatorname{gcd}\left(p_{i}, q_{i}\right)$ in Corollary 3.7 is realized. Examples are plentiful for $i=1$, so we merely give examples for $i \geq 2$.

Example 3.9.

$$
\begin{array}{llll}
\text { For }[[\sqrt{13}]]_{2}, & \operatorname{gcd}\left(p_{2}, q_{2}\right)=2^{2} . & \text { For }[[\sqrt{3050}]]_{3}, & \operatorname{gcd}\left(p_{4}, q_{4}\right)=3^{4} . \\
\text { For }[[\sqrt{57}]]_{2}, & \operatorname{gcd}\left(p_{3}, q_{3}\right)=2^{3} . & \text { For }[[\sqrt{499}]]_{4}, & \operatorname{gcd}\left(p_{2}, q_{2}\right)=4^{2} . \\
\text { For }[[\sqrt{603}]]_{2}, & \operatorname{gcd}\left(p_{4}, q_{4}\right)=2^{4} . & \text { For }[[\sqrt{1580}]]_{4}, & \operatorname{gcd}\left(p_{3}, q_{3}\right)=4^{3} . \\
\text { For }[[\sqrt{3262}]]_{2}, & \operatorname{gcd}\left(p_{5}, q_{5}\right)=2^{5} . & \text { For }[[\sqrt{185}]]_{5}, & \operatorname{gcd}\left(p_{2}, q_{2}\right)=5^{2} . \\
\text { For }[[\sqrt{41}]]_{3}, & \operatorname{gcd}\left(p_{2}, q_{2}\right)=3^{2} . & \text { For }[[\sqrt{1878}]]_{6}, & \operatorname{gcd}\left(p_{2}, q_{2}\right)=6^{2} . \\
\text { For }[[\sqrt{207}]]_{3}, & \operatorname{gcd}\left(p_{3}, q_{3}\right)=3^{3} . & \text { For }[[\sqrt{697}]]_{7}, & \operatorname{gcd}\left(p_{2}, q_{2}\right)=7^{2} .
\end{array}
$$

Definition 3.10. Let \tilde{p}_{i} and \tilde{q}_{i} be the positive integers defined by $C_{i}=p_{i} / q_{i}=\tilde{p}_{i} / \tilde{q}_{i}$ where $\tilde{p}_{i} / \tilde{q}_{i}$ is in lowest terms, i.e., $\operatorname{gcd}\left(\tilde{p}_{i}, \tilde{q}_{i}\right)=1$.

We may then similarly define the sequence $\left\{\tilde{w}_{i}\right\}$ by $\tilde{w}_{i}=\tilde{p}_{i}^{2}-E \tilde{q}_{i}^{2}$. The sequence $\left\{\tilde{w}_{i}\right\}$ is a natural one to investigate, and of course if $\tilde{w}_{i}=1$ we have a solution of Pell's equation.

Conjecture 3.11. Suppose that $[[\sqrt{E}]]_{N}$ is periodic. Then $\left\{\tilde{w}_{i}\right\}$ is f-periodic for some f.
Of course by Theorem 3.6 this is true whenever p_{i} and q_{i} are relatively prime, e.g., in the case of Lemma 3.8. Here is a more involved case.

Lemma 3.12. For any $j \geq 1$, let $D=3 j-1, a=4 j-1, E=D^{2}+a=9 j^{2}-2 j$, and $N=2 a=8 j-2$. Then

$$
[[\sqrt{E}]]_{N}=[[D, 4 D+1, \overline{8 D+4,4 D+2}]]_{N} .
$$

Also,

$$
\begin{aligned}
p_{-1} & =1, & & q_{-1}=0, \\
p_{0} & =D, & w_{-1}=1 & =\tilde{w}_{-1} \\
0 & =1, & w_{0}=-a & =\tilde{w}_{0}
\end{aligned}
$$

and for $i \geq 1$:

$$
\begin{gathered}
p_{i} p_{i-1}-E q_{i} q_{i-1}=-a(2 D+1)(-N)^{i-1} \\
w_{i}=p_{i}^{2}-E q_{i}^{2}= \begin{cases}-a(-N)^{i} & \text { for } i \text { even } \\
a^{2}(-N)^{i-1} & \text { for } i \text { odd }\end{cases} \\
\operatorname{gcd}\left(p_{i}, q_{i}\right)= \begin{cases}a\left(2^{i / 2}\right) & \text { for } i \text { even } \\
a\left(2^{(i-1) / 2}\right) & \text { for } i \text { odd }\end{cases} \\
\tilde{w}_{i}=\tilde{p}_{i}^{2}-E \tilde{q}_{i}^{2}=(-a)^{i-1}
\end{gathered}
$$

In particular, $\tilde{w}_{1}=1$ and $\left\{\tilde{w}_{i}\right\}$ is $(-N / 2)$-periodic of period 1 beginning with $i=1$.
Proof. This follows from a careful, lengthy, but elementary inductive argument.
Since we will be comparing cf_{N} expansions with cf_{1} expansions, we must introduce more complicated notation. For fixed E, and any N, we let $C_{i, N}=\tilde{p}_{i, N} / \tilde{q}_{i, N}$ and $\tilde{w}_{i, N}=$ $\tilde{p}_{i, N}^{2}-E \tilde{q}_{i, N}^{2}$. But when N is clear from the context, we use our simpler notation.

Given the classical theory of continued fractions, there is one easy case.
Lemma 3.13. Let $\sqrt{E}=\left[a_{0}, \overline{a_{1}, \ldots, a_{k}}\right]_{1}$ be periodic of period k.
Let $N \leq \min \left(a_{2}, a_{4}, a_{6}, \ldots, a_{k}\right)$ if k is even, and let $N \leq \min \left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)$ if k is odd. Then

$$
\tilde{w}_{k m-1, N}=(-1)^{k m} \quad \text { for every } m
$$

and every solution of $p^{2}-E q^{2}= \pm 1$ in nonnegative integers arises in this way.
Proof. By Lemma 1.7, this condition on N gives

$$
[[\sqrt{E}]]_{N}=I_{N}\left([\sqrt{E}]_{1}\right)
$$

(where the N-inflation operator I_{N} was defined in Definition 2.1), and then in this case $C_{i, N}=C_{i, 1}$ for every i. But this result for $N=1$ is the basic relationship between classical continued fractions and solutions to Pell's equation.

Here is another interesting general case in which we obtain all solutions from a cf_{N} expansion with $N>1$, and moreover more quickly than in the classical case.
Lemma 3.14. Let $E=D^{2}+4$ for $D>1$ odd, and consider the best expansions given by Lemma 2.6,

$$
\sqrt{E}=[[D, \overline{(D-1) / 2,1,1,(D-1) / 2,2 D}]]_{1} \text { of period } 5
$$

and

$$
\sqrt{E}=\left[\left[D, \overline{\left(D^{2}-1\right) / 2, D, 2 D^{2}+2, D,\left(D^{2}-1\right) / 2,2 D}\right]\right]_{D} \quad \text { of period } 6
$$

Then $\tilde{w}_{-1, D}=-1, \tilde{w}_{0, D}=-4, \tilde{w}_{1, D}=2 D^{2}+1$, and $\left\{\tilde{w}_{i, D}\right\}$ is (-1)-periodic of period 3 beginning at $i=-1$. In particular

$$
\tilde{w}_{3 m-1, D}=w_{5 m-1,1}=(-1)^{m} \quad \text { for every } m,
$$

and every solution of $p^{2}-E q^{2}= \pm 1$ in nonnegative integers arises in this way.

Proof. It is easy to compute that $C_{3, D}=C_{5,1}=\left(\left(D^{3}+3 D\right) / 2\right) /\left(\left(D^{2}+1\right) / 2\right)$, giving the polynomial family of solutions

$$
\left(\frac{D^{3}+3 D}{2}\right)^{2}-\left(D^{2}+4\right)\left(\frac{D^{2}+1}{2}\right)^{2}=-1
$$

and that $C_{6, D}=C_{10,1}=\left(\left(D^{6}+6 D^{4}+9 D^{2}+2\right) / 2\right) /\left(\left(D^{5}+4 D^{3}+3 D\right) / 2\right)$, giving the polynomial family of solutions

$$
\left(\frac{D^{6}+6 D^{4}+9 D^{6}+2}{2}\right)^{2}-\left(D^{2}+4\right)\left(\frac{D^{5}+4 D^{3}+3 D}{2}\right)^{2}=1,
$$

and then proceed by induction.
Lemma 3.15. (a) For the expansion, for $D \geq 3$ odd,

$$
\sqrt{D^{2}+2 D}=\left[\left[D, 2 D+2, \overline{8 D^{3}+16 D^{2}+6 D, 2 D+3}\right]\right]_{2 D+1}
$$

$\tilde{w}_{-1}=1, \tilde{w}_{0}=-2 D$, and $\left\{\tilde{w}_{i}\right\}$ is periodic of period 2 from $i=-1$.
(b) For the expansion, for $D \geq 3$ odd,

$$
\sqrt{D^{2}+2 D}=\left[\left[D, 2 D+3, \overline{4 D^{2}+4 D, 2 D+4}\right]\right]_{2 D+2}
$$

$\tilde{w}_{-1}=1, \tilde{w}_{0}=-2 D, \tilde{w}_{1}=2 D+4$, and $\left\{\tilde{w}_{i}\right\}$ is periodic of period 2 from $i=0$.
(c) For the expansion

$$
\sqrt{D^{2}+2 D-1}=\left[\left[D, \overline{D+1,2 D^{3}+2 D^{2}-2 D, D+1,2 D}\right]\right]_{D}
$$

$\tilde{w}_{-1}=1, \tilde{w}_{0}=-(2 D-1)$, and $\left\{\tilde{w}_{i}\right\}$ is periodic of period 2 from $i=-1$.
(d) For the expansion, for $D \geq 4$ even,

$$
\sqrt{D^{2}+2 D-3}=\left[\left[D, \overline{D+2,\left(D^{2}-2 D\right) / 2, D+2,2 D}\right]\right]_{D}
$$

$\tilde{w}_{-1}=1, \tilde{w}_{0}=-(2 D-3), \tilde{w}_{1}=D+3, \tilde{w}_{2}=-(2 D-3)$, and $\left\{\tilde{w}_{i}\right\}$ is periodic of period 4 from $i=-1$.

Proof. We prove (a). The other parts are similar.
To begin with we have $p_{-1}=1, q_{-1}=0$, so $\tilde{p}_{-1}=1, \tilde{q}_{-1}=0$ and $\tilde{w}_{-1}=w_{-1}=1$. We also have $p_{0}=D, q_{0}=1$, so $\tilde{p}_{0}=D, \tilde{q}_{0}=1$ and $\tilde{w}_{0}=w_{0}=-2 D$. We then compute $p_{1}=2 D^{2}+4 D+1, q_{1}=2 D+2$, so $\tilde{p}_{1}=p_{1}, \tilde{q}_{1}=q_{1}$, and $\tilde{w}_{1}=w_{1}=1$.

We then compute inductively that, for all $k \geq 0$,

$$
\begin{aligned}
p_{2 k+1} & \equiv p_{2 k} \equiv(2 D+1)^{k}(-1)^{k} D \quad\left(\bmod (2 D+1)^{2 k+1}\right) \\
q_{2 k+1} & \equiv q_{2 k} \equiv(2 D+1)^{k}(-1)^{k} \quad\left(\bmod (2 D+1)^{2 k+1}\right)
\end{aligned}
$$

In particular this implies that g_{i+2} / g_{i} is divisible by $2 D+1$, where $g_{i}=\operatorname{gcd}\left(p_{i}, q_{i}\right)$, and hence that w_{i+2} / w_{i} is divisible by $(2 D+1)^{2}$. But by Theorem $3.6 w_{i+2} / w_{i}=(2 D+1)^{2}$. Hence $g_{i+2} / g_{i}=2 D+1$ for each i, and then the $(2 D+1)^{2}$-periodicity of $\left\{w_{i}\right\}$ of period 2 from $i=-1$ gives the 1-periodicity (i.e., periodicity) of $\left\{\tilde{w}_{i}\right\}$ of period 2 from $i=-1$.

We conclude by giving a number of illustrations of the sort of intricate and varied behavior we see. This behavior is indicated by extensive computations, but has not been proved.

Conjectural Example 3.16. (a) $[[\sqrt{335}]]_{1}$ is periodic of period 4, and so we obtain all nontrivial solutions of $p^{2}-335 q^{2}=1$ from $(p, q)=\left(p_{4 i-1,1}, q_{4 i-1,1}\right)$ for $i \geq 1$. $[[\sqrt{335}]]_{6}$ is periodic of period 26 from $i=-1$, and $\left\{\tilde{w}_{i, 6}\right\}$ is periodic of period 26 from $i=-1$. We obtain solutions (p, q) of $p^{2}-335 q^{2}=1$ from $\left(\tilde{p}_{k, 6}, \tilde{q}_{k, 6}\right)$ for $k \equiv 3,21$, or $25(\bmod 26)$. Note these solutions are not evenly spaced among $\left\{\tilde{w}_{k, 6}\right\}$. Also, for every $j \geq 0$

$$
\begin{aligned}
\left(\tilde{p}_{26 j+3,6}, \tilde{q}_{26 j+3,6}\right) & =\left(p_{28 j+3,1}, q_{28 j+3,1}\right) \\
\left(\tilde{p}_{26 j+21,6}, \tilde{q}_{26 j+21,6}\right) & =\left(p_{28 j+23,1}, q_{28 j+3,1}\right) \\
\left(\tilde{p}_{26 j+25,6}, \tilde{q}_{26 j+25,6}\right) & =\left(p_{28 j+27,1}, q_{28 j+27,1}\right)
\end{aligned}
$$

so that the solutions we obtain from $[[\sqrt{335}]]_{6}$ are not evenly spaced among the solutions to Pell's equation.
(b) $[[\sqrt{393}]]_{2}$ is periodic of period 11 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is (-2)-periodic of period 11 from $i=32$. Also, $\tilde{w}_{15}=\tilde{w}_{31}=1$, yielding two solutions to Pell's equation.
(c) $[[\sqrt{331}]]_{3}$ is periodic of period 9 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is (-3)-periodic of period 9 from $i=23$. Also, $\tilde{w}_{23}=1$.
(d) $[[\sqrt{397}]]_{2}$ is periodic of period 10 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is (-1)-periodic of period 15 from $i=-1$. Hence $\tilde{w}_{k}=-1$ for $k \equiv 14(\bmod 30)$ and $\tilde{w}_{k}=1$ for $k \equiv 29(\bmod 30)$.
(e) $[[\sqrt{1856}]]_{6}$ is periodic of period 40 from $i=-1$. $\left\{\tilde{w}_{i}\right\}$ is periodic of period 20 from $i=-1$. Also, $\tilde{w}_{k}=1$ for $k \equiv 9$ or $19(\bmod 20)$.
(f) $[[\sqrt{118}]]_{6}$ is periodic of period 3 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is $(-3)^{8}$-periodic of period 24 from $i=2$.
(g) $[[\sqrt{61}]]_{4}$ is periodic of period 3 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is (-1)-periodic of period 9 from $i=-1$.
(h) $[[\sqrt{407}]]_{12}$ is periodic of period 24 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is periodic of period 24 from $i=-1$. Also, $\tilde{w}_{i}=1$ for $i \equiv 3(\bmod 4)$.
(i) $[[\sqrt{283}]]_{2}$ is periodic of period 21 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is periodic of period 42 from $i=-1$. Also, $\tilde{w}_{i}=1$ for $i \equiv 13(\bmod 14)$.
(j) $[[\sqrt{464}]]_{30}$ is periodic of period 10 from $i=-1 .\left\{\tilde{w}_{i}\right\}$ is 25 -periodic of period 10 from $i=11$. Also, $\tilde{w}_{11}=1$.
(k) $[[\sqrt{401}]]_{50}$ is periodic of period 12 from $i=1 .\left\{\tilde{w}_{i}\right\}$ is periodic of period 12 from $i=0$. Also, $\tilde{w}_{i}=-1$ for $i \equiv 0,2$, or $10(\bmod 12)$.
(1) $\left[[\sqrt{1410}]_{2}\right.$ is apparently not periodic, and $\tilde{w}_{i}=1$ for $i=3,9,13,17,25$.

Note that in all parts of this example (except part (1)) the periodicity of $[[\sqrt{E}]]_{N}$ is proved, and the computations of \tilde{w}_{k} for individual values of k are correct. It is the remaining claims that are conjectural.

Acknowledgements

Preparation of this manuscript for publication was supported by a Faculty Research Grant from Lehigh University.

REFERENCES

[1] Burger, E. B., Gell-Redman, J., Kravitz, R., Welton, D., and Yates, N. Shrinking the period lengths of continued fractions while still capturing convergents. J. Number Theory 128 (2008), 144-153.
[2] Komatsu, T. Shrinking the period length of quasi-periodic continued fractions. J. Number Theory 129 (2009), 358-366.
[3] Kumanduri, R. and Romero, C. Number Theory with Computer Aplications, Prentice-Hall, Upper Saddle River, NJ, 1998.
[4] Perron, O. Die Lehre von den Kettenbruchen, B. G. Teubner, Leipzig and Berlin, 1913.
Maxwell Anselm: Department of Mathematics, Lehigh University, Bethlehem, PA 18015-3174, USA

E-mail address: mba210@lehigh.edu
Steven H. Weintraub (corresponding author): Department of Mathematics, Lehigh UniVERSITY, BETHLEHEM, PA 18015-3174, USA
TEL.: 610-758-3717
FAX: 610-758-3767
E-mail address: shw2@lehigh.edu

[^0]: 2000 Mathematics Subject Classification. 11A55.
 Key words and phrases. Continued fractions, Pell's equation.

