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An Introduction to q-analysis

The phrase “q-analysis” was used in the first referee’s report I ever got. While
the subject of this book has a flavor all its own, and has been studied for almost
300 years, there is no term in common use that describes it really well. The closest
standard name is “q-series”, which is not bad—finite and infinite series occur almost
everywhere, as does the letter q—but it is a little too restrictive. I think it needs
another appellation, q-analysis is the best one I can think of, and I thank that
anonymous referee for it (and an excellent report). Peter Paule used it in [181].

I have tried very hard to write a book that can be read by undergraduates.
The prerequisites are minimal. One cannot have “the fear of all sums” that plagues
many calculus students, but very little specific knowledge of calculus 2 will be
required. In particular, you do not need an extensive knowledge of convergence
tests, since for q-series the ratio test is nearly always appropriate. (The root test is
marginally better in a few cases, and once in a while the nth term test is helpful.)
Moreover, we will be much less concerned with when or whether an infinite series
converges than with what it converges to.

We will also be seeing zillions of finite and infinite products of a certain kind
(this is one reason why I don’t want to just say “q-series”), but no prior knowledge
of these is assumed. What little we need is developed in Appendix B, and even
this can be skipped if one is willing to believe that the infinite products converge.
Previous experience with mathematical induction would surely be helpful, but few
if any subjects are as well suited to teach induction as q-analysis. The instructor
should try to ensure that the students are comfortable with induction (or at least
getting more comfortable) early in the term. It is used less often after the first two
chapters, but it never goes away.

In the first section of the book it would help to know (or to be told) what
(
n
2

)
means. No further knowledge of binomial coefficients is really necessary since we
will make an extensive study of q-binomial coefficients and theorems in the first
two chapters that will fill in any gaps. In a few places we will use complex numbers
at the level of eiθ = cos θ + i sin θ. There are some allusions to deeper parts of
complex analysis in Chapter 13.

Where to start studying q-analysis is not completely clear. In this book one
could start with any of the first three chapters. Chronologically, the story begins
with the pathbreaking work on partitions in Chapter 16 of the greatest mathematics
book ever written, Leonhard Euler’s Introductio in Analysin Infinitorum, which is
the subject of my Chapter 3, and I have started before with what is now the first
part of Chapter 2. The motivation for the current order is that I would rather
work with finite sums (Chapter 2) before infinite ones (Chapter 3 and beyond),
and I now prefer to discuss the combinatorial properties of q-binomial coefficients
(Chapter 1) before q-binomial theorems (Chapter 2).

xi
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xii AN INTRODUCTION TO q-ANALYSIS

When I began this project many years ago, I intended that the q-derivative
would play a larger role, but it now appears only in the optional sections 2.4 and
3.8, and in the last few sections of Chapter 9. The lovely little book [154] takes
this point of view, which relieves me of some responsibility, and my own thinking
has changed somewhat. While the formal analogies with ordinary calculus are
undeniably beautiful, strictly speaking one can’t go much beyond Euler that way,
and I would rather develop Euler’s theorems hand-in-hand with their combinatorial
meaning.

There is, I believe, enough material here for two semesters. In a single semester,
the instructor has a lot of flexibility. Aside from Chapter 3, the only really essential
sections are 1.2, 1.3, two of 2.1–2.3, and 5.1. One can choose to emphasize the
history of the subject, or its combinatorial aspects, or the applications to number
theory; or one can just pick out the results that one finds the most beautiful. No
other subject has as many beautiful formulas (in my possibly biased opinion), so
one will get a lot of that no matter what one does. Here are some specific comments
on each chapter:

I think one should try to resist the temptation to go too rapidly over the first
several sections of Chapter 1, at least with undergraduates. I include Terquem’s
proof partly for historical reasons and partly to emphasize the cleverness of Ro-
drigues by comparison, but partly also as a device to slow myself down. Even
though the ideas are initially very simple, nothing less than a parallel universe of
mathematics is being constructed here, and students need time to become citizens
of it. (The notation alone takes some getting used to. I have included a brief sum-
mary for reference in Appendix A.) Conjugate permutations and Rothe diagrams
can be skipped, although they foreshadow the more important idea of conjugate
partitions in Chapter 3. Section 1.6 is not vital, but it shows that sections 1.2 and
1.3 are hinting at something more general. A course emphasizing combinatorics
should do sections 1.5 and 1.7.

The centerpiece of Chapter 2 is Rothe’s q-binomial theorem in section 2.3. It is
equivalent to the Potter–Schützenberger theorem of sections 2.1 and 2.2—perhaps
less beautiful, but more useful. As much as anything else, what one wants to get
out of the first two chapters is the sense that these two theorems and what I call the
Fundamental Property of q-binomial coefficients (section 1.3) are really all saying
the same thing.

One can do any two of sections 2.1–2.3. If you like both 2.1 and 2.2, then
you can do Rothe’s q-binomial theorem by Gruson’s method (see the exercises in
section 2.2) rather than as in section 2.3. (Instructors should in general be alive
to the possibility of doing something in the exercises instead of or in addition to
the text.) Gauss’s identities in section 2.5 are largely of historical interest, but the
second has an important connection with Sylvester’s fishhook bijection in section
4.5, the first plays a minor role in section 9.7, and both are used in section 11.4.
They are proved again in section 3.5, so one can at least postpone them. Although
Jacobi’s q-binomial theorem has historically been underrated, in my opinion, it
could just be stated here, as there is a natural proof in section 3.6. Euler’s theorem
in section 2.9 also deserves to be better known, but the rest of the section can be
skipped.

Sometimes one proves a q-identity by first establishing a finite form of it and
then taking a limit. The limiting process often technically requires a little-known
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AN INTRODUCTION TO q-ANALYSIS xiii

result from analysis calledTannery’s theorem, which I have included in Appendix
C, though the application is usually not made explicit. The parts of Chapter 2 not
already mentioned present finite forms of identities yet to come. MacMahon’s q-
binomial theorem in section 2.7 is of some independent interest, but it is mainly
a finite form of the Jacobi triple product, the most important identity appearing
after Chapter 3, for which several other proofs are also given. MacMahon’s identity
might better be presented as in problem 7 of section 2.7 instead of as in the text.
The partial fractions identity in section 2.8 has been included mainly to allow an
instructor to do the number-theoretic applications in Chapter 7 without having
to do Ramanujan’s 1ψ1 summation in Chapter 6. The Chen–Chu–Gu identity in
section 2.10 is a finite form of the quintuple product identity in section 5.3, but
that section is also optional, and it contains a second proof.

Chapter 3 introduces partitions, a subject at the intersection of combinatorics
and number theory that pervades the rest of the book. The subset of q-identities
with natural partition-theoretic interpretations is so large that partitions must be
considered an essential part of q-analysis, not just an application of it. Analytically,
nearly everything in Chapter 3 is a corollary of the Cauchy/Crelle series (my name;
experts will know it as the infinite series version of the q-binomial theorem), which
is not difficult to prove directly. However, it is not just the truth of the theorems
that I want to establish, but their significance and their inevitability. (This I think
is a word that mathematicians should use more often. I have seen it in Hardy’s
moving obituary of Ramanujan [131] and in Rota’s equally beautiful essays [204]
and [205]. It is also on the back cover of [154]. For Rota, it comes from Immanuel
Kant.) I believe it is more illuminating to work from the bottom up here than from
the top down, so I recommend that most of the material in the first seven sections
of Chapter 3 be done in the order in which it appears. (In a graduate course, one
might try to save some time here.) Franklin’s “excesses” argument in section 3.4
can be skipped, as can the combinatorial proof of Cauchy/Crelle in section 3.7.
The material on ee partitions in section 3.3 is included mostly as background for
the Göllnitz–Gordon identities in Chapter 11.

Any course on q-analysis should include Euler’s pentagonal number theorem,
but one has several options. The historically minded reader might do section 4.1,
which is essentially Euler’s argument, but others may just note the recurrence in
(4.1.4). The combinatorially minded reader should do sections 4.2 and 4.3, which
present Franklin’s gorgeous partition-theoretic proof; this is one of the greatest
achievements of Sylvester’s group at Johns Hopkins in the early 1880s and is highly
recommended. The other attractive option is to wait for Jacobi’s triple product
identity in section 5.1, as the pentagonal number theorem is an easy corollary.
Euler’s theorem on divisor sums in section 4.4 explains why he worked so hard to
prove the pentagonal number theorem, so it should be done by readers interested
either in number theory or in history. The latter can skip the rest of the section.
Another triumph of the Johns Hopkins school is Sylvester’s fishhook bijection in
section 4.5.

Section 5.1 proves Jacobi’s triple product identity. None of the other sections
in Chapter 5 is vital, although they are all interesting. The most important are
sections 5.5 and 5.7, but section 5.3 is used in Chapter 8 and section 5.4 has a
connection with section 4.5.
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xiv AN INTRODUCTION TO q-ANALYSIS

The next three chapters are shorter than the first five. Chapter 6 is devoted to
Ramanujan’s 1ψ1 summation formula, which I think should be in any course. As
evidence of this I give several different proofs. Section 6.2 has four, two in the text
that rely on the q-Gauss sum from section 5.5, and two more in the problems that
don’t. Section 6.3 has a proof of the finite to infinite type, due to Michael Schlosser,
that needs the q-Pfaff–Saalschütz identity from section 5.7. The last three sections
outline another proof, due in part to Cauchy, that does not require Chapter 5 and
develops Jacobi’s triple product as a byproduct.

Chapter 7 contains applications of the 1ψ1 to Jacobi’s theorems on sums of two
and four squares. As mentioned above, one can do this material without Chapter
6 if one does section 2.8, which leads to a simple proof of the relevant special case.
But I think that most readers will like one or more of the proofs of the 1ψ1 at least
as well as the argument of section 2.8.

Chapter 8 is also on number theory, specifically congruence properties of par-
titions. The key theorem in the chapter was stated by Ramanujan, and has often
been called his “most beautiful” identity. The approach to it given here requires the
quintuple product identity from section 5.3. I might skip this chapter if I planned
to cover section 13.2.

Chapter 9 returns to combinatorics. The first five sections are a natural con-
tinuation of Chapter 1, although some of the material requires the first few sections
of Chapter 3. A highlight of this chapter is Foata’s bijective proof in section 9.3 of
MacMahon’s theorem that the inversion number and the major index are equidis-
tributed, and this requires only Chapter 1—it is not even necessary to do sections
9.1 and 9.2 first, although these simpler arguments may provide motivation. Sec-
tion 9.4 gives MacMahon’s original proof, and section 9.5 a pretty related result.
The last three sections in this chapter use the q-derivative, with section 9.8 giving
combinatorial properties of q-trigonometric functions.

Chapters 10–12 are on the Rogers–Ramanujan identities and related topics.
These can be done anytime after the Jacobi triple product, in a variety of ways.
Chapter 10 begins with Schur’s combinatorial proof, an extension of Franklin’s ar-
gument from Chapter 4. Perhaps the simplest proof, due to Robin Chapman, is
in section 10.2. It is another finite to infinite type argument and can be viewed
as a simplification of Schur’s second proof. Ramanujan’s proof is in section 11.1,
and a version of one of Rogers’s proofs is in section 11.3. Another of Rogers’s
proofs is nearly the same as Selberg’s proof, which is in Chapter 12. At a min-
imum, I suggest doing one of the proofs and section 11.2, which interprets the
Rogers–Ramanujan identities in terms of partitions. These three chapters also con-
tain similar q-identities with some further material on partitions, for example the
Göllnitz–Gordon identities, which are to the number 8 what the Rogers–Ramanujan
identities are to the number 5, in sections 11.6 and 11.7.

Chapter 13 is on Bailey’s “very well poised 6ψ6 sum”, probably the deepest
result in the book. The first few sections focus on a special case, with a more
elementary proof, that is still strong enough to give Ramanujan’s “most beautiful”
identity from Chapter 8 and Jacobi’s eight square theorem as corollaries. I give
Askey’s proof of the 6ψ6 formula, his similar evaluation of an integral, and finally
Watson’s transformation, another key fact about very well poised q-hypergeometric
series. Following Andrews’s fundamental survey paper from the mid 1970s, some
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AN INTRODUCTION TO q-ANALYSIS xv

of the exercises obtain the quintuple product and the two, four, and eight square
theorems as corollaries of the 6ψ6.

I should say something about the exercises. There are a lot of them, especially
in the first five chapters. They are vital to learning the subject, and I have worked
very hard on them. Many are routine, though there are more of these earlier in
the book than later; some are even trivial. For example, anything that looks like
“check equation so-and-so” is generally not difficult. There are also many longer
exercises, including some extremely long ones which if fleshed out could be (and in
several cases once were) entire sections. I have often broken the harder problems
into several parts, and no doubt some readers will feel that I have overdone this. A
student who feels spoon-fed might try guessing what the next step of the problem
ought to be. This could lead you to a better proof. If it does, please write to me
and tell me about it.

The manuscript has benefitted greatly from a detailed report by an anonymous
reviewer. Despite that person’s best efforts and mine, there are undoubtedly some
remaining errors, obscurities, and other infelicities. Please write to me if you find
any.

The three authors of [24] have each played an important role in my evolution as
a mathematician. My debt to George Andrews will be obvious to the most casual
reader of this book. He has profoundly affected my view of many of the subjects
presented here, both personally and through his writings, and he has done me many
kindnesses.

Ranjan Roy, who passed away while I was making the final edits to the book,
was a trusted mentor, friend, colleague, and role model for many years. More than
anyone else, he showed me the kind of career that I could have. It is also thanks to
him that I first got to teach some of this material to a fondly remembered group of
seven students at Beloit College in Fall 1996.

But I must dedicate the book to my late thesis advisor, Richard Askey. Dick
rescued my mathematical career in my second year of graduate school, just by being
himself, and he was very patient with me afterward throughout a slow process of
development. No one else has had as much influence on my adult life.
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CHAPTER 1

Inversions

1.1. Stern’s problem

We begin our story in 1838. There were very few mathematical journals then;
the best was August Leopold Crelle’s Journal für die Reine und Angewandte Math-
ematik, which is still one of the leading journals today. Volume 18 of Crelle’s Jour-
nal has a bit of filler on p. 100: three problems posed by Moritz Abraham Stern,
who was a well-known mathematician at the time though he is little remembered
today. (He was the first Jew to become a professor of mathematics at a Prussian
university—at Göttingen, home of Gauss, who had been his thesis adviser—without
converting.) Stern’s third problem was: what is the total number of inversions in
all of the permutations of {1, 2, . . . , n}?

We can’t hope to answer this question without first understanding it. A per-
mutation of {1, 2, . . . , n} is, for our purposes, simply a list of these numbers in
some order; e.g., 3746152 is a permutation of {1, 2, 3, 4, 5, 6, 7}. An inversion in
a permutation is a pair of (not necessarily consecutive) numbers that occur in de-
creasing order. In the permutation 15342, for example, 5, 3, and 4 all precede 2;
5 also precedes 3 and 4; and all other pairs of numbers appear in increasing order,
so there are 5 inversions, namely 53, 54, 52, 32, and 42. Let’s make a table of the
permutations of {1, 2, 3}:

permutation inversions # inversions
123 0
132 32 1
213 21 1
231 21, 31 2
312 31, 32 2
321 32, 31, 21 3

We see that there are 0+1+1+2+2+3 = 9 inversions in all the permutations
of {1, 2, 3}. Let’s introduce some notation: we let In equal the number Stern asked
for, i.e., In will denote the total number of inversions in all the permutations of
{1, 2, . . . , n}, so that I3 = 9. Since there are only two permutations of {1, 2},
namely 12 and 21, the former with no inversion and the latter with one, we have
I2 = 1, and it is also clear that I1 = 0. Stern worked out one more case, I4 = 72.
Let’s check this. To get all the permutations of {1, 2, 3, 4}, we just have to insert
4 into the permutations of {1, 2, 3} listed above, in every possible way. If we put 4

1
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2 1. INVERSIONS

at the beginning, this creates three new inversions in each permutation:

permutation inversions permutation inversions
4123 3 + 0 4231 3 + 2
4132 3 + 1 4312 3 + 2
4213 3 + 1 4321 3 + 3

There are 6 × 3 = 18 new inversions in these permutations, in addition to the
9 we already had, hence 27 inversions in all. Or we could put 4 into the second
position:

permutation inversions permutation inversions
1423 2 + 0 2431 2 + 2
1432 2 + 1 3412 2 + 2
2413 2 + 1 3421 2 + 3

Now there are 6 × 2 = 12 new inversions, and 9 old ones, so there are 21
inversions in these permutations. If 4 is put in the third position, then we have:

permutation inversions permutation inversions
1243 1 + 0 2341 1 + 2
1342 1 + 1 3142 1 + 2
2143 1 + 1 3241 1 + 3

Now there are 6 new inversions and 9 old ones; and finally if 4 is put at the end of
all the permutations in our original table, then there are no new inversions and the
same 9 old ones:

permutation inversions permutation inversions
1234 0 2314 2
1324 1 3124 2
2134 1 3214 3

Adding all this up we see that I4 = 27+21+15+9 = 72. Let’s write this arithmetic
more suggestively:

I4 = (18 + 9) + (12 + 9) + (6 + 9) + (0 + 9) = (18 + 12 + 6 + 0) + 4× 9

= 6(3 + 2 + 1 + 0) + 4 I3 = 3! (3 + 2 + 1 + 0) + 4 I3.

This is the case n = 3 of

(1.1.1) In+1 = n! {n+ (n− 1) + (n− 2) + · · ·+ 2 + 1 + 0}+ (n+ 1) In.

We can use the same argument as above to prove (1.1.1) in general. There are n!
permutations of {1, 2, . . . , n}, and to get all the permutations of {1, 2, . . . , n + 1}
we have to insert n + 1 into them in all possible ways. If we insert it in the kth

position in all the permutations of {1, 2, . . . , n}, this causes n−k+1 new inversions
in each permutation. Therefore there are n! (n − k + 1) new inversions, and In
old inversions, in all of the permutations of {1, 2, . . . , n + 1} in which n + 1 is in
the kth position. Since k may be any of 1, 2, . . . , n, n+ 1, when we add up all the
possibilities we get (1.1.1).

At an early stage of his career, the great French mathematician Joseph Liouville
decided that there should be a French mathematical journal comparable to Crelle’s,
so he started the Journal de Mathématiques Pures et Appliquées, and in 1839 several
solutions to Stern’s problem appeared there. The first was by Olry Terquem, who
later edited a journal himself, the Nouvelles Annales de Mathématiques ; unlike
Liouville’s and Crelle’s journals, it did not survive to the present day, but some
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1.1. STERN’S PROBLEM 3

important 19th century work appeared there. In volume 3 of Liouville’s Journal,
Terquem derives (1.1.1) (much less long-windedly than we did), and then uses it
to work out a formula for In. Our first solution will be similar in spirit, though we
will not follow Terquem exactly. As many readers probably know,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
=

(
n+ 1

2

)
(see the Exercises for proofs), so we may rewrite (1.1.1) as

In+1 = (n+ 1) In + n!

(
n+ 1

2

)
or as

(1.1.2) In = n In−1 + n!
n− 1

2
.

We may solve (1.1.2) for In by iteration—a technique we will also use many times.
If we replace n by n− 1 in (1.1.2), then it becomes

In−1 = (n− 1) In−2 + (n− 1)!
n− 2

2
,

and, substituting this into (1.1.2), we have

In = n

{
(n− 1) In−2 + (n− 1)!

n− 2

2

}
+ n!

n− 1

2

= n(n− 1) In−2 + n!

(
n− 2

2
+

n− 1

2

)
.(1.1.3)

If we replace n by n− 2 in (1.1.2), then it becomes

In−2 = (n− 2) In−3 + (n− 2)!
n− 3

2
,

and, substituting this into (1.1.3), we get

In = n(n− 1)

{
(n− 2) In−3 + (n− 2)!

n− 3

2

}
+ n!

(
n− 2

2
+

n− 1

2

)

= n(n− 1)(n− 2) In−3 + n!

(
n− 1

2
+

n− 2

2
+

n− 3

2

)
.

By this time it is reasonable to guess that

(1.1.4) In = n(n− 1) · · · (n−k+1) In−k+
n!

2
{(n− 1) + (n− 2) + · · ·+ (n− k)} .

This is the form we have found for k = 2 and k = 3, and for k = 1 it is just (1.1.2).
(When k = 0 it says In equals itself. Problem 3 gives a better way to write it.) We
prove (1.1.4) by induction on k, by exactly the same sort of calculation as above.
If we replace n by n− k in (1.1.2), then it becomes

In−k = (n− k) In−k−1 + (n− k)!
n− k − 1

2
,
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4 1. INVERSIONS

and if we substitute this in (1.1.4), then we get

In = n(n− 1) · · · (n− k + 1)

{
(n− k) In−k−1 + (n− k)!

n− k − 1

2

}

+
n!

2
{(n− 1) + (n− 2) + · · ·+ (n− k)}

= n(n− 1) · · · (n− k + 1)(n− k) In−k−1

+
n!

2
{(n− 1) + (n− 2) + · · ·+ (n− k) + (n− k − 1)} ,

which is (1.1.4) with k + 1 in place of k, so (1.1.4) is true by induction. Taking
k = n− 1 there we get

In = n(n− 1) · · · 2 I1 +
n!

2
{(n− 1) + (n− 2) + · · ·+ 1} .

But I1 = 0, so the first term vanishes, and the second term simplifies to

(1.1.5) In =
n!

2

(
n

2

)
.

One could hardly hope for a simpler formula, but one might wish for a simpler
solution. A much easier proof was given by Olinde Rodrigues in volume 4 of Liou-
ville’s Journal. If n < 2, then there are no inversions, so (1.1.5) certainly holds in
that case. If n ≥ 2, let the mate of a permutation be the same permutation read
backwards; thus, for example, the mate of 3416752 is 2576143. Then take each of
the n! permutations of {1, 2, . . . , n}, and consider it along with its mate. Call each
pair of permutations a couple, so that the permutations of {1, 2, 3} separate into
the couples 123 and 321, 132 and 231, 213 and 312. The point is that any pair of
numbers is inverted either in a given permutation or in its mate, but not both. For
example: in 3416752, 6 is inverted with 5 and 2, but not with 1, 3, 4, 7; whereas
in 2576143, 6 is inverted with 1, 3, 4, 7 but not with 2 and 5. The permutations
of {1, 2, . . . , n} separate into n!

2 couples. Each of the
(
n
2

)
pairs of the numbers

{1, 2, . . . , n} is an inversion exactly once in each couple, and so (1.1.5) is true.

We close this section with a digression that foreshadows an important concept in
Chapter 3. In 1800 Rothe defined the conjugate of a permutation π of {1, 2, . . . , n}
to be the permutation π′ that has b in the ath position whenever a is in the bth

position in π. Thus, for example, the conjugate of π = 5316742 is π′ = 3726145,
because 5 is first in π while 1 is fifth in π′, 3 is second in π while 2 is third in π′,
and so forth. Then we have

Theorem 1 (Rothe’s theorem on conjugate permutations). Conjugate permu-
tations have the same number of inversions.

In the above example π has 4 + 2 + 0 + 2 + 2 + 1 + 0 = 11 inversions, and π′

has 2 + 5 + 1 + 3 + 0 + 0 + 0 = 11 inversions. In general, suppose a is in the bth

position and c is in the dth position in π. Then b is in the ath position and d in
the cth position in π′. We may as well assume that b < d, which leaves us with
two possibilities. If a < c, then a and c are not inverted in π, and also b and d are
not inverted in π′ since b comes before d. If a > c, then a and c are inverted in π,
and the smaller b comes after the larger d in π′ so b and d are inverted there. So
each inversion in π has a corresponding inversion in π′, and vice versa. This proves
Rothe’s theorem.
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EXERCISES 5

Rothe’s proof is more interesting, if possibly less convincing. He introduces
something we will call the Rothe diagram of a permutation. We use the example
above to illustrate it. Since π and π′ have length 7, start with a labeled 7× 7 array
and represent the permutation 5316742 with dots in the appropriate rows:

1 2 3 4 5 6 7
1 •
2 •
3 •
4 •
5 •
6 •
7 •

Note that the columns represent the conjugate permutation 3726145. Then repre-
sent the inversions with ◦s. 5 is inverted with all of 1–4, so we put four ◦s to the left
of the bullet in the first row representing 5. 3 is inverted with 1 and 2, so we put
two ◦s to the left of the bullet in the second row. 1 is not inverted with anything
after it, so we do not use any ◦s in the third row. In the fourth row, 6 is inverted
in 5316742 only with 4 and 2, so we only put ◦s in these columns. Similarly 7 is
inverted only with 4 and 2, so only these columns get ◦s in the fifth row. In the
sixth row 4 is inverted with 2, so we put a ◦ in the second column, and there are
no ◦s in the last row:

1 2 3 4 5 6 7
1 ◦ ◦ ◦ ◦ •
2 ◦ ◦ •
3 •
4 ◦ ◦ •
5 ◦ ◦ •
6 ◦ •
7 •

This is the Rothe diagram of the permutation 5316742. Rothe then observes
that the ◦s in each column represent the inversions in the conjugate permuta-
tion 3726145: 3 is inverted with 2 and 1, 7 is inverted with everything but 3, 2 is
inverted with 1, and 6 is inverted with 1,4,5. This always happens, by the same
argument we used to prove Rothe’s theorem.

Exercises

1. The most standard evaluation of 1 + 2 + · · ·+ n is to write

Sn = 1 + 2 + · · · + n,
Sn = n + (n− 1) + · · · + 1

and then add the columns. Explain why this gives

Sn = 1 + 2 + · · ·+ n =
n(n+ 1)

2
=

(
n+ 1

2

)
.

This is often called the Gauss trick or some similar name. In his later years,
Gauss liked to tell a story of having used it with n = 100 in elementary school.

2. Prove the result of problem 1 by induction on n.
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6 1. INVERSIONS

3. A more careful statement of (1.1.4) is that, for any integer k with 0 ≤ k ≤ n,
we have

(1.1.6) In =
n!

(n− k)!
In−k +

n!

2

{
nk −

(
k + 1

2

)}
.

Prove that (1.1.6) is equivalent to (1.1.4).

4. Prove (1.1.6) by the same argument we used to prove (1.1.4).

5. Prove that (1.1.6) reduces to (1.1.5) if k = n− 1 or if k = n. What if k = n− 2?

6. Terquem’s solution of (1.1.1) is a forward iteration. Starting from In+1 =
(n+ 1) In + (n+ 1)! n2 , he proved that

In+p =
(n+ p)!

n!
In +

(n+ p)!

2

{
np+

(
p

2

)}
for any nonnegative integer p.

Then he set n = 1 to get Ip+1 = (p+1)!
2

(
p+1
2

)
, and then he renamed p + 1 as n

to get (1.1.5). Fill in the details of this argument.

7. If we define An = In
n! , show that (1.1.2) becomes An − An−1 = n−1

2 , where
A1 = 0. What does

(An −An−1) + (An−1 −An−2) + (An−2 −An−3) + · · ·+ (A2 −A1)

equal? (You should be able to give two good answers to this question.) Show
how this gives another derivation of (1.1.5).

8. What is the average number of inversions that a permutation of {1, 2, . . . , n}
has? Is the answer obvious—in other words, could you have guessed it if you
didn’t already know the answer to Stern’s problem? If so, can you make this
observation into a solution of Stern’s problem?

9. Another nice solution of Stern’s problem has been given by Emeric Deutsch
(private communication). For each inversion in each permutation of {1, 2, . . . , n}
we get to choose three things:
(a) which two numbers are inverted,
(b) which two positions those numbers occupy (the larger one coming first),
(c) the positions of the other n− 2 numbers.
Show how this gives (1.1.5).

10. A common technique for solving recurrence relations is to introduce a generating

function. Here is an outline of such a solution of (1.1.1): if f(x) =
∞∑
n=0

In
xn

n! ,

then (since I0 = 0)

f(x) =
∞∑
n=0

In+1
xn+1

(n+ 1)!

=
∞∑
n=0

{
(n+ 1) In + (n+ 1)!

n

2

} xn+1

(n+ 1)!

= x

∞∑
n=0

In
xn

n!
+

∞∑
n=0

n

2
xn+1

= x f(x) +
x2

2

∞∑
n=0

nxn−1,
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1.2. THE q-FACTORIAL 7

so

(1− x) f(x) =
x2

2

1

(1− x)2
and hence f(x) =

x2

2 (1− x)3
.

But

x2

2 (1− x)3
=

x2

2

∞∑
k=0

(
k + 2

2

)
xk =

1

2

∞∑
k=0

(
k + 2

2

)
xk+2 =

1

2

∞∑
n=2

(
n

2

)
xn,

so (1.1.5) holds. Fill in the details of this argument.

11. Draw the Rothe diagram of the permutation π = 596381472, find the conjugate
permutation π′, and check that they have the same number of inversions.

12. Some permutations are their own conjugates, like 1 and 321 and 4561237. If Un

denotes the number of self-conjugate permutations of {1, 2, . . . , n}, show that
U1 = 1, U2 = 2, U3 = 4, and U4 = 10.

13. Show that U5 = 26, and that in general Un+1 = Un + nUn−1 for n ≥ 1, where
we define U0 = 1. (Hint: Consider the different positions that n+1 can occupy
in a self-conjugate permutation of {1, 2, . . . , n, n+ 1}.)

14. As in problem 10, we can convert the recurrence relation of problem 13 into a
generating function for the numbers Un. Show that if U0 = 1 and Un+1 = Un +

nUn−1 for n ≥ 1, and if g(x) =
∞∑

n=0
Un

xn

n! , then g(0) = 1 and g′(x) = (1+x) g(x).

Explain why this implies that

∞∑
n=0

Un
xn

n!
= e

x2

2 +x.

It is possible to “solve” this to get an explicit formula for Un, but we leave this
until section 1.6.

1.2. The q-factorial

While Rodrigues’s proof shows that a seemingly difficult problem sometimes
becomes easy when looked at the right way (a phenomenon that we can never have
too many examples of), the main point of his paper was something else. Let’s
repeat our first table with an added column, and some obvious abbreviations:

perm inv qinv perm inv qinv

123 0 q0 231 2 q2

132 1 q1 312 2 q2

213 1 q1 321 3 q3

Here q is a variable, and we just made the inversions column an exponent of q in
the succeeding column. When we added up the inversions column we got 9; when
we add up the new column we get

1 + q + q + q2 + q2 + q3 = (1 + q + q2) + (q + q2 + q3) = (1 + q)(1 + q + q2).

Now think about what happens when we insert 4 into these permutations, as we
did in section 1.1. Let’s re-do some of those tables. If 4 is at the beginning, then
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8 1. INVERSIONS

we have
perm qinv perm qinv

4123 q3+0 4231 q3+2

4132 q3+1 4312 q3+2

4213 q3+1 4321 q3+3

where again q is a variable, and we just made the inversions column in the previous
version of this table an exponent of q. Evidently there is a common factor of q3,
representing the three inversions caused by putting 4 at the beginning, and the
total contribution from these permutations is q3(1 + q)(1 + q + q2). If 4 is in the
second position, then we have:

perm qinv perm qinv

1423 2 + 0 2431 2 + 2
1432 2 + 1 3412 2 + 2
2413 2 + 1 3421 2 + 3

Here there is a common factor of q2, since there are two inversions involving 4 in
each of these permutations, which in all contribute q2(1+q)(1+q+q2). If 4 is in the
third position, then it will cause one inversion, and otherwise we will have the same
inversions as before, so those permutations yield q(1+ q)(1+ q+ q2). Finally, if 4 is
at the end, then it causes no new inversions, so these permutations just contribute
the same thing as the permutations of {1, 2, 3}, namely (1+q)(1+q+q2). In all, the
permutations of {1, 2, 3, 4} therefore contribute (1+ q)(1+ q+ q2)(1+ q+ q2 + q3).

Something quite beautiful seems to be happening here, and we need to make
a careful statement of just what that something is. First let’s introduce some
notation, so that we may describe it succinctly. We keep getting polynomials of the
form 1 + q + q2 + · · ·+ qn−1 for various positive integers n, so let’s define

[n]q := 1 + q + q2 + · · ·+ qn−1 if n is a positive integer.

These polynomials are finite geometric series, which means that we can use a well-
known trick to rewrite them. Note that

q[n]q = q + q2 + · · ·+ qn−1 + qn, and therefore [n]q − q[n]q = 1− qn.

If q �= 1, then we can solve this for [n]q: [n]q = 1−qn

1−q if n is a positive integer and

q �= 1. If q = 1 ,then [n]q is just n. This allows us to make a more general definition:
if n is any real number (not necessarily a positive integer), then

[n]q =

{
1−qn

1−q if q �= 1

n if q = 1.

[n]q is called the q-analogue of the number n. n will almost always be a positive
integer in what follows, but the more general definition allows us to conclude that
[0]q = 0; note also that [1]q = 1.

Next, we define the q-analogue of n! in the obvious way:

n!q := [1]q[2]q · · · [n]q.
It is convenient to define 0!q = 1, just as 0! is defined to be 1. (As a general rule,
one always defines an empty sum to be 0, and an empty product to be 1; that way
you don’t change something by adding an empty sum to it, or by multiplying it by
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1.2. THE q-FACTORIAL 9

an empty product. Since [n]q is essentially a sum and n!q essentially a product, in
some sense this explains why [0]q ought to be 0 and 0!q ought to be 1.)

Let us also pause here to bring in some notation that will be used extensively
later on. If we write out the definition of n!q without using the [k]q notation it
looks like

n!q =
1− q

1− q

1− q2

1− q
. . .

1− qn

1− q
.

Products like the numerator of this fraction occur very often in this subject, so let’s
define

(q; q)n :=

{
(1− q)(1− q2) · · · (1− qn) if n is a positive integer,

1 if n = 0,

so that

(1.2.1) (q; q)n = (1− q)n n!q.

In later chapters we will generalize this notation by defining

(a; q)n :=

{
(1− a)(1− aq)(1− aq2) · · · (1− aqn−1) if n is a positive integer,

1 if n = 0.

Now we are in a position to describe the theorem that we were seeing above.
When we looked at all the permutations of {1, 2, 3}, counted all the inversions in
each, made all those inversion numbers exponents of a variable q, and added all the
terms together, we wound up with a polynomial that factored as (1+q)(1+q+q2).
Since [1]q = 1, we now see that this is the same thing as [1]q[2]q[3]q, which is 3!q.
Moreover, when we did the same thing with all the permutations of {1, 2, 3, 4} we
wound up with 1(1+ q)(1+ q+ q2)(1+ q+ q2+ q3), which is 4!q. The general result
is

Theorem 2 (Rodrigues’s theorem). If Π(n) is the set of all permutations of
{1, 2, . . . , n}, then

n!q =
∑

π∈Π(n)

qinv π.

One can put Rodrigues’s theorem in a slightly different form: f rk(n) denotes
the number of permutations of {1, 2, . . . , n} with exactly k inversions, then

n!q =

(n2)∑
k=0

rk(n) q
k.

This simply combines like terms in the previous version of the theorem. The upper
limit is

(
n
2

)
because that is the largest number of inversions that a permutation of

{1, 2, . . . , n} can have.

We may prove Rodrigues’s theorem by induction on n. We have done the cases
n = 3 and n = 4 already, and we leave it to the reader to check it for smaller n.
Assuming Rodrigues’s theorem holds for n, consider the sum

∑
π∈Π(n+1)

qinvπ, where
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10 1. INVERSIONS

Π(n+1) is the set of all permutations of {1, 2, . . . , n, n+1}. We treat this the same
way as before—split it up according to where n+ 1 is in each permutation:∑

π∈Π(n+1)

qinvπ =
∑

π∈Π(n+1)
n+1 is first

qinvπ +
∑

π∈Π(n+1)
n+1 is second

qinvπ + · · ·+
∑

π∈Π(n+1)
n+1 is last

qinvπ

If n+ 1 is in the first position, then it is inverted with all of {1, 2, . . . , n}, so there
are n inversions involving n + 1, and some other inversions not involving n + 1.
(We were calling these the “new inversions” and the “old inversions” respectively
above.) For the inversions not involving n + 1, we can completely ignore n + 1,
and permutations of {1, 2, . . . , n, n+ 1} in which n+ 1 is ignored are in effect just
permutations of {1, 2, . . . , n}. Therefore∑

π∈Π(n+1)
n+1 is first

qinvπ =
∑

π∈Π(n+1)
n+1 is first

qinvπ involving n + 1 qinvπ not involving n + 1

= qn
∑

π∈Π(n+1)
n+1 is first

qinvπ not involving n + 1

= qn
∑

π∈Π(n)

qinvπ = qn n!q,

where the last step uses the induction hypothesis. Now∑
π∈Π(n+1)

n+1 is second

qinvπ

is exactly the same, except that if n+ 1 is second in a permutation of {1, 2, . . . , n,
n+ 1}, then it is inverted with whatever n− 1 numbers come after it. So∑

π∈Π(n+1)
n+1 is second

qinvπ =
∑

π∈Π(n+1)
n+1 is second

qinvπ involving n + 1 qinvπ not involving n + 1

= qn−1
∑

π∈Π(n+1)
n+1 is second

qinvπ not involving n + 1

= qn−1
∑

π∈Π(n)

qinvπ = qn−1 n!q

and in general we have∑
π∈Π(n+1)

qinvπ =
∑

π∈Π(n+1)
n+1 is first

qinvπ +
∑

π∈Π(n+1)
n+1 is second

qinvπ + · · ·+
∑

π∈Π(n+1)
n+1 is last

qinvπ

= qn n!q + qn−1 n!q + · · ·+ 1 · n!q
=
(
qn + qn−1 + · · ·+ 1

)
n!q

= [n+ 1]q n!q = (n+ 1)!q.

This proves Rodrigues’s theorem by induction.
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EXERCISES 11

Exercises

1. Check that Rodrigues’s theorem holds in the cases n = 0, 1, 2.

2. Explain why the largest number of inversions that a permutation of {1, 2, . . . , n}
can have is

(
n
2

)
. Which permutation (or permutations) has (or have) this many

inversions?

3. Using L’Hopital’s rule or otherwise, evaluate lim
q→1

1−qn

1−q . Does the result make

sense when compared with the definition of [n]q?

4. Show that [n]q = [k]q + qk[n− k]q. This simple property is surprisingly useful.

5. Show that [−n]q = −q−n[n]q.

6. Show that [n]q + q[k]q[n− k − 1]q = [k + 1]q[n− k]q.

7. Show that qa−1[b+ 1]q − [a+ 1]q = qa+1[b− 1]q − [a− 1]q.

8. If n and k are positive integers, show that

[nk]q
[k]q

= 1 + qk + · · ·+ q(n−1)k = [n]qk .

9. Show that
1

[k]q
=

[
1

k

]
qk

.

10. Show that
n∑

k=1

q(k−1)2 [2k − 1]q = [n2]q.

We will need the q = 1 case (the sum of the first n odd numbers is n2) several
times later.

11. Show that
n∑

k=1

qk

[k]q [k + 1]q
=

q[n]q
[n+ 1]q

.

What happens to this identity as n → ∞? (The answer varies according to the
size of |q|. There is one value of q for which this sum doesn’t make sense. Which
one?)

12. If m is a positive integer, show that

n∑
k=1

qk

[k]q [k + 1]q · · · [k +m]q
=

1

[m]q

(
1

m!q
− n!q

(n+m)!q

)
.

What happens to this identity as n → ∞? (The answer varies according to the
size of |q|. There is one value of q for which this sum doesn’t make sense. Which
one?)

13. Show that
n∑

k=1

q4k−1

[2k − 1]q[2k]q[2k + 2]q[2k + 3]q
=

q

[3]q[4]q

(
1 +

1

[3]q
− 1

[2n+ 1]q
− 1

[2n+ 3]q

)

− 1

[2]q[3]q

(
1

[2]q
− 1

[2n+ 2]q

)
.
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12 1. INVERSIONS

What happens to this identity as n → ∞? (The answer varies according to the
size of |q|. There is one value of q for which this sum doesn’t make sense. Which
one?)

14. Another interpretation of the q-factorial is in terms of crossing diagrams.
There are six crossing diagrams from three nodes to three nodes, namely:

• ◦ � • ◦ � • ◦ �

• ◦ � ◦ • � • � ◦

• ◦ � • ◦ � • ◦ �

◦ � • � • ◦ � ◦ •
Connecting each node on the top line to the node of the same type on the bottom
line we find 0, 1, 1, 2, 2, 3 crossings respectively. If c(δ) denotes the number of
crossings in the diagram δ, and if Δ(3) denotes the set of six diagrams above,
then ∑

δ∈Δ(3)

qc(δ) = q0 + q1 + q1 + q2 + q2 + q3 = 3!q.

Prove that, if Δ(n) is the set of all crossing diagrams from n nodes to n nodes,
then

∑
δ∈Δ(n)

qc(δ) = n!q. There are two different ways that you might go about

this: either directly, by induction on n; or by setting up a 1-1 correspondence
between crossing diagrams and permutations and using Rodrigues’s theorem.

15. (This problem is due to Christopher Hammond.) Suppose F (a, b) satisfies

F (a, b) = F

(
a

q + a(1− q)
,

b

q + b(1− q)

)
.

(i) Show that

F (a, b) = F

(
a

qn + a(1− qn)
,

b

qn + b(1− qn)

)
for any nonnegative integer n.

(ii) Show that

A =
a

q + a(1− q)
⇐⇒ a =

A

q−1 +A(1− q−1)
.

(iii) Explain why (ii) implies that the result of (i) holds for every integer n.

(iv) How does the iteration in (i) behave as n → ∞? Consider the cases
q > 1, q = 1, −1 < q < 1, q = −1, and q < −1.

(v) How does the iteration behave as n → −∞?

16. Rodrigues used his theorem to give another solution to Stern’s problem. Here is
an outline of this solution:

(i)

log

⎛
⎝ ∑

π∈Π(n)

qinvπ

⎞
⎠ = log (n!q) =

n∑
k=1

log
(
1 + q + q2 + · · ·+ qk−1

)
.
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EXERCISES 13

(ii) Taking the derivative of the left and right sides of (i) with respect to q,
we get ∑

π∈Π(n)

(inv π) q(invπ)−1

∑
π∈Π(n)

qinvπ
=

n∑
k=1

1 + 2q + 3q2 + · · ·+ (k − 1)qk−2

1 + q + q2 + · · ·+ qk−1
.

(iii) Setting q = 1 in (ii) we get∑
π∈Π(n)

inv π

n!
=

n∑
k=1

1 + 2 + · · ·+ (k − 1)

k
=

n∑
k=1

k − 1

2
=

1

2

(
n

2

)
from which the answer to Stern’s problem follows. Fill in the details.

17. Recall the idea of self-conjugate permutations from problems 12–14 in the previ-
ous section, and define Un(q) =

∑
π
qinvπ, where the sum is over all self-conjugate

permutations of {1, 2, . . . , n}, and as usual invπ denotes the number of inver-
sions in the permutation π. Also define U0(q) = 1. Calculate the first several
values of Un(q), and show that

Un+1(q) = Un(q) +
(
q + q3 + q5 + · · ·+ q2n−1

)
Un−1(q) for n ≥ 1.

(Same hint as in problem 13 in the previous section.)

18. A reciprocal polynomial is one like 1 + 2q + 3q2 + 2q3 + q4 (which is [3]2q)
where the coefficients 1-2-3-2-1 are the same when read backwards as when read
forwards. More formally,

ckx
k + ck+1x

k+1 + ck+2x
k+2 + · · ·+ cn−2x

n−2 + cn−1x
n−1 + cnx

n

is a reciprocal polynomial if ck = cn, ck+1 = cn−1, ck+2 = cn−2, and so on,
i.e., ck+j = cn−j for every j. It might be better to call them palindromic
polynomials, but there is a good reason for the name reciprocal that we will see
in a moment. Since any factors of x do not affect the reciprocal property, we
may as well assume that the lowest power of x is zero. Note that if pn(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0, then

xn pn(
1
x ) = an + an−1x+ · · ·+ a1x

n−1 + a0x
n,

so if pn(x) is a reciprocal polynomial of degree n, then xn pn(
1
x ) = pn(x).

(i) Explain why the q-numbers are reciprocal polynomials.

(ii) Show that the product of a reciprocal polynomial of degree m and a
reciprocal polynomial of degree n is a reciprocal polynomial of degree m+ n.

(iii) Use (i) and (ii) to show that the q-factorials are reciprocal polynomials.

(iv) Consider all the permutations of {1, 2, . . . , n} and think of inversions.
What happens if we switch 1 and n, 2 and n− 1, and generally j and n+ 1− j
for every j? Try to use this idea and Rodrigues’s theorem to show that the
q-factorials are reciprocal polynomials. The result of problem 2 may help.

(v) Let p(x) = anx
n + · · ·+ a1x+ a0 be a polynomial of degree n. If there

is a k such that a0 ≤ a1 ≤ · · · ≤ ak and ak ≥ ak+1 ≥ · · · ≥ an, then p(x) is said
to be unimodal. For example, 3!q = 1 + 2q + 2q2 + q3 is unimodal with k = 1
or k = 2, and 4!q = 1+ 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6 is unimodal with k = 3.
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14 1. INVERSIONS

It is generally not easy to prove that a polynomial (or a sequence of numbers)
is unimodal. One problem is that an example like

(1+3q+q2+q3+q4)(1+2q+q2+q3+q4) = 1+5q+8q2+7q3+8q4+7q5+3q6+2q7+q8

shows that the product of two unimodal polynomials need not be unimodal.
However, the product of two reciprocal unimodal polynomials is a reciprocal
unimodal polynomial. Prove this, and hence show that the q-factorial is uni-
modal.

1.3. q-binomial coefficients

In this section we’ll play the same sort of game as before, but this time with
“words” made from a two-letter “alphabet”. For the moment, let’s take the “letters”
to be 0 and 1, where as usual 1 > 0. In general, we’ll consider sequences of k 0’s
and n − k 1’s, and as before we’ll keep track of inversions; this time, an inversion
will be any pair of a 1 and a 0 where the 1 comes before the 0.

The smallest interesting example is when k = 2 and n = 4, so we are looking at
all the sequences of two 0’s and two 1’s. There are

(
4
2

)
= 6 such sequences, which

are listed in the following table. In the second column of the table we count the
number of inversions in each sequence, and make that number an exponent of q:

sequence qinv sequence qinv

0011 q0 1001 q2

0101 q1 1010 q3

0110 q2 1100 q4

When we add the inversions column we get 1 + q + 2q2 + q3 + q4, which must be
some sort of q-analogue of

(
4
2

)
. You might be a little surprised that it is not the

same polynomial as 3!q, but if so your surprise will be temporary. Our experience
with q-factorials suggests that we should try to factor it, which is not too hard:

1 + q + 2q2 + q3 + q4 =
(
1 + q + q2

)
+
(
q2 + q3 + q4

)
=
(
1 + q + q2

) (
1 + q2

)
.

We can write 1 + q + q2 = [3]q, and problem 8 in the previous section suggests
something we can do with the other factor:

1 + q + 2q2 + q3 + q4 = [3]q
(
1 + q2

) 1 + q

1 + q

= [3]q
1 + q + q2 + q3

1 + q

=
[4]q[3]q
[2]q

.

Since [1]q = 1, we may rewrite this further:

1 + q + 2q2 + q3 + q4 =
[4]q[3]q
[2]q[1]q

=
[4]q[3]q
[2]q[1]q

[2]q[1]q
[2]q[1]q

=
4!q

2!q 2!q
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



1.3. q-BINOMIAL COEFFICIENTS 15

This suggests what happens in general, but let’s do one more example before we
try to write down the general case. This time let’s take k = 4 and n = 6, so we
are looking at all the sequences of four 0’s and two 1’s. There are

(
6
2

)
= 15 such

sequences, and again we’ll count the number of inversions for each sequence and
make that number an exponent of q:

sequence qinv sequence qinv sequence qinv

000011 q0 001010 q3 100010 q5

000101 q1 001100 q4 011000 q6

001001 q2 010010 q4 100100 q6

000110 q2 100001 q4 101000 q7

010001 q3 010100 q5 110000 q8

When we add all this up we must get some sort of q-analogue of
(
6
2

)
, so we set(

6

2

)
q

:= 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8,

which we should try to factor. Since
(
6
2

)
= 6!

4! 2! =
6·5
2 , it is reasonable to hope that

[5]q will be a factor. If we write(
6

2

)
q

= (1 + q + q2 + q3 + q4)

+ (q2 + q3 + q4 + q5 + q6)

+ (q4 + q5 + q6 + q7 + q8)

= (1 + q + q2 + q3 + q4)(1 + q2 + q4),

then we can see that it is. The other factor is

1 + q2 + q4 =
(
1 + q2 + q4

) 1 + q

1 + q
=

1 + q + q2 + q3 + q4 + q5

1 + q
=

[6]q
[2]q

,

so we have (
6

2

)
q

= 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8

=
[6]q[5]q
[2]q

=
[6]q[5]q
[2]q[1]q

[4]q[3]q[2]q[1]q
[4]q[3]q[2]q[1]q

=
6!q

4!q 2!q
.

We are in the same position now as in the previous section: we have evidence
that something beautiful is happening, and we need to try to describe it as best we
can, and then prove our description is correct. We define q-binomial coefficients in
the obvious way: (

n

k

)
q

=

{
n!q

k!q (n−k)!q
, n, k integers, 0 ≤ k ≤ n,

0, otherwise.

Equally well, we could define(
n

k

)
q

=

{
(q;q)n

(q;q)k (q;q)n−k
, n, k integers, 0 ≤ k ≤ n,

0, otherwise,
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16 1. INVERSIONS

since the factors of 1 − q by which n!q and (q; q)n differ all cancel. Note that
the q-binomial coefficients are symmetric in k and n− k, as the ordinary binomial
coefficients are; i.e.,

(
n
k

)
q
=
(

n
n−k

)
q
. They are sometimes called Gaussian binomial

coefficients instead, or Gaussian polynomials, since Gauss was the first to consider
them, in a paper of 1808. Now we can state the theorem that the above examples
suggest:

Theorem 3 (Fundamental Property of q-binomial coefficients). Let S(k, n−k)
denote the set of all sequences of k 0’s and n − k 1’s. If σ is such a sequence, let
inv σ denote the number of inversions in σ. Then(

n

k

)
q

=
∑

σ∈S(k,n−k)

qinv σ.

As with Rodrigues’s theorem, this can be stated in a slightly different form, by
combining like terms: if cj(k, n− k) denotes the number of sequences of k 0’s and
n− k 1’s with exactly j inversions, then(

n

k

)
q

=

k(n−k)∑
j=0

cj(k, n− k) qj .

Note that in particular the Fundamental Property implies that the q-binomial
coefficients are polynomials in q. This is not at all obvious from the definition,
which has a lot of denominator factors. The same sort of thing happens with the
ordinary binomial coefficients(

n

k

)
=

{
n!

k! (n−k)! , n, k integers, 0 ≤ k ≤ n,

0, otherwise,

which look like they might be fractions but are actually integers.
We need a few preliminaries before we try to prove this. Suppose we take all

these sequences of k 0’s and n− k 1’s and perform the following steps:

(1) change every 0 to a 1 and every 1 to a 0,
(2) read the sequences backwards (from right to left) instead of forwards (from

left to right),

The first step changes all the inversions to non-inversions, and vice versa. The
second step changes all the non-inversions back to inversions, and vice versa. These
two steps then produce sequences of n− k 0’s and k 1’s with the same numbers of
inversions as before, which shows that the sum side of the Fundamental Property
is also symmetric in k and n− k. This doesn’t prove that the sum equals

(
n
k

)
q
, but

it is certainly encouraging—if the sum were not symmetric in k and n− k, then we
would have disproved it.

Since the Pascal recurrence(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
for the binomial coefficients is so important, it is natural to ask whether something
similar is true for the q-binomial coefficients. First let’s work problem 4 from the
last section. If q �= 1, we have

[n]q =
1− qn

1− q
=

1− qk + qk − qn

1− q
=

1− qk

1− q
+ qk

1− qn−k

1− q
= [k]q + qk[n− k]q,
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1.3. q-BINOMIAL COEFFICIENTS 17

and this also holds if q = 1 (why?). Therefore(
n+ 1

k

)
q

=
(n+ 1)!q

k!q (n+ 1− k)!q

=
n!q

k!q (n+ 1− k)!q

{
[k]q + qk [n+ 1− k]q

}
=

n!q
(k − 1)!q (n+ 1− k)!q

+ qk
n!q

k!q (n− k)!q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

.(1.3.1)

If we replace k by n+ 1− k in (1.3.1), there results(
n+ 1

n+ 1− k

)
q

=

(
n

n+ 1− k − 1

)
q

+ qn+1−k

(
n

n+ 1− k

)
q

.

Using the symmetry of the q-binomial coefficients this simplifies to

(1.3.2)

(
n+ 1

k

)
q

=

(
n

k

)
q

+ qn−k+1

(
n

k − 1

)
q

,

so that the q-binomial coefficients have not one but two q-Pascal recurrences. This
has an interesting consequence that we will see in Chapter 2.

We are now ready to prove the Fundamental Property. The idea is to show
that the sum there also satisfies (1.3.1), or (1.3.2). We do this first, and then talk
about why this suffices for a proof. Consider

∑
σ∈S(k,n+1−k)

qinv σ, the sum over all

sequences of k 0’s and n + 1 − k 1’s. Split the sum into two pieces, the sequences
which begin with 0 and the sequences which begin with 1:

(1.3.3)
∑

σ∈S(k,n+1−k)

qinv σ =
∑

σ∈S(k,n+1−k)
0 comes first

qinv σ +
∑

σ∈S(k,n+1−k)
1 comes first

qinvσ.

If 0 comes first, it is not inverted with anything that comes after it, and what comes
after it is a sequence of k − 1 0’s and n + 1 − k 1’s, so the first sum on the right
side of (1.3.3) is the same as

∑
σ∈S(k−1,n+1−k)

qinv σ. If 1 comes first, the rest of the

sequence consists of k 0’s and n − k 1’s, and the initial 1 is inverted with all of
the k 0’s. Therefore the second sum on the right side of (1.3.3) is the same as
qk

∑
σ∈S(k,n−k)

qinv σ, because this is what we get if we cut off the initial 1 and then

put back in all the inversions we lose by so doing. Thus we can rewrite (1.3.3) as

(1.3.4)
∑

σ∈S(k,n+1−k)

qinv σ =
∑

σ∈S(k−1,n+1−k)

qinv σ + qk
∑

σ∈S(k,n−k)

qinv σ.

This allows us to prove the Fundamental Property by induction on n, for suppose
we knew that it was true for all sequences of 0’s and 1’s of length n. Then the right
side of (1.3.4) equals (

n

k − 1

)
q

+ qk
(
n

k

)
q

,
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18 1. INVERSIONS

so according to (1.3.1) we have∑
σ∈S(k,n+1−k)

qinvσ =
∑

σ∈S(k−1,n+1−k)

qinv σ + qk
∑

σ∈S(k,n−k)

qinv σ

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

=

(
n+ 1

k

)
q

and the Fundamental Property is also true for n+1. Therefore, if the Fundamental
Property is true for

(
0
0

)
q
, then it is true for all of the q-binomial coefficients. But

there are no inversions in sequences of 0 0’s and 0 1’s, so the sum equals q0 = 1,
which equals

(
0
0

)
q
. This proves the Fundamental Property.

There is an interesting alternative characterization of the Fundamental Prop-
erty that is due to Pólya. A lattice path in R

2 starts at the origin and moves into
the first quadrant using two kinds of steps: North (N), from (i, j) to (i, j + 1); or
East (E), from (i, j) to (i+ 1, j).

Theorem 4 (Pólya’s Property). Consider all the lattice paths from the origin
to the point (k, n − k) in n steps, and let Ank(r) denote the number of such paths
for which the area under the path, above the x-axis, and bounded on the right by
the line x = k is equal to r. Then

(
n

k

)
q

=

k(n−k)∑
r=0

Ank(r) q
r.

This can be proved directly, in much the same way that we proved the Funda-
mental Property, but it is easier to derive it from the Fundamental Property. The
point is that lattice paths are in 1-1 correspondence with sequences of 0’s and 1’s,
with an East step corresponding to a 0 and a North step corresponding to a 1. The
correspondence for

(
4
2

)
q
is

0011
•
•

• • •
0101

•
• •

• • ◦

0110
• •
• ◦

• • ◦
1001

•
• • •
• ◦ ◦

1010
• •

• • ◦
• ◦ ◦

1100
• • •
• ◦ ◦
• ◦ ◦

Any pair of an N step followed (immediately or not) by an E step creates one unit
◦ of area, so units of area correspond exactly to inversions, and this proves the
theorem.
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EXERCISES 19

Exercises

1. Show that (
m+ 2

2

)
q

= q2
(
m

2

)
q

+

(
2m+ 1

1

)
q

.

2. Prove the Fundamental Property by induction using (1.3.2) instead of (1.3.1).
(Split up the sequences of k 0’s and n+ 1− k 1’s according to whether 0 comes
last or 1 comes last.)

3. Explain why we can rewrite Pólya’s Property in the following form. Let
Λ(k, n − k) denote the set of all lattice paths from the origin to (k, n − k) in n
steps. If λ is such a path, let a(λ) denote the area between the path, the x-axis,
and the line x = k. Then (

n

k

)
q

=
∑

λ∈Λ(k,n−k)

qa(λ).

4. Give a direct proof of Pólya’s Property by induction on n. You may prefer to
prove it in the form given in the previous problem.

5. Use the Fundamental Property and the idea of switching 0’s and 1’s to show
that the q-binomial coefficients are reciprocal polynomials. (See problem 13
from the previous section for the definition.) The q-binomial coefficients are also
unimodal, but this is quite difficult to prove.

6. (a) Show that k +
(
n−k+1

2

)
=
(
n−k
2

)
+ n. This is a useful lemma in a problem

that comes much later.

(b) Prove the following q-analogues of the result in (a):

[k]q + qk
(
n− k + 1

2

)
q

= qk+2

(
n− k

2

)
q

+ [n]q,

qn[k]q + q2k+1

(
n− k + 1

2

)
q

= q2k+1

(
n− k

2

)
q

+ qn[n]q,

qn[k]q + qk
(
n− k + 1

2

)
q

= qk+2

(
n− k

2

)
q

+ qk[n]q,

q2n[k]q + q2k+1

(
n− k + 1

2

)
q

= q2k+1

(
n− k

2

)
q

+ qn+k[n]q.

7. Let Z2(k) be the set of all sequences of 2 0’s and k 1’s which either begin with
0 or end with 0, or both. (For example, Z2(2) comprises the five sequences
0011,0101,0110,1010,1100.) Prove that

∑
σ∈Z2(k)

qinv σ = [2k+1]q. For more prob-

lems like this see the next set of exercises.

8. How are problems 1 and 7 related?

9. Show that

[n]q[n]q2 = qn−1[n]q +
(
1 + qn+1

)(n
2

)
q

.

10. Show that
n∑

k=1

q3(n−k)[2k − 1]q[2k − 1]q2 =

(
2n+ 1

3

)
q

.
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20 1. INVERSIONS

11. Show that
n∑

k=1

q3(n−k)[2k]q[2k]q2 =

(
2n+ 2

3

)
q

.

12. Using the result of problem 7, or otherwise, prove that(
n+ 2

2

)
q

= [2n+ 1]q + q2[2n− 3]q + q4[2n− 7]q + . . .

=

� 2n+1
4 �∑

j=0

q2j [2n+ 1− 4j]q.

(Here 
x� denotes the floor of x, which is the greatest integer ≤ x. Its only
purpose here is to stop the sum just before 2n+ 1− 4j becomes negative.)

13. For integers k and n with 0 ≤ k ≤ n, define the Carlitz coefficients cq(n, k)
by the recurrence

cq(n+ 1, k) = cq(n, k − 1) +
(
qk − 1

)
cq(n, k),

where cq(0, 0) = 1 and cq(n, k) = 0 if k is negative or if k > n. (Note that this
implies cq(n, k) = 0 if n is negative.)

(i) Show that cq(n, 0) = 0 if n > 0.

(ii) Show that cq(n, n) = 1 if n ≥ 0.

(iii) The main reason why the Carlitz coefficients are interesting is that(
n

j

)
q

=
n∑

k=j

(
n

k

)
cq(k, j).

Prove this by induction on n.

(iv) Show that all the Carlitz coefficients are zero when q = 1 except for
cq(n, n) = 1.

(v) Show that cq(n, n− 1) = [n]q − n for n ≥ 0.

(vi) Show that cq(n, n− 2) =
(
n
2

)
q
+
(
n
2

)
− n[n− 1]q for n ≥ 0.

(vii) Show that cq(n, 1) = (q − 1)n−1 for n ≥ 1.

(viii) Show that, for n ≥ 1,

cq(n, 2) = (q − 1)n−2
{
1 + (q + 1) + · · ·+ (q + 1)n−2

}
= (q − 1)n−2 (q + 1)n−1 − 1

q
.

(ix) Show that cq(n, k) is (q − 1)n−k times a polynomial in q.

1.4. Some identities for q-binomial coefficients

In the last section we proved

(1.4.1)

(
n+ 1

k

)
q

=

(
n

k

)
q

+ qn−k+1

(
n

k − 1

)
q

.
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1.4. SOME IDENTITIES FOR q-BINOMIAL COEFFICIENTS 21

It follows on replacing n by n− 1 that(
n

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

,

and substituting this into (1.4.1) we get(
n+ 1

k

)
q

= qn−k+1

(
n

k − 1

)
q

+ qn−k

(
n− 1

k − 1

)
q

+

(
n− 1

k

)
q

.

Following Gauss, we can keep doing this. Since(
n− 1

k

)
q

=

(
n− 2

k

)
q

+ qn−k−1

(
n− 2

k − 1

)
q

,

substituting this in the above we get(
n+ 1

k

)
q

= qn−k+1

(
n

k − 1

)
q

+ qn−k

(
n− 1

k − 1

)
q

+ qn−k−1

(
n− 2

k − 1

)
q

+

(
n− 2

k

)
q

.

If we do this n−m+ 1 times for a generic nonnegative integer m ≤ n, we get

(1.4.2)

(
n+ 1

k

)
q

= qn−k+1

(
n

k − 1

)
q

+ qn−k

(
n− 1

k − 1

)
q

+ qn−k−1

(
n− 2

k − 1

)
q

+ . . .

+ qm−k+1

(
m

k − 1

)
q

+

(
m

k

)
q

.

(We leave the proof of this to the reader.) The smallest positive integer for which
(1.4.2) is interesting is m = k − 1 (if m is smaller, the result is the same as it is
for m = k − 1, since the additional terms are all zero). Taking m = k − 1 we get
Gauss’s summation theorem for the q-binomial coefficients:(

n+ 1

k

)
q

= qn−k+1

(
n

k − 1

)
q

+ qn−k

(
n− 1

k − 1

)
q

+ qn−k−1

(
n− 2

k − 1

)
q

+ . . .

+ q

(
k

k − 1

)
q

+

(
k − 1

k − 1

)
q

.

Replacing k by k + 1, this takes the form(
n+ 1

k + 1

)
q

= qn−k

(
n

k

)
q

+ qn−k−1

(
n− 1

k

)
q

+ qn−k−2

(
n− 2

k

)
q

+ . . .

+ q

(
k + 1

k

)
q

+

(
k

k

)
q

,

or

(1.4.3)

(
n+ 1

k + 1

)
q

=

n∑
m=k

qm−k

(
m

k

)
q

.

There is also a simple combinatorial proof of (1.4.3). We know that the left side
generates sequences of k+1 0’s and n−k 1’s, keeping track of inversions. The right
side is classifying these sequences by the position of the last 0. If the last 0 is at
the end of the sequence, then this 0 is inverted with the n− k 1’s in the sequence,
which also has k other 0’s; so in this case we get qn−k

(
n
k

)
q
when we keep track of

inversions. If the last two numbers in the sequence are 01, then this piece of it has
n−k−1 inversions with the n−k−1 1’s in the rest of the sequence, which also has
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22 1. INVERSIONS

k more 0’s; so these sequences give us qn−k−1
(
n−1
k

)
q
. The generic term in the sum

looks like qm−k
(
m
k

)
q
for some integer m between k and n. This term corresponds

to the sequences where the last 0 is followed by n −m 1’s. The trailing 1’s cause
no inversions, so this part of the sequence has only the inversions between the last
0 and the m− k 1’s in the first part of the sequence, which also has k 0’s. The last
term

(
k
k

)
q
corresponds to the sequence where all the 1’s are at the end.

We can play the same game with

(1.4.4)

(
n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

.

Replacing n by n− 1 we have(
n

k

)
q

=

(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

,

and substituting this in (1.4.4) gives(
n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk

{(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

}

=

(
n

k − 1

)
q

+ qk
(
n− 1

k − 1

)
q

+ q2k
(
n− 1

k

)
q

.

As before, we can keep doing this repeatedly. If we do it m times we get

(1.4.5)

(
n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n− 1

k − 1

)
q

+ q2k
(
n− 2

k − 1

)
q

+ . . .

+ q(m−1)k

(
n−m+ 1

k − 1

)
q

+ qmk

(
n−m+ 1

k

)
q

.

The largest value of m for which this is interesting is m = n− k + 1, which gives

(1.4.6)

(
n+ 1

k

)
q

=

n−k+1∑
m=0

(
n−m

k − 1

)
q

qmk,

or, unfolded,(
n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n− 1

k − 1

)
q

+ q2k
(
n− 2

k − 1

)
q

+ · · ·+ q(n−k+1)k

(
k − 1

k − 1

)
q

.

We can also prove this by counting inversions in sequences. The left side generates
sequences of k 0’s and n+ 1 − k 1’s, keeping track of inversions. The right side is
classifying these sequences by where the first 0 occurs. If it is at the beginning of
the sequence, this gives

(
n

k−1

)
q
as before. If the sequence starts 10, then the first

1 is inverted with all of the k 0’s; and in the rest of the sequence there are k − 1
0’s and n − k 1’s. These sequences contribute the term qk

(
n−1
k−1

)
q
, and so on. The

generic term in the sum is
(
n−m
k−1

)
q
qmk, which corresponds to the sequences that

start with m 1’s and then a 0. Each of the m 1’s is inverted with the k 0’s in the
sequence, the rest of which consists of k−1 0’s and n−m−k+1 1’s. The last term
in the sum, q(n−k+1)k

(
k−1
k−1

)
q
, corresponds to the sequence where all the 1’s are at

the beginning.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXERCISES 23

We can also use this type of counting argument to prove

(1.4.7)

(
m+ n

k

)
q

=
∑
j

(
m

k − j

)
q

(
n

j

)
q

qj(m−k+j).

Consider sequences of k 0’s and m + n − k 1’s, and count inversions. If we just
do this as usual, we wind up with the left side of (1.4.7). The right side comes
from breaking the sequences somewhere in the middle. Suppose we look at the first
m numbers in each sequence separately, and the last n numbers separately also.
The first piece comprises some number k − j of 0’s and m − k + j 1’s. The first
q-binomial coefficient on the right side of (1.4.7) counts all the inversions among
these m numbers. Similarly, the second piece comprises j 0’s and n− j 1’s, and the
term

(
n
j

)
q
in (1.4.7) counts all the inversions among these n numbers.

Did we miss any inversions? Of course we did: any 1 among the first m
numbers is inverted with any 0 among the last n numbers, and those are exactly
the inversions we haven’t counted yet. How many of these are there? Exactly
as many as there are pairs of a 1 among the first m numbers (of which there are
m − k + j) and a 0 among the last n numbers (of which there are j). So we need
a factor of qj(m−k+j) to take care of these inversions, and now we have got all of
them. Therefore the right side of (1.4.7) counts the same thing as the left side.

Because of the symmetry of the q-binomial coefficients, there are several dif-
ferent forms of (1.4.7), so it is better to remember how the argument goes than to
memorize the formula. Another form occurs in problem 11. In Chapter 2 we will
want to know that

(1.4.8)
b∑

j=0

(
a

j + k

)
q

(
b

j

)
q

qj(j+k) =

(
a+ b

a− k

)
q

,

and this is also an alternate form of (1.4.7). We know that
(

a
j+k

)
q
generates se-

quences of a − j − k 0’s and j + k 1’s, keeping track of inversions, and that
(
b
j

)
q

generates sequences of j 0’s and b − j 1’s, keeping track of inversions. If the se-
quences generated by

(
b
j

)
q
come after the ones generated by

(
a

j+k

)
q
, then there are

j(j + k) more inversions, between the 1’s in the first sequences and the 0’s in the
second. When these types of sequences are combined in this order and inversions
are counted as exponents of q, we get all the inversions in sequences of a − k 0’s
and b+ k 1’s, so this proves (1.4.8).

Exercises

1. Show that a special case of (1.4.3) is

n∑
m=1

qm−1 [m]q =

(
n+ 1

2

)
q

which is a q-extension of the fundamental fact

(1.4.9) 1 + 2 + · · ·+ n =

(
n+ 1

2

)
.
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24 1. INVERSIONS

2. Show that another q-extension of (1.4.9) is

n−1∑
m=0

[n−m]qq
2m =

(
n+ 1

2

)
q

.

3. Use (1.4.4) to prove (1.4.5) by induction on m.

4. Use (1.4.1) to prove (1.4.2) by induction on m. Note that this is a downward
induction; you should assume it’s true for m and prove it for m− 1.

5. (a) Show that (
m+ 1

2

)
q

+ q

(
m

2

)
q

= [m]2q.

(b) Using (a) or otherwise, show that

n∑
k=1

qk−1[k]2q =

(
n+ 2

3

)
q

+ q2
(
n+ 1

3

)
q

.

6. (a) Show that(
m+ 2

3

)
q

+ 2[2]qq

(
m+ 1

3

)
q

+ q3
(
m

3

)
q

= [m]3q .

(b) Using (a) or otherwise, show that

n∑
k=1

qk−1[k]3q =

(
n+ 3

4

)
q

+ 2[2]qq
2

(
n+ 2

4

)
q

+ q5
(
n+ 1

4

)
q

.

7. If m is a nonnegative integer and n is a positive integer, show that
m∑

k=0

(
n

k

)
q

(−1)kq(
k
2) = (−1)mq(

m+1
2 )
(
n− 1

m

)
q

.

What happens if n = 0?

8. Let Z3(k) be the set of all sequences of 3 0’s and k 1’s which either begin with
0 or end with 0, or both. (For example, Z3(2) contains the nine sequences
00011,00101,01001,01010,00110,01100,10010,10100,11000.) Prove that∑

σ∈Z3(k)

qinv σ = [k + 1]q[k + 1]q2 .

9. For an integer j ≥ 1, let Zj(k) be the set of all sequences of j 0’s and k 1’s which
either begin with 0 or end with 0, or both. Prove that∑

σ∈Zj(k)

qinv σ =
(j + k − 2)!q [2k + j − 1]q

(j − 1)!q k!q
=

(
j + k − 1

k

)
q

[2k + j − 1]q
[k + j − 1]q

.

Check the cases j = 1, 2, 3.

10. Use problem 9 to prove the following generalization of problem 12 in the previous
section: (

n+ k

k

)
q

=
∑
j≥0

qkj
(
n+ k − 2j − 1

k − 1

)
q

[2n+ k − 4j − 1]q
[n+ k − 2j − 1]q

.
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1.5. ANOTHER PROPERTY OF q-BINOMIAL COEFFICIENTS 25

11. Let Pn(q) be the n × n matrix whose ijth entry is
(
i+j−2
i−1

)
q
for 1 ≤ i, j ≤ n.

(Pn(q) is a q-Pascal matrix.)

(i) Explain why Pn(q) is a symmetric matrix.

(ii) Prove that Pn(q) = Ln(q)Dn(q)L
T
n (q), where Ln(q) is the n× n matrix

whose ijth entry is
(
i−1
j−1

)
q
, for 1 ≤ i, j ≤ n, and Dn(q) is the diagonal n × n

matrix whose iith entry is q(i−1)2 for 1 ≤ i ≤ n. Hint: Explain why the ijth

entry of Ln(q)Dn(q)L
T
n (q) is

n∑
k=1

(
i− 1

k − 1

)
q

q(k−1)2
(
j − 1

k − 1

)
q

=

n−1∑
l=0

(
i− 1

l

)
q

(
j − 1

l

)
q

ql
2

,

and then explain why this is
(
i+j−2
i−1

)
q
.

(iii) Explain why it follows that the determinant of Pn(q) is

q0
2+12+···+(n−1)2 = q

n(n−1)(2n−1)
6 .

12. Recall that (x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1) with (x; q)0 = 1, and let
An(x1, . . . , xn; q) denote the determinant of the n× n matrix whose ij entry is
(xi; q)j−1. Show that

An(x1, . . . , xn; q) = q(
n
3)

∏
1≤i<j≤n

(xi − xj).

Hint: Use row and column operations to show that

An(x1, . . . , xn; q) = q(
n−1
2 )(x1 − x2) · · · (x1 − xn)An−1(x2, . . . , xn; q).

13. This problem outlines a different proof of the result of the previous problem.
Justify each of the following statements:

(i) Since An(x1, . . . , xn; q) becomes zero if any two of the variables xk are
the same, every expression xi − xj with 1 ≤ i < j ≤ n has to be a factor.

(ii) There can’t be any more factors involving any of the variables xk.

(iii) Therefore, we only have to explain the factor q(
n
3). We can find it

by looking at the coefficient of xn−1
1 xn−2

2 · · ·x1
n−1x

0
n, which comes only from the

“reverse diagonal” term in the expansion of the determinant. (How do the minus
signs work themselves out?)

1.5. Another property of q-binomial coefficients

Suppose we divide (or partition) the set {1, 2, 3, 4, 5} into a first subset of size
two and a second subset of size three in all possible ways. (There are

(
5
2

)
= 10

ways, which we will list below.) Define a between-set inversion (which we may
just call an inversion if the context is clear) to be any pair of numbers a, b where a
is in the first set, b is in the second set, and a > b. For example, if {2, 3} is the first
set, this makes {1, 4, 5} the second set, and 2 and 3 are both inverted with 1 but
not with 4 or 5, so there are 2 between-set inversions. We can also associate the
sequence 21122 to these two sets, representing that 2 and 3 are in the first set (so
we put 1 in the second and third positions) and 1, 4, and 5 are in the second set
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26 1. INVERSIONS

(so we put 2 in the first, fourth, and fifth positions). If we do this for all possible
partitions, we get:

first set second set # inversions sequence
{1, 2} {3, 4, 5} 0 11222
{1, 3} {2, 4, 5} 1 12122
{1, 4} {2, 3, 5} 2 12212
{1, 5} {2, 3, 4} 3 12221
{2, 3} {1, 4, 5} 2 21122
{2, 4} {1, 3, 5} 3 21212
{2, 5} {1, 3, 4} 4 21221
{3, 4} {1, 2, 5} 4 22112
{3, 5} {1, 2, 4} 5 22121
{4, 5} {1, 2, 3} 6 22211

As before, we now take all the numbers in the inversions column, make them ex-
ponents of q, and add. This gives

1+ q+2q2+2q3+2q4+ q5+ q6 = 1+ q+ q2+ q3+ q4+ q2
(
1 + q + q2 + q3 + q4

)
= [5]q(1 + q2) = [5]q

1 + q + q2 + q3

1 + q
=

[5]q[4]q
[2]q

=

(
5

2

)
q

.

This isn’t very surprising, especially when we look at the sequence column. Any
pair a, b with a in the first set, b in the second set, and a > b corresponds to a 2 in
the bth position and an a in the 1st position in the corresponding sequence, which
is an inversion in that sequence since b < a. This gives immediately the following
theorem.

Theorem 5. Let T (a, b) denote the set of all partitions of {1, 2, . . . , n} into a
first subset of size k and a second subset of size n − k, and define a between-set
inversion as above. If inv t denotes the number of between-set inversions in the
partition t, then

(1.5.1)

(
n

k

)
q

=
∑

t∈T (k,n−k)

qinv t.

This follows from the Fundamental Property of q-binomial coefficients by the
correspondence outlined above. We could just leave it at that, but it is interesting
to try to redevelop the theory from this new point of view. Suppose we take all the
partitions of {1, 2, . . . , n} into a first subset of size k and a second subset of size
n− k, and perform the following steps:

(1) switch the first and second set,
(2) change each number in both sets from k to n+ 1− k.

The first step changes T (k, n−k) into T (n−k, k), and it changes all the inversions to
non-inversions and vice versa. The second step changes all the non-inversions back
to inversions, and vice versa. This shows that the sum side of (1.5.1) is symmetric
in k and n− k, so if we took (1.5.1) as the definition of the q-binomial coefficients,
it would prove that (

n

k

)
q

=

(
n

n− k

)
q

.
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Suppose Santa Claus has n ordinary reindeer, and one other reindeer, Rudolph,
with a red nose. Santa maintains two lists: one with the reindeer ranked by utility
in foggy conditions, on which Rudolph is first; and one where they are ranked by
utility in nonfoggy conditions, on which Rudolph is last. On Christmas Eve, Santa
partitions the reindeer into a first set of k that will deliver presents, and a second
set of n − k + 1 that will stay behind to guard the North Pole against intruders.
Considering all possible partitions and counting between-set inversions, we will get(
n+1
k

)
q
using either list. (If n = 4 and k = 2, then two reindeer deliver presents and

three remain behind, and the example with partitions of {1, 2, 3, 4, 5} represents
the foggy list if Rudolph is 1, and the nonfoggy list if Rudolph is 5.)

If we use the foggy list and Rudolph is in the first set, then he is not inverted
with any of the reindeer in the second set. Therefore all the inversions in this case
are between the second set and the k − 1 ordinary reindeer in the first set, and(

n
k−1

)
q
counts those. If Rudolph is in the second set, then he is inverted with all of

the k reindeer in the first set, and the other inversions are between them and the
n− k ordinary reindeer in the second set, so qk

(
n
k

)
q
counts these and we have(

n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

,

which is (1.3.1). If we use the nonfoggy list we get (1.3.2) instead. We leave this
as an exercise.

Finally, let’s try to prove an identity like (1.4.7) using this approach. Consider
partitions of {1, 2, . . . ,m + n} into a first subset of size k and a second subset
of size m + n − k. Let’s call the numbers {1, 2, . . . ,m} the small numbers, and
{m+1,m+2, . . . ,m+n} the large numbers. Suppose that j of the small numbers
are in the first subset. Then the other m−j small numbers are in the second subset,
k − j large numbers are in the first subset, and the other n− k + j large numbers
are in the second subset. Now

(
m
j

)
q
takes care of the between-set inversions among

the small numbers,
(

n
k−j

)
q
takes care of the between-set inversions among the large

numbers, and each of the k−j large numbers in the first subset is inverted with each
of the m− j small numbers in the second subset. Summing over all the partitions
and all values of j we get

(1.5.2)

(
m+ n

k

)
q

=
∑
j

(
m

j

)
q

(
n

k − j

)
q

q(k−j)(m−j),

which is another equivalent form of (1.4.7).

Exercises

1. Prove (1.3.2) by considering the nonfoggy list.

2. Show that (1.5.2) is equivalent to (1.4.7).

3. Prove (1.4.3) by using between-set inversions.

4. Prove (1.4.6) by using between-set inversions.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.
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5. By considering between-set inversions, prove that

n∑
k=1

q2k−3[2k − 1]q
(
[2k − 2]q + q2k−1

)
=

(
2n+ 1

3

)
q

.

Hint: Consider partitions of {1, 2, . . . , 2n + 1} into two subsets where the first
set has three members, the largest of which is either 2k or 2k + 1. It may help
to rewrite

q2k−3[2k − 1]q
(
[2k − 2]q + q2k−1

)
= q2k−3[2]q

(
2k − 1

2

)
q

+ q4k−4[2k − 1]q.

6. Show that(
2n+ 1

3

)
q

−
(
2n− 1

3

)
q

= q2n−3[2n− 1]q
(
[2n− 2]q + q2n−1

)
.

Using this or otherwise, prove the result of the previous problem by induction.

7. By considering between-set inversions, prove that

n∑
k=1

q2k−2[2k]q
(
[2k − 1]q + q2k

)
=

(
2n+ 2

3

)
q

.

Hint: Consider partitions of {1, 2, . . . , 2n + 2} into two subsets where the first
set has three members, the largest of which is either 2k + 1 or 2k + 2. It may
help to rewrite

q2k−2[2k]q
(
[2k − 1]q + q2k

)
= q2k−2[2]q

(
2k

2

)
q

+ q4k−2[2k]q .

8. Show that (
2n+ 2

3

)
q

−
(
2n

3

)
q

= q2n−2[2n]q
(
[2n− 1]q + q2n

)
.

Using this or otherwise, prove the result of the previous problem by induction.

9. Recall from problem 9 in section 1.3 that

[n]q[n]q2 = qn−1[n]q +
(
1 + qn+1

)(n
2

)
q

.

Use this to show that the left side is the generating function for between-set
inversions of {1, 2, . . . , n + 2} into two subsets where the first set has three
elements and contains at least one of 1 and n+ 2.

10. Use the previous problem to give a combinatorial proof that

n∑
k=1

q3(n−k)[2k − 1]q[2k − 1]q2 =

(
2n+ 1

3

)
q

.

The k = 1 term represents the partition of {1, 2, . . . , 2n + 1} into two subsets
with first set {n, n+ 1, n+ 2}.

11. Use problem 9 to give a combinatorial proof that

n∑
k=1

q3(n−k)[2k]q[2k]q2 =

(
2n+ 2

3

)
q

.
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1.6. q-MULTINOMIAL COEFFICIENTS 29

The k = 1 term represents the partitions of {1, 2, . . . , 2n + 2} into two subsets
where the first set comprises three of {n, n+ 1, n+ 2, n+ 3}.

1.6. q-multinomial coefficients

There is, in a sense, a remarkable coincidence in the material of sections 1.2
and 1.3, which we passed over without comment: the q-factorial, which came from
counting inversions in permutations of {1, 2, . . . , n}, implies the same definition of(
n
k

)
q
that counting inversions in sequences of k 0’s and n− k 1’s does.

Since Rodrigues’s theorem and the Fundamental Property of q-binomial coef-
ficients are consistent with each other in this sense, there could be a result which
contains both of them as particular cases. It is easy to see what a q-multinomial
coefficient should be. If k1, . . . , km are nonnegative integers that add up to n, then

(1.6.1)

(
n

k1, . . . , km

)
q

:=
n!q

k1!q . . . km!q
=

(q; q)n
(q; q)k1

. . . (q; q)km

.

Again, we will assume that the q-multinomial coefficient equals zero if k1, . . . , km are
not all nonnegative integers, or if they do not add up to n. Is (1.6.1) an interesting
object? Suppose we look at all the sequences of length n made up of k1 1’s, k2
2’s, . . . , km m’s. Let’s call the set of all such sequences Sn(k1, . . . , km). As usual,
an inversion will be any pair of numbers in the sequence where the larger number
precedes the smaller. If m is two, we get the q-binomial coefficient (with a cosmetic
difference: we were using sequences of 0’s and 1’s, and now we will be using 1’s and
2’s instead), and Rodrigues’s result is the case where every ki equals 1. In general,
if we count inversions in this type of sequence, MacMahon proved that we get the
q-multinomial coefficient.

Theorem 6 (Fundamental Property of q-multinomial coefficients). With the
above notation,

(1.6.2)

(
n

k1, . . . , km

)
q

=
∑

ω∈Sn(k1,...,km)

qinvω.

This is surprisingly easy to prove, by induction on m. We already know it
when m = 2 (what happens when m = 1?), so we will assume it is true for m, and
show that this means it must be true for m + 1 also. The argument is much like
the one for the q-factorial: suppose we have km+1 copies of m+ 1, and n numbers
altogether. For the moment, think of the m+ 1’s as 1’s and everything else as 0’s.
An m+1 is inverted with anything that comes after it, except another m+1. This
is exactly the counting problem that the q-binomial coefficients solved. So if we
just consider the inversions that the m+1’s are involved in, we get a factor

(
n

km+1

)
q
.

This leaves n − km+1 elements that are not m + 1’s. Assume there are ki i’s for
each i, 1 ≤ i ≤ m. Then by induction the inversions among these give us a factor(
n−km+1

k1,...,km

)
q
. The product of these accounts for all the possible inversions and is(

n

km+1

)
q

(
n− km+1

k1, . . . , km

)
q

=
n!q (n− km+1)!q

(n− km+1)!q km+1!q k1!q . . . km!q

=

(
n

k1, . . . , km+1

)
q
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30 1. INVERSIONS

which is just what we wanted. Thus (1.6.2) is true by induction.
The extension of the between-set inversion idea is straightforward. For example,

suppose we partition {1, 2, 3, 4, 5, 6, 7, 8} into a first subset {1, 6, 8}, a second subset
{3, 4}, and a third subset {2, 5, 7}. There are 11 between-set inversions: 6 with each
of 2, 3, 4, 5; 8 with all of these and 7; and 3 and 4 with 2. We can code this partition
by writing down which subset each of 1–8 is in. This gives 13223131, where the
1 in the sixth position is inverted with the 2’s and 3’s in the second through fifth
positions, the 1 in the eighth position is inverted with each of these and the 3 in
the seventh position, and the 2’s in the third and fourth positions are inverted with
the 3 in the second position.

Theorem 7 (Set partition property of q-multinomial coefficients). Let n =
k1+ · · ·+km, and let Π(k1, . . . , km) denote the collection of partitions of {1, . . . , n}
into a first subset of size k1, a second subset of size k2, and so on, and a last subset
of size km. If inv π denotes the number of between-set inversions in the partition
π, then (

n

k1, . . . , km

)
q

=
∑

π∈Π(k1,...,km)

qinv π.

This follows immediately from the Fundamental Property and the above cor-
respondence. A between-set inversion occurs whenever we have two numbers a < b
with b in an earlier set than a. In the corresponding code, a gets a higher num-
ber than b and that number occurs earlier in the sequence, so the inversions are
preserved by the correspondence.

What about the Pascal recurrence for the q-multinomial coefficients? If k1 +
· · ·+ km = n+ 1 and each ki is a nonnegative integer, then we have

(1.6.3)

(
n+ 1

k1, . . . , km

)
q

=

(
n

k1 − 1, k2, . . . , km

)
q

+ qk1

(
n

k1, k2 − 1, k3, . . . , km

)
q

+ qk1+k2

(
n

k1, k2, k3 − 1, . . . , km

)
q

+ . . .

+ qk1+···+km−1

(
n

k1, . . . , km−1, km − 1

)
q

.

To see this, all we have to do is think about sequences of length n+1 of the above
type, and consider the various possibilities for the first number in the sequence. If
it is 1, it causes no inversions, and this corresponds to the first term on the right
side of (1.6.3). If it is 2, then it is inverted with the k1 1’s in the sequence but
nothing else, and this corresponds to the second term in (1.6.3), and so forth. If
the first number in the sequence is m, then there are inversions with everything
but the other km − 1 m’s, and this corresponds to the last term in the sequence.

MacMahon’s proof of (1.6.2) was essentially the above argument read back-
wards. He showed algebraically that the q-multinomial coefficients defined by
(1.6.1) satisfy (1.6.3), and then used the above combinatorial reasoning to infer
(1.6.2). This is similar to our first proof of the Fundamental Property of q-binomial
coefficients.

We make another remark about (1.6.3) that will be used later. The left side
of (1.6.3) is symmetric in k1, . . . , km, so the right side must be too, even if it
doesn’t look symmetric in the parameters. What this means is that there are many
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equivalent forms of (1.6.3); as stated, (1.6.3) considers the parameters in the order
k1, . . . , km, but we can take them in any order we want to.

Exercises

1. Once we had q-factorials, the definition(
n

k

)
q

=

{
n!q

k!q (n−k)!q
, n, k integers, 0 ≤ k ≤ n,

0, otherwise,

was obvious, although it was not so clear that these objects would have the
beautiful combinatorics asserted by the Fundamental Property of q-binomial
coefficients. An alternative approach, which would especially make sense if we
had not studied q-factorials first, would be to use the Fundamental Property as
the definition of the q-binomial coefficients. To have a fully adequate theory,
one would then have to be able to define q-factorials in terms of q-binomial
coefficients. How would you do this? How would you define the ordinary factorial
in terms of ordinary binomial coefficients?

2. What does (1.6.3) look like if we take the parameters in the order km, . . . , k1?

3. Let I(k1, k2, . . . , km) be the total number of inversions in all the sequences of k1
1’s, k2 2’s, . . . , km m’s. Generalize Rodrigues’s solution to Stern’s problem to
show that

I(k1, k2, . . . , km) =
1

2

(
k1 + k2 + · · ·+ km

k1, k2, . . . , km

) ∑
1≤i<j≤m

ki kj .

An alternate form of the answer is

I(k1, . . . , km) =
1

2

(
k1 + k2 + · · ·+ km

k1, k2, . . . , km

)

×
{(

k1 + k2 + · · ·+ km
2

)
−
(
k1
2

)
− · · · −

(
km
2

)}
.

Explain why these are the same.

4. (a) Show that (
n

k

)
q

=
∑
j

qj
2

(
k

j

)
q

(
n− k

j

)
q

.

The sum goes from j = 0 to the smaller of k and n− k.

(b) Show that the result of (a) can be rewritten as

(1.6.4)

(
n

k

)2

q

=
∑
j

qj
2

(
n

j, j, k − j, n− k − j

)
q

.

5. Prove (1.6.4) by using between-set inversions. (When q = 1, (1.6.4) has a simple
combinatorial interpretation: you choose k things from a collection of n distinct
things, while a friend independently chooses k things from the same collection;
k− j is the number of things that both of you chose. This idea can also be used
for a general q, but the details are not quite straightforward.)
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32 1. INVERSIONS

6. For nonnegative integers r and s define

fj(r, s) =
∑
i

(−1)iq(
i+j
2 )
(

r + s− i

i, r − i, s− i

)
q

,

where the sum goes from i = 0 to the smaller of r and s. Since there are no
admissible values of i if r or s is negative, we have fj(r, s) = 0 in that case.

(i) Show that fj(r, 0) = q(
j
2) = fj(0, s).

(ii) Use (1.6.3) to show

(1.6.5) fj(r + 1, s) = fj(r, s) + qr+1 fj(r + 1, s− 1)− qr+j fj(r, s− 1)

for s ≥ 0. What is a good order for the parameters i, r − i, s− i?

(iii) In later chapters we will want to know fj(r, s) for j = 1 and for j =
0. Using (ii) or otherwise, show that f1(r, 1) = 1 and f0(r, 1) = qr for all
nonnegative integers r.

(iv) Prove that f1(r, s) = 1 and f0(r, s) = qrs for all nonnegative integers r
and s.

7. As in the previous problem, define

fj(r, s) =
∑
i

(−1)iq(
i+j
2 )
(

r + s− i

i, r − i, s− i

)
q

for nonnegative integers r and s.

(i) Use (1.6.3) to show

(1.6.6) fj(r + 1, s) = fj(r + 1, s− 1) + qs fj(r, s)− qs+j−1 fj(r, s− 1)

for s ≥ 0.

(ii) Use (1.6.6) to show that f1(r, s) = 1 and f0(r, s) = qrs for all nonnegative
integers r and s.

8. With reference to the previous two problems, use either (1.6.5) or (1.6.6) to show
that f2(r, s) = q[s+ 1]q − qr+2[s]q.

9. In problems 12–14 in section 1.1 we studied self-conjugate permutations, ob-
taining a recurrence relation and a generating function for the number Un of
self-conjugate permutations of {1, 2, . . . , n}. It is possible to count Un directly
with a multinomial coefficient. A permutation of {1, 2, . . . , n} is self-conjugate
if and only if it is 12 . . . n with some number (possibly zero) of pairs of elements
switched. Explain why this implies that

Un = 1 +

(
n

2

)
+

(
n

2, 2, n− 4

)
1

2
+

(
n

2, 2, 2, n− 6

)
1

3!
+ . . .

=

�n
2 �∑

j=0

(
n

2, 2, . . . , 2︸ ︷︷ ︸
j 2’s

, n− 2j

)
1

j!
.

The factorial arises because we don’t care what order we choose the pairs of
numbers in. Show that this expression simplifies to

(1.6.7) Un =

�n
2 �∑

j=0

n!

j! (n− 2j)! 2j
.
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10. In problem 14 of section 1.1 we showed that
∞∑

n=0

Un
xn

n!
= e

x2

2 +x.

By using the exponential series and the binomial theorem, show that this implies
(1.6.7).

1.7. The Z-identity

The object of this section is to present a beautiful counting proof, by inversions,
of a rather complicated q-binomial coefficient identity. In the q = 1 case this proof
is due to Foata. Zeilberger figured out how to extend it to a q-analogue. Zeng
pointed out that Zeilberger’s argument would apply to a slightly more general
identity, which we will call

Theorem 8 (The Z-identity). For any nonnegative integers a, b, c, d, e we have(
a+ b+ d+ e

a+ d

)
q

(
a+ c+ d+ e

c+ d

)
q

(
b+ c+ d+ e

b+ d

)
q

=
∑
m

q(d−m)(e−m)

(
a+ b+ c+ d+ e+m

a+m, b+m, c+m, d−m, e−m

)
q

,

where the sum is over all the values of m that make sense, namely the ones between
the largest of −a,−b,−c and the smaller of d and e.

We can think of the left side as follows: the first q-binomial coefficient generates
sequences w1 of a + d 1’s and b + e 2’s, keeping track of inversions; the second
generates sequences w2 of a + e 1’s and c + d 3’s, by inversions; and the third
generates sequences w3 of b+ d 2’s and c+ e 3’s by inversions.

Let’s write down an example at this point. Suppose a = 5, b = 4, c = 3, d = 2,
and e = 1. Then w1 would have 5 + 2 1’s and 4 + 1 2’s; w2 has 5 + 1 1’s and 3 + 2
3’s; and w3 has 4 + 2 2’s and 3 + 1 3’s. Three sample sequences are:

111212212211

31331111331

2323322232.

Note that there are 14 inversions on the first line (in w1), 18 on the second line (in
w2) and 14 on the third line (in w3), so there are 46 inversions in the whole array.
Thus the left side of the Z-identity equals∑

arrays

qinvw1+invw2+invw3 .

Next we need a different way of looking at these arrays. We could try reading
them by columns, but there is a problem—the rows usually won’t all have the same
length, as in our example. Foata found a very clever way around this obstacle. If
all three rows have a different number in them, then we take the column as it is.

Thus in our example the first thing we get is
(

1
3
2

)
. We cross out those entries in the

array and proceed to the next column, where we do not see three different numbers,
but rather two 1’s and a 3. If we see two of the same number in a column, then we
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take those two numbers with a blank entry in the other row; thus
(

1
1

)
in this case.

We cross out the two numbers we took, but not the one we didn’t, in the array and
we keep going. Here’s what you will get if you finish this example:

1 1 1 2 1 2 2 1 2 2 1 1
3 1 3 3 1 1 1 1 3 3 1
2 3 2 3 3 2 2 2 3 2

There are only five kinds of columns that you can possibly get; this example has at
least two of all five kinds. (We’ll call these the five letters of the Foata alphabet.)
The next thing we want to do is get some idea of how many of each kind of column
we might get in general. Suppose there are

z1 of

⎛
⎝1
1

⎞
⎠ , z2 of

⎛
⎝1
3
2

⎞
⎠ , z3 of

⎛
⎝2

2

⎞
⎠ , z4 of

⎛
⎝2
1
3

⎞
⎠ , z5 of

⎛
⎝3
3

⎞
⎠ .

Then counting the number of 1’s in the first row, we must have z1+z2 = a+d, and
counting the number of 2’s in the first row we must have z3+z4 = b+e. Looking at
the second and third rows we get four other equations. Let’s list all six equations:

(1.7.1)

z1 + z2 = a+ d, z3 + z4 = b+ e,

z1 + z4 = a+ e, z2 + z5 = c+ d,

z2 + z3 = b+ d, z4 + z5 = c+ e.

Since (1.7.1) is a system of six equations in the five unknowns z1 through z5, it is
not obvious that there is a solution in general. But in fact (1.7.1) always has at
least one solution, and it may have many. One way to see this is to add together
the two equations containing a, the two containing b, and the two containing c.
This gives us three more equations, namely

2z1 + z2 + z4 = 2a+ d+ e,

2z3 + z2 + z4 = 2b+ d+ e,

2z5 + z2 + z4 = 2c+ d+ e,

from which we can deduce that

d+ e− z2 − z4
2

= z1 − a = z3 − b = z5 − c.

Then set m = z1 − a = z3 − b = z5 − c. Evidently we have z1 = a+m, z3 = b+m,
and z5 = c+m, and plugging back into our original system (1.7.1) we get that all
the equations are satisfied if z2 = d − m and z4 = e − m. So if m is any integer,
positive or not, such that all of the zi’s are nonnegative, then we get a solution of
(1.7.1). (Note that m = 0 will always work.) In the above example z1 = 4, z2 = 3,
z3 = 3, z4 = 2, z5 = 2, and m = −1. The argument so far is enough to prove that(

a+ b+ d+ e

a+ d

)(
a+ c+ d+ e

c+ d

)(
b+ c+ d+ e

b+ d

)

=
∑
m

(
a+ b+ c+ d+ e+m

a+m, b+m, c+m, d−m, e−m

)

and this is essentially what Foata proved with it.
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1.7. THE Z-IDENTITY 35

What about inversions in the Foata alphabet? This was Zeilberger’s contribu-
tion. To be able to talk about inversions at all, we have to choose an ordering of
the “letters” in the alphabet. A good choice, for reasons that we will see soon, is⎛

⎝1
1

⎞
⎠ <

⎛
⎝1
3
2

⎞
⎠ <

⎛
⎝2

2

⎞
⎠ <

⎛
⎝2
1
3

⎞
⎠ <

⎛
⎝3
3

⎞
⎠ .

With this ordering, there are 40 inversions in the transformed array:

1 1 1 2 1 2 2 1 2 2 1 1
3 1 3 3 1 1 1 1 3 3 1
2 3 2 3 3 2 2 2 3 2

The first
(

1
3
2

)
column is inverted with the four

(
1
1

)
columns, the first

(
3
3

)
column

is inverted with every column that comes after it except the other
(

3
3

)
column,

and so forth. If you count all these inversions up, 40 is the number you wind up
with. But the original array had 46 inversions, so we are off by 6 inversions. Why
is this, and can we predict how many inversions we will be off by in general, so that
we might fix the formula?

The
(

1
1

)
column was a good choice to be the smallest one, since its entries are

as small as possible, and by the same token the
(

3
3

)
column was a good choice to

be the biggest. Why put the
(

2

2

)
column in between

(
1
3
2

)
and

(
2
1
3

)
? There is a

good reason: it makes sense to have⎛
⎝1
3
2

⎞
⎠ <

⎛
⎝2

2

⎞
⎠

since no entry of the former is larger than any entry in the same row of the latter.
And it makes sense to have ⎛

⎝2

2

⎞
⎠ <

⎛
⎝2
1
3

⎞
⎠

since again no entry of the former is larger than any entry in the same row of the
latter. Every pair of columns respects order in this way except one,⎛

⎝1
3
2

⎞
⎠ and

⎛
⎝2
1
3

⎞
⎠

We said the former was less than the latter, which looks good in two out of the
three rows but not in the middle row. Therefore we miss one inversion in the second

array any time that we have a
(

2
1
3

)
column coming after a

(
1
3
2

)
column, because

that gets counted as one inversion in the first array and no inversion in the second.

What if a
(

2
1
3

)
column comes before a

(
1
3
2

)
column? In the second array we

do count that as an inversion, since we defined
(

1
3
2

)
to be less than

(
2
1
3

)
. But in

the first array it counts as two inversions, one in the first row and one in the third.

Therefore we also miss one inversion any time a
(

2
1
3

)
column comes before a

(
1
3
2

)
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column. In sum, any time there is a pair of a
(

1
3
2

)
column and a

(
2
1
3

)
column, no

matter which order they come in, we get one less inversion when we count them by
columns than when we count them by rows. Therefore, the second count will always

be too small by the number of
(

1
3
2

)
columns times the number of

(
2
1
3

)
columns. In

our example, there were three
(

1
3
2

)
columns and two

(
2
1
3

)
columns, so we should

be off by 3 × 2 = 6 inversions, and indeed we were since we got 46 the first way
and 40 the second way. In general we will be off by z2 × z4 = (d − m)(e − m),
and that is why the factor q(d−m)(e−m) appears inside the sum along with the q-
multinomial coefficient—the q-multinomial coefficient takes care of the inversions
among the columns, and the power of q picks up the missing ones. This proves
the Z-identity. As Zeng also pointed out, a different proof can be given using the
q–Pfaff-Saalschütz identity, which we will see in Chapter 5.

Exercises

1. If a = 3, b = 4, c = 2, d = 4, e = 3, then a possible triple of sequences is:

11212221211221

311133131331

2322222332233.

Count the number of inversions in each sequence. What “word” in the Foata
alphabet corresponds to these sequences? How many inversions does it have? Is
this the “right” number of inversions? Explain.

2. If a = 1, b = 2, c = 3, d = 4, e = 5, then a possible triple of sequences is:

221222112112

1311333313113

32232233332323.

Count the number of inversions in each sequence. What “word” in the Foata
alphabet corresponds to these sequences? How many inversions does it have? Is
this the “right” number of inversions? Explain.

3. Make up your own examples like problems 2 and 3 and solve them.

4. Show that, as a special case of the Z-identity, we have(
n

k

)3

q

=
∑
j

q(k−j)(n−k−j)

(
n+ j

j, j, j, k − j, n− k − j

)
q

.

5. Solve the system of equations (1.7.1) by whatever method you learned in lin-
ear algebra (probably elimination and back substitution), and show that your
solution is equivalent to the one in the text.
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1.8. Bibliographical Notes

It is worth stopping for a moment to say something more about August Leopold
Crelle. Nothing is more important for the health of mathematics than the support
and encouragement of promising young mathematicians. Crelle was fortunate to
meet Abel and Jacobi, two young men with a great deal to say, at a time when he
was trying to get a journal off the ground, but they were fortunate to meet him too.
Even much later, when he was old and his journal well-established, Crelle helped
get Eisenstein’s career off to a flying start by publishing his first 25(!) papers in
1844. Jacobi would have become great in any case, but Abel and Eisenstein both
died very young, and we have Crelle to thank for the fact that most of their work
appeared in their lifetimes, rather than posthumously. No doubt it was also much
easier for Abel, Jacobi, Eisenstein and many others to work in the knowledge that
their ideas would be heard. Although a mediocre mathematician himself, few people
did more for mathematics in the second quarter of the 19th century than Crelle. To
have his name attached to a great journal from 1826 through the foreseeable future
is nothing less than he deserves.

Stern’s problem appears in [226]. Terquem’s solution is in [235], and Ro-
drigues’s two solutions are in [196]. The “couples” argument is also given on p. 94
of Netto’s book [174], where there are references to Stern and Terquem, but not Ro-
drigues. Subsequent pages of Netto’s book study the coefficients of the q-factorial,
in effect, but without ever introducing it. If Netto ever read [196], then he must
have forgotten it by the time he wrote his book. Otherwise his fourth chapter would
have been much better.

The inversion concept goes back to Cramer’s pioneering work on determinants
in 1750 in the appendix of his book [84]; the number of inversions in a given per-
mutation equals the number of row exchanges needed to make the corresponding
permutation matrix into the identity. However, Cramer called them dérangements.
Laplace called them variations instead when he wrote about determinants in 1772
[161], and Stern called them Variationen when he posed his problem, but by that
time the term “inversions” was common in France, and was used by both Terquem
and Rodrigues in their solutions. It was introduced by Gergonne in 1813 in an ex-
pository paper [119] on determinants based on Laplace’s work, and popularized in
Garnier’s textbook [111] of the following year. See the first volume of Muir’s great
history of determinants [173] for more details. The connection between determi-
nants and inversions led Muir to rediscover the q-factorial in 1899 [172]. Rothe’s
theorem on conjugate permutations dates back to 1800 [207], and is also discussed
in [173]. Gergonne published [119] in his Annales de Mathématiques Pures et Ap-
pliquées, which was a precursor of Liouville’s Journal. For the Liouville-Gergonne
relationship see [165].

q-binomial coefficients appear for the first time in Gauss’s paper [115]. Curi-
ously, he never wrote down the fundamental recurrence (1.3.1); perhaps he thought
it insufficiently different from (1.3.2) to be worth noting. The result of problem 8
in section 1.2 is in [116]. The history of the Fundamental Property of q-binomial
coefficients is very strange. I can find no evidence that it was known, in that
form, before MacMahon published the Fundamental Property of q-multinomial co-
efficients in [167], where he called the number of inversions the “superior index”.
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The Fundamental Property of q-multinomial coefficients also appears in the intro-
duction (and only there; presumably it was added at the last minute) to the second
volume of MacMahon’s book [168], without proof but with a reference to [169].
There MacMahon gives the same proof as in [167], now using the word “inversion”.
Neither [169] nor [168] has a reference to [167]. All this is made still more curi-
ous by the fact that MacMahon knew earlier a related but harder result about the
major index—see Chapter 9.

The Fundamental Property of q-binomial coefficients has been attributed to
Netto’s book, but I have not found it there, and neither did MacMahon. However,
an equivalent result on partitions was proved by Cayley in 1855. We will see it in
Chapter 3.

The Fundamental Property of q-multinomial coefficients was rediscovered by
Carlitz [64], and Pólya [186], [187] seems to have known it at about the same time.
As far as I know, [64] is the first paper with a reference to [196]. Carlitz says there
that Charles A. Church pointed out Rodrigues’s paper to him. Pólya’s Property
appears in [185] and [188].

The Z-identity, in a slightly different form, is equation (4) in [253]. It is slightly
more general than Zeilberger’s identity [249], which is a q-analogue of Foata’s
identity from [106]. For the q-Pfaff–Saalschütz identity see Chapter 5.

For the unimodality of the q-binomial coefficients see two other papers of Zeil-
berger. In [250] he gives a prize-winning account of a combinatorial proof of Kathy
O’Hara. Another approach is in [251], and there are several related papers in the
same volume. I have chosen to denote the q-binomial coefficients by

(
n
k

)
q
rather

than
[
n
k

]
or
[
n
k

]
q
for reasons discussed in Knuth’s beautiful paper [159], in which he

proposes a notation for the Stirling numbers of the second kind (or Stirling subset
numbers) that I have followed ever since. The reasons for using

(
n
k

)
q
have to do

with the Stirling numbers of the first kind.
Pallavi Jayawant read a preliminary version of this chapter and pointed out

several errors. I have referred to M. A. Stern in print at least once as “Maximilian
Stern”, and I cannot now remember why. It is apparently true that some of his
friends called him “Max”, but “Moritz Abraham Stern” is the more proper name.
I thank Brian Hayes for the correction.
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CHAPTER 2

q-binomial Theorems

2.1. A noncommutative q-binomial Theorem

There are quite a few results that could be described as q-binomial theorems,
of which the oldest date back to the early 1800s. The most natural one from the
point of view of inversions is however much more recent, and we begin with it.

Suppose we expand (x+y)n without assuming that xy is the same thing as yx.
If you have seen matrices or groups, then you know that there are things that do
not commute with each other. You see this in your everyday life also—it can make
a big difference what order you do things in. For example, two things you might
do with a bucket of water are

• leave it outside on a cold night,
• empty it on somebody.

The order is significant. Indeed, part of the reason why linear algebra is such an
important subject is that it can deal with phenomena that are noncommutative,
such as rotations (about different axes), reflections, projections, permutations, and
so on. Far from being a defect, the noncommutativity of matrix multiplication is a
boon.

With this sermon out of the way, consider (x+ y)n, which means

n factors︷ ︸︸ ︷
(x+ y)(x+ y) · · · (x+ y),

Because of the noncommutativity of x and y, we have to be careful about multi-
plying this out. We will get

xxx · · ·x+ yxx · · ·x+ xyxx · · ·x+ yyxx · · ·x+ · · ·+ xyy · · · y + yy · · · y
which consists of one copy of every possible arrangement of n factors which could
be either x or y. Let’s denote the sum of all the different products of m x’s and n
y’s by Vm,n; so that, for example,

V2,2 = xxyy + xyxy + xyyx+ yxxy + yxyx+ yyxx.

We’ll define V0,0 = 1 and Vm,n = 0 if m or n is negative. Let’s look specifically at
(x+ y)4:

(x+ y)4 = xxxx+ {xxxy + xxyx+ xyxx+ yxxx}
+ {xxyy + xyxy + xyyx+ yxxy + yxyx+ yyxx}
+ {xyyy + yxyy + yyxy + yyyx}+ yyyy

= V4,0 + V3,1 + V2,2 + V1,3 + V0,4.

39
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40 2. q-BINOMIAL THEOREMS

In exactly the same way we have

Theorem 9 (The totally noncommutative binomial theorem). If we make no
assumption whatever about the commutativity of x and y, then

(x+ y)n =

n∑
k=0

Vk,n−k

with Vi,j defined as above.

When x and y commute, then all of the terms of Vk,n−k are equal to xk yn−k,
and there are

(
n
k

)
such terms (why?), and we get back the ordinary binomial theo-

rem. Let’s try a different assumption: suppose yx = qxy, where q is a variable that
commutes with x and y. What happens to the totally noncommutative binomial
theorem then?

To see this, let’s look at the (x+ y)4 example above. The first and last terms
give us no trouble; we can write them as x4 and y4 respectively. Let’s try to write
the second term, xxxy+xxyx+xyxx+yxxx, in the form (something)x3y. xxxy is
already in that form, but in the other terms we have to use yx = qxy to move the
y to the right of all the x’s. If we use yx = qxy once on the term yxxx, we will get
(yx)xx = (qxy)xx = qxyxx. Therefore yxxx+ xyxx = (1 + q)xyxx, and if we use
yx = qxy on this, we get (1+q)x(yx)x = (1+q)x(qxy)x = (q+q2)xxyx. Therefore
xxyx + xyxx + yxxx = (1 + q + q2)xxyx, and using yx = qxy one last time gives
us (1 + q + q2)xx(yx) = (1 + q + q2)xx(qxy) = (q + q2 + q3)xxxy. Therefore

xxxy + xxyx+ xyxx+ yxxx = (1 + q + q2 + q3)xxxy = [4]qx
3y.

In the same way,

xyyy + yxyy + yyxy + yyyx = (1 + q + q2 + q3)xyyy = [4]qxy
3.

Do you see what’s happening yet? Let’s finish the (x+y)4 example by working out
xxyy+ xyxy+ xyyx+ yxxy+ yxyx+ yyxx. In each term, we have to move all the
y’s to the right of all the x’s, and each time we move a y past an x we pick up a
q. Therefore each term equals x2y2 times q to a power, where the exponent of q is
the number of times we had to move a y past an x in that term. Think back to the
beginning of section 1.3, where we said

In this section we’ll play the same sort of game as before, but this
time with “words” in a two-letter “alphabet”. For the moment,
let’s take the “letters” to be 0 and 1, where as usual 1 > 0. In
general, we’ll consider sequences of k 0’s and n − k 1’s, and as
before we’ll keep track of inversions; this time, an inversion will
be any pair of a 1 and a 0 where the 1 comes before the 0.

Suppose we take the “letters” to be x and y instead, where we think of xy as the
natural order and of yx as inverted. This is exactly the problem we are considering
now; the powers of q for each sequence are

sequence qinv sequence qinv

xxyy q0 yxxy q2

xyxy q1 yxyx q3

xyyx q2 yyxx q4
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2.1. A NONCOMMUTATIVE q-BINOMIAL THEOREM 41

and we see that, if yx = qxy, then

xxyy+xyxy+xyyx+yxxy+yxyx+yyxx = (1+q+2q2+q3+q4)xxyy =

(
4

2

)
q

x2y2.

In general we have

Lemma 1. If Vi,j is as above and yx = qxy, then

Vk,n−k =

(
n

k

)
q

xkyn−k.

This is just a restatement of the Fundamental Property of q-binomial coeffi-
cients. For it is clear that we must get xkyn−k times some function of q, and as we
argued above, each term of Vk,n−k contributes q to a power which is the number
of inversions (y’s in front of x’s) in that term. Hence the Fundamental Property
tells us that this function of q must be

(
n
k

)
q
. Combining the lemma with the totally

noncommutative binomial theorem we get

Theorem 10 (The Potter–Schützenberger q-binomial theorem). If yx = qxy
and all other quantities are commuting, then

(2.1.1) (x+ y)n =
n∑

k=0

(
n

k

)
q

xk yn−k.

Although we already have a fully satisfactory proof of (2.1.1), let’s prove it by
induction on n as well. For this we recall the q-Pascal recurrences(

n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

(2.1.2)

= qn−k+1

(
n

k − 1

)
q

+

(
n

k

)
q

(2.1.3)

from section 1.3. We have already checked the theorem for n = 4, and we leave it
to the reader to check it for smaller n. Assuming it is true for n, we have

(x+ y)n+1 = (x+ y)(x+ y)n(2.1.4)

= (x+ y)

n∑
k=0

(
n

k

)
q

xk yn−k(2.1.5)

=

n∑
k=0

(
n

k

)
q

xk+1 yn−k +

n∑
k=0

(
n

k

)
q

yxk yn−k.(2.1.6)

In the second sum we use the fact that, if yx = qxy, then yxk = qkxky for any
nonnegative integer k. We also replace k by j − 1 in the first sum; if 0 ≤ k ≤ n,
then 1 ≤ j ≤ n+ 1. Now

(x+ y)n+1 =
n+1∑
j=1

(
n

j − 1

)
q

xj yn+1−j +
n∑

k=0

(
n

k

)
q

qk xk yn+1−k.
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42 2. q-BINOMIAL THEOREMS

If we replace k by j in the second sum, and add a 0 term to each sum, then this
becomes

(x+ y)n+1 =
n+1∑
j=0

(
n

j − 1

)
q

xj yn+1−j +
n+1∑
j=0

(
n

j

)
q

qj xj yn+1−j

=

n+1∑
j=0

(
n+ 1

j

)
q

xj yn+1−j ,

where we used (2.1.2) in the last step. This shows that if (2.1.1) is true for n,
then it is also true for n + 1. Since it is trivially true for n = 0, it is true for all
nonnegative integers n.

We can also get a multinomial version of the Potter–Schützenberger theorem.
Let x1, . . . , xm be m noncommuting variables such that

xj xi =

⎧⎪⎨
⎪⎩
qxixj , if j > i,

xixj , if j = i,

q−1xixj , if j < i.

Then

(2.1.7) (x1 + · · ·+ xm)n =
∑

k1+···+km=n

(
n

k1, . . . , km

)
q

xk1
1 . . . xkm

m .

If we multiply the left side of (2.1.7) out and use the commutation relations to

put each term in the form xk1
1 . . . xkm

m , we will get a factor of q anytime there
is an inversion among the subscripts of the xi’s. Thus (2.1.7) follows from the
Fundamental Property of q-multinomial coefficients.

This theorem has traditionally been attributed to Schützenberger, who proved
it in 1953, but it had also appeared in a note by Potter three years earlier, as
was pointed out by Olga Holtz. One could also argue that it was not so much
a new theorem as a new and striking way to state the Fundamental Property of
q-binomial coefficients. Beautiful as it is, it does have one serious drawback—if
q �= 1, one cannot replace x or y by numbers (except 0, which is not interesting),
because this would violate yx = qxy. It is natural to wish for a “commutative”
q-binomial theorem that would be free from this objection, and we will return to
this soon. We conclude this section by exploring the consequences of the obvious
identity (x+ y)m+n = (x+ y)m (x+ y)n when yx = qxy. Expanding on both sides,
we get

m+n∑
k=0

(
m+ n

k

)
q

xk ym+n−k =

m∑
i=0

(
m

i

)
q

xi ym−i
n∑

j=0

(
n

j

)
q

xj yn−j

=

m∑
i=0

n∑
j=0

(
m

i

)
q

(
n

j

)
q

xi ym−i xj yn−j .

Now we use yx = qxy repeatedly to move the factor xj through the factor ym−i, so
that we get all the x’s together and all the y’s together. Each x has to go through
each y, so we must use yx = qxy a total of (m − i)j times to accomplish this,
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thereby picking up a factor of q(m−i)j . So now we have

m+n∑
k=0

(
m+ n

k

)
q

xk ym+n−k =

m∑
i=0

n∑
j=0

(
m

i

)
q

(
n

j

)
q

xi+j ym+n−(i+j) q(m−i)j

=
m+n∑
k=0

xk ym+n−k
∑

i+j=k

(
m

i

)
q

(
n

j

)
q

q(m−i)j .

By equating coefficients of xk ym+n−k, it follows that(
m+ n

k

)
q

=
∑
j

(
m

k − j

)
q

(
n

j

)
q

qj(m−k+j).

We proved the same identity by counting inversions in Chapter 1.

Exercises

1. Prove that if yx = qxy, then yxk = qkxky for any nonnegative integer k.

2. Explain why Vm,n = xVm−1,n + yVm,n−1. Check the definition—does this still
hold if m or n are 0?

3. Explain why Vm,n = Vm−1,nx+ Vm,n−1y. Does this still hold if m or n are 0?

4. Use either problem 2 or problem 3 to prove the totally noncommutative binomial
theorem by induction on n.

5. What happens to the results of problems 2 and 3 if you set x = y = 1?

6. Rewrite the result of problem 2 as Vk,n+1−k = xVk−1,n+1−k + yVk,n−k, and use
it along with (2.1.2) to prove the Fundamental Lemma by induction on n.

7. Rewrite the result of problem 3 as Vk,n+1−k = Vk−1,n+1−kx+ Vk,n−ky, and use
it along with (2.1.3) to prove the Fundamental Lemma by induction on n.

8. Prove the Potter–Schützenberger q-binomial theorem by induction using (2.1.3)
instead of (2.1.2). (Start with (x+ y)n+1 = (x+ y)n(x+ y).)

9. Consider functions of a variable t. Two things we might conceivably want to do
to a typical f(t) are
(a) replace t by qt,
(b) take the derivative with respect to t,
Let η be an operator that does the first, and D an operator which does the sec-
ond; in other words, Df(t) = f ′(t) and η f(t) = f(qt). Explain why ηD f(t) :=
η (Df(t)) = f ′(qt) but Dη f(t) := D (η f(t)) = q f ′(qt). Conclude that Dη =
qηD.

10. Let x and q be commuting variables, and define the matrices

A =

(
1 x
− 1

x −1

)
, B =

(
1 + q (1− q)x
1−q
x 1 + q

)
, C =

(
q + 1 (q − 1)x
q−1
x q + 1

)
.

Show that BA = qAB = 2qA = AC = qCA.

11. (This exercise is due to Greg Henderson.) Suppose D is a diagonal 2×2 matrix,
M is an arbitrary 2×2 matrix, and DM = qMD. Show that the only nontrivial
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44 2. q-BINOMIAL THEOREMS

possibilities for D and M (in other words, the only cases in which DM = qMD
with a generic value of q and without both sides being the zero matrix) are

D =

(
qb 0
0 b

)
and M =

(
0 x
0 0

)
or

D =

(
a 0
0 qa

)
and M =

(
0 0
y 0

)
.

12. Let

X =

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ and Y =

⎛
⎜⎜⎝
1 0 0 0
0 q 0 0
0 0 q2 0
0 0 0 q3

⎞
⎟⎟⎠ .

Show that Y X = qXY , and generalize to n× n matrices.

13. What happens if you replace X in the previous problem by its transpose?

14. Prove the following generalization of the Potter–Schützenberger theorem: if yx =
qxy and yw = qwy and all other pairs of variables commute, then

(x+ y)n =
n∑

k=0

(
n

k

)
q

(x+ w)(x+ wq) · · · (x+ wqk−1)(y − w)n−k,

where (x+w)(x+wq) · · · (x+wqk−1) = 1 if k = 0. What happens when q → 1?

15. Try to think of a particularly striking real-world example of two things that
produce dramatically different results depending on which order they are done
in. Here’s a nice one that I heard from Georgia Benkart:
• stick your head out a window,
• open the window.

Cooking may be a good source of examples.

16. Gian-Carlo Rota, Bruce Sagan and Paul R. Stein found a very interesting gener-
alization of the notion of a derivative to a noncommutative ring; in other words,
to an expression like Vm,n, where we have a commutative addition and a possi-
bly noncommutative multiplication. For example, suppose we want the cyclic
derivative of axxbaxcb with respect to x, where none of the letters x, a, b, c
necessarily commutes with any of the others. The cyclic derivative operator Dx

consists of two other operators C and Tx.

Step 1: First apply the cycling operator C to get

C axxbaxcb = axxbaxcb+ baxxbaxc+ cbaxxbax+ xcbaxxba

+ axcbaxxb+ baxcbaxx+ xbaxcbax+ xxbaxcba,

where we tear off one letter at a time from the back and put it on the front until
we get back to where we started. This step is independent of which letter the
derivative is being taken with respect to.

Step 2: Apply the truncation operator Tx, which annihilates any term
that doesn’t begin with x, and removes the initial x from any term that does.
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2.2. POTTER’S PROOF 45

In this example, this gives

Dx axxbaxcb = Tx C axxbaxcb

= 0 + 0 + 0 + cbaxxba+ 0 + 0 + baxcbax+ xbaxcba

= cbaxxba+ baxcbax+ xbaxcba.(2.1.8)

We also extend the definition ofDx by linearity, so thatDx (u+ v) = Dx u+Dx v
and, for example, Dx 5u = 5Dx u. Note that this means a number is treated
differently from a letter, and numbers are assumed to commute with letters.

(i) If all the letters commute with each other, what does (2.1.8) say?

(ii) Show that C Vm,n = (m+ n)Vm,n.

(iii) Show that Dx Vm,n = (m+ n)Vm−1,n.

(iv) Use (iii) to show that, even with no assumption about the commutativity
of x and y, we have Dx(x+ y)n = n(x+ y)n−1. The result of problem 2 might
help.

2.2. Potter’s proof

For the algebraically inclined reader, the Potter–Schützenberger q-binomial the-
orem (and its q-multinomial generalization) is the central result in inversion theory;
the relation yx = qxy is precisely what is needed to describe algebraically the com-
binatorial idea of an inversion.

Although we have preferred to take a combinatorial approach, Potter derived
(2.1.1) purely algebraically, without having to guess the answer and prove it by
induction, and in a rather simple way. As we will see in the exercises, this argument
in essence dates back to Gruson in 1814. It has often been rediscovered.

The problem, again, is to expand (x+y)n under the assumptions that yx = qxy
and that q commutes with x and y. Let’s set

(2.2.1) (x+ y)n =
n∑

k=0

C(n, k, q) xk yn−k

and try to force out the coefficients C(n, k, q). The first step is to rederive the
fundamental recurrences (2.1.2) and (2.1.3). According to (2.2.1), we have

(2.2.2) (x+ y)n+1 =
n+1∑
k=0

C(n+ 1, k, q) xk yn+1−k

and also

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)

n∑
k=0

C(n, k, q) xk yn−k

=

n∑
k=0

C(n, k, q) xk+1 yn−k +

n∑
k=0

C(n, k, q) y xk yn−k.
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Change k + 1 to k in the first sum, and in the second use yx = qxy k times to
move the lone y past xk to where its n − k brothers and sisters are. This gives us
yxk = qkxky, and we have

(x+ y)n+1 =

n+1∑
k=1

C(n, k − 1, q) xk yn+1−k +

n∑
k=0

C(n, k, q) qk xk yn+1−k.

Comparing this with (2.2.2) we get

(2.2.3) C(n+ 1, k, q) = C(n, k − 1, q) + qk C(n, k, q),

which should look familiar. We also have

(x+ y)n+1 = (x+ y)n(x+ y)

=

(
n∑

k=0

C(n, k, q) xk yn−k

)
(x+ y)

=
n∑

k=0

C(n, k, q) xk yn−k x+
n∑

k=0

C(n, k, q) xk yn+1−k.

In the first sum, use yx = qxy n − k times, so that yn−kx = qn−kxyn−k. Then
change k + 1 to k in the first sum. There results

(x+ y)n+1 =

n+1∑
k=1

C(n, k − 1, q)qn−k+1 xk yn+1−k +

n∑
k=0

C(n, k, q) xk yn+1−k.

Comparing this with (2.2.2) we get

(2.2.4) C(n+ 1, k, q) = C(n, k, q) + qn−k+1C(n, k − 1, q),

again as hoped.
Combining (2.2.3) and (2.2.4) we have

C(n, k − 1, q) + qk C(n, k, q) = qn−k+1C(n, k − 1, q) + C(n, k, q),

or

C(n, k, q)(1− qk) = C(n, k − 1, q)(1− qn−k+1),

or

(2.2.5) C(n, k, q) = C(n, k − 1, q)
1− qn−k+1

1− qk
.

If we replace k by k − 1 in (2.2.5) we get

C(n, k − 1, q) = C(n, k − 2, q)
1− qn−k+2

1− qk−1

and substituting this into the right side of (2.2.5) gives

C(n, k, q) = C(n, k − 2, q)
1− qn−k+1

1− qk
1− qn−k+2

1− qk−1
.

Continuing in this way, after k iterations we will get

(2.2.6) C(n, k, q) = C(n, 0, q)
(1− qn−k+1)(1− qn−k+2) . . . (1− qn)

(1− qk)(1− qk−1) . . . (1− q)
.
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By the definition (2.2.1),
(
n
0

)
q
is the coefficient of yn in the expansion of (x+ y)n,

which is just yn no matter what we assume about the commutation of x and y.
This forces C(n, 0, q) = 1 and proves that

C(n, k, q) =
(q; q)n

(q; q)k(q; q)n−k
=

(
n

k

)
q

=
n!q

k!q (n− k)!q
.

Thus we have derived (again)

Theorem 11 (The Potter–Schützenberger q-binomial theorem). If yx = qxy
and all other quantities are commuting, then

(x+ y)n =

n∑
k=0

(
n

k

)
q

xk yn−k,

where
(
n
k

)
q
= (q;q)n

(q;q)k (q;q)n−k
if k and n are integers with 0 ≤ k ≤ n and is 0 otherwise.

One of the interesting features of this argument (a point stressed by Dick Askey)
is that one cannot use a simpler version of it to derive the ordinary binomial theorem
algebraically in the same way. It fails at the step where we equated the two different
q-Pascal recurrences: for q = 1, since there is only one Pascal recurrence, the algebra
collapses to 0 = 0, which is true but useless.

Exercises

1. In 1814, Johann Philipp Gruson used a similar argument to prove Rothe’s q-
binomial theorem, the subject of the next section. He wanted to find the coeffi-
cients Ak (which should really be called An,k(q), but we will follow his notation)
in the expansion

Y := (x+ z)(x+ zq) · · · (x+ zqn−1) =

n∑
k=0

Akx
n−kzk.

(i) Explain why A0 = 1.

Gruson sets P = (x+ zq)(x+ zq2) · · · (x+ zqn) and notes that

P =
n∑

k=0

Akx
n−k(zq)k and P =

x+ zqn

x+ z
Y.

Then he sets

Y

x+ z
=

n−1∑
k=0

Bkx
n−1−kzk.

(ii) Show that B0 = A0 = 1, that Bn−1 = An, and that Ak = Bk + Bk−1

for 1 ≤ k ≤ n− 1.

(iii) Explain why P = (x+ zqn)
n−1∑
k=0

Bkx
n−1−kzk.

(iv) Show that (iii) again implies B0 = A0 = 1 and Bn−1 = An, and that it
also implies Akq

k = Bk +Bk−1q
n for 1 ≤ k ≤ n− 1.
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48 2. q-BINOMIAL THEOREMS

(v) Use (ii) and (iv) to show that

Bk =
qn − qk

qk − 1
Bk−1 and Ak =

qn − 1

qk − 1
Bk−1.

(vi) Show that (v) implies

Bk =
(qn − q)(qn − q2) · · · (qn − qk)

(q − 1)(q2 − 1) · · · (qk − 1)
.

(vii) Show that (v) and (vi) imply

Ak =
(qn − 1)(qn − q) · · · (qn − qk−1)

(q − 1)(q2 − 1) · · · (qk − 1)
.

(viii) As far as Gruson was concerned, this completes the proof, but show
that he’s proved

(x+ z)(x+ zq)(x+ zq2) · · · (x+ zqn−1) =

n∑
k=0

(
n

k

)
q

q(
k
2)xn−kzk.

This is Rothe’s q-binomial theorem.

2. Show that

(qn − 1)(qn − q) · · · (qn − qk−1)

(q − 1)(q2 − 1) · · · (qk − 1)
+ qn

(qn − 1)(qn − q) · · · (qn − qk−2)

(q − 1)(q2 − 1) · · · (qk−1 − 1)

=
(qn+1 − 1)(qn+1 − q) · · · (qn+1 − qk−1)

(q − 1)(q2 − 1) · · · (qk − 1)
.

3. Gruson wrote the result of problem 1 as

(x+ z)(x+ zq)(x+ zq2) · · · (x+ zqn−1) = xn +
qn − 1

q − 1
xn−1z

+
(qn − 1)(qn − q)

(q − 1)(q2 − 1)
xn−2z2 +

(qn − 1)(qn − q)(qn − q2)

(q − 1)(q2 − 1)(q3 − 1)
xn−3z3 + . . .

+
(qn − 1)(qn − q) · · · (qn − qk−1)

(q − 1)(q2 − 1) · · · (qk − 1)
xn−kzk + · · ·+ q

n(n−1)
2 zn.

He also proved this by induction, using the result of problem 2. Reconstruct his
argument.

4. The second person to use a Gruson/Potter type argument, a few years after Gru-
son, was Ferdinand Schweins. In this problem we outline Schweins’s argument
with a simplified notation. Consider the product

Sn(y) := (1 + y)(1 + yq) · · · (1 + yqn−1),

which means 1 if n = 0. We want to expand Sn(y) in powers of y. Define the
coefficient of yk by s(n, k) (which will, of course, be a function of q). The only
k’s that we can possibly get are the ones between 0 and n, so we have

(2.2.7) Sn(y) = (1 + y)(1 + yq) · · · (1 + yqn−1) =
n∑

k=0

s(n, k) yk.
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2.3. ROTHE’S q-BINOMIAL THEOREM 49

Clearly s(n, 0) = 1, and we can assume s(n, k) = 0 if k > n or k < 0. Schweins
observes (or would observe) that

Sn(y) = (1 + y)Sn−1(yq)(2.2.8)

= Sn−1(y)(1 + yqn−1).(2.2.9)

(i) (2.2.8) implies that

n∑
k=0

s(n, k)yk = (1 + y)

n−1∑
k=0

s(n− 1, k)ykqk.

Show that this leads to

s(n, k) = s(n− 1, k)qk + s(n− 1, k − 1)qk−1.

(ii) (2.2.9) implies that

n∑
k=0

s(n, k)yk = (1 + yqn−1)

n−1∑
k=0

s(n− 1, k)yk.

Show that this leads to

s(n, k) = s(n− 1, k) + s(n− 1, k − 1)qn−1.

(iii) Show that comparing the results of (i) and (ii) and changing n− 1 to n
gives

s(n, k) = qk−1 1− qn−k+1

1− qk
s(n, k − 1).

(iv) Show that iterating the result of (iii) down to k = 0 gives s(n, k) =(
n
k

)
q
q(

k
2). This proves that

(2.2.10) (1 + y)(1 + yq) · · · (1 + yqn−1) =
n∑

k=0

(
n

k

)
q

q(
k
2)yk.

(v) To make (2.2.10) superficially more general we can replace y by x
a and

multiply through by an. Show that this gives

(a+ x)(a+ xq) · · · (a+ xqn−1) =
n∑

k=0

(
n

k

)
q

q(
k
2)an−kxk.

This is Rothe’s q-binomial theorem.

2.3. Rothe’s q-binomial theorem

George Andrews showed that the Potter–Schützenberger theorem can be used
to derive a much older commutative q-binomial theorem. (Another way of doing
this was given earlier by Johann Cigler; see problem 12.) Andrews’s idea is to
replace x by xy and y by ay, where a commutes with x, y and q. We can do this
as long as these replacements are consistent with the condition yx = qxy, so we
have to check that (ay)(xy) = q(xy)(ay), and this does hold, since the left side

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



50 2. q-BINOMIAL THEOREMS

is a(yx)y = a(qxy)y, which is the same as the right side since a commutes with
everything. The Potter–Schützenberger theorem now reads

(2.3.1) (xy + ay)n =
n∑

k=0

(
n

k

)
q

(xy)k (ay)n−k,

where yx = qxy. The next step is to factor all the y’s out to the right on both
sides. Let’s look at the sum side first. (ay)n−k = an−k yn−k since a and y commute.
What about (xy)k? By definition, this means xyxyxy . . . xy, with k factors of x
and k factors of y, and we want to factor all the y’s to the right. There are k − 1
x’s to the right of the first y, k − 2 x’s to the right of the second y, and so on, so
we have to use yx = qxy a total of (k − 1) + (k − 2) + (k − 3) + · · · + 1 + 0 =

(
k
2

)
times to get all the y’s to the right of all the x’s. Therefore, the right side of (2.3.1)
equals

(2.3.2)

n∑
k=0

(
n

k

)
q

q(
k
2) xk yk an−k yn−k =

(
n∑

k=0

(
n

k

)
q

q(
k
2) xk an−k

)
yn.

Note that the yn can come out of the sum, since it does not depend on k. On the
other hand, the left side of (2.3.1) is

n factors︷ ︸︸ ︷
((x+ a)y) ((x+ a)y) . . . ((x+ a)y) .

Again, we will use yx = qxy to try to move all the y’s to the right. To see how this
is going to work, start with the leftmost y, and imagine trying to move it to where
the next y is. Just looking at these factors, we have

(x+ a)y(x+ a)y = (x+ a)(yx+ ya)y = (x+ a)(qxy + ay)y = (x+ a)(qx+ a)y2.

With n factors, we wind up with

(2.3.3)

n factors︷ ︸︸ ︷
(x+ a)y(x+ a)y . . . (x+ a)y = (x+ a)(xq+ a)(xq2 + a) . . . (xqn−1 + a)yn.

The expression in (2.3.2) equals the expression in (2.3.3), since they both came
from (2.3.1). Now just cancel the factors of yn, and we have proved

Theorem 12 (Rothe’s q-binomial theorem). If a, x and q are arbitrary com-
muting variables, then

(x+ a)(xq + a)(xq2 + a) . . . (xqn−1 + a) =

n∑
k=0

(
n

k

)
q

q(
k
2) xk an−k,

where the product on the left is defined to be 1 if n = 0.

This dates back to 1811, and is the oldest “true” q-analogue of the binomial
theorem. (Gauss’s identities in section 2.5 are three years older, but they are only q-
versions of special cases of the binomial theorem. Gauss did eventually find Rothe’s
theorem as well, but he never published it.)
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For another proof of Rothe’s theorem, set rn(x, a) equal to the sum there.
Then, applying (2.1.2) to rn+1(x, a), we get

rn+1(x, a) =
n+1∑
k=0

(
n+ 1

k

)
q

q(
k
2) xk an+1−k

=

n+1∑
k=0

{(
n

k − 1

)
q

+ qk
(
n

k

)
q

}
q(

k
2) xk an+1−k

=

n+1∑
k=1

(
n

k − 1

)
q

q(
k
2) xk an+1−k +

n∑
k=0

(
n

k

)
q

q(
k
2) (xq)k an+1−k

=

n∑
j=0

(
n

j

)
q

q(
j+1
2 ) xj+1 an−j +

n∑
j=0

(
n

j

)
q

q(
j
2) (xq)j an+1−j ,

where we replaced k by j + 1 in one of the last two sums, and simply renamed k
as j in the other. Using the fact that

(
j+1
2

)
=
(
j
2

)
+ j for any nonnegative integer

j, we have

rn+1(x, a) =

n∑
j=0

(
n

j

)
q

q(
j
2) qj xj+1 an−j +

n∑
j=0

(
n

j

)
q

q(
j
2) (xq)j an+1−j

=

n∑
j=0

(
n

j

)
q

q(
j
2) (xq)j an−j (x+ a)

= (a+ x) rn(xq, a).

Iterating this, we get

rn+1(x, a) = (a+ x) rn(xq, a)

= (a+ x)
{
(a+ xq) rn−1(xq

2, a)
}

= (a+ x) (a+ xq)
{(

a+ xq2
)
rn−2(xq

3, a)
}

= and so forth

= (a+ x) (a+ xq)
(
a+ xq2

)
· · · (a+ xqn) r0(xq

n+1, a).

But r0(u, v) = 1 for any choice of u and v, so this proves Rothe’s theorem with
n+ 1 in place of n.

If we set a = 1 and x = −1 in Rothe’s theorem, then the product side has a
factor of 1− 1 unless n = 0, so we have

(2.3.4)

n∑
j=0

(
n

j

)
q

q(
j
2) (−1)j =

{
1 if n = 0,

0 if n > 0.

This enables us to invert the matrix Ln(q) from one of the problems in Chapter 1,

whose ijth entry was
(
i−1
j−1

)
q
. We claim that the ijth entry of L−1

n (q) is

(2.3.5) (−1)i−j

(
i− 1

j − 1

)
q

q(
i−j
2 ).
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For example, (2.3.5) says that the inverse of

L4(q) =

⎛
⎜⎜⎝
1 0 0 0
1 1 0 0
1 1 + q 1 0
1 1 + q + q2 1 + q + q2 1

⎞
⎟⎟⎠

is

L−1
4 (q) =

⎛
⎜⎜⎝

1 0 0 0
−1 1 0 0
q −1− q 1 0

−q3 q + q2 + q3 −1− q − q2 1

⎞
⎟⎟⎠

and one can easily check this. If we multiply Ln(q) by the matrix whose ijth entry
is as claimed in (2.3.5), we get a matrix whose ijth entry is

n∑
k=1

(
i− 1

k − 1

)
q

(−1)k−j

(
k − 1

j − 1

)
q

q(
k−j
2 ),

so we have to show that this is 1 if i = j and 0 otherwise. There are no nonzero
terms in the sum if j > i, by definition of the q-binomial coefficient, so we certainly
get zero in that case. If j = i, we get one nonzero term, when k = i = j, and this
term equals 1. So the only case that requires an argument is when j < i, when the
sum runs over all k between j and i. Here we can write(

i− 1

k − 1

)
q

(
k − 1

j − 1

)
q

=

(
i− 1

j − 1

)
q

(
i− j

k − j

)
q

and if we reindex the sum by letting l = k − j, then we have(
i− 1

j − 1

)
q

i−j∑
l=0

(
i− j

l

)
q

(−1)l q(
l
2)

which equals 0 by (2.3.4) unless i = j, when it equals 1. This proves (2.3.5).
We could now write down the inverse of the q-Pascal matrix Pn(q), since Pn(q) =
Ln(q)Dn(q)Ln(q)

T and we know how to invert all three factors, but the result is
not particularly nice.

The following curious theorem has a similar proof and is sometimes useful.

Theorem 13. If An and Bn are two sequences, then

(2.3.6) An =

n∑
k=0

(
n

k

)
q

Bk if and only if Bn =

n∑
k=0

(
n

k

)
q

(−1)n−kq(
n−k

2 )Ak.

We prove one direction and leave the other as an exercise. Change n to k and
k to j in the first equation and substitute it into the second to get the double sum

n∑
k=0

k∑
j=0

(
n

k

)
q

(
k

j

)
q

(−1)n−kq(
n−k

2 )Bj .

Changing the order of summation and rewriting the q-binomial coefficients as above
this becomes

n∑
j=0

(
n

j

)
q

Bj

n∑
k=j

(
n− j

n− k

)
q

(−1)n−kq(
n−k

2 ).

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXERCISES 53

Again reindexing the inner sum by letting l = n− k, we get

n∑
j=0

(
n

j

)
q

Bj

n−j∑
l=0

(
n− j

l

)
q

(−1)lq(
l
2).

By (2.3.4) the inner sum is zero unless j = n, and this expression collapses to Bn,
as desired. Therefore the formula for An in (2.3.6) implies the formula for Bn.

Exercises

Note: The notation (x; q)n = (1−x)(1−xq)(1−xq2) · · · (1−xqn−1) mentioned
in Chapter 1, with (x; q)0 = 1, is used many times in the problems below.

1. Show that

(2.3.7) (x; q)n =
n∑

k=0

(
n

k

)
q

q(
k
2) (−1)k xk.

You can either prove this directly, imitating the proof of Rothe’s q-binomial
theorem; or derive it as a special case of Rothe’s theorem. The latter is less
work but the former may be more instructive.

2. Show that

(−q; q)n =
n∑

k=0

(
n

k

)
q

q(
k+1
2 ).

(Either directly, or as a special case of Rothe’s q-binomial theorem, or as a special
case of (2.3.7).)

3. Prove Rothe’s q-binomial theorem using (2.1.3) instead of (2.1.2).

4. Prove that
n∑

k=0

qk

(q; q)k
=

1

(q; q)n
.

We will have a simple combinatorial explanation of this identity in Chapter 3.

5. Prove that the formula for Bn in (2.3.6) implies the one for An.

6. Show that (2.3.6) may be rewritten in the more symmetric form

An =

n∑
k=0

(
n

k

)
q

(−1)kCk ⇐⇒ Cn =

n∑
k=0

(
n

k

)
q

(−1)kq(
n−k

2 )Ak.

In the q = 1 case, this form of Theorem 13 has the advantage that we only need
to prove one direction. (Why?)

7. Prove that
n∑

k=0

(−1)kq(
k
2)

(q; q)k
=

(−1)nq(
n+1
2 )

(q; q)n
.

8. Show that if 0 ≤ m ≤ n, then
m∑

k=0

qk
(
qk+1; q

)
n−k

=
(
qm+1; q

)
n−m

.

What happens when m = n?
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54 2. q-BINOMIAL THEOREMS

9. Show that
n∑

k=0

qk
(
qk+1; q

)
n−k

= 1

by writing qk = 1− (1− qk).

10. Set Sn(x) =
n∑

k=0

(
n

k

)
q

qk
2

xk

(xq; q)k
.

(i) Show that S0(x) = 1.

(ii) Show that Sn(x) =
Sn−1(xq)

1− xq
for n ≥ 1.

(iii) Explain why (i) and (ii) imply that Sn(x) =
1

(xq; q)n
.

(iv) What happens to this identity when q → 1?

11. Define an operator η by η f(x) = f(qx), as in problem 9 in section 2.1. Consider

the product
(
x+ x2η

)n
x for a nonnegative integer n. When n = 0 this is just

x. When n = 1 it is(
x+ x2η

)
x = x2 + x2 · ηx = x2 + x2 · xq = x2 (1 + xq) = x2 + x3q,

and when n = 2 it is(
x+ x2η

)2
x =

(
x+ x2η

) (
x2 + x3q

)
= x3 + x4q + x2 · ηx2 + x2 · ηx3q = x3 + x4q + x2(xq)2 + x2(xq)3q

= x3 + x4q(1 + q) + x5q4 = x3
(
1 + [2]qxq + x2q4

)
.

Use induction on n to prove Andrews’s q-binomial theorem

(
x+ x2η

)n
x = xn+1

n∑
k=0

(
n

k

)
q

qk
2

xk.

What does this reduce to if q = 1?

12. This problem outlines Cigler’s derivation of Rothe’s q-binomial theorem from
the Potter–Schützenberger q-binomial theorem. It is in essence the same as
Andrews’s method, but the details are superficially different. Cigler starts by
writing the Potter–Schützenberger theorem as

(2.3.8) (A+B)n =

n∑
k=0

(
n

k

)
q

AkBn−k,

where BA = qAB.

(i) He takes A = xη and B = aη, where a is independent of x and η is
the shift operator on functions of x; i.e., η f(x) = f(qx), as in problem 11. By
applying both sides to a generic function f(x), show that these choices of A and
B give BA = qAB.

(ii) Show by induction on n that

(xη + aη)n 1 = ((x+ a)η)n 1 = (x+ a)(xq + a) · · · (xqn−1 + a).

This even holds for n = 0 if we define the right side to be 1 in that case, as
usual.
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(iii) Show that

(xη)k(aη)n−k 1 = xkq(
k
2)an−k.

(iv) Using (ii) and (iii), show that applying (2.3.8) to the function 1 with A
and B as in (i) gives Rothe’s q-binomial theorem.

13. Define

Sn(a, b) =

n∑
k=0

(
n

k

)
q

(−a)kq(
k
2)(b; q)k

(
abqk; q

)
n−k

.

(i) Show that S0(a, b) = 1 and S1(a, b) = 1− a.

(ii) Show that

S2(a, b) = (1− a)(1− aq).

(iii) Show that

Sn+1(a, b) = (1− a)Sn(aq, b).

(iv) Use (iii) to prove that

(2.3.9) Sn(a, b) =

n∑
k=0

(
n

k

)
q

(−a)kq(
k
2)(b; q)k

(
abqk; q

)
n−k

= (a; q)n.

14. For an alternative proof of (2.3.9), start with

Sn(a, bq) =

n∑
k=0

(
n

k

)
q

(−a)kq(
k
2)(bq; q)k

(
abqk+1; q

)
n−k

.

(i) Note that the last factor of
(
abqk+1; q

)
n−k

is 1 − abqn = 1 − abqk +

abqk
(
1− qn−k

)
, and the last factor of (bq; q)k is 1− bqk = 1− b+ b

(
1− qk

)
. By

using these two facts, show that

Sn(a, bq) = Sn(a, b) +
n∑

k=1

(
n

k

)
q

(−a)kq(
k
2)b(1− qk)(bq; q)k−1

(
abqk; q

)
n−k

+

n−1∑
k=0

(
n

k

)
q

(−a)kq(
k
2)abqk(1− qn−k)(bq; q)k

(
abqk+1; q

)
n−k−1

.

Then show that the last two sums cancel each other.

(ii) From (i) we have Sn(a, bq) = Sn(a, b) for arbitrary b and q. Assuming
|q| < 1, explain why using this repeatedly gives Sn(a, b) = Sn(a, 0), and then
explain how we know that Sn(a, 0) = (a; q)n.

15. Define

Tn(b, c) =
n∑

k=0

(
n

k

)
q

(−1)kq(
k+1
2 )(b; q)k

(
cqk; q

)
n−k

q−nk.

(i) Show that T0(b, c) = 1 and T1(b, c) = b− c.

(ii) Show that

T2(b, c) = (b− c)(b− cq).

(iii) Show that

Tn+1(b, c) = (b− c)Tn(b, cq).
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(iv) Use (iii) to prove that

Tn(b, c) =

n∑
k=0

(
n

k

)
q

(−1)kq(
k+1
2 )(b; q)k

(
cqk; q

)
n−k

q−nk

= (b− c)(b− cq) · · · (b− cqn−1).(2.3.10)

16. Let n be a nonnegative integer. Prove that

(2.3.11)
(q−n; q)k
(q; q)k

= (−1)kq(
k
2)
(
n

k

)
q

q−nk.

Hence show that (2.3.9) can be rewritten as

(2.3.12)
n∑

k=0

(q−n; q)k(b; q)k
(ab; q)k(q; q)k

(aqn)k =
(a; q)n
(ab; q)n

and (2.3.10) can be rewritten as

(2.3.13)

n∑
k=0

(q−n; q)k(b; q)k
(c; q)k(q; q)k

qk =
(b− c)(b− cq) · · · (b− cqn−1)

(c; q)n
.

17. (2.3.12) and (2.3.13) are really the same identity. To see this, first show that

(2.3.14)
(
x; q−1

)
m

= (−1)mq−(
m
2 )
(
1

x
; q

)
m

xm.

Then change q to q−1 in (2.3.12), use (2.3.14) six times, and finally replace a
and b by 1

a and 1
b respectively. You should get (2.3.13) with c replaced by ab.

Both (2.3.12) and (2.3.13) are often called the q-Chu–Vandermonde sum.

18. (a) Let m be a nonnegative integer. Show that setting b = q−m and c = q−m−n

in (2.3.13) gives ∑
k

(q−m; q)k(q
−n; q)k

(q−m−n; q)k(q; q)k
qk =

1(
m+n
m

)
q

,

where the upper limit on the sum is the smaller of m and n.

(b) Using (2.3.11) or otherwise, show that the left side of this can be rewritten
as

1(
m+n
m

)
q

∑
k

(−1)kq(
k+1
2 )
(

m+ n− k

k,m− k, n− k

)
q

.

This gives an alternative proof of the result of problem 6 in section 1.6.

19. This problem outlines a proof of Agarwal’s q-binomial theorem
(2.3.15)

m∑
j=0

(
n

j

)
q

(−1)jq(
j
2)(1− aq2j)

(a; q)j
(aqn+1; q)j

=

(
n− 1

m

)
q

(−1)mq(
m+1

2 ) (a; q)m+1

(aqn+1; q)m
,

if m ≥ 0 and n ≥ 1, where the sum equals 1 if n = 0. This is a surprising
generalization of problem 7 in section 1.4.

(i) Verify (2.3.15) for m = 0 and m = 1.

(ii) Using (2.1.2) and (2.1.3), or otherwise, show that(
n

m

)
q

(1− aq2m)−
(
n− 1

m− 1

)
q

(1− aqn+m) =

(
n− 1

m

)
q

qm(1− aqm).
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2.4. THE q-DERIVATIVE 57

(iii) Using (ii) or otherwise, prove (2.3.15) by induction on m. Hint: (ii) is
particularly well suited for going from m− 1 to m in (2.3.15).

20. (a) Prove the following generalization of the Potter–Schützenberger theorem: if
yx = qxy and all other pairs of variables commute, then

(x+ y + b) ((x+ y)q + b)
(
(x+ y)q2 + b

)
· · ·
(
(x+ y)qn−1 + b

)
=

n∑
k=0

(
n

k

)
q

q(
k
2) xk(yqk + b)(yqk+1 + b) · · · (yqn−1 + b),

where an empty product (e.g., (yqk + b)(yqk+1 + b) · · · (yqn−1 + b) when k = n)
equals 1 as usual.

(b) Show that this reduces to the Potter–Schützenberger theorem if b = 0.

(c) What happens to it when y = 0?

2.4. The q-derivative

Recall that the derivative of a function f(x) is the function f ′(x) defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

In an old-fashioned subject called the calculus of finite differences one considers
this object without the limit—that is, an operator Δh is defined by

Δh f(x) =
f(x+ h)− f(x)

h
.

Δh is sometimes called the forward difference with stepsize h. Note that

(2.4.1) Δ−hf(x) =
f(x− h)− f(x)

−h
=

f(x)− f(x− h)

h
.

Δ−h is sometimes called the backward difference with stepsize h. Note that the
derivative could just as well be defined by

f ′(x) = lim
h→0

Δ−hf(x) = lim
h→0

f(x)− f(x− h)

h
.

The calculus of finite differences is still an interesting subject today—for in-
stance, one can use it to prove Rothe’s generalized binomial theorem—but now we
just want to rewrite (2.4.1) so that it fits naturally into q-analysis. For this we just
have to set x− h = qx, so that h = x(1− q). Making this change on the right side
of (2.4.1) we get the q-derivative Dq of a function f(x):

(2.4.2) Dq f(x) =
f(x)− f(qx)

x(1− q)
,

where q �= 1. If q → 1, then h → 0 and the q-derivative becomes the ordinary
derivative. A few simple observations are enough to suggest that (2.4.2) is a good
definition. It is linear, like the ordinary derivative; that is, if a and b are independent
of x, then

Dq {a f(x) + b g(x)} = aDq f(x) + bDq g(x).

It has a power rule as good as we could hope for:

(2.4.3) Dq x
n =

xn − xnqn

x(1− q)
= [n]qx

n−1.
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58 2. q-BINOMIAL THEOREMS

Note also that if a is constant, then

Dq (ax)
n = an Dq x

n = an [n]qx
n−1 = a[n]q(ax)

n−1.

This suggests that the q-derivative has a property akin to the simplest case of the
chain rule, namely

d

dx
f(ax) = af ′(ax)

if a is constant. To express it, we need an alternate notation for the q-derivative,
so we define

(2.4.4) f∗(x) = Dq f(x).

Then

Dq f(ax) =
f(ax)− f(aqx)

x(1− q)
= a

f(ax)− f(aqx)

(ax)(1− q)
,

which implies that

(2.4.5) Dq f(ax) = a f∗(ax).

This is used in a few of the problems for this section, with a equal to a power of q.
What keeps the q-derivative from being really important is that it does not have a
better chain rule than this.

The q-derivative of a constant C is

Dq C =
C − C

x(1− q)
= 0.

Moreover, if f∗(x) = 0, then f(x) = f(xq) for an arbitrary x and q, which can only
be true if f(x) is constant. More explicitly, assuming f(x) is nice near x = 0 and
|q| < 1, f(x) = f(xq) implies

f(x) = f(xq) = f(xq2) = f(xq3) = · · · = f(0),

so whatever value f(x) has at x = 0, it has the same value for any other x. (The
sudden appearance of the assumption |q| < 1 may seem off-putting, but we will
see it many more times, starting in Chapter 3. We will nearly always assume
|q| < 1 whenever some infinite process is involved. Here we iterated the equation
f(x) = f(xq) infinitely many times.)

Assuming n is a nonnegative integer, iterating (2.4.3) gives

(2.4.6) Dk
q x

n = [n]q[n− 1]q . . . [n− k + 1]qx
n−k =

n!q
(n− k)!q

xn−k if k ≤ n,

and we can get a formal q-analogue of Taylor’s theorem from this. If k < n ,then
the right side of (2.4.6) is zero if x = 0. If k > n, then the right side of (2.4.6) is
zero for any x since eventually we will have taken the q-derivative of a constant. So
the only value of k for which the right side of (2.4.6) is not zero at x = 0 is k = n,
in which case (2.4.6) reduces to Dn

q x
n = n!q. In summary,

(2.4.7) Dk
q x

n
∣∣∣
x=0

= k!q δnk.

(Here δnk is the so-called Kronecker delta, which equals 1 if n = k and is zero
otherwise.) Now suppose we want to expand a function f(x) in powers of x, say

(2.4.8) f(x) =

∞∑
n=0

cnx
n.
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How do we find the coefficient ck? In calculus, we would find ck (in principle) by
taking k derivatives of f(x) and then setting x = 0. In this context, what could
be more natural than to take k q-derivatives of (2.4.8)? This kills off all the terms
with n < k, and by (2.4.6) it results in

Dk
q f(x) =

∞∑
n=k

cn
n!q

(n− k)!q
xn−k.

Setting x = 0 here and recalling (2.4.7), only the n = k term survives and we have

Dk
q f(x)

∣∣∣
x=0

= k!q ck.

It follows that

ck =
Dk

q f(x)
∣∣∣
x=0

k!q

for each k, and so our formal q-Taylor theorem is

(2.4.9) f(x) =

∞∑
n=0

(
Dn

q f(x)
∣∣
x=0

) xn

n!q
.

We use the word “formal” because we have not discussed convergence, which for a
general f(x) would be a delicate question. We can gain some confidence in (2.4.9)
by observing that it reduces to the ordinary Taylor’s theorem when q → 1.

As long as there are no convergence issues, (2.4.9) is incontestably true. We
can have complete faith in the following special case: if Pn(x) is a polynomial of
degree n in x, then

(2.4.10) Pn(x) =

n∑
k=0

(
Dk

q Pn(x)
∣∣∣
x=0

) xk

k!q
.

In the exercises we will use (2.4.10) to give two more proofs of Rothe’s q-binomial
theorem.

Exercises
(Reminder: f∗(x) denotes the q-derivative of f(x).)

1. Show that the q-derivative has two simple product rules, namely

Dq f(x)g(x) = f(x) g∗(x) + f∗(x) g(qx)(2.4.11)

= f∗(x) g(x) + f(qx) g∗(x).(2.4.12)

(Note that you can just prove one of these, and then use the symmetry in f and
g to get the other.)

2. Explain why we must also have the following forms of the q-product rule:

Dq f(x) g(x) =
1

2
{f(x) g∗(x) + f∗(x) g(x) + f(qx) g∗(x) + g(qx) f∗(x)}

= t [f(x) g∗(x) + g(qx) f∗(x)] + (1− t) [g(x) f∗(x) + f(qx) g∗(x)] ,

where t is any real number in the latter. (In the former t = 1
2 .)
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3. Prove the q-reciprocal rule

(2.4.13) Dq
1

g(x)
=

−g∗(x)

g(x)g(qx)
.

4. Either directly or by using problems 1 and 3, prove the q-quotient rules

(2.4.14) Dq
f(x)

g(x)
=

g(x)f∗(x)− f(x)g∗(x)

g(x)g(xq)

and

(2.4.15) Dq
f(x)

g(x)
=

g(xq)f∗(x)− f(xq)g∗(x)

g(x)g(xq)
.

5. Show that

Dq φ(x)φ(xq)φ(xq
2) · · ·φ(xqn−1) = [n]qφ(xq)φ(xq

2) · · ·φ(xqn−1)Dqn φ(x),

where Dqn φ(x) denotes the q-derivative of φ(x) with qn in place of q. What
does this reduce to if q → 1?

6. Let Pn(x) = (a+ x)(a+ xq) · · · (a+ xqn−1), where P0(x) = 1.

(i) Show that Dq Pn(x) = [n]qPn−1(xq).

(ii) Either directly or with the aid of (2.4.5), show that

Dk
q Pn(x) = q(

k
2) n!q
(n− k)!q

Pn−k(xq
k)

for 0 ≤ k ≤ n.

(iii) Use the result of (ii) and (2.4.10) to prove Rothe’s q-binomial theorem

(a+ x)(a+ xq) · · · (a+ xqn−1) =

n∑
k=0

(
n

k

)
q

q(
k
2)an−kxk.

7. For a slight variation on problem 6, let Pn(x) = (x+ a)(x+ aq) · · · (x+ aqn−1),
where P0(x) = 1.

(i) Show that Dq Pn(x) = [n]qPn−1(x), and explain why this implies that

Dk
q Pn(x) =

n!q
(n− k)!q

Pn−k(x)

for 0 ≤ k ≤ n.

(ii) Use (i) and (2.4.10) to prove Rothe’s q-binomial theorem in the form

(x+ a)(x+ aq) · · · (x+ aqn−1) =

n∑
k=0

(
n

k

)
q

q(
n−k

2 )an−kxk.

8. One can write down a formula for the nth q-derivative of a function. Show that

Dn
q f(x) =

1

xnq(
n
2)(1− q)n

n∑
k=0

(
n

k

)
q

q(
n−k

2 )(−1)kf(xqk).

Note that this does not reduce to anything interesting when q → 1.
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9. (a) Prove the three-function q-product rule

Dq f(x)g(x)h(x) = f(x)g(x)h∗(x) + f(x)g∗(x)h(qx) + f∗(x)g(xq)h(xq).

(b) Prove the k-function q-product rule

Dq f1(x) · · · fk−1(x)fk(x) = f1(x) · · · fk−1(x)f
∗
k (x) + f1(x) · · · f∗

k−1(x)fk(qx)

+ · · ·+ f1(x)f
∗
2 (x) · · · fk(qx) + f∗

1 (x)f2(qx) · · · fk(qx).

10. Prove the q-Leibniz rule

Dn
q f(x)g(x) =

n∑
k=0

(
n

k

)
q

f (k)(x)g(n−k)(qkx),

where f (k)(x) denotes the kth q-derivative of f(x).

11. The q-Leibniz rule in problem 10 has one drawback: it appears not to be sym-
metric in f and g, even though it must be. What formula does problem 8 give
for Dn

q f(x)g(x)?

12. A common generalization of problems 9 and 10 is

Dn
q f1(x) · · · fk−1(x)fk(x)

=
∑(

n

b1, . . . , bk

)
q

f
(b1)
1 (x)f

(b2)
2 (qb1x) · · · f (bk)

k (qb1+···+bk−1x),

where f (k)(x) again denotes the kth q-derivative of f(x), and the sum is over all
ordered k-tuples (b1, b2, . . . , bk) of nonnegative integers that add up to n.

2.5. Two q-binomial theorems of Gauss

The first theorems that look like a q-version of the binomial theorem occur
already in the paper in which Gauss introduced the q-binomial coefficients. He was
looking for something like (2.3.4), and he did not realize until later that the factor

q(
j
2) has to be there to get such a nice result. Instead he considered

m∑
j=0

(
m
j

)
q
(−1)j ,

which is obviously zero if m is odd, say m = 2n+ 1, because

(−1)j
(
2n+ 1

j

)
q

= −(−1)2n+1−j

(
2n+ 1

2n+ 1− j

)
q

so the terms cancel in pairs. In the even case, let’s define

gn(q) =
2n∑
j=0

(
2n

j

)
q

(−1)j .

Then g0(q) = 1 and g1(q) = 1− [2]q + 1 = 2− [2]q = 1− q, and we also have

g2(q) =
4∑

j=0

(
4

j

)
q

(−1)j = 1− [4]q +

(
4

2

)
q

− [4]q + 1

= 2(1− [4]q) + 1 + q + 2q2 + q3 + q4

= 1 + q + 2q2 + q3 + q4 − 2(q + q2 + q3)

= 1− q − q3 + q4 = (1− q)(1− q3).
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62 2. q-BINOMIAL THEOREMS

Although these sums reduce to zero for a positive n when q = 1, they are not zero
in general, and in fact it appears as though gn(q) = (1−q)(1−q3) · · · (1−q2n−1). If
you try to prove this by induction, you run into another interesting fact. Consider
the sum

Gn(q) =
2n∑
j=0

(
2n

j

)
q

(−q)j ,

which should also reduce to zero for a positive n and q = 1. Again we have
G0(q) = 1, and G1(q) = 1 − q[2]q + q2 = 1 + q2 − q(1 + q) = 1 − q. Coincidence?
Let’s try

G2(q) =
4∑

j=0

(
4

j

)
q

(−q)j = 1− q[4]q +

(
4

2

)
q

q2 − q3[4]q + q4

= 1 + q4 − [4]qq(1 + q2) + q2
(
1 + q + 2q2 + q3 + q4

)
= 1 + q4 − q(1 + q2)([4]q − q[3]q)

= 1− q − q3 + q4 = (1− q)(1− q3).

This suggests that gn(q) = Gn(q), which is not too hard to prove. Note that

2n∑
j=0

(
2n

j

)
q

(−1)j
(
1− qj

)
=

2n∑
j=0

(2n)!q
j!q (2n− j)!q

(−1)j [j]q(1− q).

When j = 0 the corresponding term is 0, because of the 1 − qj on the left or the
[j]q on the right. Therefore the sum on the right can start at j = 1, and

2n∑
j=0

(
2n

j

)
q

(−1)j
(
1− qj

)
=

2n∑
j=1

(2n)!q
j!q (2n− j)!q

(−1)j [j]q(1− q)

=

2n∑
j=1

(2n− 1)!q
(j − 1)!q (2n− j)!q

(−1)j [2n]q(1− q)

= (1− q2n)

2n∑
j=1

(
2n− 1

j − 1

)
q

(−1)j

= 0 by symmetry of the q-binomial coefficients.

Hence

2n∑
j=0

(
2n

j

)
q

(−1)j =
2n∑
j=0

(
2n

j

)
q

(−1)j qj ,

so gn(q) = Gn(q), or in other words

gn(q) =
2n∑
j=0

(
2n

j

)
q

(−1)j =
2n∑
j=0

(
2n

j

)
q

(−q)j .
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2.5. TWO q-BINOMIAL THEOREMS OF GAUSS 63

We now apply the recurrences (2.1.2) and (2.1.3) to gn+1(q). We have

gn+1(q) =
2n+2∑
j=0

(
2n+ 2

j

)
q

(−1)j

=

2n+2∑
j=0

{(
2n+ 1

j − 1

)
q

+ qj
(
2n+ 1

j

)
q

}
(−1)j

=

2n+1∑
j=0

(
2n+ 1

j

)
q

(−q)j ,

where we used (2.1.2) first, threw away one of the sums because it equals zero by
symmetry, and also discarded the j = 2n+2 term in the last sum because it equals
zero. Next, apply (2.1.3) to this:

gn+1(q) =
2n+1∑
j=0

(
2n+ 1

j

)
q

(−q)j

=
2n+1∑
j=0

{(
2n

j

)
q

+ q2n−j+1

(
2n

j − 1

)
q

}
(−q)j

=

2n∑
j=0

(
2n

j

)
q

(−q)j +

2n+1∑
j=1

(
2n

j − 1

)
q

(−1)j q2n+1.

Again in each of the last two sums we discarded a zero term. Note that the first
of these sums is gn(q). In the second, replace j by i + 1. Since 1 ≤ j ≤ 2n+ 1 we
have 1 ≤ i+ 1 ≤ 2n+ 1, or in other words 0 ≤ i ≤ 2n. Then

gn+1(q) = gn(q) + q2n+1
2n∑
i=0

(
2n

i

)
q

(−1)i+1

= gn(q)− q2n+1
2n∑
i=0

(
2n

i

)
q

(−1)i

= gn(q)− q2n+1 gn(q) =
(
1− q2n+1

)
gn(q).

Replacing n by n−1 this becomes gn(q) =
(
1− q2n−1

)
gn−1(q). Now we just iterate

this:

gn−1(q) =
(
1− q2(n−1)−1

)
gn−2(q)

=
(
1− q2n−3

)
gn−2(q),

so

gn(q) =
(
1− q2n−1

) (
1− q2n−3

)
gn−2(q),

and so forth; eventually we reach

gn(q) =
(
1− q2n−1

) (
1− q2n−3

)
· · · (1− q) g0(q).

But g0(q) = 1, so

gn(q) =
(
1− q2n−1

) (
1− q2n−3

)
· · · (1− q) .
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We can write this result compactly by extending some of our previous notation.
Recall that for a nonnegative integer n,

(2.5.1) (a; q)n :=

{
(1− a)(1− aq)(1− aq2) · · · (1− aqn−1) if n ≥ 1,

1 if n = 0.

(a; q)n is called a q-shifted factorial. Note that

(a; q2)n = (1− a)(1− aq2)(1− aq4) · · · (1− aq2n−2) if n ≥ 1,

so in particular

(q; q2)n = (1− q)(1− q3)(1− q5) · · · (1− q2n−1) if n ≥ 1,

and therefore

(q; q2)n =

2n∑
j=0

(
2n

j

)
q

(−1)j(2.5.2)

=
2n∑
j=0

(
2n

j

)
q

(−q)j(2.5.3)

for any nonnegative integer n, and also

2n−1∑
j=0

(
2n+ 1

j

)
q

(−1)j = 0,(2.5.4)

2n−1∑
j=0

(
2n+ 1

j

)
q

(−q)j = (q; q2)n(2.5.5)

for any positive integer n. The parts of this that Gauss did are (2.5.2) and (2.5.4).

Gauss’s second theorem is a beautiful (if somewhat peculiar) generalization of

the binomial coefficient sum
n∑

k=0

(
n
k

)
= 2n. We state it in a slightly different form

than Gauss did, but our proof will be essentially the same as his. We’ll call the
sum we wish to evaluate

Gn(q) =

n∑
k=0

(
n

k

)
q2
qk,

where
(
n
k

)
q2

means the q-binomial coefficient with q replaced by q2; in other words,(
n

k

)
q2

=
(q2; q2)n

(q2; q2)k (q2; q2)n−k
=

(1− q2)(1− q4) · · · (1− q2n)

(1− q2) · · · (1− q2k)(1− q2) · · · (1− q2n−2k)
.

Replacing q by q2 and n by n− 1, the recurrence (2.1.3) becomes

(2.5.6)

(
n

k

)
q2

=

(
n− 1

k

)
q2

+ q2n−2k

(
n− 1

k − 1

)
q2
.
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2.5. TWO q-BINOMIAL THEOREMS OF GAUSS 65

Applying this to Gn(q) we have

Gn(q) =

n∑
k=0

{(
n− 1

k

)
q2

+ q2n−2k

(
n− 1

k − 1

)
q2

}
qk

=

n−1∑
k=0

(
n− 1

k

)
q2
qk +

n∑
k=1

(
n− 1

k − 1

)
q2
q2n−k,

where as usual we discarded a term that equals zero from each of the last two sums.
The first of these is just Gn−1(q), and in the second we replace k by n − j. Since
1 ≤ k ≤ n we have 1 ≤ n − j ≤ n, which translates into 0 ≤ j ≤ n − 1; note also
that (

n− 1

k − 1

)
q2

=

(
n− 1

n− j − 1

)
q2

=

(
n− 1

j

)
q2
.

Then we have

Gn(q) = Gn−1(q) +

n−1∑
j=0

(
n− 1

j

)
q2
q2n−(n−j)

= Gn−1(q) + qn
n−1∑
j=0

(
n− 1

j

)
q2
qj

= Gn−1(q) + qn Gn−1(q) = (1 + qn)Gn−1(q).(2.5.7)

Once again we can solve this for Gn(q) by iteration. Replacing n by n − 1 it says
that

Gn−1(q) =
(
1 + qn−1

)
Gn−2(q),

and substituting this into (2.5.7) gives

Gn(q) = (1 + qn)
(
1 + qn−1

)
Gn−2(q).

Continuing in this way we eventually reach

Gn(q) = (1 + qn)
(
1 + qn−1

) (
1 + qn−2

)
· · · (1 + q)G0(q),

and G0(q) = 1. This proves Gauss’s identity

(2.5.8)

n∑
k=0

(
n

k

)
q2
qk = (1 + qn)

(
1 + qn−1

) (
1 + qn−2

)
· · · (1 + q) = (−q; q)n.

Note that from problem 2 in the previous section we also have

(2.5.9)
n∑

k=0

(
n

k

)
q

q(
k+1
2 ) = (−q; q)n,

a very different expansion of the same product.
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Exercises

1. Sometimes it is convenient to have Rothe’s q-binomial theorem in the form

(2.5.10) (−zq; q2)n =

n∑
k=0

(
n

k

)
q2
qk

2

zk.

Show that this is equivalent to (2.3.7).

2. Gauss’s proof of (2.5.2) and (2.5.4), while similar to ours in spirit, is slightly
different in detail, and in fact slightly easier since he was not trying to prove
(2.5.3) and (2.5.5) at the same time. Here is an outline of it:

hm(q) =

m∑
j=0

(
m

j

)
q

(−1)j

=
m−1∑
j=0

(
m− 1

j

)
q

(−1)j +
m∑
j=1

(
m− 1

j − 1

)
q

(−1)j qm−j

=

m−1∑
k=0

(
m− 1

k

)
q

(−1)k +

m−1∑
k=0

(
m− 1

k

)
q

(−1)k+1 qm−k−1

=

m−2∑
k=0

(
m− 1

k

)
q

(−1)k
(
1− qm−k−1

)
.

(Why is the upper limit on the last sum m− 2 instead of m− 1?) Also,(
m− 1

k

)
q

(
1− qm−k−1

)
=

(
m− 2

k

)
q

(
1− qm−1

)
and therefore hm(q) =

(
1− qm−1

)
hm−2(q). Since h0(q) = 1 and h1(q) = 0,

(2.5.2) and (2.5.4) follow. Fill in the details of this argument.

3. Define q-Fibonacci numbers Fn(q) by F0(q) = 1 = F1(q) and

Fn+1(q) = Fn(q) + qn Fn−1(q) if n ≥ 1.

(i) Use (2.1.3) to show that Fn(q) =
∑

k

(
n−k
k

)
q
qk

2

. The sum here is over

0 ≤ k ≤ 
n
2 �, with the same notation as in problem 12 from section 1.3.

(ii) Use (2.1.3) to show that

Fn+k(q) =
k∑

j=0

(
k

j

)
q

qnj Fn−j(q) if n ≥ k ≥ 0.

4. For integers k and n with 0 ≤ k ≤ n, define

Sn,k(q) =

k∑
j=0

(
n

j

)
q2
q(

j
2)(−1)n−j(−q; q)j(1− q2n−j).

By induction on k (or otherwise), show that

Sn,k(q) = (−1)n−kq(
k+1
2 )

(
q2n−2k; q2

)
k+1

(q; q)k
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXERCISES 67

Explain why this means that

Sn,n(q) =

n∑
j=0

(
n

j

)
q2
q(

j
2)(−1)n−j(−q; q)j(1− q2n−j) = 0.

5. For a nonnegative integer n, define

Rn(q) =

n∑
k=0

(
n

k

)
q2
q(

k
2)(−1)n−k(−q; q)k.

Use (2.5.6) to show that Rn(q) = q2n−1 Rn−1(q) − Sn−1,n−1(q) for n ≥ 1. Use

this and problem 4 to show that Rn(q) = qn
2

.

6. Problem 5 was to show that
n∑

k=0

(
n

k

)
q2
q(

k
2)(−1)n−k(−q; q)k = qn

2

.

What happens to this identity when q → 1?

7. Prove that

(2.5.11)
∑
j

(
n

j

)
q

(
n

2k − j

)
q

(−1)k−jq(k−j)2 =

(
n

k

)
q2
.

Hint: Use (x2; q2)n = (x; q)n(−x; q)n and (2.3.7). The sum goes over all j for
which the q-binomial coefficients are not zero. (Which ones are these?) Perhaps
a nicer form of (2.5.11) is

(2.5.12)
∑
j

(
n

k + j

)
q

(
n

k − j

)
q

(−1)jqj
2

=

(
n

k

)
q2
,

where the sum is again over all j for which the q-binomial coefficients are nonzero.
Note that unlike (2.5.11), this may include some negative values of j.

8. Check either (2.5.11) or (2.5.12) in the case n = 4, k = 2.

9. For a nonnegative integer n, define

An(q) =
∑
k

q2k
2+k

(
2n

n+ k

)
q2
,

Bn(q) =
∑
k

q2k
2+k

(
2n+ 1

n+ k + 1

)
q2
,

where the sums go over the full natural range of the q-binomial coefficients; the
first from k = −n to k = n and the second from k = −n− 1 to k = n.

(i) Explain why we also have

An(q) =
∑
k

q2k
2−k

(
2n

n+ k

)
q2
,

Bn(q) =
∑
k

q2k
2−k

(
2n+ 1

n+ k

)
q2
.

(ii) Show that A0(q) = 1 and B0(q) = 1 + q.

(iii) Show that Bn(q) =
(
1 + q2n+1

)
An(q) for n ≥ 0.

(iv) Show that An(q) =
(
1 + q2n

)
Bn−1(q) for n ≥ 1.
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(v) Conclude from (ii)–(iv) that An(q) = (−q; q)2n and Bn(q) = (−q; q)2n+1

for n ≥ 0.

10. For a nonnegative integer n, define

En(q) =
∑
k

(−1)kq
1
2 (3k2+k)

(
2n

n+ k

)
q3
,

Fn(q) =
∑
k

(−1)kq
1
2 (3k2+k)

(
2n+ 1

n+ k + 1

)
q3
,

Gn(q) =
∑
k

(−1)kq
1
2 (3k2+k)

(
2n+ 1

n+ k

)
q3
,

where the sums again go over the full natural range of the q-binomial coefficients.

(i) Show that E0(q) = 1, F0(q) = 1− q, and G0(q) = 1− q2.

(ii) Show that Fn(q) =
(
1− q3n+1

)
En(q) and Gn(q) =

(
1− q3n+2

)
En(q)

for n ≥ 0.

(iii) Show that En(q) =
(
1− q3n−1

)
Fn−1(q) =

(
1− q3n−2

)
Gn−1(q) for n ≥

1.

(iv) Show that En(q) = (q; q3)n(q
2; q3)n for n ≥ 0.

(v) Show that Fn(q) = (q; q3)n+1(q
2; q3)n and Gn(q) = (q; q3)n(q

2; q3)n+1

for n ≥ 0.

11. For a nonnegative integer n, define

Sn(q) =
∑
k

(−1)kqk
2

(
2n+ 1

n+ k

)
q

,

Tn(q) =
∑
k

(−1)kqk
2+k

(
2n+ 1

n+ k + 1

)
q

,

Un(q) =
∑
k

(−1)kqk
2

(
2n

n+ k

)
q

,

Vn(q) =
∑
k

(−1)kqk
2+k

(
2n

n+ k

)
q

,

where the sums again go over the full natural range of the q-binomial coefficients.

(i) Show that S0(q) = 1− q, T0(q) = 0, and U0(q) = 1 = V0(q).

(ii) By changing k to −j − 1 or otherwise, show that Tn(q) = 0 for all
nonnegative integers n.

(iii) Show that Un+1(q) = Sn(q) + qn+1Tn(q) = Sn(q) for n ≥ 0.

(iv) Show that Tn(q) = Vn(q) − qnUn(q) for n ≥ 0, and hence Vn(q) =
qnUn(q) for n ≥ 0.

(v) Show that Sn(q) = Un(q)− qn+1Vn(q) for n ≥ 0.

(vi) Conclude from (i)–(v) that Sn(q) = (q; q2)n+1, Un(q) = (q; q2)n, and
Vn(q) = qn(q; q2)n for n ≥ 0.
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12. For a nonnegative integer n, define

Wn(q) =
∑
k

(−1)kq
k(3k−1)

2

(
2n+ 1

n+ k

)
q

,

Xn(q) =
∑
k

(−1)kq
3k(k−1)

2

(
2n+ 1

n+ k

)
q

,

Yn(q) =
∑
k

(−1)kq
k(3k−1)

2

(
2n

n+ k

)
q

,

Zn(q) =
∑
k

(−1)kq
3k(k−1)

2

(
2n

n+ k

)
q

,

where the sums again go over the full natural range of the q-binomial coefficients.

(i) Show that W0(q) = 1− q, X0(q) = 0, and Y0(q) = 1 = Z0(q).

(ii) By changing k to −j − 1 or otherwise, show that Xn(q) = 0 for all
nonnegative integers n.

(iii) Show that

Yn(q) =
∑
k

(−1)kq
k(3k+1)

2

(
2n

n+ k

)
q

,

Zn(q) =
∑
k

(−1)kq
3k(k+1)

2

(
2n

n+ k

)
q

.

(iv) Show that Yn+1(q) =
(
1 + qn+1

)
Wn(q) for n ≥ 0.

(v) Show that Xn(q) = qnYn(q) − Zn(q) for n ≥ 0, and hence Zn(q) =
qnYn(q) for n ≥ 0.

(vi) Show that Wn(q) = Yn(q)− qn+1Zn(q) for n ≥ 0.

(vii) Conclude from (i)–(vi) that

Wn(q) =
(q; q)2n+1

(q; q)n
, Yn(q) =

(q; q)2n
(q; q)n

, Zn(q) = qn
(q; q)2n
(q; q)n

for n ≥ 0.

This problem is used in section 11.3.

13. This problem outlines a proof of Rowell’s identity

(2.5.13)
n∑

k=0

(
n

k

)
q

(−a; q)k q
(k+1

2 ) =
n∑

j=0

(
n

j

)
q2
(−q; q)n−j q

j2aj .

(i) Explain why we can rewrite the left side of (2.5.13) as

n∑
k=0

(
n

k

)
q

q(
k+1
2 )

k∑
j=0

(
k

j

)
q

q(
j
2)aj .

(ii) Explain why we can rewrite (i) as

n∑
j=0

(
n

j

)
q

ajq(
j
2)

n−j∑
i=0

(
n− j

i

)
q

q(
i+j+1

2 ) =
n∑

j=0

(
n

j

)
q

qj
2

aj
n−j∑
i=0

(
n− j

i

)
q

q(
i+1
2 )qij .
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70 2. q-BINOMIAL THEOREMS

(iii) Explain why we can rewrite the right side of (ii) as

n∑
j=0

(
n

j

)
q

qj
2

aj(−qj+1; q)n−j =

n∑
j=0

(
n

j

)
q

qj
2

aj
(−q; q)n
(−q; q)j

.

(iv) Show that the right side of (iii) can be rewritten as the right side of
(2.5.13).

(v) Show that (2.5.13) reduces to (2.5.9) if a = 0.

14. This problem and the next outline a proof of the surprisingly tricky identity

(2.5.14)

2n∑
k=0

(−1)k
(
q2n−k+1; q

)
k

(a; q)k
=

n∑
k=0

(−1)kqk
2 (

q2n−2k+2; q2
)
k

(aq; q2)k
.

Denote the left side by Ln(a) and the right side by Rn(a).

(i) Show that L0(a) = 1 = R0(a) and L1(a) = R1(a).

(ii) Show that

(1− q2n+1)(1− q2n+2)

1− aq
Ln(aq

2) =

2n+1∑
j=1

(−1)j+1
(
q2n−j+2; q

)
j+1

(aq; q)j
.

(iii) Show that

2n+1∑
j=1

(−1)j+1
(
q2n−j+2; q

)
j+1

(aq; q)j
= a+ (1− a)Ln+1(a)− q2n+2.

Hence Ln(a) satisfies the recurrence

a+ (1− a)Ln+1(a) = q2n+2 +
(1− q2n+1)(1− q2n+2)

1− aq
Ln(aq

2).

15. We now want to show that Rn(a) satisfies the same recurrence, which is harder.
Set

Sn(a) =
n∑

k=0

(−1)kqk
2 (

q2n−2k+2; q2
)
k+1

(aq; q2)k
.

Note that we could extend the sum to k = n+ 1, because this just adds a zero
term (why?).

(i) By writing

Sn(a) =
n∑

k=0

(−1)kqk
2 (

q2n−2k+2; q2
)
k+1

(1− aq2k+1)

(aq; q2)k+1

and splitting the numerator, show that

Sn(a) = aRn+1(a)− a+
1− q2n+2

1− aq
Rn(aq

2).

(ii) By writing

Sn(a) =
n+1∑
k=0

(−1)kqk
2 (

q2n−2k+4; q2
)
k
(1− q2n−2k+2)

(aq; q2)k
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and splitting the numerator, show that

Sn(a) = Rn+1(a)− q2n+2 + q2n+1 1− q2n+2

1− aq
Rn(aq

2).

(iii) Show that (i) and (ii) imply

a+ (1− a)Rn+1(a) = q2n+2 +
(1− q2n+1)(1− q2n+2)

1− aq
Rn(aq

2).

Explain why this together with the previous problem proves (2.5.14).

16. Show that both sides of (2.5.14) reduce to (q; q2)n if a = q.

2.6. Jacobi’s q-binomial theorem

A generalization of Rothe’s q-binomial theorem was found by Jacobi.

Theorem 14 (Jacobi’s q-binomial theorem). For all a, b, c and all nonnegative
integers n,

(b− a)(b− aq) · · · (b− aqn−1)

=
n∑

k=0

(
n

k

)
q

(b− c)(b− cq) · · · (b− cqn−k−1)(c− a)(c− aq) · · · (c− aqk−1),

where (b− a)(b− aq) · · · (b− aqn−1) = 1 if n = 0.

Jacobi proved this when b = 1, but the general case follows by rescaling. We
used this phrase in section 2.3, and we will use it again later, so we pause for a
moment to explain it. Suppose we can prove Jacobi’s theorem when b = 1, i.e.,
suppose we can prove that

(1− w)(1− wq) · · · (1− wqn−1)

=

n∑
k=0

(
n

k

)
q

(1− v)(1− vq) · · · (1− vqn−k−1)(v − w)(v − wq) · · · (v − wqk−1)

for all v and w, which is what Jacobi actually proved. Replace w by a
b and v by c

b
to get(

1− a

b

)(
1− aq

b

)
· · ·
(
1− aqn−1

b

)

=
n∑

k=0

(
n

k

)
q

(
1− c

b

)(
1− cq

b

)
· · ·
(
1− cqn−k−1

b

)
c− a

b

c− aq

b
· · · c− aqk−1

b
.

If we now multiply through by bn, then we get Jacobi’s theorem for a general b.

We will prove Jacobi’s theorem by induction on n. (Jacobi’s proof was different,
and we will see it in the next chapter.) It holds by definition if n = 0, when both
sides are 1. If n = 1 it says b− a = (b− c) + (c− a), which is a true statement. We
leave it to the reader to verify it in the case n = 2, which already requires a bit of
algebra. Assume it is true for n, and consider the sum

n+1∑
k=0

(
n+ 1

k

)
q

(b− c)(b− cq) · · · (b− cqn−k)(c− a)(c− aq) · · · (c− aqk−1).
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By (2.1.3) this equals
n∑

k=0

(
n

k

)
q

(b− c)(b− cq) · · · (b− cqn−k)(c− a)(c− aq) · · · (c− aqk−1)

+
n+1∑
k=1

(
n

k − 1

)
q

qn−k+1(b− c)(b− cq) · · · (b− cqn−k)(c− a)(c− aq) · · · (c− aqk−1)

=
n∑

j=0

(
n

j

)
q

(b− c) · · · (b− cqn−j−1)(b− cqn−j)(c− a) · · · (c− aqj−1)

+

n∑
j=0

(
n

j

)
q

qn−j(b− c) · · · (b− cqn−j−1)(c− a) · · · (c− aqj−1)(c− aqj).

Combining these two sums we get
n∑

j=0

(
n

j

)
q

(b− c) · · · (b− cqn−j−1)(c−a) · · · (c−aqj−1)
{
b− cqn−j + qn−j(c− aqj)

}
,

and the term in braces simplifies to b − aqn, which can be taken outside the sum
since it does not depend on the summation index j. Then we have

n+1∑
k=0

(
n+ 1

k

)
q

(b− c)(b− cq) · · · (b− cqn−k)(c− a)(c− aq) · · · (c− aqk−1)

= (b− aqn)

n∑
j=0

(
n

j

)
q

(b− c) · · · (b− cqn−j−1)(c− a) · · · (c− aqj−1)

= (b− aqn)
{
(b− a)(b− aq) · · · (b− aqn−1)

}
,

where we used the induction assumption to do the last step. This proves Jacobi’s
theorem.

Exercises

1. What happens to Jacobi’s q-binomial theorem when q = 1?

2. Show that Jacobi’s q-binomial theorem reduces to Rothe’s q-binomial theorem
when c = 0.

3. Prove Jacobi’s q-binomial theorem using (2.1.2) instead of (2.1.3).

4. If b �= 0, show that Jacobi’s q-binomial theorem can be written as(a
b
; q
)
n
=

n∑
k=0

(
n

k

)
q

(c
b
; q
)
n−k

(c
b

)k (a
c
; q
)
k
.

5. Show that the identity of problem 4 is equivalent to

(2.6.1) (uv; q)n =

n∑
k=0

(
n

k

)
q

(u; q)n−k u
k (v; q)k.

This is the form of Jacobi’s q-binomial theorem that most often occurs in the
literature.

6. Prove (2.6.1) directly by induction on n.
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7. Is it true that

(uv; q)n =

n∑
k=0

(
n

k

)
q

(u; q)n−k v
n−k (v; q)k?

Explain.

8. By induction or as a special case of Jacobi’s q-binomial theorem, or by using
Theorem 13, prove that

xn =

n∑
k=0

(
n

k

)
q

(x− 1)(x− q) · · · (x− qk−1).

9. Prove by induction on n that

(a+ b)n =

n∑
k=0

(
n

k

)
q

akb (a(1− q) + b)
(
a(1− q2) + b

)
· · ·
(
a(1− qn−k−1) + b

)
.

What does this reduce to if q → 1?

10. Prove the result of problem 9 by setting v = 0 and u =
a

a+ b
in (2.6.1).

11. The result of problem 9 and the result of problem 20 in section 2.3 have a
common generalization: if yx = qxy and ya = qay and all other pairs of variables
commute, then

(x+ y + a+ b) ((x+ y)q + a+ b)
(
(x+ y)q2 + a+ b

)
· · ·
(
(x+ y)qn−1 + a+ b

)
=

n∑
k=0

(
n

k

)
q

{
(x+ a)(xq + a) · · · (xqk−1 + a)(yqk + b)

×
(
yqk+1 + a(1− q) + b

)
· · ·
(
yqn−1 + a(1− qn−k−1) + b

)
}

with the usual conventions about empty products. Prove this by induction on n
via the following outline (or otherwise):

(i) Show that yqm(xqk + a) = (xqk + a)yqm+1.

(ii) Show that(
yqm + a(1− qm−k) + b

)
(xqk + a) = (xqk + a)

(
yqm+1 + a(1− qm−k) + b

)
.

(iii) Think of

(x+ y + a+ b) ((x+ y)q + a+ b) · · ·
(
(x+ y)qn−1 + a+ b

)
((x+ y)qn + a+ b)

as{
(x+ y + a+ b) ((x+ y)q + a+ b) · · ·

(
(x+ y)qn−1 + a+ b

)}
((x+ y)qn + a+ b)

and write

(x+ y)qn + a+ b =
{
yqn + a(1− qn−k) + b

}
+ qn−k(xqk + a).

Split{
(x+ y + a+ b) ((x+ y)q + a+ b) · · ·

(
(x+ y)qn−1 + a+ b

)}
((x+ y)qn + a+ b)

into two sums, and use (ii) to move qn−k(xqk + a) into position in one of them.
Use (2.1.3) to combine the sums together.
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2.7. MacMahon’s q-binomial theorem

If we take a = 1 in Rothe’s q-binomial theorem, it becomes

(2.7.1) (−x; q)n =
n∑

k=0

(
n

k

)
q

q(
k
2) xk.

This is equivalent not only to problem 1 in section 2.3, but also to Rothe’s q-binomial
theorem; see problem 6.

There is an interesting q-binomial theorem due to MacMahon, which looks like
two instances of (2.7.1) multiplied together:

Theorem 15 (MacMahon’s q-binomial theorem).

(−qx; q2)a

(
− q

x
; q2
)
b
=

a∑
k=−b

(
a+ b

a− k

)
q2
qk

2

xk.

When a = b this was known to Cauchy and Gauss. It too is not really more
general than (2.7.1), as problem 7 shows. We single it out for attention here because
it is a finite form of the celebrated Jacobi triple product identity, which we will
discuss in Chapter 5.

We will give two proofs of MacMahon’s theorem. There are three more in
problems 7–9, and you might like one of them better. Our first proof is direct but
a bit complicated. Let fa,b(x) be defined by the left side of MacMahon’s theorem,
i.e.,

fa,b(x) = (−qx; q2)a

(
− q

x
; q2
)
b

= (1 + qx)(1 + q3x) . . . (1 + q2a−1x)
(
1 +

q

x

)(
1 +

q3

x

)
. . .

(
1 +

q2b−1

x

)
.

We want to try to expand fa,b(x) in powers of x. What powers could we possibly
get? The highest power we could get is xa, which would come from the product of
all the qsomethingx terms in the first bunch of a factors, and all the 1’s in the second
bunch of b factors. Similarly, the lowest power of x we could get is x−b. Therefore,

fa,b(x) =

a∑
k=−b

ck(a, b) x
k

for some coefficients ck(a, b), which we are trying to find. We will use a standard
trick in this subject to do it. Notice that the powers of q advance in steps of 2.
Therefore, fa,b(xq

2) should have most of the same factors as fa,b(x), so we look at
fa,b(xq

2) and compare it to fa,b(x). Now

fa,b(xq
2) = (−q3x; q2)a

(
− 1

qx
; q2
)

b

= (1 + q3x)(1 + q5x) . . . (1 + q2a+1x)

(
1 +

1

qx

)(
1 +

q

x

)
. . .

(
1 +

q2b−3

x

)

=

a∑
k=−b

ck(a, b) x
k q2k.

We see that fa,b(xq
2) does have a lot of factors in common with fa,b(x). What

exactly are the differences? fa,b(xq
2) has two factors that fa,b(x) lacks, namely
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2.7. MACMAHON’S q-BINOMIAL THEOREM 75

(1 + q2a+1x) and
(
1 + 1

qx

)
. Also, fa,b(xq

2) lacks two factors that fa,b(x) has,

namely (1 + qx) and
(
1 + q2b−1

x

)
. Therefore,

fa,b(xq
2)

fa,b(x)
=

(1 + q2a+1x)
(
1 + 1

qx

)
(1 + qx)

(
1 + q2b−1

x

) =
1 + q2a+1x

qx+ q2b
,

where we multiplied the second fraction by qx on top and bottom. It follows that

fa,b(xq
2)(qx+ q2b) = fa,b(x)(1 + q2a+1x),

which is really what we were after. What we do now is substitute the proposed
expansion of fa,b(x) in and get an equation for the coefficients ck(a, b). We have

(qx+ q2b)

a∑
k=−b

ck(a, b) x
k q2k = (1 + q2a+1x)

a∑
k=−b

ck(a, b) x
k.

Distributing and rearranging, this says
a∑

k=−b

ck(a, b) x
k+1 (q2k+1 − q2a+1) =

a∑
k=−b

ck(a, b) x
k (1− q2k+2b).

Notice that the term where k = a on the left is zero, and so is the term where
k = −b on the right. These things have to be true, since there is no xa+1 term on
the right, and no x−b term on the left. This also means that we can change k to
k − 1 on the left with impunity, and then compare coefficients of xk. The result is
that

ck−1(a, b) q
2k−1 (1− q2a−2k+2) = ck(a, b) (1− q2k+2b),

which we rewrite as

(2.7.2) ck(a, b) = ck−1(a, b) q
2k−1 1− q2a−2k+2

1− q2k+2b
.

Here k could be either positive or negative. Assume for now that it is positive.
What we do next is similar to some things we have done before. We will iterate
(2.7.2) to get down from ck(a, b) to c0(a, b). (It is natural to wonder whether this
will actually help, but sometimes it’s best to calculate first and ask questions later.)
If we replace k by k − 1 in (2.7.2), it becomes

ck−1(a, b) = ck−2(a, b) q
2k−3 1− q2a−2k+4

1− q2k+2b−2
.

Putting this back into (2.7.2) gives us

ck(a, b) = ck−2(a, b) q
(2k−1)+(2k−3) 1− q2a−2k+2

1− q2k+2b

1− q2a−2k+4

1− q2k+2b−2
.

Repeating this trick k times gets us to

ck(a, b) = c0(a, b) q
(2k−1)+(2k−3)+···+3+1 (1− q2a−2k+2)(1− q2a−2k+4) . . . (1− q2a)

(1− q2k+2b)(1− q2k+2b−2) . . . (1− q2b+2)
.

Can we do anything to make this look any better? The exponent of q simplifies to
k2 (see the first several problems). We can improve the appearance of the fraction
by multiplying top and bottom by

(q2; q2)a−k = (1− q2)(1− q4) . . . (1− q2a−2k).

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



76 2. q-BINOMIAL THEOREMS

Then the numerator is just equal to (q2; q2)a. We do a similar thing with the
denominator; here the right thing to multiply top and bottom by is (q2; q2)b, and
the result is that

(2.7.3) ck(a, b) = c0(a, b) q
k2 (q2; q2)a (q

2; q2)b
(q2; q2)a−k (q2; q2)b+k

,

at least under our assumption that k is positive. Note however that (2.7.3) is
certainly also true if k = 0, since all it says then is that c0(a, b) = c0(a, b). Do we
know what c0(a, b) is? No, we don’t, at least not without some more work. Then
what good is (2.7.3)?

To answer this, we ask ourselves, are there any ck(a, b) that we do know, or can
easily find? It is not too hard to find ca(a, b). We were remarking on this before we
started the calculation, when we asked what the highest power of x that we could
possibly get was. The answer was xa, which comes from the product

(qx)(q3x)(q5x) . . . (q2a−1x)(1)(1) . . . (1) = qa
2

xa.

Therefore ca(a, b) = qa
2

. But according to (2.7.3),

ca(a, b) = c0(a, b) q
a2 (q2; q2)a (q

2; q2)b
(q2; q2)b+a

and so

c0(a, b) =
(q2; q2)b+a

(q2; q2)a (q2; q2)b
=

(
a+ b

a

)
q2
.

If we use this in (2.7.3), most conveniently in the form c0(a, b) (q
2; q2)a (q

2; q2)b =
(q2; q2)a+b, it becomes

(2.7.4) ck(a, b) = qk
2 (q2; q2)a+b

(q2; q2)a−k (q2; q2)b+k
= qk

2

(
a+ b

a− k

)
q2
,

at least for k ≥ 0.
What about for k < 0? We don’t want to go through another argument like

this if we don’t have to, and there is a cheap way of getting the k < 0 case from
what we’ve done already. Go back to the definition of fa,b(x), and observe that if
we change x to 1

x , this interchanges the roles of a and b. So, if we switch a and b
at the same time, we would get our original function back, or in other words

fb,a

(
1

x

)
= fa,b(x).

If we translate this into a statement about the ck’s, it reads

a∑
k=−b

ck(a, b) x
k =

b∑
k=−a

ck(b, a) x
−k =

backwards to −b∑
k=a

c−k(b, a) x
k

which says that ck(a, b) = c−k(b, a). Now suppose that k ≥ 0. Then from this and
(2.7.4),

c−k(b, a) = qk
2

(
a+ b

a− k

)
q

and if we change −k to k here, since (−k)2 = k2, we have

ck(b, a) = qk
2

(
a+ b

a+ k

)
q
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if k ≤ 0, or

ck(a, b) = qk
2

(
a+ b

b+ k

)
q

if k ≤ 0. But this is exactly the same expression as (2.7.4), and therefore ck(a, b) is
given by (2.7.4) for all values of k. This proves MacMahon’s q-binomial theorem.

Another proof comes from the observation that MacMahon’s theorem appears
to be two versions of (2.7.1) multiplied together. If we change q to q2 there and
then replace x by xq, we get

(2.7.5) (−xq; q2)n =
n∑

k=0

(
n

k

)
q2
qk

2

xk.

This implies

(2.7.6)

(−xq; q2)a =

a∑
i=0

(
a

i

)
q2
qi

2

xi,

(
− q

x
; q2
)
b
=

b∑
j=0

(
b

j

)
q2
qj

2

x−j .

(We leave the details of (2.7.5) and (2.7.6) to the reader.) Multiplying the two
identities in (2.7.6) together gives

(2.7.7) (−qx; q2)a

(
− q

x
; q2
)
b
=

a∑
i=0

b∑
j=0

(
a

i

)
q2

(
b

j

)
q2
qi

2+j2 xi−j .

Now replace i by j + k, so that i− j = k, and k will be the new index on the outer
sum. The smallest possible value of k is 0 − b = −b, and the largest is a − 0 = a
(why?). Making these replacements in (2.7.7) we get

(2.7.8) (−qx; q2)a

(
− q

x
; q2
)
b
=

a∑
k=−b

⎛
⎝ b∑

j=0

(
a

j + k

)
q2

(
b

j

)
q2
q2j(j+k)

⎞
⎠ qk

2

xk.

The inner sum is (4.7) from Chapter 1 with q2 in place of q, so

b∑
j=0

(
a

j + k

)
q2

(
b

j

)
q2
q2j(j+k) =

(
a+ b

a− k

)
q2
,

and substituting this in (2.7.8) proves MacMahon’s q-binomial theorem.

Exercises

1. One way to see that 1 + 3 + 5 + · · ·+ (2n− 1) = n2 is to use the reversing trick
from problem 1, section 1.1. Explain.

2. Another method is to use 1 + 2 + · · · + n = n(n+1)
2 . Explain why this implies

that

1 + 2 + 3 + · · ·+ 2n = n(2n+ 1) and 2 + 4 + 6 + · · ·+ 2n = n(n+ 1),

and how 1 + 3 + 5 + · · ·+ (2n− 1) = n2 follows from these.
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3. Explain how 1+3+5+· · ·+(2n−1) = n2 follows from 2+4+6+· · ·+2n = n(n+1)
alone.

4. Prove (2.7.5) and (2.7.6).

5. Give a direct proof of (2.7.1) by iteration and/or induction.

6. Rothe’s q-binomial theorem follows easily from (2.7.1) by rescaling: assuming
(2.7.1) is true, replace x by x

a and then multiply through by an. Check the
details.

7. Here is an outline of a proof of MacMahon’s q-binomial theorem by rewriting
(2.7.1):

(i) Show that replacing n by a+ b and q by q2 in (2.7.1) gives

(1 + x)(1 + xq2)(1 + xq4) . . . (1 + xq2a+2b−2) =
a+b∑
j=0

(
a+ b

j

)
q2
qj(j−1) xj .

(ii) Replace x by x
q2b−1 in the identity in (i).

(iii) Multiply both sides of the identity in (ii) by qb
2

x−b. On the left side,

take qb
2

x−b in the form

q2b−1

x

q2b−3

x

q2b−5

x
. . .

q

x

and put each of these factors in an appropriate place.

(iv) Reindex the sum in (iii) by replacing j − b by k. The result should be
MacMahon’s q-binomial theorem. Fill in the details.

8. Prove MacMahon’s q-binomial theorem by induction on b.

9. Prove MacMahon’s q-binomial theorem by induction on a.

10. Using MacMahon’s q-binomial theorem or otherwise, show that

a∑
k=−b

(
a+ b

a− k

)
q

(−1)kq
k(k+1)

2 =

{
0 if b > 0,

(q; q)a if b = 0.

11. This problem outlines a derivation of an interesting consequence of MacMahon’s
q-binomial theorem due to Hirschhorn.

(i) Take a = n and b = n+ 1 in MacMahon’s theorem to get

(−qx; q2)n

(
− q

x
; q2
)
n+1

=

−1∑
k=−n−1

(
2n+ 1

n− k

)
q2
qk

2

xk +

n∑
k=0

(
2n+ 1

n− k

)
q2
qk

2

xk.

(ii) Reindex the first sum on the right side by letting k = −j − 1, and the
second sum by letting k = j. Show that this gives

(−qx; q2)n

(
− q

x
; q2
)
n+1

=
n∑

j=0

(
2n+ 1

n− j

)
q2
qj

2

xj

[
1 +
( q
x

)2j+1
]
.

(iii) Show that dividing both sides of (ii) by 1 + q
x and then letting x → −q

gives

(q2; q2)2n =
n∑

j=0

(−1)j(2j + 1)qj
2+j

(
2n+ 1

n− j

)
q2
,
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or

(2.7.9) (q; q)2n =

n∑
j=0

(−1)j(2j + 1)q(
j+1
2 )
(
2n+ 1

n− j

)
q

after replacing q2 by q.

12. Show that (2.7.9) can be rewritten as

(2.7.10) 2(q; q)2n =
n∑

k=−n−1

(−1)k(2k + 1)q
k(k+1)

2

(
2n+ 1

n− k

)
q

.

This form goes over the full natural range of the q-binomial coefficient, so the
limits can be left off the sum.

13. Another proof of (2.7.9) proves the equivalent (2.7.10) by induction together
with the companion identity

(2.7.11)
n∑

k=−n

(−1)k(2k + 1)q
k(k+1)

2

(
2n

n− k

)
q

=

{
2(q; q)n(q; q)n−1 if n ≥ 1,

1 if n = 0.

(i) Verify (2.7.10) and (2.7.11) for n = 0 and n = 1.

(ii) Set

Hn(q) =
∑
k

(−1)k(2k + 1)q
k(k+1)

2

(
2n+ 1

n− k

)
q

,

Jn(q) =
∑
k

(−1)k(2k + 1)q
k(k+1)

2

(
2n

n− k

)
q

for n ≥ 0. Show that Hn(q) = (1− qn)Jn(q) for n ≥ 1. Problem 10 should help.

(iii) Show that Jn(q) = (1−qn)Hn−1(q) for n ≥ 1. Again Problem 10 should
help.

(iv) Use (i)–(iii) to prove (2.7.10) and (2.7.11).

2.8. A partial fraction decomposition

In this section we derive a result superficially similar to MacMahon’s q-binomial
theorem that we will have a use for in Chapter 7. Consider the product

pn(x) =
(ax; q)n

(
q
ax ; q

)
n

(x; q)n+1

(
q
x ; q
)
n

for a nonnegative integer n. Note that if we multiply top and bottom by xn,
then we have a polynomial of degree 2n divided by a polynomial of degree 2n+ 1.
Therefore we should be able to expand pn(x) in partial fractions, just as we would
do in integral calculus. Because (x; q)n+1 has roots of multiplicity 1 at x = q−k for
0 ≤ k ≤ n and ( qx ; q)n has zeros of multiplicity 1 at x = qk for 1 ≤ k ≤ n, we have

(2.8.1) pn(x) =
n∑

k=0

Ak

x− q−k
+

n∑
k=1

Bk

x− qk
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for some coefficients Ak and Bk, which presumably depend also on n, a, and q, but
not on x. If we multiply (2.8.1) by x− q−k and let x → q−k, then all of the terms
tend to zero except one and we have

Ak = lim
x→q−k

(x− q−k) pn(x).

It is straightforward to compute most of this limit: for three of the four sets of
factors we can just plug in and get

(aq−k; q)n

(
qk+1

a ; q
)
n

(qk+1; q)n
.

It is convenient to rewrite the fourth set of factors as

(x; q)n+1 = (1− x) · · · (1− xqk−1)(1− xqk)(1− xqk+1) · · · (1− xqn),

and we can plug into all but one of these. Then

Ak =
(aq−k; q)n

(
qk+1

a ; q
)
n

(qk+1; q)n
× 1

(1− q−k) · · · (1− q−1)(1− q) · · · (1− qn−k)

× lim
x→q−k

x− q−k

1− xqk
qk

qk

=
−1

qk

(aq−k; q)n

(
qk+1

a ; q
)
n

(q; q)n−k(qk+1; q)n
× 1

(1− q−k) · · · (1− q−1)
.

To simplify this we rewrite

(aq−k; q)n = (1− aq−k) · · · (1− aq−1)(1− a)(1− aq) · · · (1− aqn−k−1)

= (1− aq−k) · · · (1− aq−1)(a; q)n−k,

so that

Ak =
−1

qk

(a; q)n−k

(
qk+1

a ; q
)
n

(q; q)n−k(qk+1; q)n
× (1− aq−k) · · · (1− aq−1)

(1− q−k) · · · (1− q−1)
.

Now

(1− aq−k) · · · (1− aq−1)

(1− q−k) · · · (1− q−1)
=

(1− aq−k) · · · (1− aq−1)

(1− q−k) · · · (1− q−1)

q1+2+···+k

q1+2+···+k

=
(qk − a) · · · (q − a)

(qk − 1) · · · (q − 1)

=
(a− q) · · · (a− qk)

(1− q) · · · (1− qk)

=
ak
(
q
a ; q
)
k

(q; q)k
,

so
(2.8.2)

Ak = −
(
a

q

)k (a; q)n−k

(
q
a ; q
)
k

(
qk+1

a ; q
)
n

(q; q)n−k(q; q)k(qk+1; q)n
= −

(
a

q

)k (a; q)n−k

(
q
a ; q
)
n+k

(q; q)n−k(q; q)n+k
.
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Note also that

(2.8.3) −
(
a

q

)k
1

x− q−k
=

−ak

xqk − 1
=

ak

1− xqk
.

Similarly we can compute Bk as

Bk = lim
x→qk

(x− qk) pn(x).

Again we can plug right in for three of the four sets of factors to get

(aqk; q)n

(
q1−k

a ; q
)
n

(qk; q)n+1
.

For the fourth set it is convenient to rewrite( q
x
; q
)
n
=
(
1− q

x

)
· · ·
(
1− qk−1

x

)(
1− qk

x

)(
1− qk+1

x

)
· · ·
(
1− qn

x

)
,

and we can plug into all but one of these factors. Hence

Bk =
(aqk; q)n

(
q1−k

a ; q
)
n

(qk; q)n+1
× 1

(1− q1−k) · · · (1− q−1)(1− q) · · · (1− qn−k)

× lim
x→qk

x− qk

1− qk

x

x

x

= qk
(aqk; q)n

(
q1−k

a ; q
)
n

(q; q)n−k(qk; q)n+1
× 1

(1− q1−k) · · · (1− q−1)
.

To simplify this we rewrite(
q1−k

a
; q

)
n

=

(
1− q1−k

a

)
· · ·
(
1− q

a

)(
1− 1

a

)( q
a
; q
)
n−k

,

so that

Bk = qk
(aqk; q)n

(
q
a ; q
)
n−k

(q; q)n−k(qk; q)n+1
×

(
1− q1−k

a

)
· · ·
(
1− q

a

) (
1− 1

a

)
(1− q1−k) · · · (1− q−1)

.

Now(
1− q1−k

a

)
· · ·
(
1− q

a

) (
1− 1

a

)
(1− q1−k) · · · (1− q−1)

=

(
1− q1−k

a

)
· · ·
(
1− q

a

) (
1− 1

a

)
(1− q1−k) · · · (1− q−1)

ak q1+2+···+(k−1)

ak q1+2+···+(k−1)

=
1

ak
(aqk−1 − 1) · · · (aq − 1)(a− 1)

(qk−1 − 1) · · · (q − 1)

=
−1

ak
(a; q)k
(q; q)k−1

,

so

Bk = −
( q
a

)k (a; q)k(aq
k; q)n

(
q
a ; q
)
n−k

(q; q)n−k(q; q)k−1(qk; q)n+1
= −

( q
a

)k (a; q)n+k

(
q
a ; q
)
n−k

(q; q)n−k(q; q)n+k
.

Comparing this with (2.8.2) we see that Bk = A−k, and hence (2.8.1) becomes

pn(x) =
n∑

k=−n

Ak

x− q−k
.
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82 2. q-BINOMIAL THEOREMS

In view of (2.8.3), we have proved the following identity.

Theorem 16. For any nonnegative integer n, and all x except q−n, . . . , qn, we
have

(ax; q)n
(

q
ax ; q

)
n

(x; q)n+1

(
q
x ; q
)
n

=
n∑

k=−n

(a; q)n−k

(
q
a ; q
)
n+k

(q; q)n−k(q; q)n+k

ak

1− xqk
.

Exercises

1. Show similarly that

1

(x; q)n+1

(
q
x ; q
)
n

=
1

(1− x)(q; q)2n
+

n∑
k=1

(−1)kq(
k+1
2 )

(q; q)n+k(q; q)n−k

(
1

1− xqk
+

1

qk − x

)
.

2.9. A curious q-identity of Euler, and some extensions

In this section we discuss a strange q-identity of Euler that has not received
much attention. Since it is most naturally written with a q-binomial coefficient it
could be considered the oldest q-binomial theorem of all, but, although it fits more
naturally in this chapter than anywhere else, there are good reasons not to call it
a q-binomial theorem: (i) Euler did not think of it that way; and (ii) it does not
really reduce to a special case of the binomial theorem when q = 1. For a positive
integer n, let’s look at

(2.9.1) En(q) :=

n∑
k=1

(
n

k

)
q

(q; q)k−1.

Note that there is quite a bit of cancellation inside the sum, so we could instead
write

En(q) =

n∑
k=1

(qn−k+1; q)k
1− qk

,

at least if q �= 1, but we prefer the form (2.9.1). Let’s write out a few instances of
it. We have E1(q) =

(
1
1

)
q
(q; q)0 = 1, which doesn’t provide much of a clue. More

illuminating are

E2(q) =

2∑
k=1

(
2

k

)
q

(q; q)k−1 = [2]q + (q; q)1 = 1 + q + 1− q = 2

and

E3(q) =
3∑

k=1

(
3

k

)
q

(q; q)k−1 = [3]q + [3]q(1− q) + (1− q)(1− q2)

= (1 + q + q2) + (1− q3) + (1− q − q2 + q3) = 3.

Thus, apparently, we have
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Theorem 17 (Euler). For any nonnegative integer n,

(2.9.2)
n∑

k=1

(
n

k

)
q

(q; q)k−1 = n.

(Both sides are zero if n = 0.)

Surprising as it may be that all the q’s on the left side miraculously cancel, this
is not too hard to prove by induction. Denoting the left side of (2.9.2) by En(q),
as in (2.9.1), we have to prove that En+1(q) = n + 1 from the assumption that
En(q) = n. Using (2.1.2) we have

En+1(q) =
n+1∑
k=1

(
n+ 1

k

)
q

(q; q)k−1 =
n+1∑
k=1

{(
n

k − 1

)
q

+ qk
(
n

k

)
q

}
(q; q)k−1

=

n+1∑
k=1

(
n

k − 1

)
q

(q; q)k−1 +

n∑
k=1

(
n

k

)
q

qk(q; q)k−1.

We reindex the first sum by renaming k − 1 as j. In the second sum we write
qk = 1− (1− qk), the point being that (q; q)k−1(1− qk) = (q; q)k. Then we have

En+1(q) =
n∑

j=0

(
n

j

)
q

(q; q)j +
n∑

k=1

(
n

k

)
q

(q; q)k−1 −
n∑

k=1

(
n

k

)
q

(q; q)k.

The first and third sums almost cancel, but not quite—the third sum cancels every
term of the first except the j = 0 term, which is

(
n
0

)
q
(q; q)0 = 1. Therefore

En+1(q) = 1 +

n∑
k=1

(
n

k

)
q

(q; q)k−1 = 1 + En(q),

and so En(q) = n implies En+1(q) = n+ 1. This proves Euler’s theorem.
Euler’s proof is much different, and we will outline it in Chapter 4. The re-

markable thing about (2.9.2) is that the right side is independent of q, which implies
that the left side must be too. Therefore, if we replace q by q−1 on the left side of
(2.9.2) we must still have a true theorem. After some rather tedious algebra, which
we leave as an exercise, this gives

(2.9.3)
n∑

k=1

(
n

k

)
q

(−1)k−1q(
k+1
2 )−nk(q; q)k−1 = n.

This is in some ways closer to Euler’s form of the identity, although he had 1
a in

place of q. While (at least when expressed in our notation) it is not as pretty as
(2.9.2), we will have an application for (2.9.3) in Chapter 4.

We conclude this section with a generalization of Euler’s identity. (For another,
see problem 9.) For a positive integer n, define

fn(a, b) :=

n∑
j=1

(
n

j

)
q

(b− a)(b− aq) · · · (b− aqn−j−1) (bj − aj) (q; q)j−1,

where, because of the factors (q; q)j−1 and bj −aj , it is natural to take f0(a, b) = 0.
Also, as usual,

(b− a)(b− aq) · · · (b− aqk−1) = 1 if k = 0.
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We won’t state the identity we are after right away—you will soon be able to guess
what it is. Euler’s identity is the case b = 1, a = 0.

For small values of n we have f1(a, b) = b − a and f2(a, b) = 2(b − a)(b− aq).
We try to relate fn+1(a, b) to fn(a, b):

fn+1(a, b) =

n+1∑
j=1

(
n+ 1

j

)
q

(b− a) · · · (b− aqn−j) (bj − aj) (q; q)j−1

=

n+1∑
j=1

{(
n

j − 1

)
q

+ qj
(
n

j

)
q

}
(b− a) · · · (b− aqn−j) (bj − aj) (q; q)j−1

=
n+1∑
j=1

(
n

j − 1

)
q

(b− a) · · · (b− aqn−j) (bj − aj) (q; q)j−1

+

n+1∑
j=1

(
n

j

)
q

(b− a) · · · (b− aqn−j−1)(b− aqn−j) qj (bj − aj) (q; q)j−1.

Reindex the first sum above by replacing j by k + 1, and in the second replace j
by k:

fn+1(a, b) =

n∑
k=0

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bk+1 − ak+1) (q; q)k

+

n∑
k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bqk − aqn) (bk − ak) (q; q)k−1

= S1 + S2,

where we have called the first piece of fn+1(a, b) above S1 and the second piece S2.
We split up the factor bqk − aqn in S2:

S2 =
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) bqk (bk − ak) (q; q)k−1

−
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) aqn (bk − ak) (q; q)k−1

=
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) bqk (bk − ak) (q; q)k−1 − aqn fn(a, b).

In S1 we rewrite the factor bk+1 − ak+1 as

bk+1 − ak+1 = b(bk − ak) + ak(b− a).
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Hence

S1 =
n∑

k=0

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bk − ak) b (q; q)k

+
n∑

k=0

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) ak (b− a) (q; q)k

=
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bk − ak) (q; q)k−1 b(1− qk)

+ (b− a)
n∑

k=0

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) ak (q; q)k.

Note that the k = 0 term in the first sum was zero, so we threw it away. Now we
put all these pieces back together:

fn+1(a, b) = S1 + S2

=
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bk − ak) (q; q)k−1 b(1− qk)

+
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) bqk (bk − ak) (q; q)k−1 − aqn fn(a, b)

+ (b− a)
n∑

k=0

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) ak (q; q)k.

If we combine the first two sums above we get

n∑
k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bk − ak) (q; q)k−1

{
b− bqk + bqk

}

= b
n∑

k=1

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (bk − ak) (q; q)k−1

= b fn(a, b).

Therefore the first three sums above, taken together, are equal to (b− aqn) fn(a, b).
We rewrite the fourth sum as

(b− a)
n∑

k=0

(
n

k

)
q

(b− a) · · · (b− aqn−k−1) (a− aq)(a− aq2) · · · (a− aqk).

This equals (b− a)× (b− aq)(b− aq2) · · · (b− aqn) by Jacobi’s q-binomial theorem
from section 2.6. Hence we finally have

(2.9.4) fn+1(a, b) = (b− a)(b− aq) · · · (b− aqn) + (b− aqn) fn(a, b).

From this we can evaluate fn(a, b) by iteration. For a generic integer k between 1
and n, we have
(2.9.5)
fn(a, b) = k (b− a)(b− aq) · · · (b− aqn−1) + (b− aqn−1) · · · (b− aqn−k) fn−k(a, b).
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(We leave this as an exercise.) If we take k = n− 1 here we get

fn(a, b) = (n− 1) (b− a)(b− aq) · · · (b− aqn−1) + (b− aqn−1) · · · (b− aq) f1(a, b)

= (n− 1) (b− a)(b− aq) · · · (b− aqn−1) + (b− a)(b− aq) · · · (b− aqn−1)

= n (b− a)(b− aq) · · · (b− aqn−1).

In other words, we have proved that

(2.9.6)

n∑
j=1

(
n

j

)
q

(b− a)(b− aq) · · · (b− aqn−j−1) (bj − aj) (q; q)j−1

= n (b− a)(b− aq) · · · (b− aqn−1)

for any nonnegative integer n. (Note that this is even true if n = 0.)

Exercises

1. What happens to Euler’s theorem (2.9.2) when q → 1? What happens to (2.9.6)?

2. Show directly that
4∑

k=1

(
4

k

)
q

(q; q)k−1 = 4.

3. Show that n!q−1 = q−(
n
2)n!q.

4. Using problem 3, or directly, show that (q−1; q−1)n = (−1)nq−(
n+1
2 )(q; q)n.

5. Use problem 3 or problem 4 to show that(
n

k

)
q−1

= qk(k−n)

(
n

k

)
q

.

6. Use some combination of problems 3–5 to derive (2.9.3) from (2.9.2).

7. Use (2.1.3) and the result of problem 9 in section 2.3 to give an alternative proof
of (2.9.2).

8. Use (2.1.2) and the result of problem 7 in section 2.3 to give an alternative proof
of (2.9.3).

9. For a positive integer j ≤ n, set

Sn,j(q) :=
n∑

k=j

(
n

k

)
q

(qj ; q)k−j .

(i) Show that

Sn,j(q)− Sn−1,j(q) =

(
n− 1

j − 1

)
q

.

(ii) Explain why (i) implies that

(2.9.7)

n∑
k=j

(
n

k

)
q

(qj ; q)k−j =

n∑
k=j

(
k − 1

j − 1

)
q

.

What happens if j = 1?
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10. From Chapter 1 we know that(
n

j

)
q

=
n∑

k=j

(
k − 1

j − 1

)
q

qk−j .

This was a q-analogue of the diagonal property of Pascal’s triangle. What hap-
pens if you subtract it from (2.9.7)?

11. Since the facts 1+2+3+ · · ·+(n− 1) =
(
n
2

)
and 1+2+3+ · · ·+n =

(
n+1
2

)
are

used approximately 27,843 times in this book, it is reasonable to wonder about
[1]q + [2]q + · · ·+ [n]q. Show that

[1]q + [2]q + · · ·+ [n]q =
n− q[n]q
1− q

=
n− (n+ 1)q + qn+1

(1− q)2
.

12. What formula does (2.9.7) give for the sum in the previous problem?

13. Here is another curious identity of Euler: for a positive integer k and a nonneg-
ative integer n, show that

k∑
j=1

qj−1 (qj ; q)n =
(qk; q)n+1

1− qn+1

by induction on k.

14. Euler’s proof of the result of the previous problem did not use induction. Instead,
Euler defined

Z =
k∑

j=1

qj−1 (qj ; q)n

and looked at
(
1− qn+1

)
Z. Show that

qj−1 (qj ; q)n
(
1− qn+1

)
= (qj ; q)n+1 − (qj−1; q)n+1

(make sure you check the case j = 1), and explain why Euler could conclude
from this that

Z =
(qk; q)n+1

1− qn+1
.

15. Use (2.9.4) to prove (2.9.5) by induction on k.

16. What happens if we set k = n in (2.9.5)? Would this be easier than setting
k = n− 1? Why do you think we didn’t do it this way?

17. (a) Show that

(x; q)k =
k∑

j=1

(−1)j−1q(
j
2)
(
k

j

)
q

(
1− xj

)
.

(b) Show that this can be rewritten as

(x; q)k
1− qk

=

k∑
j=1

(−1)j−1q(
j
2)
(
k − 1

j − 1

)
q

1− xj

1− qj
.

(c) Use (b) to show that
n∑

k=1

qk (x; q)k
1− qk

=
n∑

j=1

(−1)j−1q(
j+1
2 )
(
n

j

)
q

1− xj

1− qj
.
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18. What happens if you set x = q in the result of part (c) of the previous problem?

2.10. The Chen–Chu–Gu identity

In this section we prove a q-binomial identity of Chen, Chu, and Gu that will
be useful in Chapter 5. Consider the sum

(2.10.1) Cn(x) =

n∑
j=0

(
n

j

)
q

qj
2

xj(1 + xqj)

(x2qj ; q)n+1
.

We have

C0(x) =
1 + x

1− x2
=

1

1− x
and

C1(x) =

1∑
j=0

(
1

j

)
q

qj
2

xj(1 + xqj)

(x2qj ; q)2

=
1 + x

(1− x2)(1− x2q)
+

xq(1 + xq)

(1− x2q)(1− x2q2)

=
1

1− x2q

[
1

1− x
+

xq

1− xq

]

=
1

1− x2q

1− xq + xq(1− x)

(1− x)(1− xq)

=
1

1− x2q

1− x2q

(1− x)(1− xq)
=

1

(1− x)(1− xq)
.

A long calculation (exercise) shows further that

C2(x) =
1

(1− x)(1− xq)(1− xq2)
.

This suggests that

(2.10.2) Cn(x) =

n∑
j=0

(
n

j

)
q

qj
2

xj(1 + xqj)

(x2qj ; q)n+1
=

1

(x; q)n+1
.

This seems to be rather tricky to prove; the simplification is miraculous in both
numerator and denominator. We start by observing from (2.10.1) that

Cn−1(xq) =

n−1∑
j=0

(
n− 1

j

)
q

qj(j+1)xj(1 + xqj+1)

(x2qj+2; q)n

=
n∑

j=1

(
n− 1

j − 1

)
q

qj(j−1)xj−1(1 + xqj)

(x2qj+1; q)n

=
n∑

j=1

(
n− 1

j − 1

)
q

qj(j−1)xj−1

(x2qj+1; q)n
+

n∑
j=1

(
n− 1

j − 1

)
q

qj
2

xj

(x2qj+1; q)n
.(2.10.3)

Next, note again from (2.10.1) that

xCn(x) =
n∑

j=0

(
n

j

)
q

qj
2

xj(x+ x2qj)

(x2qj ; q)n+1
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2.10. THE CHEN–CHU–GU IDENTITY 89

and rewrite x+ x2qj = 1+ x− (1− x2qj). The point of doing this is that 1− x2qj

will cancel with the first factor of the denominator. Then

xCn(x) =
n∑

j=0

(
n

j

)
q

qj
2

xj(1 + x)

(x2qj ; q)n+1
−

n∑
j=0

(
n

j

)
q

qj
2

xj(1− x2qj)

(x2qj ; q)n+1

=

n∑
j=0

(
n

j

)
q

qj
2

xj(1 + x)

(x2qj ; q)n+1
−

n∑
j=0

(
n

j

)
q

qj
2

xj

(x2qj+1; q)n
.(2.10.4)

The last sum in (2.10.4) now looks like it might combine nicely with (2.10.3). Let’s
rewrite the 1 + x in the other sum in (2.10.4) as 1 + xqj + x(1− qj). Then

n∑
j=0

(
n

j

)
q

qj
2

xj(1 + x)

(x2qj ; q)n+1
=

n∑
j=0

(
n

j

)
q

qj
2

xj(1 + xqj)

(x2qj ; q)n+1
+

n∑
j=0

(
n

j

)
q

qj
2

xj+1(1− qj)

(x2qj ; q)n+1
.

The point is that now the middle sum is Cn(x). The last sum can start at j = 1,
since the factor 1− qj makes the j = 0 term zero. We also have(

n

j

)
q

(1− qj) =

(
n− 1

j − 1

)
q

(1− qn),

so (2.10.4) becomes

(2.10.5) xCn(x) = Cn(x)+

n∑
j=1

(
n− 1

j − 1

)
q

qj
2

xj+1(1− qn)

(x2qj ; q)n+1
−

n∑
j=0

(
n

j

)
q

qj
2

xj

(x2qj+1; q)n
,

and now both of the remaining sums look like they might combine nicely with
(2.10.3). We rewrite the first one as

(2.10.6)

n∑
j=1

(
n− 1

j − 1

)
q

qj
2−jxj−1 x2qj(1− qn)

(x2qj ; q)n+1

to make it look more like the first sum in (2.10.3). Next, rewrite x2qj(1 − qn) =
(1− x2qj+n)− (1− x2qj) here. Note that one of these two groups cancels with the
last factor of (x2qj ; q)n+1, and the other cancels with the first factor. Then (2.10.6)
becomes

n∑
j=1

(
n− 1

j − 1

)
q

qj
2−jxj−1(1− x2qj+n)

(x2qj ; q)n+1
−

n∑
j=1

(
n− 1

j − 1

)
q

qj
2−jxj−1(1− x2qj)

(x2qj ; q)n+1

=

n∑
j=1

(
n− 1

j − 1

)
q

qj
2−jxj−1

(x2qj ; q)n
−

n∑
j=1

(
n− 1

j − 1

)
q

qj
2−jxj−1

(x2qj+1; q)n
,

and the last sum is the negative of the first sum in (2.10.3). Adding (2.10.3) and
(2.10.5) together, we therefore get

xCn(x) + Cn−1(xq) = Cn(x)−
n∑

j=0

(
n

j

)
q

qj
2

xj

(x2qj+1; q)n

+

n∑
j=1

(
n− 1

j − 1

)
q

qj
2−jxj−1

(x2qj ; q)n
+

n∑
j=1

(
n− 1

j − 1

)
q

qj
2

xj

(x2qj+1; q)n
,
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or, reindexing the next-to-last sum,

xCn(x) + Cn−1(xq) = Cn(x)−
n∑

j=0

(
n

j

)
q

qj
2

xj

(x2qj+1; q)n

+

n−1∑
j=0

(
n− 1

j

)
q

qj
2+jxj

(x2qj+1; q)n
+

n∑
j=1

(
n− 1

j − 1

)
q

qj
2

xj

(x2qj+1; q)n
.

Since (
n

j

)
q

=

(
n− 1

j − 1

)
q

+ qj
(
n− 1

j

)
q

,

the three sums cancel, and we finally have xCn(x) + Cn−1(xq) = Cn(x), or

(2.10.7) Cn(x) =
Cn−1(xq)

1− x
.

With this in hand, it is easy to prove (2.10.2) by iteration or induction.
In essence, (2.10.2) is already the Chen–Chu–Gu identity, but for future use

we want to rewrite it to look similar to MacMahon’s q-binomial theorem. First we
replace n by m+ n and j by m+ k to get

1

(x; q)n+m+1
=

n∑
k=−m

(
m+ n

m+ k

)
q

q(m+k)2xm+k(1 + xqm+k)

(x2qm+k; q)n+m+1
.

Next set x = −z/qm here, which gives

1(
− z

qm ; q
)
n+m+1

=

n∑
k=−m

(
m+ n

m+ k

)
q

qm
2+2mk+k2

(−z)m+kq−m(m+k)(1− zqk)(
z2qm+k

q2m ; q
)
n+m+1

=
n∑

k=−m

(
m+ n

m+ k

)
q

qk(m+k)(−1)m+kzm+k(1− zqk)

(z2qk−m; q)n+m+1
.(2.10.8)

On the left side we have(
− z

qm
; q

)
n+m+1

=

(
1 +

z

qm

)
· · ·
(
1 +

z

q

)
(1 + z)(1 + zq) · · · (1 + zqn)

and the last n+ 1 factors are (−z; q)n+1. It is convenient to rewrite the others as

z

qm

(
qm

z
+ 1

)
z

qm−1

(
qm−1

z
+ 1

)
· · · z

q

(q
z
+ 1
)

=
zm

q1+2+···+m

(
1 +

q

z

)(
1 +

q2

z

)
· · ·
(
1 +

qm

z

)
=

zm

q(
m+1

2 )

(
−q

z
; q
)
m
,

so the left side of (2.10.8) is

(2.10.9)
q(

m+1
2 )

zm
(
− q

z ; q
)
m
(−z; q)n+1

.

We rewrite (z2qk−m; q)n+m+1 in a similar way:

(z2qk−m; q)n+m+1 = (1− z2qk−m) · · · (1− z2q−1)(1− z2)(1− z2q) · · · (1− z2qn+k)
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and the last n+k+1 factors are (z2; q)n+k+1. It is convenient to rewrite the others
as (

1− z2

qm−k

)
· · ·
(
1− z2

q

)
=

−z2

qm−k

(
1− qm−k

z2

)
· · ·
(
−z2

q

)(
1− q

z2

)
=

(−z2)m−k

q1+2+···+(m−k)

(
1− q

z2

)
· · ·
(
1− qm−k

z2

)

=
(−1)m−kz2m−2k

q(
m−k+1

2 )

( q

z2
; q
)
m−k

.

Using this and (2.10.9) in (2.10.8), the powers of −1 cancel and we have

q(
m+1

2 )

zm
(
− q

z ; q
)
m
(−z; q)n+1

=

n∑
k=−m

(
m+ n

m+ k

)
q

qk(m+k)+(m−k+1
2 )z3k−m(1− zqk)(

q
z2 ; q

)
m−k

(z2; q)n+k+1

or

1(
− q

z ; q
)
m
(−z; q)n+1

=
n∑

k=−m

(
m+ n

m+ k

)
q

qk(m+k)+(m−k+1
2 )−(m+1

2 )z3k(1− zqk)(
q
z2 ; q

)
m−k

(z2; q)n+k+1

.

Simplifying the exponent of q (exercise) we finally have

Theorem 18 (The Chen–Chu–Gu identity). For any nonnegative integers m
and n, for all q, and for all z �= 0, we have

1(
− q

z ; q
)
m
(−z; q)n+1

=

n∑
k=−m

(
m+ n

m+ k

)
q

q
k(3k−1)

2 z3k(1− zqk)(
q
z2 ; q

)
m−k

(z2; q)n+k+1

.

Exercises

1. Complete the proof of (2.10.2) by iteration or induction from (2.10.7).

2. Complete the proof of the Chen–Chu–Gu identity by showing that

k(m+ k) +

(
m− k + 1

2

)
−
(
m+ 1

2

)
=

k(3k − 1)

2
.

3. Show directly that C2(x) = 1/(1− x)(1− xq)(1− xq2).

4. What happens to (2.10.2) when q = 1?

2.11. Bibliographical Notes

The Potter–Schützenberger q-binomial theorem is due to Potter [189] and
Schützenberger [216], a few years apart. See also the article [141].

Gauss’s two q-binomial theorems in section 2.5 come from [115]. The Rothe q-
binomial theorem was stated, without proof and with a misprint, in the introduction
to [208], as a sample of material that was cut from the book due to space limitations
imposed by his publisher. He probably had a proof, and if he had written it out
for publication then he might well have found the misprint. Gruson gave the first
two published proofs in [129]. The introduction of Schweins’s book [218] mentions
the work of Gauss, Rothe, and Gruson.
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This was the second time that Rothe found a significant generalization of the
binomial theorem. In his 1793 thesis [206] he proved

Theorem 19 (Rothe’s generalized binomial theorem). If

Rn(x;h,w) = x (x+ h+ nw) (x+ 2h+ nw) · · · (x+ (n− 1)h+ nw)

for n ≥ 1 and R0(x;h,w) = 1, then

Rn(x+ y;h,w) =
n∑

k=0

(
n

k

)
Rk(x;h,w)Rn−k(y;h,w).

More precisely, he proved the case h = −1 of this, but the general case then
follows by rescaling. It reduces to the ordinary binomial theorem if h and w are
both zero.

George Andrews communicated his remark to me shortly after I arrived at Penn
State in 1993. I published it in [152], which also contains some of the generalized
q-binomial theorems in the exercises in this chapter (and others that were too
complicated to include here). Cigler’s version of it is in [78]. Jacobi’s q-binomial
theorem is in [150], and MacMahon’s q-binomial theorem is in his classic book
[168]. The symmetric case with a = b = n dates back to Gauss [117] and Cauchy
[68]. Hirschhorn’s identity (2.7.9) is in [138], with a different proof, and in section
1.8 of his beautiful recent book [140] as an exercise. That section also gave rise to
some of the problems in section 2.5, as did Paule’s lovely paper [181], with which
there is some overlap.

Euler’s theorem in section 2.9 comes from [96], and seems to be much less well
known than his other work on q-analysis, the subject of the next chapter. The
Chen–Chu–Gu identity is in [75], and I learned it from [80]. Its significance will
become apparent in Chapter 5.

The cyclic derivative in the last problem in section 2.1 comes from [?RSS].
Although the connection to q-analysis is tenuous, the idea is so striking that I could
not resist including it. Agarwal’s q-binomial theorem in problem 19 in section 2.3
comes from [2], and is also mentioned in [24]. Andrews’s q-binomial theorem from
problem 11 in section 2.3 is in [21] and Rowell’s identity from problem 13 in section
2.5 in [209]. Problems 14–16 in section 2.5 are adapted from [26]. Problem 1 in
section 2.8 comes from [25].
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CHAPTER 3

Partitions I: Elementary Theory

3.1. Partitions with distinct parts

We begin this chapter still farther back in time than we did in Chapter 1. Quite
possibly the greatest mathematics book ever written is Leonhard Euler’s Introductio
in analysin infinitorum, which John Blanton, in his English translation of 1988,
rendered as Introduction to Analysis of the Infinite. Writing in 1748, Euler showed
as deep an understanding of the formal aspects of infinite series as anyone ever has.
(The word “formal” in this context is short for “neglecting convergence issues”,
which would not be treated seriously until the 19th century.) Euler’s book contains
a wealth of material that is still of interest today. Here we are primarily concerned
with his Chapter XVI, which essentially initiated the subject of partitions.

Consider the infinite product

(1 + q)(1 + q2)(1 + q3)(1 + q4)(1 + q5)(1 + q6)(1 + q7)(1 + q8) · · ·

which, by an extension of the notation of Chapter 1, we could abbreviate as
(−q; q)∞. (We will make a formal definition a little later; we also put off for
the moment the question of whether such an infinite product really makes sense.)
As Euler said (in Blanton’s translation), “We ask about the form if the factors are
actually multiplied.” We will get a 1, from the product of all the 1’s. We will get
a q, from the q in the first factor times all the other 1’s; and a q2, from the q2 in
the second factor times all the other 1’s. Interesting things start to happen at q3,
for we get two of those, one from the q3 in the third factor times all the other 1’s;
and one from the q in the first factor times the q2 in the second factor times all
the other 1’s. We get two copies of q4, namely q4 and q3 · q; and three copies of
q5, which come from q5, q4 · q, and q3 · q2. We do one more term before trying
to describe things more generally: we get four copies of q6, from q6, q5 · q, q4 · q2,
and q3 · q2 · q; this corresponds to the fact that we can write 6 as a sum of distinct
positive integers in four different ways: 6, 5 + 1, 4 + 2, and 3 + 2 + 1. So we see
that the question “how many copies of q7 (say) will we get?” is equivalent to asking
“how many ways can we make 7 as a sum of positive integers, if we can only use
each integer once in each sum?” This last restriction is essential (for now)—we do
not want to allow 6 = 3 + 3, because we do not get a term q3 · q3 when we work
out the infinite product, since it contains only one factor which has q3. For 7 we
have 7 = 7, 7 = 6 + 1, 7 = 5 + 2, 7 = 4 + 3, and 7 = 4 + 2 + 1. To summarize the
calculations so far, we have shown that

(−q; q)∞ = 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + . . . .

More importantly, we have argued that the coefficient of qn in (−q; q)∞ equals the
number of ways that n can be written as a sum of distinct positive integers.

93
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94 3. PARTITIONS I: ELEMENTARY THEORY

It is time for more careful definitions. Extending the notation for q-shifted
factorials from Chapters 1 and 2, we define

(x; q)∞ = lim
n→∞

(x; q)n = lim
n→∞

(1− x)(1− xq)(1− xq2) · · · (1− xqn−1)

= lim
n→∞

n∏
k=1

(
1− xqk−1

)
=

∞∏
k=1

(
1− xqk−1

)
=

∞∏
k=0

(
1− xqk

)
,

where we also used a standard notation for products, analogous to the sigma no-
tation for infinite series. In Appendix B it is proved that this product converges
for every x as long as |q| < 1. These products are ubiquitous in q-analysis, so from
here on we will nearly always assume |q| < 1.

A partition of a positive integer n is an unordered sum of positive integers
that add up to n; thus, for example, 23 + 16 + 7 + 7 + 4 + 1 + 1 + 1 is a partition
of 60. Each summand is called a part, so that (for example) 16 is one of the parts
of the above partition. When we say that the sum is unordered, we mean that
1+16+1+7+4+23+1+7 does not count as a different partition of 60, since the
parts are all the same as those of 23 + 16 + 7 + 7 + 4 + 1 + 1 + 1. We will usually
write the parts in nonincreasing order. Note that we do allow a part to occur more
than once, as 7 and 1 do in this example. When no part occurs more than once
we say that the parts are distinct. If pD(n) denotes the number of partitions of n
using only distinct parts, we saw above that

(3.1.1) (1+q)(1+q2)(1+q3)(1+q4)(1+q5)(1+q6) · · · = (−q; q)∞ =

∞∑
n=0

pD(n) qn.

The case n = 0 is problematic; by convention we say that there is one empty
partition of 0, with no parts, and since there are no repeated parts in an empty
partition, pD(0) = 1. A verbalization of (3.1.1) is that “(−q; q)∞ (“minus q base
q sub ∞”) is the generating function for partitions into distinct parts.” If P is a
partition, it is sometimes convenient to denote the number that P partitions as |P |,
so that |23 + 16 + 7 + 7 + 4 + 1 + 1 + 1| = 60.

It is also interesting to consider a finite product of the same form, say

(1 + q)(1 + q2)(1 + q3) · · · (1 + qn) = (−q; q)n,

and here we do not need |q| < 1. If the factors are multiplied out, the coefficient of
qm in the result will be the number of partitions of m using only distinct parts from
among {1, 2, 3, . . . , n}, by exactly the same reasoning as before. We will return to
this product later.

Other refinements are also possible. For example, consider

(−q; q2)∞ = (1 + q)(1 + q3)(1 + q5)(1 + q7) · · · =
∞∏

n=0

(
1 + q2n+1

)
.

If we multiply the factors out we get

1+q+q3+q4+q5+q6+q7+2q8+2q9+2q10+2q11+3q12+3q13+3q14+4q15+ . . .

where the coefficient of qn counts the number of partitions of n into parts that are
both odd and distinct; for example, 15 can be written as 15 itself or as 11 + 3 + 1,
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EXERCISES 95

9 + 5 + 1, or 7 + 5 + 3, which is why the coefficient of q15 above is 4. If we denote
the number of partitions of n into distinct odd parts by pOD(n), then we have

(−q; q2)∞ =
∞∑

n=0

pOD(n) qn.

In words, (−q; q2)∞ is the generating function for partitions into distinct odd parts.
We could also take a finite version of this product: (−q; q2)n is the generating
function for partitions into distinct odd parts which do not exceed 2n− 1.

We conclude this section by proving a simple theorem which will be used in
the next section; namely, that every positive integer m can be written uniquely as
a sum of distinct powers of 2. First we prove another little lemma.

Lemma 2. If n is a positive integer, then

[2n]q = (1 + q)(1 + q2)(1 + q4)(1 + q8) . . .
(
1 + q2

n−1
)
.

If q = 1 this says
2n = 2 · 2 · 2 · · · 2,

with n factors of 2 on the right, which is certainly true, so we can assume q �= 1.
In this case we have

1− q2

1− q
· 1− q4

1− q2
· 1− q8

1− q4
. . .

1− q2
n

1− q2n−1 =
1− q2

n

1− q
= [2n]q .

If we take |q| < 1 in Lemma 2 and let n → ∞, we get

1

1− q
= (1 + q)(1 + q2)(1 + q4)(1 + q8) . . .

(
1 + q2

k
)
. . . .

But if |q| < 1, then also

1

1− q
= 1 + q + q2 + q3 + q4 + q5 + q6 + . . . .

Combining these last two identities we have that, if |q| < 1,

(1 + q)(1 + q2)(1 + q4)(1 + q8) · · · = 1 + q + q2 + q3 + q4 + q5 + . . . .

The left side of this is the generating function for partitions into distinct parts that
are powers of 2. Since the coefficient of qn on the right is 1 for any nonnegative
integer n, it follows that there is one and only one partition of n as a sum of distinct
powers of 2 for any positive integer n, which is what we wanted to prove. Of course,
anyone who knows anything about computer science knows this—it’s the point of
binary arithmetic.

Exercises

1. Explain why (−q2; q2)∞ is the generating function for partitions with distinct
even parts. In other words, if pED(n) denotes the number of partitions of n into
parts which are even and distinct, explain why

(−q2; q2)∞ = (1 + q2)(1 + q4)(1 + q6) · · · =
∞∑
n=0

pED(n) qn.

2. Explain why pED(2n) = pD(n).
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96 3. PARTITIONS I: ELEMENTARY THEORY

3. How would you write 47 as a sum of distinct powers of 2? How about 156? Try
enough examples that you understand how to do it in general.

4. Use the idea from problem 3 to prove by induction that any positive integer
can be written as a sum of distinct powers of 2 in exactly one way. To show
uniqueness you can use the fact that 1 + 2 + 22 + · · ·+ 2n < 2n+1. (Why is this
true? How does it help?)

5. As Euler pointed out, the result in problem 4 (proved by Euler’s method in the
text) has an interesting interpretation: it says that if you have a balance and
a set of weights that has all the powers of 2 (i.e., a 1 gram weight, a 2 gram
weight, a 4 gram weight, an 8 gram weight, and so on), then you can weigh any
object that weighs an integer number of grams; or, to put it another way, you
can weigh any object to within a fraction of a gram. Euler goes on to say that in
fact (as was apparently well known at the time) you only need a set of weights
that has all the powers of 3 (a 1 gram weight, a 3 gram weight, a 9 gram weight,
a 27 gram weight, and so on), if you are willing to put weights on both sides of
the balance. For example, you can weigh a 47 gram object by putting it on one
side of the balance along with weights of 27 grams, 9 grams and 1 gram; and
putting weights of 81 grams and 3 grams on the other side.

Euler proved this by considering the infinite product(
x−1 + 1 + x

) (
x−3 + 1 + x3

) (
x−9 + 1 + x9

) (
x−27 + 1 + x27

)
. . . .

There are some difficulties with this product, which we will address in the prob-
lems in Appendix B. We consider instead a finite version of it,(

x−1 + 1 + x
) (

x−3 + 1 + x3
)
· · · ,

(
x−3n−1

+ 1 + x3n−1
)
,

for a general positive integer n. Show that for any n ≥ 1,

(
x−1 + 1 + x

) (
x−3 + 1 + x3

)
· · ·
(
x−3n−1

+ 1 + x3n−1
)
=

3n−1
2∑

j= 1−3n

2

xj .

Explain why this implies that any object weighing 3n−1
2 grams or less can be

weighed with weights of 1, 3, 9, 27, . . . , 3n−1 grams, in exactly one way. Since n
can be as large as we please, it follows that any object with a finite weight can
be weighed with a sufficiently large set of weights that are distinct powers of 3,
in exactly one way.

6. Prove the result of problem 5 by an argument similar to problem 4. In other
words, prove by induction that any integer n can be written uniquely as

n =
m∑

k=0

ak 3
k,

where each ak is either 0 or ±1 and m is the largest value of k for which ak is
not zero, unless n = 0 in which case every ak is zero. For example, if n = 1,
then m = 0 and a0 = 1, and if n = 2, then m = 1, a1 = 1, and a0 = −1. If
n = 46, then we can write 46 = 81− 27− 9+1, so m = 4, a4 = 1, a3 = a2 = −1,
a1 = 0, and a0 = 1. (If we can prove this for a positive n, it follows easily for
the corresponding negative n; why?)
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7. Jacobi considered the infinite product

T =
1− q

1 + q

(
1− q2

1 + q2

) 1
2
(
1− q4

1 + q4

) 1
4
(
1− q8

1 + q8

) 1
8
(
1− q16

1 + q16

) 1
16
(
1− q32

1 + q32

) 1
32

. . .

under the usual assumption that |q| < 1. He gave two proofs that T = (1− q)2.
The first one is more or less as follows: define Tn to be the product of the first
n factors of T ; i.e.,

T1 =
1− q

1 + q
, T2 =

1− q

1 + q

(
1− q2

1 + q2

) 1
2

, T3 =
1− q

1 + q

(
1− q2

1 + q2

) 1
2
(
1− q4

1 + q4

) 1
4

,

and so on. Prove that for any positive integer n we have

(
1− q2

n
) 1

2n−1

Tn = (1− q)2.

Why does this imply Jacobi’s result?

8. Jacobi’s second proof that T = (1− q)2 is sneakier: he rewrote the definition of
T as

T = (1− q)

(
1− q2

) 1
2

1 + q

(
1− q4

) 1
4

(1 + q2)
1
2

(
1− q8

) 1
8

(1 + q4)
1
4

(
1− q16

) 1
16

(1 + q8)
1
8

(
1− q32

) 1
32

(1 + q16)
1
16

. . . .

Show that this implies T = (1− q)
√
T . Why does this give Jacobi’s result?

9. Let q be a positive real number, and define a sequence an(q) by a0(q) = q+ q−1

and an(q) = a2n−1(q)− 2 for n ≥ 1. Show that

an(q) = q2
n

+ q−2n for n ≥ 0.

10. Let an(q) be as in the previous problem with q �= 1, and consider the product

Pn(q) =
n−1∏
k=0

(
1− 1

ak(q)

)
for n ≥ 1.

Show that

Pn(q) =
(q − 1)

(
q2 − 1

) (
q3·2

n − 1
)

(q3 − 1) (q2n − 1)
(
q2n+1 − 1

) .
11. Let an(q) be as above and consider the infinite product

P (q) =
∞∏
k=0

(
1− 1

ak(q)

)
.

What does P (q) converge to when q > 1? What does it converge to when
0 < q < 1? What happens when q = 1? Explain.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



98 3. PARTITIONS I: ELEMENTARY THEORY

3.2. Partitions with repeated parts

So far we have seen that (−q; q)∞ is the generating function for partitions
with distinct parts, and that (−q; q)n is the generating function for partitions with
distinct parts less than or equal to n. Since partitions in general need not have
distinct parts, we may wonder whether there is a function which generates all
the partitions, without regard to whether the parts are distinct. We claim that
1/(q; q)∞ is such a function. The infinite product again converges if and only if
|q| < 1, and this restriction on q is vital for another reason also. We have

1

(q; q)∞
=

1

1− q

1

1− q2
1

1− q3
1

1− q4
1

1− q5
1

1− q6
. . .

and we expand all these factors using the geometric series

1

1− r
= 1 + r + r2 + r3 + r4 + . . . if |r| < 1.

Thus
1

(q; q)∞
= (1+ q+ q2+ q3+ q4+ . . . )(1+ q2+ q4+ . . . )(1+ q3+ . . . )(1+ q4+ . . . ) . . .

and again we ask what happens if we actually multiply this out. We get a 1, from
the product of all the 1’s, and a q, from the q in the first factor times all the other
1’s. We get two copies of q2, one from the first term and one from the second.
There are three copies of q3; one purely from the first term, one purely from the
third, and one from the q2 in the second term times the q in the first. These terms
correspond respectively to the partitions 1 + 1 + 1, 3, and 2 + 1, which are all the
partitions of 3. You can check that we get five copies of q4 and seven copies of
q5, and so forth, and that there are five partitions of 4: 4, 3 + 1, 2 + 2, 2 + 1 + 1,
and 1 + 1 + 1 + 1; and seven partitions of 5: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1,
2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1.

Why should this product be generating all the partitions? To see this, we
rewrite it a bit differently. The right way to think of it for our present purposes
is that the first factor generates all the 1’s, and the second factor generates all the
2’s, and so on:

1

(q; q)∞
= (1+q1+q1+1+q1+1+1+q1+1+1+1+q1+1+1+1+1+q1+1+1+1+1+1+ . . . )

× (1 + q2 + q2+2 + q2+2+2 + . . . )(1 + q3 + q3+3 + . . . )

× (1 + q4 + . . . )(1 + q5 + . . . )(1 + q6 + . . . ) . . . .

Now look at the q6 term in the product. We get a pure q6, from the q6 in the
last factor times all the other 1’s. We get q5 · q1, from the fifth factor and the
first. We get q4 · q2 from the fourth factor and the second, and q4 · q1+1 from the
fourth factor and the first. The third, second, and first factors give us q3 · q2 · q1.
The second factor by itself contributes q2+2+2, and the second and first factors
together give q2+2 · q1+1 as well as q2 · q1+1+1+1. Finally the first factor by itself
contributes q1+1+1+1+1+1. These terms correspond precisely to all the partitions
of 6. In general, if p(n) denotes the number of partitions of n, then

(3.2.1)
1

(q; q)∞
=

∞∑
n=0

p(n) qn.
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3.2. PARTITIONS WITH REPEATED PARTS 99

(As usual, we count an empty partition of 0 once to get the first term.) We can also
take a finite form of the generating function: 1/(q; q)n leaves us only {1, 2, . . . , n} as
possible parts, so it generates partitions whose parts are less than or equal to n; in
other words, the coefficient of qm in 1/(q; q)n equals the number of partitions of m
using (possibly repeated) parts that do not exceed n. For example, the coefficient
of q7 in 1/(q; q)4 must be 11, because there are 11 partitions of 7 using only parts
that are less than or equal to 4, namely

4 + 3 4 + 2 + 1 4 + 1 + 1 + 1

3 + 3 + 1 3 + 2 + 2 3 + 2 + 1 + 1

3 + 1 + 1 + 1 + 1 2 + 2 + 2 + 1 2 + 2 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1.

Note that although the product (q; q)n makes sense for any value of q, we still need
our usual assumption |q| < 1 to expand 1/(q; q)n as above.

Many refinements of this idea are possible. A famous example is

(3.2.2)
1

(q; q2)∞
=

1

(1− q)(1− q3)(1− q5)(1− q7) . . .
=

∞∑
n=0

pO(n) q
n,

where pO(n) denotes the number of partitions of n using only odd parts. Let’s work
out the first several terms of this:

1

(q; q2)∞
= (1 + q + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + . . . )

× (1 + q3 + q6 + q9 + . . . )(1 + q5 + . . . )(1 + q7 + . . . )(1 + q9 + . . . ) . . .

= 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + 6q8 + 8q9 + . . . .

We’ll check the q9 term and leave the others to you: we can get a q9 from the q9

in the first term; or from the q6 in the first term times the q3 in the second or vice
versa; or from the q4 in the first term times the q5 in the third; or from the q2 in
the first term times the q7 in the fourth; or from the q in the first term times the q3

in the second term times the q5 in the third; or from the q9 in the second or fifth
term. These correspond respectively to the partitions 1+1+1+1+1+1+1+1+1,
3 + 1 + 1 + 1 + 1 + 1 + 1, 3 + 3 + 1 + 1 + 1, 5 + 1 + 1 + 1 + 1, 7 + 1 + 1, 5 + 3 + 1,
3+ 3+3, and 9, which are all the ways of getting 9 using only odd parts. The first
real surprise in partition theory is that this appears to be the same series as we got
from (−q; q)∞ in section 3.1. That is, it appears that

(−q; q)∞ = 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + 6q8 + · · · = 1

(q; q2)∞
.

If so, since

(−q; q)∞ =

∞∑
n=0

pD(n) qn and
1

(q; q2)∞
=

∞∑
n=0

pO(n) q
n,

this would imply that pD(n) = pO(n) for all n; in other words, it would imply

Theorem 20 (Euler’s “odd equals distinct” theorem). If n is any nonnegative
integer, there are exactly as many partitions of n using only odd parts as there are
with distinct parts.
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100 3. PARTITIONS I: ELEMENTARY THEORY

We first give Euler’s proof, and then a very interesting alternative proof due to
Glaisher. One of the main ideas in Euler’s argument has already appeared: since
this theorem was suggested to us by the fact that it looks as though (−q; q)∞ might
be equal to 1/(q; q2)∞, we should try to prove that they really are equal—if they
are, then they must have the same expansion in powers of q, and Euler’s theorem
would follow. It is easier than you might expect to show that these two infinite
products are the same:

(−q; q)∞ = (1 + q)(1 + q2)(1 + q3)(1 + q4)(1 + q5)(1 + q6) · · ·

=
1− q2

1− q

1− q4

1− q2
1− q6

1− q3
1− q8

1− q4
1− q10

1− q5
1− q12

1− q6
. . . .

Now cancel the numerator factors against the corresponding factors in the denom-
inator. In what we’ve written you can see that 1 − q2, 1 − q4, and 1 − q6 will all
cancel; and, since we have an infinite product, every numerator factor will eventu-
ally cancel. We rephrase this in a form that some readers might find more palatable:
the numerator above is

(1− q2)(1− q4)(1− q6)(1− q8)(1− q10)(1− q12) · · · , which equals (q2; q2)∞.

The denominator is

(q; q)∞ = (1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6)(1− q7)(1− q8) . . .

=
{
(1− q)(1− q3)(1− q5)(1− q7) . . .

}{
(1− q2)(1− q4)(1− q6)(1− q8) . . .

}
= (q; q2)∞ (q2; q2)∞.

It follows that

(−q; q)∞ = (1 + q)(1 + q2)(1 + q3)(1 + q4)(1 + q5)(1 + q6) · · ·

=
1− q2

1− q

1− q4

1− q2
1− q6

1− q3
1− q8

1− q4
1− q10

1− q5
1− q12

1− q6
. . .

=
(q2; q2)∞

(q; q2)∞ (q2; q2)∞

=
1

(q; q2)∞
.(3.2.3)

This proves Euler’s theorem. Glaisher’s proof is quite different. His idea was to set
up a 1-1 correspondence (or “bijection”) between the two types of partitions. For
example, there are ten partitions of 10 using distinct parts, and also (as we now
know) ten partitions using only odd parts. Here they are:

Distinct Odd
10 5 + 5

9 + 1 9 + 1
8 + 2 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
7 + 3 7 + 3

7 + 2 + 1 7 + 1 + 1 + 1
6 + 4 3 + 3 + 1 + 1 + 1 + 1

6 + 3 + 1 3 + 3 + 3 + 1
5 + 4 + 1 5 + 1 + 1 + 1 + 1 + 1
5 + 3 + 2 5 + 3 + 1 + 1

4 + 3 + 2 + 1 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1
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3.2. PARTITIONS WITH REPEATED PARTS 101

The reason for putting the “Odd” column in this order will appear presently. Sup-
pose we have a partition of 10 with distinct parts. If all the parts are also odd, then
we don’t have to do anything—this happened with 9+1 and with 7+3—but most
of the time there is at least one even part, and we have somehow to get rid of the
evenness. We use the obvious fact that any even number can be written uniquely
as a power of 2 times an odd number. For example, 48 = 16 · 3; the form is unique
since to find it we just factor out the largest possible power of 2. So we write any
even part in the “Distinct” column in this form, and then replace it by that many
copies of the odd factor. That is, 10 = 2 · 5, so replace 10 by 5+5, and 8 = 8 · 1, so
8 is replaced by a sum of eight 1’s, and so forth. Doing this with all the even parts
in the “Distinct” column we get the “Odd” column.

We can also describe how to get from the “Odd” column back to the “Distinct”
column. If we start with a partition with only odd parts, it might happen (if we’re
lucky) that the parts are also distinct, as with 9 + 1 and 7 + 3. Most of the time,
though, there will be repeated parts, and we have to figure out how to get rid of the
repetition. We especially want a method of doing this which undoes what we were
doing above. We illustrate this method with the example 3+1+1+1+1+1+1+1:
there is only one 3, so we leave that alone, but we must do something about the
repeated 1’s. There are seven 1’s, which we think of as 7 ·1; in general, if we have m
copies of some odd part p, we start by thinking of them as m · p. Then we write m
as a sum of distinct powers of 2, which we know from the previous section that we
can do in exactly one way; when m = 7, we write that as 4 + 2 + 1. Finally, then,
1 + 1+ 1+ 1+ 1+ 1+ 1 gets replaced by 4 + 2+ 1. For the example 3 + 3+ 3+ 1,
we leave the 1 alone and combine the 3’s into 3 · 3, so that m and p are both 3.
Take the 3 which is m and write it as a sum of distinct powers of 2, namely 2 + 1;
and then replace 3 · 3 by (2 + 1) · 3 = 6 + 3. Thus the partition corresponding to
3 + 3 + 3 + 1 is 6 + 3 + 1.

Euler’s “odd equals distinct” theorem is the oldest of a vast number of theorems
of the form “there are exactly as many partitions of n of type A as there are of
type B”. Some of these theorems are rather easy to prove, while others are very
hard, as we will see in the chapters to come. Here is another one which is not too
difficult: let T1(n) denote the number of partitions of n where odd parts may be
repeated, but the even parts (if any) must be distinct. Let T2(n) denote the number
of partitions of n in which no part can be used more than three times. Then we
claim that T1(n) = T2(n). To prove this we write down the generating function for
each type. Distinct even parts come from

(1 + q2)(1 + q4)(1 + q6)(1 + q8) · · · = (−q2; q2)∞,

and possibly repeated odd parts (as we saw above) from 1/(q; q2)∞, so the gener-
ating function for T1(n) is

(−q2; q2)∞
(q; q2)∞

=
∞∑

n=0

T1(n) q
n.

The generating function for T2(n), where each part can be used up to three times,
is

(1+q+q2+q3)(1+q2+q4+q6)(1+q3+q6+q9)(1+q4+q8+q12) · · · =
∞∑

n=0

T2(n) q
n.
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102 3. PARTITIONS I: ELEMENTARY THEORY

We’ll try to show that these two generating functions are actually the same. We
can rewrite the second one as

∞∑
n=0

T2(n) q
n =

1− q4

1− q

1− q8

1− q2
1− q12

1− q3
1− q16

1− q4
1− q20

1− q5
. . .

=
(q4; q4)∞
(q; q)∞

.

As we observed above, (q; q)∞ = (q; q2)∞ (q2; q2)∞, and replacing q by q2 here we
also have (q2; q2)∞ = (q2; q4)∞ (q4; q4)∞. Using each of these in turn, we can say
that

∞∑
n=0

T2(n) q
n =

(q4; q4)∞
(q; q)∞

=
(q4; q4)∞

(q; q2)∞ (q2; q2)∞

=
(q4; q4)∞

(q; q2)∞ (q2; q4)∞ (q4; q4)∞

=
1

(q; q2)∞ (q2; q4)∞
.

By replacing q by q2 in Euler’s “odd equals distinct” theorem we get 1
(q2;q4)∞

=

(−q2; q2)∞, so that
∞∑

n=0

T2(n) q
n =

(q4; q4)∞
(q; q)∞

=
1

(q; q2)∞ (q2; q4)∞

=
(−q2; q2)∞
(q; q2)∞

=

∞∑
n=0

T1(n) q
n.

It follows that T1(n) = T2(n) for all nonnegative integers n.

In preparation for another theorem of this type, we conclude this section by
writing down the generating function for partitions in which the largest repeated
part is k for some k ≥ 1. Any larger parts must be distinct, so they are generated
by
(
−qk+1; q

)
∞. Any smaller part may be repeated, giving 1/(q; q)k−1. Finally, k

must be repeated, and to ensure this we need a factor of qk+k/(1− qk). Hence the
generating function for these partitions is

1

(q; q)k−1

q2k

1− qk
(
−qk+1; q

)
∞ = q2k

(
−qk+1; q

)
∞

(q; q)k

= q2k
(
−qk+1; q

)
∞

(q; q)k

(−q; q)k
(−q; q)k

= q2k
(−q; q)∞
(q2; q2)k

=
q2k

(q; q2)∞(q2; q2)k
.(3.2.4)
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Exercises

1. Let T3(n) denote the number of partitions of n using only parts that are not
multiples of 4. What is the generating function for T3(n)? Show that T3(n) =
T1(n) = T2(n), with T1(n) and T2(n) as defined above.

2. Show that the generating function for T2(n) may be rewritten as

∞∑
n=0

T2(n) q
n = (1 + q)

(
1 + q2

) (
1 + q2

) (
1 + q4

) (
1 + q3

) (
1 + q6

)
. . .

= (−q; q)∞
(
−q2; q2

)
∞ .

3. Show that the generating function for T2(n) may be further rewritten as

∞∑
n=0

T2(n) q
n = (1 + q)

(
1 + q2

)2 (
1 + q3

) (
1 + q4

)2 (
1 + q5

) (
1 + q6

)2
. . .

=
(
−q; q2

)
∞
(
−q2; q2

)2
∞ .

4. Some combinatorial structures are most easily described using colors. A natural
way to interpret the generating function in problem 3 is by using partitions
where the odd parts must be red but the even parts may be either red or blue,
and there are no repeated parts except possibly for a red part and a blue part
of the same size. Let T4(n) denote the number of partitions of n of this type;
thus, for example, T4(5) = 6, because we may have

5r or 4r + 1r or 4b + 1r

or 3r + 2r or 3r + 2b or 2r + 2b + 1r,

where pr denotes a red part and pb a blue one. Write down the 6 partitions
counted by T2(5) and try to set up a natural 1-1 correspondence between them
and the 6 partitions above.

5. Extend the 1-1 correspondence you found in problem 4 to a bijective proof that
T2(n) = T4(n) for all positive integers n.

6. Give a bijective proof that T4(n) = T1(n) for all positive integers n. (Hint:
Glaisher.) Together with problem 5, this constructs a bijective proof that
T1(n) = T2(n) for all positive integers n.

7. Let M1(n) be the number of partitions of n in which no part appears exactly
once. Explain why
∞∑

n=0

M1(n) q
n =

(
1 +

q2

1− q

)(
1 +

q4

1− q2

)(
1 +

q6

1− q3

)(
1 +

q8

1− q4

)
. . . .

8. Show that the generating function in problem 7 can be rewritten as
∞∑

n=0

M1(n) q
n =

(−q3; q3)∞
(q2; q2)∞

=
1

(q2; q2)∞ (q3; q6)∞
.

9. Let M2(n) be the number of partitions of n in which all parts are congruent to
0, 2, 3, or 4 mod 6; in other words, all the parts are either divisible by 6 or have
remainder 2, 3, or 4 when divided by 6. Explain why problems 7 and 8 show
that M1(n) = M2(n).
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104 3. PARTITIONS I: ELEMENTARY THEORY

10. There are several finite forms of (3.2.3). The most interesting one will reappear
in the next section (it was also in Chapter 2), but here are two straightforward
ones. Prove that

(−q; q)2n =
(q2n+2; q2)n
(q; q2)n

and (−q; q)2n−1 =
(q2n; q2)n
(q; q2)n

,

the former for n ≥ 0 and the latter for n ≥ 1.

11. If |q| < 1, show that
∞∑
j=0

∞∑
k=0

qk+(
k+j+1

2 ) =
1

1− q
.

Also see the next problem.

12. (a) The identity in problem 11 has a simple number-theoretic interpretation.
Explain why it implies that any nonnegative integer n can be written in the form
n = k +

(
k+j+1

2

)
in exactly one way, where k and j are nonnegative integers.

(b) The representation of n given above is easy to find by a greedy algorithm.

First choose k + j as large as possible such that n ≥
(
k+j+1

2

)
, then set k =

n−
(
k+j+1

2

)
, which also determines j. For example, if n = 38 we have

(
9
2

)
= 36

and
(
10
2

)
= 45, so k + j = 8. Then k = 38− 36 = 2, so j = 8− 2 = 6. Find the

representation of 86 by this algorithm. Choose some small three-digit number
and find its representation.

(c) The algorithm in (b) obviously finds a nonnegative k. Show that it also finds
a nonnegative j. Hint: If j is negative, then k + j + 1 ≤ k.

(d) The existence part of (a) follows from (c). Give a similar argument to show
the uniqueness. (If k+ j is too large, then k is negative, and if k+ j is too small,
then j is negative.)

13. Show that the left side of (3.2.4) can be rewritten as the right side.

14. For a given nonnegative integer k and a given positive integer d, call a Smoot
partition with parameters k and d one in which k is the largest part that occurs
at least d times. Show that the generating function for Smoot partitions with
parameters k and d is

(3.2.5)
qdk

(qd; qd)k

(qd; qd)∞
(q; q)∞

.

The derivation of the generating function for T2(n) might help.

15. Show that (3.2.5) reduces to (3.2.4) if d = 2. What happens to (3.2.5) if d = 1?

16. (a) By considering even and odd n, show that

∞∑
n=0

(−1)nq(
n+1
2 )

(−q; q)n
=

∞∑
m=0

q(
2m+1

2 )

(−q; q)2m+1
.

(b) Show similarly that

∞∑
n=0

(−1)nq(
n+1
2 )

(−q; q)n
= 1−

∞∑
m=1

q(
2m
2 )

(−q; q)2m
.
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EXERCISES 105

(c) Explain why (a) and (b) imply that

∞∑
k=1

q(
k
2)

(−q; q)k
= 1.

17. Show by induction that

n∑
k=1

q(
k
2)

(−q; q)k
= 1− q(

n+1
2 )

(−q; q)n
,

and explain why (assuming as usual that |q| < 1) this implies the result of part
(c) of the previous problem.

18. Show by induction that

n∑
k=1

(−1)k−1q(k−1)2

(q; q2)k
= 1− (−1)nqn

2

(q; q2)n
.

Assuming as usual that |q| < 1, what happens to this as n → ∞?

19. Let s be a positive integer and |q| < 1. We want to evaluate the sum

Os(q) =

∞∑
k=1

qks(
s+k
s+1

)
q

.

(i) Show that we can rewrite

Os(q) = (q; q)s+1

∞∑
k=1

qks

(qk; q)s+1
.

(ii) By multiplying the right side of (i) by

1− qs

1− qs
=

1− qk+s − qs(1− qk)

1− qs
,

show that

Os(q) =
(q; q)s+1

1− qs

∞∑
k=1

[
qks

(qk; q)s
− q(k+1)s

(qk+1; q)s

]
.

(iii) Explain why this gives

Os(q) =
(q; q)s+1

1− qs
qs

(q; q)s
= qs

1− qs+1

1− qs
.

20. Show similarly that if s is a positive integer and |q| < 1, then

∞∑
k=1

qk(
s+k
s+1

)
q

=
1− qs+1

1− qs
[1− (q; q)s] .

21. For |q| < 1, consider the sum

S(x) =
∞∑
k=1

xk (q; q)k−1

(xq; q)k
.

(i) Show that the series converges if |x| < 1.
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106 3. PARTITIONS I: ELEMENTARY THEORY

(ii) By multiplying top and bottom by 1 − x and using a trick like (ii) in
problem 19, show that

S(x) =
x

1− x
for |x| < 1.

(iii) Use (ii) to give an alternate solution of problem 19.

22. In one of his papers Jacobi writes that not only do we have

(1 + q)(1 + q2)(1 + q3)(1 + q4) · · · = 1

(1− q)(1− q3)(1− q5)(1− q7) · · · ,

as we know from Euler, but also

(1 + q)(1 + q2)(1 + q3)(1 + q4) · · ·

=
(1− q2)(1− q4)(1− q6)(1− q8) · · ·
(1− q)(1− q2)(1− q3)(1− q4) · · ·

=
(1 + q)(1 + q3)(1− q4)(1 + q5)(1 + q7)(1− q8) · · ·

(1− q2)(1− q4)(1− q6)(1− q8)(1− q10)(1− q12) · · ·

=
(1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6) · · ·

(1− q)2(1− q2)(1− q3)2(1− q4)(1− q5)2(1− q6) · · ·

=
(1 + q)(1− q2)(1 + q3)(1− q4)(1 + q5)(1− q6) · · ·

(1− q2)2(1− q4)(1− q6)2(1− q8)(1− q10)2(1− q12) · · ·

=
(1− q4)(1− q8)(1− q12)(1− q16)(1− q20)(1− q24) · · ·

(1− q)(1− q3)(1− q4)(1− q5)(1− q7)(1− q8) · · ·

=
(1 + q)(1 + q2)(1− q3)(1 + q4)(1 + q5)(1− q6) · · ·

(1− q3)2(1− q6)(1− q9)2(1− q12)(1− q15)2(1− q18) · · ·

=
(1 + q3)(1 + q9)(1− q12)(1 + q15)(1 + q21)(1− q24) · · ·
(1− q)(1− q5)(1− q6)(1− q7)(1− q11)(1− q12) · · · .

Prove this, and write each fraction in the q-shifted factorial notation. (See prob-
lem 29 in section 5.1 for answers to the latter.) The pattern of the denominator
of the last fraction may not be obvious; it is supposed to continue

(1− q13)(1− q17)(1− q18)(1− q19)(1− q23)(1− q24)(1− q25) · · · .

3.3. Ferrers diagrams

There is a very simple way to draw a “picture” of a partition, which is usually
called its Ferrers diagram (or Ferrers graph). The idea is to represent each part
by a row of dots corresponding to the part size. For example, the usual Ferrers
diagram of the partition 7 + 6 + 6 + 3 + 3 + 1 is:

• • • • • • •
• • • • • •
• • • • • •
• • •
• • •
•

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



3.3. FERRERS DIAGRAMS 107

The partition obtained by reading the diagram by columns, rather than by rows, is
called the conjugate of the original partition. Thus the conjugate of 7 + 6 + 6 +
3 + 3 + 1 is 6 + 5 + 5 + 3 + 3 + 3 + 1 and its Ferrers diagram is:

• • • • • •
• • • • •
• • • • •
• • •
• • •
• • •
•

We saw a similar idea in the Rothe diagram of a permutation in Chapter 1, but
Ferrers diagrams turn out to be more useful. As with permutations, it is possible
to give a nongraphical definition of the conjugate: given a partition π whose largest
part is k, set ai equal to the number of parts of π which are greater than or equal
to i; then a1 + a2 + · · · + ak is the partition conjugate to π. But the graphical
definition is much more easily apprehended. Since the largest part of a partition
equals the number of parts of its conjugate, and vice versa, we have

Theorem 21. Let p(n; i, j) denote the number of partitions of n into at most i
parts, each of which is at most j. Then p(n; i, j) is symmetric in i and j: p(n; i, j) =
p(n; j, i). Moreover, the number of partitions of n with at most i parts equals the
number of partitions of n whose largest part is i.

Both statements follow immediately by taking conjugates. An important corol-
lary is

Corollary 1. The generating function for partitions whose parts are at most
n, namely 1/(q; q)n, is also the generating function for partitions with at most n
parts.

Occasionally, it is convenient to rephrase a result like this as: 1/(q; q)n is the
generating function for partitions with exactly n parts, some of which might be 0.
We have not allowed 0 to be a part up till now, and when we do so, as here, it will
be only temporary. If we have such a partition and we add 1 to each part, then we
create a partition with n nonzero parts. It follows that qn/(q; q)n is the generating
function for partitions with exactly n parts. Combining these last two results, we
get a pretty little summation theorem, which we saw in section 2.3, problem 4:

(3.3.1)
1

(q; q)n
=

n∑
k=0

qk

(q; q)k
.

For we know that the left side generates partitions with at most n parts. Such a
partition has exactly k parts for some k between 0 and n, so the right side generates
the same partitions as the left side. It is also quite easy to prove (3.3.1) by induction
on n.

In a similar way, 1/(q2; q2)n is the generating function for partitions with at
most n parts, all of which are even, or with exactly n parts, some of which might
be 0 but all of which are even. By adding 1 to each part we arrive at n nonzero
parts, all of which are odd, and so we conclude that qn/(q2; q2)n is the generating
function for partitions with exactly n parts, all of which are odd. See problem 7
for an application of this.
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108 3. PARTITIONS I: ELEMENTARY THEORY

Some partitions are their own conjugates, for example 9+8+6+6+6+5+2+2+1:

• • • • • • • • •
• • • • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • •
• •
• •
•

Such partitions are called self-conjugate. If we read their graphs by moving left
across the first row and then down the first column, then left across the second
row and down the second column, and so forth, we get partitions into distinct odd
parts—for the above graph this way of reading gives 17 + 13 + 7 + 5 + 3:

• • • • • • • • •
• ∗ ∗ ∗ ∗ ∗ ∗ ∗
• ∗ � � � �
• ∗ � � � �
• ∗ � � ◦ ◦
• ∗ � � ◦
• ∗
• ∗
•

The parts are odd because each row is the same length as the corresponding
column, but the corner where they meet is only counted once. They are distinct
because each row is at least one unit shorter than the row above when we read
this way, and similarly for the columns. It follows that (−q; q2)∞, which is the
generating function for partitions into distinct odd parts, is also the generating
function for self-conjugate partitions; and that (−q; q2)n, which is the generating
function for partitions into distinct odd parts ≤ 2n − 1, is also the generating
function for self-conjugate partitions whose maximum part size is n.

This idea gives a completely transparent proof that the sum of the first n odd
numbers is n2, i.e., 1 + 3 + 5 + · · · + (2n − 1) = n2, a fact that we used once in
Chapter 2 and will use again later. We can depict 1 + 3 + 5 + 7 + 9 + 11 = 62 as:

• • • • • •
• ∗ ∗ ∗ ∗ ∗
• ∗ � � � �
• ∗ � � � �
• ∗ � � ◦ ◦
• ∗ � � ◦ �

There is a similar proof of

(3.3.2) 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
=

(
n+ 1

2

)
.

We can depict 1+2+3+ · · ·+n+[1 + 2 + 3 + · · ·+ (n− 1)] as a square comprising
two triangles; for example, 1+ 2+ 3+ 4+ 5+ 6+ 1+ 2+ 3+ 4+ 5 = 36 = 62 looks
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3.3. FERRERS DIAGRAMS 109

like:

• • • • • •
• • • • • �
• • • • � �
• • • � � �
• • � � � �
• � � � � �

For this reason, numbers of the form (3.3.2) are called triangular numbers, and
we will see them again in Chapters 7 and 13. It follows that

1 + 2 + 3 + · · ·+ n+ [1 + 2 + 3 + · · ·+ (n− 1)] = n2.

Adding n to both sides and dividing by 2 we get (3.3.2). Alternatively, we could
subtract n from both sides and divide by 2 to get (3.3.2) with n− 1 in place of n.

The conjugate idea allows us to write down the generating function for parti-
tions with exactly k even parts (and any number of odd parts). Suppose the even
parts are 14 + 8 + 6, with Ferrers diagram:

• • • • • • • • • • • • • •
• • • • • • • •
• • • • • •

Then the conjugate is 3+3+3+3+3+3+2+2+1+1+1+1+1+1, in which the largest
part is 3, it occurs at least twice, and every smaller part occurs an even number of
times. By combining the even parts in pairs this becomes 6+ 6+ 6+ 4+ 2+ 2+ 2,
in which the largest part is 6 and every smaller part is even. If we treat k even
parts the same way, we get a partition with largest part 2k and all the smaller parts
even, so the generating function for these k even parts is

q2k

1− q2k
1

(q2; q2)k−1
=

q2k

(q2; q2)k
.

Since the odd parts are unrestricted, the generating function for partitions with
exactly k even parts is

q2k

(q2; q2)k

1

(q; q2)∞
.

Comparing this with (3.2.4), we have proved

Theorem 22 (The Andrews–Deutsch theorem). There are exactly as many
partitions of a positive integer n with k even parts as there are partitions of n
whose largest repeated part is k.

More generally, call a Yang partition with parameters k and d one in which
exactly k parts are divisible by d. The generating function for the parts not divisible
by d is

1

(1− q) · · · (1− qd−1)(1− qd+1) · · · (1− q2d−1)(1− q2d+1) · · · =
(qd; qd)∞
(q; q)∞

.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



110 3. PARTITIONS I: ELEMENTARY THEORY

For the k parts that are divisible by d, take for example 16 + 12 + 12 + 12 + 8 + 8
with k = 6 and d = 4. The Ferrers diagram is

• • • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • •
• • • • • • • •

Then the conjugate is 6 + 6 + 6 + 6+ 6+ 6+ 6+ 6+ 4+ 4+ 4+ 4+ 1+ 1+ 1+ 1,
in which the largest part is 6, it occurs at least four times (it occurs eight times
in this example because the original partition had no 4’s), and every smaller part
occurs a number of times divisible by 4. By combining the parts in groups of four
this becomes 24 + 24 + 16 + 4, in which the largest part is 24 and every smaller
part is a multiple of four. It follows that the generating function for the k parts
divisible by d is

qkd

1− qkd
1

(qd; qd)k−1
=

qkd

(qd; qd)k
,

and hence that the generating function for Yang partitions with parameters k and
d is

qkd

(qd; qd)k

(qd; qd)∞
(q; q)∞

.

Comparing this with (3.2.5), we have proved

Theorem 23 (The Smoot–Yang theorem). There are exactly as many parti-
tions of a positive integer n with exactly k parts divisible by d as there are partitions
of n in which k is the largest part that occurs at least d times.

For a variation on the conjugate idea, let an ee partition be a partition where
the even parts may be repeated but the odd parts, if any, must be distinct. If the
smallest part is odd, then we still have an ee partition (perhaps with fewer parts)
if we subtract 1 from it and 2 from all the other parts. If the smallest part is even,
then we still have an ee partition if we subtract 2 from all the parts. This suggests
an algorithm for ee partitions, which we’ll call the ee algorithm. We illustrate it
with the example 18 + 11 + 8 + 8 + 8 + 7 + 3. Call the two subtractions above the
odd step and the even step, respectively. Since the smallest part is odd, perform
the odd step, i.e., write 18 + 11 + 8 + 8 + 8 + 7 + 3 as the array:

2 2 2 2 2 2 1
16 9 6 6 6 5 2

The smallest part on the second line is even, so perform the even step on it:

2 2 2 2 2 2 1
2 2 2 2 2 2 2
14 7 4 4 4 3

The smallest part on the third line is odd, so we perform the odd step again, after
which the smallest part on the fourth line will be even, causing us to perform the
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3.3. FERRERS DIAGRAMS 111

even step:

2 2 2 2 2 2 1
2 2 2 2 2 2 2
2 2 2 2 2 1
12 5 2 2 2 2

−→

2 2 2 2 2 2 1
2 2 2 2 2 2 2
2 2 2 2 2 1
2 2 2 2 2 2
10 3

Performing again the odd step and then the even step we have:

2 2 2 2 2 2 1
2 2 2 2 2 2 2
2 2 2 2 2 1
2 2 2 2 2 2
2 1
8 2

−→

2 2 2 2 2 2 1
2 2 2 2 2 2 2
2 2 2 2 2 1
2 2 2 2 2 2
2 1
2 2
6

Performing the even step three more times we finally have:

2 2 2 2 2 2 1
2 2 2 2 2 2 2
2 2 2 2 2 1
2 2 2 2 2 2
2 1
2 2
2
2
2

It’s clear that there is at most one 1 in each row and that it comes at the end.
Because we take 1 out of an odd number only once, when it is the smallest part
left, there is also at most one 1 in each column, and it appears as high in the column
as it can be while remaining on the end of its row. If we now move all the 1’s down
to the bottom of their columns, we have

2 2 2 2 2 2 2
2 2 2 2 2 2 1
2 2 2 2 2 2
2 2 2 2 2 1
2 2
2 1
2
2
2

Reading this by rows we get the partition 14 + 13 + 12 + 11 + 4 + 3 + 2 + 2 + 2.
The ee algorithm must give distinct odd parts, because there is only one 1 in each
row; this remains true even after moving the 1’s down, because this can always be
done by exchanging rows. It also implies a restriction on the part size: if we started
with at most n parts (here n ≥ 7), the even parts must be ≤ 2n and the odd parts
must be ≤ 2n−1. The ee algorithm is easily reversible: given a partition with even
parts ≤ 2n and distinct odd parts ≤ 2n−1, write it as above, broken apart into 2’s
with 1’s on the end for the odd parts. All we really have to do after that is read
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112 3. PARTITIONS I: ELEMENTARY THEORY

the columns, but to reverse the algorithm we should move the 1’s up the columns
as high as they can go while remaining on the end of their rows. This gives exactly
the sort of array that the ee algorithm produces for an ee partition, so reading the
columns that’s what we must get. It follows that the generating function for ee
partitions with at most n parts is

(3.3.3)
(−q; q2)n
(q2; q2)n

.

It is also interesting to give an analytic proof of (3.3.3). The generating function
for ee partitions with exactly one part is clearly

q + q2 + q3 + q4 + · · · = q

1− q
,

because the ee restriction is no restriction at all in this case, so the generating
function for ee partitions with at most one part is (adding in the empty partition)

1 +
q

1− q
=

1

1− q
=

1 + q

1− q2
,

in agreement with (3.3.3).
Let’s try to construct the generating function for ee partitions with exactly two

parts and smallest part 2k− 1. If we subtract 2k− 1 from it and 2k from the other
part (note that this is what the ee algorithm would do, in k steps) we have an ee
partition with at most one part. Therefore

q2k−1+2k 1

1− q
=

q4k−1

1− q

is the generating function for ee partitions with exactly two parts and smallest part
2k− 1. If instead the smallest part is 2k, subtracting 2k from both parts (which is
again what the ee algorithm would do in k steps) we have an ee partition with at
most one part. Therefore

q2k+2k 1

1− q
=

q4k

1− q

is the generating function for ee partitions with exactly two parts and smallest part
2k, and hence the generating function for ee partitions with exactly two parts and
smallest part either 2k − 1 or 2k is

q4k−1 1 + q

1− q
.

Summing this over all k ≥ 1 we get

1 + q

1− q

(
q3 + q7 + q11 + . . .

)
=

q3(1 + q)

(1− q)(1− q4)
,

which must be the generating function for ee partitions with exactly two parts.
Hence the generating function for ee partitions with at most two parts is

1

1− q
+

q3(1 + q)

(1− q)(1− q4)
=

1− q4 + q3 + q4

(1− q)(1− q4)
=

1 + q3

(1− q)(1− q4)
=

(1 + q)(1 + q3)

(1− q2)(1− q4)
,

in agreement with (3.3.3).
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Continuing in this way, suppose we have verified (3.3.3) up to n. It follows that
the generating function for ee partitions with exactly n parts must be

(3.3.4)
(−q; q2)n
(q2; q2)n

− (−q; q2)n−1

(q2; q2)n−1
=

q2n−1(1 + q)(−q; q2)n−1

(q2; q2)n
.

If we have an ee partition with exactly n+ 1 parts and smallest part 2k − 1, then
subtracting 2k − 1 from it and 2k from the other n parts we get an ee partition
with at most n parts; as we also do if we subtract 2k from an ee partition with
exactly n+ 1 parts and smallest part 2k. Therefore, by induction and (3.3.3), the
generating function for ee partitions with exactly n + 1 parts and smallest part
either 2k − 1 or 2k is

q2k−1(1 + q)q2nk
(−q; q2)n
(q2; q2)n

= q2k(n+1)−1(1 + q)
(−q; q2)n
(q2; q2)n

.

Summing this for k ≥ 1 we get

(1 + q)(−q; q2)n
(q2; q2)n

(
q2n+1 + q4n+3 + q6n+5 + . . .

)
=

(1 + q)(−q; q2)n
(q2; q2)n

q2n+1

1− q2n+2
,

which is (3.3.4) with n+1 in place of n. Adding this to (3.3.3) we must get (3.3.3)
with n+ 1 in place of n, by the same arithmetic as in (3.3.4). This proves (3.3.3).

Exercises

1. For a self-conjugate partition, what can you say about the Ferrers diagram?

2. What can you say about the partitions which are the conjugates of the ones
counted by M1(n) in problem 7 of the previous section?

3. (This problem was suggested by Elena Warters.) Suppose n is a prime number,
and consider the partitions counted by M1(n). Are there any whose conjugates
are also counted by M1(n)? Are there any that are self-conjugate?

4. Recall Gauss’s identity (2.5.8)

(−q; q)n =
n∑

k=0

(
n

k

)
q2
qk.

Explain why letting n → ∞ here gives (at least formally)

(−q; q)∞ =

∞∑
k=0

qk

(q2; q2)k
.

5. In the identity in problem 4, what partitions does the left side generate? What
partitions does the right side generate? What does this mean?

6. A generalization of (3.3.1) is

(3.3.5)
1

(x; q)n
= 1 +

n−1∑
k=0

xqk

(x; q)k+1
.

Prove this by induction on n.
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114 3. PARTITIONS I: ELEMENTARY THEORY

7. Explain why

1

(q; q)∞
=

∞∑
k=0

qk

(q; q)k
.

8. We know that (−q; q)n is the generating function for partitions with distinct
parts ≤ n. By considering the largest part in each partition, show that

(3.3.6) (−q; q)n = 1 +
n∑

k=1

qk(−q; q)k−1.

9. By considering the smallest part in each partition instead, show that

(3.3.7) (−q; q)n = 1 +

n∑
k=1

qk(−qk+1; q)n−k.

10. Show that (3.3.7) can be rewritten as

n∑
k=1

qk

(−q; q)k
= 1− 1

(−q; q)n
,

and that this is a special case of (3.3.3).

11. By writing xqk = 1 + xqk − 1, prove the following generalization of (3.3.6):

(3.3.8) (−x; q)n = 1 + x

n−1∑
k=0

qk (−x; q)k.

12. Prove (3.3.8) by induction on n. Hint: (−x; q)n+1 = (1 + x)(−xq; q)n.

13. Verify (3.3.4).

14. Explain why

(−q; q2)n
(q2; q2)n

= 1 +

n∑
k=1

q2k−1(1 + q)(−q; q2)k−1

(q2; q2)k
.

15. Explain why

(−q; q2)∞
(q2; q2)∞

= 1 +

∞∑
k=1

q2k−1(1 + q)(−q; q2)k−1

(q2; q2)k
.

16. An oo partition is a partition where the odd parts may be repeated but the
even parts, if any, must be distinct. Explain why the generating function for oo
partitions with exactly n parts must be

qn
(−q; q2)n
(q2; q2)n

.

17. Explain why
∞∑

n=0

qn
(−q; q2)n
(q2; q2)n

=
(−q2; q2)∞
(q; q2)∞

.
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18. Use induction on n to prove Euler’s lemma: if e1, . . . , en are arbitrary and
Ek = 1 + ek for each k, then

E1E2 · · ·En = 1 + e1 + E1 e2 + E1 E2 e3 + · · ·+ E1 E2 · · ·En−1 en

for any n ≥ 1.

19. Suppose that {ak} is a sequence of complex numbers that is completely arbitrary
except that ak �= −1 for all k. By writing ak = 1 + ak − 1, by induction, or
otherwise, show that

(3.3.9)
n∑

k=1

ak
(1 + a1)(1 + a2) · · · (1 + ak)

= 1− 1

(1 + a1)(1 + a2) · · · (1 + an)
.

20. Show that (3.3.9) and Euler’s lemma are equivalent. (Hint: There is a simple
relationship between ek and ak.)

21. Another form of this fact is Nicole’s identity

1

z
− z1 · · · zn

z(z + z1) · · · (z + zn)
=

n∑
k=1

z1 · · · zk−1

(z + z1) · · · (z + zk)
,

where the only restriction is that z, z+z1, . . . , z+zn are all nonzero. Prove this,
by induction or otherwise, and show that it is equivalent to (3.3.9).

22. Yet another form of the same fact is that for any nonzero numbers b1, . . . , bn we
have

b1 − 1

b1
+

b2 − 1

b1b2
+

b3 − 1

b1b2b3
+ · · ·+ bn − 1

b1 · · · bn
= 1− 1

b1 · · · bn
.

Prove this and show it is equivalent to one of the other forms.

23. By taking ek = xqk−1(b− a)/(1− bxqk−1) in Euler’s lemma, or by taking ak =
x(a− b)qk−1/(1− axqk−1) in (3.3.7), or otherwise, show that

(ax; q)n
(bx; q)n

= 1 + x(b− a)

n∑
k=1

(ax; q)k−1

(bx; q)k
qk−1.

Note that (3.3.5) and (3.3.8) are special cases of this.

24. By taking ek = xqn−k(b− a)/(1− bxqn−k) in Euler’s lemma, or otherwise, show
that

(ax; q)n
(bx; q)n

= 1 + x(b− a)
n∑

k=1

(axqk; q)n−k

(bxqk−1; q)n−k+1
qk−1.

Note that (3.3.7) is a special case of this.

25. Take Ek =
[k +m]q

[k]q
for a nonnegative integer m in Euler’s lemma. What is ek,

and what does Euler’s lemma say?

26. By taking

ak =
xqk−1

(
a1 + a2 − b1 − b2 + (b1b2 − a1a2)xq

k−1
)

(1− a1xqk−1)(1− a2xqk−1)
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116 3. PARTITIONS I: ELEMENTARY THEORY

in (4.1.1), or otherwise, show that

1 +
n∑

k=1

(
b1 + b2 − a1 − a2 + (a1a2 − b1b2)xq

k−1
)
xqk−1(a1x; q)k−1(a2x; q)k−1

(b1x; q)k(b2x; q)k

=
(a1x; q)n(a2x; q)n
(b1x; q)n(b2x; q)n

.

27. Suppose {ak} is a positive sequence and
∞∑
k=1

ak diverges. What can you say

about
∞∑
k=1

ak
(1 + a1)(1 + a2) · · · (1 + ak)

?

28. What happens if we take ai = aqi−1 in the previous problem where q > 1? What
does it become if you replace q by q−1 to get back to the usual case of a small
q?

3.4. q-binomial coefficients and partitions

We rephrase something that we proved in section 3.3: if p(n; i, j) denotes the
number of partitions of n into at most i parts, each at most j, then the generating
function of the p(n; i, j), namely

fi,j(q) =

ij∑
n=0

p(n; i, j) qn,

is a symmetric function of i and j. In fact, it is a function that we are very familiar
with:

Theorem 24 (Cayley’s theorem). The generating function for partitions into
at most i parts, each at most j, is

ij∑
n=0

p(n; i, j) qn =

(
i+ j

i

)
q

.

There are many ways to prove this. Actually, we were quite close to proving
it in Chapter 1, as it is more or less the same thing as Pólya’s Property of the
q-binomial coefficients. The 1-1 correspondence between sequences of 0’s and 1’s
and lattice paths given there essentially constructs a Ferrers diagram of a partition,
rotated by 180◦ from the standard orientation. For example, consider the sequence
1011000110010. Let’s count how many inversions it has by counting how many 0’s
come after each 1: there are 7 0’s after the first 1; 6 0’s after the second and third
1’s; 3 0’s after the fourth and fifth 1’s, and 1 0 after the last 1. Thus this sequence
corresponds to the partition 7+ 6+6+3+3+1. If we instead count inversions by
counting how many 1’s come before each 0, working from right to left we have 6 1’s
before the last 0; 5 1’s before the second and third from last 0’s; 3 1’s before the
fourth, fifth and sixth from last 0’s, and 1 1 before the first 0—thus the sequence
also corresponds to the partition 6 + 5 + 5 + 3 + 3 + 3 + 1, which is the conjugate
of 7 + 6 + 6 + 3 + 3 + 1 as we saw above. If you take a piece of graph paper, draw
an x and y axis, and start from the origin with a 1 marking a step in the positive
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3.4. q-BINOMIAL COEFFICIENTS AND PARTITIONS 117

y-direction and a 0 marking a step in the positive x-direction, the boxes between
the path and the x-axis will be (up to reorientation) a Ferrers diagram.

For another proof we can use either of the q-Pascal recurrences, which we restate
here with a slight change in notation:(

i+ j

i

)
q

=

(
i+ j − 1

i− 1

)
q

+ qi
(
i+ j − 1

i

)
q

,(3.4.1) (
i+ j

i

)
q

=

(
i+ j − 1

i

)
q

+ qj
(
i+ j − 1

i− 1

)
q

.(3.4.2)

We are trying to argue that
(
i+j
i

)
q
is the generating function for partitions with at

most i parts each at most j. We get (3.4.1) by asking “are there really i parts?” If
not, then there are at most i− 1 parts, and we get the first term on the right side
of (3.4.1). If there are i parts, then subtract 1 from each of them. Now we have
at most i parts, each of which is at most j − 1, and we get the last term in (3.4.1)
(with the factor qi making up for the i 1’s which we subtracted).

We get (3.4.2) by asking “is there really a part of size j?” If not, then the
maximum part size is really j − 1, and we get the first term on the right side of
(3.4.2). If so, then aside from this part we have at most i− 1 parts, each of which
is at most j, and we get the last term in (3.4.2) (with the factor qj accounting for
the one part of size j which we pulled out).

Note that Cayley’s theorem implies that
(
n
k

)
q
is the generating function for

partitions into at most k parts, each at most n− k.

Cayley’s theorem is often attributed to Sylvester, who published an epoch-
making paper on partitions in the early 1880s. His proof was rather different, and
we will see it in the next section. In fact, Cayley published the theorem in a paper
of 1855; his argument was the same as Sylvester’s. (More accurately, Sylvester’s
argument was the same as Cayley’s. Cayley and Sylvester were close friends of
long standing.) One of Sylvester’s students, Fabian Franklin, devised still another
proof, based upon the idea of the “excesses” of a partition. Let the kth excess of a
partition be the largest part minus the (k+ 1)th largest part. For example, for the
partition 7+ 6+6+3+ 3+ 1, the first and second excesses are both 7− 6 = 1, the
third and fourth excesses are 7− 3 = 4, and the fifth excess is 7− 1 = 6.

Recall that 1/(q; q)j is the generating function for partitions with at most j
parts. For convenience, let’s again recast it as the generating function for partitions
with exactly j parts, some of which might be 0. Suppose we have a partition
with j parts in this sense and whose first excess is greater than i. There is a 1-1
correspondence between these partitions and ordinary partitions with at most j
parts, because we could subtract i+1 from the largest part and it would still be at
least as big as any other part. It follows that the generating function for partitions
with j parts and whose first excess is greater than i is qi+1/(q; q)j . It further follows
that the generating function for partitions with at most j parts whose first excess
is not greater than i is

1

(q; q)j
− qi+1

(q; q)j
=

1− qi+1

(q; q)j
.

Next, consider partitions with j parts (some possibly 0) whose first excess is
less than or equal to i and whose second excess (largest part minus third largest)
is greater than i. If we subtract i+ 1 from the largest part and 1 from the second
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largest, then what was the second largest part is now definitely the largest (because
the first excess was less than i), and what was the largest part is now second largest
(because it is still at least as big as the third largest), so we should switch the first
and second parts to get the standard form with decreasing parts. If the first excess
was originally e1, then it is now i − e1, so it is still between 0 and i inclusive.
Therefore the generating function for these partitions is

qi+2(1− qi+1)

(q; q)j
.

It follows that the generating function for partitions with at most j parts and with
first and second excesses both less than or equal to i is

1− qi+1

(q; q)j
− qi+2(1− qi+1)

(q; q)j
=

(1− qi+1)(1− qi+2)

(q; q)j
.

Note that if the second excess is ≤ i, then the first excess is automatically ≤ i.
We keep doing this argument over and over. We do one more step, which will

indicate how the general case goes. Now that we have the generating function for
partitions whose second excess is less than or equal to i, we construct the generating
function for such partitions whose third excess is greater than i. This time we
subtract i + 1 from the first part, and 1 from each of the second and third parts.
Since the first two excesses were no more than i, the second part is now the biggest,
and the third part second biggest, and the first part third biggest. Switching second
to first, third to second, and first to third we get a generic partition with first and
second excesses still ≤ i. It follows that

qi+3(1− qi+1)(1− qi+2)

(q; q)j

is the generating function for these partitions, and therefore that

(1− qi+1)(1− qi+2)

(q; q)j
− qi+3(1− qi+1)(1− qi+2)

(q; q)j
=

(1− qi+1)(1− qi+2)(1− qi+3)

(q; q)j

is the generating function for partitions with at most j parts and third excess ≤ i.
After k iterations (where k ≤ j − 1) we find that

qi+k(1− qi+1)(1− qi+2) . . . (1− qi+k−1)

(q; q)j

is the generating function for partitions with at most j parts, kth excess > i, and
k − 1th excess ≤ i; and hence

(1− qi+1)(1− qi+2) . . . (1− qi+k)

(q; q)j

is the generating function for partitions with at most j parts and kth excess ≤ i.
Since there are exactly j parts (some of which could be 0), it seems that we can
use this argument j − 1 times before we run out of parts:

(1− qi+1)(1− qi+2) . . . (1− qi+j−1)

(q; q)j

is the generating function for partitions with at most j parts where the j − 1th

excess is ≤ i. But we can use it one more time, thinking of the largest part itself as
a “last excess”: if the largest part is > i and all the excesses are ≤ i, then subtract
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i+1 from the largest part and 1 from all the other parts, and then rotate the parts
as before: the transformed second part is the new largest part, the old third part
is the new second part, and so forth, with the former largest part now the smallest
part. All the excesses of the transformed partition are ≤ i, so

qi+j(1− qi+1)(1− qi+2) . . . (1− qi+j−1)

(q; q)j

is the generating function for partitions with at most j parts, largest part > i and
j − 1th excess ≤ i. Hence

(1− qi+1)(1− qi+2) . . . (1− qi+j)

(q; q)j

is the generating function for partitions with at most j parts where the largest part
is ≤ i (and therefore all the excesses are too). This proves Cayley’s theorem.

Exercises

1. Recall (1.4.3):(
n+ 1

k + 1

)
q

=

(
k

k

)
q

+ q

(
k + 1

k

)
q

+ q2
(
k + 2

k

)
q

+ · · ·+ qn−k

(
n

k

)
q

.

Prove this by counting partitions.

2. Explain why we can rewrite (1.4.5) as(
n

k

)
q

= qk(n−k)

(
k − 1

k − 1

)
q

+ qk(n−k−1)

(
k

k − 1

)
q

+ qk(n−k−2)

(
k + 1

k − 1

)
q

+ . . .

+ qk
(
n− 2

k − 1

)
q

+

(
n− 1

k − 1

)
q

.

3. Prove the result of problem 2 by counting partitions.

4. Here is another nice combinatorial characterization of the q-binomial coefficients.
Let

S(n, k) =
∑
Sj

qsj ,

where the sum is over all k-element subsets Sj of {1, 2, . . . , n}, and sj is the sum
of the members of Sj . Then

S(n, k) =

(
n

k

)
q

q(
k+1
2 ).

Prove this by recurrence and induction, separating the k-element subsets of
{1, 2, . . . , n+ 1} into those that contain n+ 1 and those that do not.

5. Prove the result of the previous problem by taking each k-element subset of
{1, 2, . . . , n} and subtracting 1 from the smallest element, 2 from the next small-
est, and so on, finally subtracting k from the largest.
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6. Call a partition tight if the difference between the largest part and the smallest
is either 0 or 1. For example, the tight partitions of 6 are 6, 3 + 3, 2 + 2 + 2,
2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1. How many tight
partitions of n are there? (The answer is easy to guess. One way to prove it is
to consider how tight partitions of n are related to tight partitions of n+ 1.)

7. Continuing the previous problem, prove that for each k with 1 ≤ k ≤ n, there is
exactly one tight partition of n with exactly k parts.

8. It is possible to use the material of this section to construct a q-analogue of
Stern’s problem, but it’s kind of artificial. For example, let’s look at the inversion
94 in the permutation 691384275. We say that the number weight w1 of an
inversion is the larger number minus 2, plus the smaller number minus 1, so
the number weight of 94 is (9 − 2) + (4 − 1) = 7 + 3 = 10. We say that the
position weight w2 of an inversion is the position of the smaller number minus
2, plus the position of the larger number minus 1. Since the smaller number
4 is in the sixth position and the larger number 9 is in the second position,
the position weight of 94 is (6 − 2) + (2 − 1) = 4 + 1 = 5. Finally, we say
that the permutation weight w3 of an inversion is the number of inversions
in the rest of the permutation. If we delete 94 from 691384275 we are left with
6138275, which has 9 inversions. Then the total weight of the inversion 94 in
the permutation 691384275 is w1 + w2 + w3 = 10 + 5 + 9 = 24.

(i) Look at all the inversions in the permutations of {1, 2, 3} and find the weight
of each (w3 will be zero for all of them; why?). Make all these weights exponents
of q and add them all up. You should get 1 + 2q + 3q2 + 2q3 + q4. Show that
this equals

[3]2q , which equals
3!q
[2]q

(
3

2

)
q

.

(ii) If I(n) denotes the set of all inversions in all the permutations of {1, 2, . . . , n}
and wt ι denotes the weight of the inversion ι, prove that∑

ι∈I(n)

qwt ι =

(
n

2

)
q

(
n

2

)
q

(n− 2)!q =
n!q
[2]q

(
n

2

)
q

.

When q = 1 this becomes Deutsch’s solution of Stern’s problem from problem 9
of section 1.1.

3.5. An identity of Euler, and its “finite” form

Now that we know a few things about generating functions for partitions, we
can use that knowledge to help us understand more complex generating functions.
Assuming |x| and |q| are both less than 1, let’s expand

1

(x; q)∞
=

1

(1− x)(1− xq)(1− xq2)(1− xq3)(1− xq4) . . .

=
(
1 + x+ x2 + x3 + . . .

) (
1 + xq + x2q2 + x3q3 + . . .

)
×
(
1 + xq2 + x2q4 + x3q6 + . . .

) (
1 + xq3 + x2q6 + x3q9 + . . .

)
· · · .

As usual, we ask about the form this will have when we multiply all the factors
together. We will get a 1, from the product of all the 1’s. The coefficient of x will
be 1 + q + q2 + q3 + · · · = 1/(1− q).
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3.5. AN IDENTITY OF EULER, AND ITS “FINITE” FORM 121

How could we get an x2? We get one from the x2 in the first factor times all
the other 1’s. We get one from the x in the first factor times the xq in the second.
We get one from the x2q2 in the second factor times all the other 1’s, but this is not
the only way we can get x2q2; we can also get it from the x in the first factor times
the xq2 in the third. We get two different x2q2’s because there are two different
partitions of 2, 2 itself and 1+ 1. The former corresponds to x · xq2, and the latter
to the x2q2 in the second factor.

Think of the product the way we thought about 1/(q; q)∞: the first factor 1 +
x+x2+x3+. . . generates 0’s (or missing parts). The factor 1+xq+x2q2+x3q3+. . .
generates 1’s, since every x has a q1 along with it. The factor 1 + xq2 + x2q4 +
x3q6 + . . . generates 2’s, since every x comes with a q2; and so on.

If we think of the product this way, we can see that the coefficient of x2 is going
to be the generating function for all partitions with at most two parts. (There might
be less than two, if we take either the x or the x2 from the first factor, which has
no q’s.) For we get a lot of terms xqa · xqb, corresponding to the partition a + b;
and also some terms x2q2m, which correspond to m +m. But we know what this
generating function is, from section 3.3: the coefficient of x2 is 1/(q; q)2.

Similarly, the coefficient of x3 will be the generating function for partitions
with at most three parts, which is 1/(q; q)3, and so on. Since the coefficient of xk

is 1/(q; q)k for every nonnegative integer k, we get

Theorem 25 (Euler). If |q| < 1 and |x| < 1, then

(3.5.1)
∞∑
k=0

xk

(q; q)k
=

1

(x; q)∞
.

We had to assume |x| < 1 above to be able to expand all the factors as geometric
series. We also need x �= 1 at least to avoid a zero in the denominator on the right.
Obviously equivalent is

(3.5.2)
∞∑
k=0

xkqk

(q; q)k
=

1

(xq; q)∞
.

One might prefer this form since now the coefficient of xk is the generating function
for partitions with exactly k parts, as in (3.3.1).

It is easy to give an analytic proof of (3.5.1). We start with the series

f(x) :=
∞∑
k=0

xk

(q; q)k

and use the same trick that Euler used. (Our argument is not quite Euler’s, for he
started with the product, and used the trick to find the series. We will outline his
proof in one of the problems.) Euler’s idea was to replace x by xq, and see how
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122 3. PARTITIONS I: ELEMENTARY THEORY

different the new function is from the old one. The difference is

f(x)− f(xq) =
∞∑
k=0

xk

(q; q)k
−

∞∑
k=0

qk xk

(q; q)k

=
∞∑
k=1

xk (1− qk)

(q; q)k
(the k = 0 terms cancel)

=
∞∑
k=1

x
xk−1

(q; q)k−1

= x
∞∑
j=0

xj

(q; q)j
(after renaming k)

= x f(x).

It follows that f(x) = f(xq)/(1− x). If we iterate this relation, we get

f(x) =
f(xq)

1− x

=
1

1− x

{
f(xq2)

1− xq

}

=
1

(1− x)(1− xq)

{
f(xq3)

1− xq2

}
= . . .

=
f(xqn)

(x; q)n

after n iterations. If we let n → ∞ here, we will get an infinite product in the
denominator, which will converge, as we have seen, if |q| < 1. If |q| < 1, then the
numerator also converges, to f(0), which, from the series definition of f(x), equals
1. This proves Euler’s theorem.

The “finite” form of this was proved by Cauchy. If we expand 1/(x; q)n+1 as
above we get

1

(x; q)n+1
=

1

(1− x)(1− xq)(1− xq2) · · · (1− xqn)

=
(
1 + x+ x2 + . . .

) (
1 + xq + x2q2 + . . .

)
×
(
1 + xq2 + x2q4 + . . .

)
· · ·
(
1 + xqn + x2q2n + . . .

)
.

When we multiply this out, in the first place we get a 1. The coefficient of x is
1+ q+ q2 + · · ·+ qn = [n+1]q, which is the generating function for partitions with
at most one part which is at most n. The coefficient of x2 will be the sum of all
terms of the form qa qb, where 0 ≤ a ≤ b ≤ n; or in other words the generating
function for partitions with at most two parts each at most n, and so forth. The
coefficient of xk will be the generating function for partitions into at most k parts,
each of which is at most n. But we know what this generating function is, from
section 3.3. This proves
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Theorem 26 (Cauchy). If n is any nonnegative integer and |q| and |x| are
both less than 1, then

(3.5.3)
1

(x; q)n+1
=

∞∑
k=0

(
n+ k

k

)
q

xk.

The q = 1 case of this will be useful in two places in Chapter 8. The proof
given by Cayley, and later by Sylvester, of the fact that

(
n+k
k

)
q
is the generating

function for partitions into at most k parts each at most n is the above argument
read backwards: since the coefficient of xk in the product on the left must be the
generating function for partitions of this type, and since Cauchy was able to prove
(by a different method, which we will see later) that this coefficient is

(
n+k
k

)
q
, it

must be the generating function we want.

There are several different analytic proofs of Cauchy’s theorem. One is to start
from the product side and force out the coefficients of its series expansion. To do
this we set

1

(x; q)n+1
=

∞∑
k=0

cn,k(q) x
k

and try to work out what cn,k(q) has to be. We use Euler’s trick of replacing x by
xq:

1

(xq; q)n+1
=

∞∑
k=0

cn,k(q) x
k qk.

Now

(1− x)
1

(x; q)n+1
=

1

(1− xq)(1− xq2) · · · (1− xqn)
= (1− xqn+1)

1

(xq; q)n+1
,

so

(1− x)

∞∑
k=0

cn,k(q) x
k = (1− xqn+1)

∞∑
k=0

cn,k(q) x
k qk.

Distributing this we have
∞∑
k=0

cn,k(q) x
k −

∞∑
k=0

cn,k(q) x
k+1 =

∞∑
k=0

cn,k(q) x
k qk −

∞∑
k=0

cn,k(q) x
k+1 qn+k+1,

which we can rearrange to
∞∑
k=0

cn,k(q) x
k
(
1− qk

)
=

∞∑
k=0

cn,k(q) x
k+1
(
1− qn+k+1

)
.

We make a few little changes in this equation. Replace k + 1 by j in the second
sum, which will then run over 1 ≤ j < ∞. For consistency we also replace k by j
in the first sum, and note that the k = 0 (or j = 0) term has the factor 1− q0, so
it equals zero and we can discard it. Then we have

∞∑
j=1

cn,j(q) x
j
(
1− qj

)
=

∞∑
j=1

cn,j−1(q) x
j
(
1− qn+j

)
.

Renaming j back as k and equating coefficients of xk, we have

cn,k(q)
(
1− qk

)
= cn,k−1(q)

(
1− qn+k

)
,
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or

(3.5.4) cn,k(q) = cn,k−1(q)
1− qn+k

1− qk
.

Now we iterate this down to k = 0, as we have done before. Replacing k by k − 1
in (3.5.4) we have

cn,k−1(q) = cn,k−2(q)
1− qn+k−1

1− qk−1
,

and plugging this into (3.5.4) gives

cn,k(q) = cn,k−2(q)
1− qn+k

1− qk
1− qn+k−1

1− qk−1
.

If we keep doing this, we will eventually reach

cn,k(q) = cn,0(q)
(1− qn+k)(1− qn+k−1) · · · (1− qn+1)

(1− qk)(1− qk−1) · · · (1− q)
.

But cn,0(q) is the coefficient of x0 in the expansion of 1/(x; q)n+1, which is clearly
equal to 1, so we finally have

cn,k(q) =
(1− qn+k)(1− qn+k−1) · · · (1− qn+1)

(1− qk)(1− qk−1) · · · (1− q)

=
(1− qn+k)(1− qn+k−1) · · · (1− qn+1)

(1− qk)(1− qk−1) · · · (1− q)

(1− qn)(1− qn−1) · · · (1− q)

(1− qn)(1− qn−1) · · · (1− q)

=
(q; q)n+k

(q; q)n (q; q)k
=

(
n+ k

k

)
q

and this proves Cauchy’s theorem.

Euler’s theorem was employed by Eduard Heine to give alternative proofs
of the two q-binomial identities of Gauss from section 2.5. First observe that
(x; q)∞ (−x; q)∞ = (x2; q2)∞. (We leave this as an exercise.) Next, by Euler’s
identity with x replaced by x2 and q by q2, we have

1

(x2; q2)∞
=

∞∑
m=0

x2m

(q2; q2)m
.

On the other hand, we have

1

(x2; q2)∞
=

1

(x; q)∞

1

(−x; q)∞

=

∞∑
k=0

xk

(q; q)k

∞∑
j=0

(−1)j xj

(q; q)j

=

∞∑
n=0

∑
j+k=n

xn

(q; q)n

(
n

j

)
q

(−1)j

=
∞∑

n=0

xn

(q; q)n

n∑
j=0

(
n

j

)
q

(−1)j

and therefore
∞∑

m=0

x2m

(q2; q2)m
=

∞∑
n=0

xn

(q; q)n

n∑
j=0

(
n

j

)
q

(−1)j .
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This can only be true if the coefficient of xr is the same on each side for every r.
But there are no odd powers on the left side, and hence

n∑
j=0

(
n

j

)
q

(−1)j = 0 if n is odd.

(As we observed before, this is clear without this argument by the symmetry of the
q-binomial coefficients.) Since this implies that the right side has no odd powers
either, we can replace n by 2m there to get

∞∑
m=0

x2m

(q2; q2)m
=

∞∑
m=0

x2m

(q; q)2m

2m∑
j=0

(
2m

j

)
q

(−1)j .

It follows that

1

(q2; q2)m
=

1

(q; q)2m

2m∑
j=0

(
2m

j

)
q

(−1)j ,

or in other words

(3.5.5)

2m∑
j=0

(
2m

j

)
q

(−1)j =
(q; q)2m
(q2; q2)m

= (q; q2)m.

This proves Gauss’s first identity (2.5.2) (we leave it to the reader to check the last
step). For the second identity, start with (x; q2)∞ (xq; q2)∞ = (x; q)∞, which we
again leave as an exercise. Then we have

∞∑
n=0

xn

(q; q)n
=

1

(x; q)∞

=
1

(x; q2)∞

1

(xq; q2)∞

=

∞∑
j=0

xj

(q2; q2)j

∞∑
k=0

xk qk

(q2; q2)k

=
∞∑
n=0

∑
j+k=n

xn

(q2; q2)n

(
n

k

)
q2
qk

=

∞∑
n=0

xn

(q2; q2)n

n∑
k=0

(
n

k

)
q2
qk.

Again the coefficients of xn on both sides of this must be the same, so

1

(q; q)n
=

1

(q2; q2)n

n∑
k=0

(
n

k

)
q2
qk,

or in other words
n∑

k=0

(
n

k

)
q2
qk =

(q2; q2)n
(q; q)n

= (−q; q)n,

which is Gauss’s identity (2.5.8).
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Exercises

1. Verify that (x; q)∞ (−x; q)∞ = (x2; q2)∞.

2. Verify that (q;q)2m
(q2;q2)m

= (q; q2)m.

3. Verify that (x; q2)∞(xq; q2)∞ = (x; q)∞.

4. Is there an identity you could prove which would settle problems 2 and 3 both
at once?

5. Complete the proof of Gauss’s second identity by verifying that

(q2; q2)n
(q; q)n

= (−q; q)n.

6. Is there an identity you could prove which would settle problems 1 and 5 both
at once?

7. Use Euler’s identity to prove that

1

(xq; q2)∞
=

∞∑
n=0

(xq)n

(q2; q2)n
.

8. Prove the result of problem 7 by counting partitions.

9. Here is an outline of Euler’s proof of his identity (3.5.1). He sought to determine
the coefficients in the expansion

1

(x; q)∞
=

∞∑
n=0

An x
n.

(i)

1

(xq; q)∞
=

∞∑
n=0

An q
n xn.

(ii) On the other hand,

1

(xq; q)∞
=

1− x

(x; q)∞
= (1− x)

∞∑
n=0

An x
n.

(iii) Therefore,

∞∑
n=0

An q
n xn = (1− x)

∞∑
n=0

An x
n =

∞∑
n=0

An x
n −

∞∑
n=0

An x
n+1.

(iv) Therefore,

∞∑
n=0

An x
n (1− qn) =

∞∑
n=0

An x
n+1 =

∞∑
n=1

An−1 x
n.

Note that the n = 0 term on the left side is zero (why?).

(v) Therefore An = An−1/(1− qn) if n ≥ 1.

(vi) Therefore An = A0/(q; q)n = 1/(q; q)n.

This proves (3.5.1). Fill in the details.
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10. Prove Cauchy’s theorem by induction on n using(
n+ k

k

)
q

=

(
n+ k − 1

k − 1

)
q

+ qk
(
n+ k − 1

k

)
q

.

11. Prove Cauchy’s theorem by induction on n using(
n+ k

k

)
q

=

(
n+ k − 1

k

)
q

+ qn
(
n+ k − 1

k − 1

)
q

.

12. If |q| < 1 and |z| < 1, show that

(3.5.6)

∞∑
n=0

(−a; q)nz
n =

∞∑
k=0

q(
k
2)akzk

(z; q)k+1
.

Start by using Cauchy’s theorem to expand 1/(z; q)k+1. The right side converges
even without |z| < 1, but the left side does not.

13. For another proof of (3.5.6), set f(z) equal to the right side.

(i) Show that (1− z)f(z) = 1 + az f(zq).

(ii) If f(z) =
∞∑
n=0

cn(a, q)z
n, use (i) to show that c0(a, q) = 1, and cn(a, q) =

(1 + aqn−1)cn−1(a, q) for n ≥ 1. Then explain why this proves (3.5.6).

14. (a) Show that

∞∑
n=0

(x+ yq)(x+ yq2) · · · (x+ yqn)qn+1 =

∞∑
k=0

ykq(
k+2
2 )

(xq; q)k+1
.

(b) Using part (a), or otherwise, show that

1 +
∞∑

n=0

(x+ q)(x+ q2) · · · (x+ qn)qn+1 =
∞∑
k=0

q(
k+1
2 )

(xq; q)k
.

15. Show that an equivalent form of Cauchy’s theorem is

(3.5.7)
xk

(x; q)k+1
=

∞∑
m=k

(
m

k

)
q

xm.

16. We introduced q-Fibonacci numbers

Fn(q) =
∑
k

(
n− k

k

)
q

qk
2

in problem 3 of section 2.5. Use Cauchy’s theorem to prove that

(3.5.8)

∞∑
k=0

qk
2

x2k

(x; q)k+1
=

∞∑
n=0

Fn(q) x
n,

assuming that both sides converge.

17. Show that the left side of (3.5.8) converges for any x (except those that make
the denominator zero) if |q| < 1. If q = 1, show that the left side converges when∣∣x2/(1− x)

∣∣ < 1.
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18. If q = 1, show that (3.5.8) reduces to

∞∑
n=0

Fn x
n =

1

1− x− x2
,

where the Fn’s are the ordinary Fibonacci numbers.

19. Show that, if f(x) denotes either side of (3.5.8), then f(x) satisfies

(3.5.9) (1− x) f(x) = 1 + x2q f(xq).

(Use the recurrence Fn+1(q) = Fn(q)+qn Fn−1(q) to do the right side of (3.5.9);
this holds for all n ≥ 0 if we define F−1(q) = 0.) If you are willing to believe
that there is only one function f(x) satisfying (3.5.9) which is finite when x = 0,
then this gives an alternate proof of (3.5.8). Show that if f(x) satisfies (3.5.9)
and f(0) is not infinite, then f(0) = 1.

20. There is only one function f(x) satisfying (3.5.9) which is finite when x = 0,
because we can solve (3.5.9) for f(x) by iteration. Use (3.5.9) to show that

f(x) =
qn

2

x2n

(x; q)n
f(xqn) +

n−1∑
k=0

qk
2

x2k

(x; q)k+1

for any n ≥ 1 (and even for n = 0 since an empty sum equals 0). Show that this
reduces to the left side of (3.5.8) as n → ∞ if f(0) is finite.

3.6. Another identity of Euler, and its finite form

In this section we’ll do just what we did in the last section, but now for parti-
tions with distinct parts. What do we get if we multiply out the factors in (−x; q)∞,
assuming |q| < 1 for convergence as usual? We have

(−x; q)∞ = (1 + x)(1 + xq)(1 + xq2)(1 + xq3)(1 + xq4)(1 + xq5)(1 + xq6) · · ·
= 1 + x(1 + q + q2 + q3 + . . . ) + x2(1 · q + 1 · q2 + q · q2 + 1 · q3 + . . . )

+ x3(1 · q · q2 + 1 · q · q3 + . . . ) + x4(1 · q · q2 · q3 + . . . ) + . . . .

The coefficient of x is evidently 1/(1 − q). The coefficient of x2 is the sum of all
the possible products of two distinct nonnegative powers of q; in other words, it is
the generating function for partitions with at most two parts, both different. To
be a bit more precise, it is the generating function for partitions with exactly two
distinct parts, where zero is allowed to be a part, but can only be used once in
each partition just like all the other parts. Similarly the coefficient of xk is the
generating function for partitions with exactly k distinct parts, one of which might
be zero.

We know what the generating function for partitions with at most k parts is,
namely 1/(q; q)k. From this we deduced the generating function for partitions with
exactly k parts, namely qk/(q; q)k, by adding 1 to each part, which replaced any
missing parts by 1’s. Suppose we instead add 0 to the smallest part, 1 to the next
smallest, and so forth, finally adding k−1 to the largest part. We still might have a
0 part, but now we can only have one such part. Moreover, the differences between
consecutive parts have all increased by one, so we have now a partition with k
distinct parts, one of which could be zero. Since 0 + 1 + 2 + · · · + (k − 1) =

(
k
2

)
,
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3.6. ANOTHER IDENTITY OF EULER, AND ITS FINITE FORM 129

it follows that the generating function for partitions with exactly k distinct parts,

one of which might be zero, is q(
k
2)/(q; q)k. This proves

Theorem 27 (Euler). If |q| < 1, then

(3.6.1)
∞∑
k=0

q(
k
2) xk

(q; q)k
= (−x; q)∞.

Again, one can also give an analytic proof of this. We leave it to the reader to
check that (due to the quadratic power of q) the series converges for all x if |q| < 1.
As before, we set g(x) equal to the series and consider

g(x)− g(xq) =

∞∑
k=1

(1− qk)
q(

k
2) xk

(q; q)k

= x
∞∑
k=1

q(
k
2) xk−1

(q; q)k−1
= x

∞∑
j=0

q(
j+1
2 ) xj

(q; q)j

= x

∞∑
j=0

q(
j
2) (xq)j

(q; q)j
= x g(xq).

Therefore g(x) = (1 + x) g(xq), and, iterating,

g(x) = (1 + x)
{
(1 + xq) g(xq2)

}
= (1 + x)(1 + xq)

{
(1 + xq2) g(xq3)

}
= and so on

= (−x; q)n g(xq
n) for all nonnegative integers n

= (−x; q)∞ g(0) in the limit as n → ∞
= (−x; q)∞ since g(0) = 1.

Euler’s proof was similar to this in spirit, but he started with the product side and
derived the series. We outline it in problem 3.

Recall that Euler’s identity of the previous section had a “finite form”, due
to Cauchy, which was another infinite series. The finite form of (3.6.1) is truly
finite—in fact, it is nothing but Rothe’s q-binomial theorem. For

(−x; q)n = (1 + x)(1 + xq)(1 + xq2)(1 + xq3) · · · (1 + xqn−1)

= 1 + x(1 + q + q2 + q3 + · · ·+ qn−1)

+ x2(1 · q + 1 · q2 + q · q2 + 1 · q3 + · · ·+ qn−2 · qn−1)

+ x3(1 · q · q2 + · · ·+ qn−3 · qn−2 · qn−1) + · · ·+ xn(1 · q · q2 · · · qn−1)

and now the coefficient of xk is the generating function for partitions with exactly
k distinct parts, one of which might be zero and all of which are at most n− 1. If
we subtract 0 from the smallest part, 1 from the next smallest, and so forth, finally
subtracting k−1 from the largest, then we obtain a partition with at most k parts,
which may not now be distinct since the gap between successive parts has gone
down by one. The maximum part size is now n − 1 − (k − 1) = n − k. In other

words, by taking q(
k
2) out of the generating function in the same way as before, we

have arrived at the generating function for partitions into at most k parts, each of
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130 3. PARTITIONS I: ELEMENTARY THEORY

which is at most n− k, and we know that this generating function is just
(
n
k

)
q
. It

follows that the coefficient of xk in (−x; q)n is
(
n
k

)
q
q(

k
2), or in other words

(3.6.2) (−x; q)n =
n∑

k=0

(
n

k

)
q

q(
k
2) xk,

and we have proved Rothe’s q-binomial theorem by counting partitions.

Exercises

1. Explain why the generating function for partitions with exactly n distinct parts,
none of which is zero, is

(3.6.3)
q(

n+1
2 )

(q; q)n
.

2. Use problem 1 to give a proof of the identity

(3.6.4) (−xq; q)∞ =
∞∑

n=0

q(
n+1
2 ) xn

(q; q)n

by counting partitions. Technically, this is the identity that Euler proved. It is
to (3.6.1) what (3.5.2) is to (3.5.1).

3. If

(−x; q)∞ =

∞∑
n=0

Bn x
n,

determine the coefficients Bn by using the equation
∞∑

n=0

Bn x
n = (−x; q)∞ = (1 + x)(−xq; q)∞ = (1 + x)

∞∑
n=0

Bn q
n xn,

similarly to the argument outlined in problem 9 in the previous section. This
was Euler’s proof of (3.6.1).

4. If

(−x; q)n =
n∑

k=0

Cn,k x
k,

determine the coefficients Cn,k by using the equation

n+1∑
k=0

Cn+1,k x
k = (−x; q)n+1 = (1 + x)(−xq; q)n = (1 + x)

n∑
k=0

Cn,k q
k xk.

This is still another proof of Rothe’s q-binomial theorem.

5. Use Euler’s identity to prove

(3.6.5) (−zq; q2)∞ =

∞∑
n=0

qn
2

zn

(q2; q2)n
.

This was one of two identities Jacobi used to prove his triple product identity,
which we will meet later.

6. Prove (3.6.5) by using the method of problem 3.
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7. Prove (3.6.5) as in the “analytic proof” of Euler’s identity in this section.

8. What kind of partitions does the left side of (3.6.5) generate? Prove (3.6.5) by
counting partitions.

9. (a) By using (3.6.2) and (3.5.1), or otherwise, show that

∞∑
n=0

(−aqn+1; q)n
(q; q)n

qn =
1

(q; q)∞

∞∑
k=0

ak q3(
k+1
2 ).

(b) Show that (a) can be rewritten as

∞∑
k=0

ak q3(
k+1
2 ) = (−a; q)∞(q; q)∞

∞∑
n=0

qn

(−a; q)n+1(q; q)n
.

10. (a) Show that changing q to q2 in (3.6.1) and then setting x = aq gives

(−aq; q2)∞ =

∞∑
k=0

qk
2

ak

(q2; q2)k
.

(b) Show that (
1 + q

a

)
(−aq; q2)∞ =

∞∑
k=−1

qk
2

ak

(q2; q2)k+1
.

(c) Prove by induction on n that

(
− q

a ; q
2
)
n
(−aq; q2)∞ =

∞∑
k=−n

qk
2

ak

(q2; q2)k+n
.

(d) What happens to the result of (c) if we let n → ∞? (The answer is that
we get Jacobi’s triple product identity, which we will see in section 5.1. This
derivation of it is due to Michael Hirschhorn.)

11. Suppose R(x) is a function satisfying R(0) = 1 and R(x) = R(xq) + xq R(xq2).
Show that the power series expansion of R(x) is

R(x) =

∞∑
n=0

qn
2

xn

(q; q)n
.

This will be used in Chapters 10–12.

12. Let

A(x) =

∞∑
k=0

qk
2+kxk

(q2; q2)k
(−xq2k+1; q2)∞ and B(x) =

∞∑
k=0

qk
2

xk

(q2; q2)k
(−xq2k+2; q2)∞.

(i) Show that A(x)−xqA(xq2) = B(xq) and B(x)−xqB(xq2) = A(xq). For
the latter, you might find it easier to show that B(x)−A(xq) = xqB(xq2).

(ii) Let C(x) = A(x)−B(x). Show that C(x) + C(xq) = xqC(xq2).

(iii) Show that C(0) = 0.

(iv) If

C(x) =

∞∑
n=0

cnx
n,
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132 3. PARTITIONS I: ELEMENTARY THEORY

use (ii) to show that

cn = cn−1
q2n−1

1 + qn
for n ≥ 1.

What is c0?

(v) Show that

A(x) = B(x) =

∞∑
n=0

qn
2

xn

(q; q)n
.

3.7. The Cauchy/Crelle q-binomial series

We come now to the most important identity in this chapter. As we have seen,
Euler was able to work out the expansions of (−x; q)∞ and 1/(x; q)∞ in powers of
x. We rephrase these two series here:

Theorem 28 (Euler’s partition identities). If |q| < 1, then

(ax; q)∞ =

∞∑
j=0

q(
j
2) (−a)j xj

(q; q)j
,(3.7.1)

1

(bx; q)∞
=

∞∑
k=0

bk xk

(q; q)k
,(3.7.2)

where (3.7.1) holds for any a and x and (3.7.2) requires that |bx| < 1.

Apparently it did not occur to Euler to try to expand (ax; q)∞/(bx; q)∞ in
powers of x. If it had, he would have found that his method would still work.
Instead, this expansion was found by four different mathematicians in the 1840s:
Cauchy, Eisenstein, Jacobi, and Heine, in that order. Two of these, Cauchy and
Jacobi, are among the greatest mathematicians who have ever lived, and Eisen-
stein’s talents were of the same magnitude, though he accomplished less because
he died at 29. Heine was also an excellent mathematician, if not quite on the same
level, but his paper was much the most important of the four because it introduced
q-hypergeometric series, which we will discuss in the last few sections of Chapter 5.

The identity in question is usually called the q-binomial theorem. We will
have two equivalent versions of it; since there are so many other results which are
also called the q-binomial theorem, we shall refer to one of them as the q-binomial
series, and the other as the Cauchy/Crelle series. (Eisenstein, Jacobi, and Heine
all published their versions of the series in Crelle’s Journal, and it seems likely
that each read the others’ work. Whether any of them had read Cauchy’s paper is
unclear. One suspects that Jacobi had, because he and Cauchy were both writing
a lot of papers on determinants in this period.) Our first proof will use the method
Euler would have used, which is the method that Cauchy and Jacobi actually did
use. We set

(ax; q)∞
(bx; q)∞

=

∞∑
n=0

Dn x
n

and attempt to work out the coefficients Dn. We have

(axq; q)∞
(bxq; q)∞

=

∞∑
n=0

Dn q
n xn
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3.7. THE CAUCHY/CRELLE q-BINOMIAL SERIES 133

and so
∞∑

n=0

Dn xn =
(ax; q)∞
(bx; q)∞

=
1− ax

1− bx

(axq; q)∞
(bxq; q)∞

=
1− ax

1− bx

∞∑
n=0

Dn qn xn.

From the extremes of this string of equalities we have

(1− bx)
∞∑

n=0

Dn xn = (1− ax)
∞∑
n=0

Dn qn xn.

Distributing the linear factors we get

∞∑
n=0

Dn x
n −

∞∑
n=0

Dn b xn+1 =
∞∑

n=0

Dn q
n xn −

∞∑
n=0

Dn a qn xn+1

which we rearrange as

∞∑
n=0

Dn x
n (1− qn) =

∞∑
n=0

Dn xn+1 (b− aqn) =

∞∑
n=1

Dn−1 x
n
(
b− aqn−1

)
.

Note that the n = 0 term on the left side is zero. Equating coefficients of xn we
see that

Dn (1− qn) = Dn−1

(
b− aqn−1

)
if n ≥ 1.

We rewrite this as

Dn = Dn−1
b− aqn−1

1− qn

and iterate it:

Dn = D0

(
b− aqn−1

) (
b− aqn−2

)
· · · (b− aq) (b− a)

(1− qn)(1− qn−1) · · · (1− q2)(1− q)
.

Since D0 = 1 (one way to see this is to set x = 0 in the series we started with), this
proves

Theorem 29 (The Cauchy/Crelle series). If |q| < 1 and |bx| < 1, then

(3.7.3)
(ax; q)∞
(bx; q)∞

=

∞∑
n=0

(
b− aqn−1

) (
b− aqn−2

)
· · · (b− aq) (b− a)

(q; q)n
xn,

where
(
b− aqn−1

) (
b− aqn−2

)
· · · (b− aq) (b− a) = 1 if n = 0.

(The assumption |bx| < 1 is needed for convergence of the series.) If b = 1 this
can be written more compactly:

Theorem 30 (The q-binomial series). If |q| and |x| are both less than 1, then

(3.7.4)
(ax; q)∞
(x; q)∞

=

∞∑
n=0

(a; q)n
(q; q)n

xn.

Although none of its four discoverers stated it this way, this is the form in
which the q-binomial series most often occurs in the literature. It is equivalent to
the Cauchy/Crelle q-binomial series by a rescaling argument: replace x by bx and a
by a

b in the q-binomial series and it becomes the Cauchy/Crelle series. It is almost
the form Heine found: he had qα in place of a. On the other hand, Eisenstein had
qα in place of b in the Cauchy/Crelle series with a = 1.
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One might also find the Cauchy/Crelle series by multiplying (3.7.1) and (3.7.2)
together:

(ax; q)∞
(bx; q)∞

=

⎛
⎝ ∞∑

j=0

q(
j
2) (−a)j xj

(q; q)j

⎞
⎠( ∞∑

k=0

bk xk

(q; q)k

)

=
∞∑

n=0

∑
j+k=n

xn

(q; q)n

(
n

j

)
q

q(
j
2) (−a)j bk

=

∞∑
n=0

xn

(q; q)n

n∑
j=0

(
n

j

)
q

q(
j
2) (−a)j bn−j .

According to Rothe’s q-binomial theorem,
n∑

j=0

(
n

j

)
q

q(
j
2) (−a)j bn−j = (b− a)(b− aq) · · · (b− aqn−1),

and thus we get the Cauchy/Crelle series again.

As Cauchy pointed out, his series contains four of our earlier identities as special
cases. It obviously reduces to Euler’s

(3.7.5)
∞∑
k=0

xk

(q; q)k
=

1

(x; q)∞

if a = 0 and b = 1; and to Euler’s

(3.7.6)

∞∑
k=0

q(
k
2) xk

(q; q)k
= (−x; q)∞

if b = 0 and a = −1. Cauchy’s proof of

1

(x; q)n+1
=

∞∑
k=0

(
n+ k

k

)
q

xk

was to set a = qn+1 and b = 1 in the Cauchy/Crelle series, and he also derived
Rothe’s q-binomial theorem by setting a = −1 and b = −qn. Cauchy knew of
Euler’s work, but he did not know that Rothe had beaten him to his q-binomial
theorem.

Jacobi used the Cauchy/Crelle series to prove the result we called Jacobi’s
q-binomial theorem in section 2.6. We have

(ax; q)∞
(bx; q)∞

=
(cx; q)∞
(bx; q)∞

(ax; q)∞
(cx; q)∞

=

⎛
⎝ ∞∑

j=0

(b− c) · · ·
(
b− cqj−1

)
(q; q)j

xj

⎞
⎠( ∞∑

k=0

(c− a) · · ·
(
c− aqk−1

)
(q; q)k

xk

)

=
∞∑

n=0

∑
j+k=n

xn

(q; q)n

(
n

k

)
q

(b− c) · · ·
(
b− cqj−1

)
(c− a) · · ·

(
c− aqk−1

)

=

∞∑
n=0

xn

(q; q)n

n∑
k=0

(
n

k

)
q

(b− c) · · ·
(
b− cqn−k−1

)
(c− a) · · ·

(
c− aqk−1

)
.
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On the other hand,

(ax; q)∞
(bx; q)∞

=
∞∑

n=0

(b− a)(b− aq) · · ·
(
b− aqn−1

)
(q; q)n

xn.

Equating coefficients of
xn

(q; q)n
we get

(b− a)(b− aq) · · ·
(
b− aqn−1

)
=

n∑
k=0

(
n

k

)
q

(b− c)(b− cq) · · ·
(
b− cqn−k−1

)
(c− a)(c− aq) · · ·

(
c− aqk−1

)
,

which is Jacobi’s q-binomial theorem, proved by his method. Alternatively, we
could start with Jacobi’s q-binomial theorem and read the argument backwards to
get a rather silly proof that

(ax; q)∞
(bx; q)∞

=
(cx; q)∞
(bx; q)∞

(ax; q)∞
(cx; q)∞

.

We have not yet explained why one would call

(ax; q)∞
(x; q)∞

=
∞∑

n=0

(a; q)n
(q; q)n

xn

the q-binomial series. This is easiest to see from Heine’s version:

(qαx; q)∞
(x; q)∞

=
∞∑

n=0

(qα; q)n
(q; q)n

xn.

If we let q → 1 here, then

(qα; q)n
(q; q)n

=
1− qα

1− q

1− qα+1

1− q2
. . .

1− qα+n−1

1− qn

=
1− qα

1− q

1− qα+1

1− q
. . .

1− qα+n−1

1− q

1− q

1− q

1− q

1− q2
. . .

1− q

1− qn

→ α(α+ 1) · · · (α+ n− 1) · 1 · 1
2
. . .

1

n

=
α(α+ 1) · · · (α+ n− 1)

n!
.

Thus the series becomes
∞∑

n=0

α(α+ 1) · · · (α+ n− 1)
xn

n!
,

which is the Taylor series expansion of the general binomial (1− x)−α, converging
to it if |x| < 1.

It may be unfair to ask why a certain mathematician didn’t find a particular
result, but sometimes it is hard to resist. Euler could easily have derived the
Cauchy/Crelle series if he had only thought to look for it. Why didn’t he? (It
is very likely but not absolutely certain that he didn’t. Hardy, in his book on
Ramanujan, says that the formula “probably goes back to Euler”, though he does
not give a reference, and no one has ever been able to find one as far as I know. Euler
wrote an extraordinary amount of mathematics, and it is not completely out of the
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question that the Cauchy/Crelle series may be somewhere in his collected papers,
or possibly in his letters, which were numerous and have received less attention. I
have looked at a lot of his work.)

There is, however, a good reason why he might not have found it: the special
cases of it that he found have very natural interpretations in partition theory;
whereas it is less clear what the Cauchy/Crelle series has to do with partitions. To
conclude this section we will derive the Cauchy/Crelle series by partition counting.

To this end, it is convenient to replace a by −r, so that we are trying to
interpret (−rx; q)∞/(bx; q)∞ as a partition series. We can say that the numerator
generates partitions with distinct red parts, in that the coefficient of rk xk when
the numerator is expanded is the generating function for partitions with at most
k distinct parts, which we will imagine are red. We can say that the denominator
generates partitions with (not necessarily distinct) blue parts, in that the coefficient
of bj xj when the denominator is expanded is the generating function for partitions
with at most j parts, which we will imagine are blue. But we know what these two
generating functions are, namely

q(
k
2)

(q; q)k
and

1

(q; q)j
, respectively.

When the whole fraction is expanded in powers of x, every x comes with either an
r or a b; hence if a term has factors xn and rk, then it also has a factor bn−k. From
above, the coefficient of xn bk rn−k is the generating function for partitions with at
most n parts, which may be either blue or red. The red parts must be distinct and
there are no more than k of them. The blue parts need not be distinct, but there
are at most n− k of them. Hence the coefficient of xn bk rn−k must be

q(
k
2)

(q; q)k

1

(q; q)n−k
=

q(
k
2)

(q; q)n

(
n

k

)
q

.

Since k may have any value between 0 and n, the coefficient of xn is

n∑
k=0

(
n

k

)
q

q(
k
2)

(q; q)n
bk rn−k.

By Rothe’s q-binomial theorem this coefficient equals

(b+ r)(b+ rq) · · · (b+ rqn−1)

(q; q)n
,

and we have proved that

(−rx; q)∞
(bx; q)∞

=
∞∑

n=0

(b+ r)(b+ rq) · · · (b+ rqn−1)
xn

(q; q)n
,

which is just a restatement of the Cauchy/Crelle series. We needed to use Rothe’s
q-binomial theorem along the way, but since we proved that earlier by counting
partitions, this proof is wholly partition-theoretic. Note that it is otherwise identical
with our second proof of the Cauchy/Crelle series, where we multiplied two series
together—we simply redid every step of that argument by counting partitions rather
than by algebra.
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Exercises

1. Check the details of Cauchy’s proof of (3.7.5).

2. Check the details of Cauchy’s proof of (3.7.6).

3. Here is an outline of another derivation of the Cauchy/Crelle series. We set

f(a, b) =
∞∑

n=0

(b− a) (b− aq) · · ·
(
b− aqn−1

)
(q; q)n

xn,

where |q| < 1, |bx| < 1, and (b− a) (b− aq) · · ·
(
b− aqn−1

)
= 1 if n = 0.

(i) Explain why f(bq, b) = 1/(1− bx).

(ii) Rewrite

f(a, b) = 1 +

∞∑
n=1

(b− a) (b− aq) · · ·
(
b− aqn−1

)
(q; q)n

xn.

(iii) Rewrite b − a = (b− aqn) − a (1− qn) in (ii), split the series into two
pieces, reindex one of them, and recombine. The result should be f(a, b) =
(1− ax) f(aq, b).

(iv) Iterate the result of (iii) to get f(a, b) = (ax; q)∞ f(0, b).

(v) We know f(0, b) from one of Euler’s identities, but we can also get it out
of this argument. What expression does the result of (iv) give for f(bq, b)? Use
this and (i) to find f(0, b).

(vi) Use (iv) and (v) to conclude that f(a, b) = (ax; q)∞/(bx; q)∞.

(vii) Which identity of Euler would give us f(0, b)? Why was step (ii)
necessary?

4. Here is an outline of yet another derivation of the Cauchy/Crelle series, similar
to the first proof in the text but not quite the same. For |bx| < 1 and |q| < 1,
let

(ax; q)∞
(bx; q)∞

=

∞∑
n=0

cn(a, b) x
n.

(i) By setting x = 0, or otherwise, explain why c0(a, b) = 1.

(ii) Show that

(ax; q)∞
(bx; q)∞

− (axq; q)∞
(bxq; q)∞

= x(b− a)
(axq; q)∞
(bx; q)∞

.

(iii) Explain why this implies (1− qn)cn(a, b) = (b− a)cn−1(aq, b) for n ≥ 1.

(iv) Explain why this implies

cn(a, b) =
(b− a)(b− aq) · · ·

(
b− aqn−1

)
(q; q)n

for n ≥ 0.

5. Use the Cauchy/Crelle series to show that

(−q; q2)∞
(q2; q2)∞

= 1 +

∞∑
n=1

q2n−1(1 + q)(−q; q2)n−1

(q2; q2)n
.

This was problem 15 in section 3.3.
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138 3. PARTITIONS I: ELEMENTARY THEORY

6. Use the Cauchy/Crelle series to show that

(−q2; q2)∞
(q; q2)∞

=

∞∑
n=0

qn
(−q; q2)n
(q2; q2)n

.

This was problem 17 in section 3.3.

7. Suppose that |q| < 1, that D(x) is a function that is not infinite at x = 0, and
that

(3.7.7) D(x) =
1

1− x
− x

1− x
D(xq).

(i) Show that

D(x) =
1

1− x
− x

(1− x)(1− xq)
+

x2q

(1− x)(1− xq)
D(xq2).

(ii) Show that

D(x) =
1

1− x
− x

(1− x)(1− xq)
+

x2q

(1− x)(1− xq)(1− xq2)

− x3q3

(1− x)(1− xq)(1− xq2)
D(xq3).

(iii) For any positive integer n, show that

(3.7.8) D(x) =

n−1∑
k=0

(−x)kq(
k
2)

(x; q)k+1
+

(−x)nq(
n
2)

(x; q)n
D(xqn).

(iv) Explain why (3.7.8) implies that

D(x) =
∞∑
k=0

(−x)kq(
k
2)

(x; q)k+1

is the unique solution of (3.7.7) when |q| < 1 and D(0) is not infinite.

(v) Show that D(x) = 1 is also a solution of (3.7.7), and hence

(3.7.9)
∞∑
k=0

(−x)kq(
k
2)

(x; q)k+1
= 1.

8. For n ≥ 0, define

Dn(x, q) =

n∑
k=0

(−x)kq(
k
2)

(x; q)k+1
.

Prove by induction on n that

Dn(x, q) = 1− (−x)n+1q(
n+1
2 )

(x; q)n+1
,

and (assuming as usual that |q| < 1) explain why this implies (3.7.9).

9. Prove (3.7.9) by using (3.5.7) from problem 15 in section 3.5.
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10. George Andrews has observed that

1 = 1 +

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
,(a)

2 = 1 +

∞∑
k=0

(−1)kqk
2

(q; q2)k+1
,(b)

3 = 1 +

∞∑
k=0

q(
k
2)

(−q; q)k
,(c)

and that (3.7.9) affords easy proofs of these identities. To prove (a), start by
observing that an equivalent form of (3.7.9) is

∞∑
k=0

(−x)kq(
k
2)

(xq; q)k
= 1− x.

To prove (b), start by replacing q by q2 in (3.7.9).

11. What other identity implies that

∞∑
k=0

(−1)kq(
k
2)

(q; q)k
= 0?

12. Show that
n∑

k=0

(−1)kq(
k
2)

(q; q)k
=

(−1)nq(
n+1
2 )

(q; q)n
.

This is a finite form of (a) in problem 10. Finite forms of (b) and (c) were in
problems 17 and 18 in section 3.2.

13. Part (a) of problem 10 gives us a rare example of an interesting infinite series
that converges to zero. Here is another one. Define

Sn(x; q) = 1 +

n∑
k=1

(1 + qk)
(x− 1)(x− q) · · · (x− qk−1)

(xq; q)k
,

where S0(x; q) = 1.

(i) Prove that

Sn(x; q) =
(x− q)(x− q2) · · · (x− qn)

(xq; q)n
=

( qx ; q)n

(qx; q)n
xn

for any nonnegative integer n.

(ii) If |q| < 1 and |x| < 1, explain why

1 +

∞∑
k=1

(1 + qk)
(x− 1)(x− q) · · · (x− qk−1)

(xq; q)k
= 0.

14. The worst proof yet of the Cauchy/Crelle series. This problem outlines a
derivation of the Cauchy/Crelle series from Taylor’s theorem

(3.7.10) f(x) =

∞∑
n=0

f (n)(0)
xn

n!
,
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140 3. PARTITIONS I: ELEMENTARY THEORY

where f (n)(0) denotes the ordinary nth derivative of f(x) evaluated at x = 0.
For convenience, we will denote

fa,b(x) =
(ax; q)∞
(bx; q)∞

.

Note that (3.7.3) would be established if we can show that

(3.7.11)
dn

dxn
fa,b(x)

∣∣∣∣
x=0

= f
(n)
a,b (0) =

n! (b− a)(b− aq) · · · (b− aqn−1)

(q; q)n
,

where the right side means 1 if n = 0.

(i) Show that the logarithmic derivative of fa,b(x) with respect to x is

f ′
a,b(x)

fa,b(x)
=

∞∑
j=0

−aqj

1− axqj
−

∞∑
j=0

−bqj

1− bxqj
.

(ii) If we denote

ga,b(x) =
∞∑
j=0

bqj

1− bxqj
−

∞∑
j=0

aqj

1− axqj
,

explain why we have

f ′
a,b(x) = fa,b(x)ga,b(x),

and use this to show that f ′
a,b(0) =

b−a
1−q .

(iii) Show that

dk−1

dxk−1

bqj

1− bxqj
=

(k − 1)! (bqj)k

(1− bxqj)k

for k ≥ 1, and use this to show that

g
(k−1)
a,b (0) = (k − 1)!

bk − ak

1− qk
.

(iv) Use (ii) and (iii) to show that

f ′′
a,b(0) =

2(b− a)(b− aq)

(1− q)(1− q2)
.

(v) By taking q = 1 in the q-Leibniz rule from problem 11 in section 2.5,
show that

f
(n)
a,b (0) =

n∑
k=1

(
n− 1

k − 1

)
f
(n−k)
a,b (0)g

(k−1)
a,b (0).

(vi) Use the result of (v) and the mysterious identity (2.9.6) from section
2.9 to prove (3.7.11) by induction on n.
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3.8. q-EXPONENTIAL FUNCTIONS 141

3.8. q-exponential functions

In this section we use the q-derivative to give an alternative approach to the
identities of the last few sections. In a modern calculus course, the next thing one
learns to differentiate after the power functions is the exponential function. One
finds that the previously mysterious function ex is interesting because it is its own
derivative. Moreover, the only functions with this property are constant multiples
of ex, so ex is the only one that equals 1 when x = 0. So it is now natural, at least
if we have read section 2.4, to ask for a function f(x) that has f(0) = 1 and is
its own q-derivative. This means that all the higher q-derivatives of f(x) will be 1
when x = 0, so the right side of (2.4.9) becomes

(3.8.1)

∞∑
n=0

xn

n!q
, which we will denote by eq(x).

It is easy to check directly that eq(x) is its own q-derivative; we leave this as an
exercise. Unlike the ordinary exponential function, however, the series in (3.8.1)
does not converge for every x. Under our standard assumption that |q| < 1, it
converges for |x| < 1/|1− q|; we leave this as an exercise also. So we assume from
now on when we talk about eq(x) that |x| is small enough for the series (3.8.1) to
converge.

We can get another expression for eq(x) by solving the q-differential equation

(3.8.2) Dq f(x) = f(x), which is equivalent to f(x) =
f(x)− f(qx)

x(1− q)
.

A little algebra (which we leave as an exercise) allows us to rewrite (3.8.2) as

f(x) =
f(qx)

1− x(1− q)
.

Iterating this n times we get

f(x) =
f(xqn)

(1− x(1− q)) (1− xq(1− q)) · · · (1− xqn−1(1− q))
=

f(xqn)

(x(1− q); q)n
.

Letting n → ∞, using the assumptions |q| < 1 and f(0) = 1, we have

f(x) =
1

(x(1− q); q)∞
.

Since f(x) is the q-exponential function eq(x), it follows that

(3.8.3)
1

(x(1− q); q)∞
= eq(x) =

∞∑
n=0

xn

n!q
.

Does (3.8.3) look impressive? It really isn’t—it’s just Euler’s theorem (3.5.1),
namely

(3.8.4)

∞∑
n=0

xn

(q; q)n
=

1

(x; q)∞

if |q| < 1 and |x| < 1, in an uglier notation. In Chapter 1 we observed that

n!q(1− q)n = (q; q)n,
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142 3. PARTITIONS I: ELEMENTARY THEORY

and if we use this to replace (q; q)n in (3.5.1) and then replace x by x(1 − q), we
have (3.8.3). Thus the q-derivative is essentially just a rephrasing of Euler’s old
trick of relating f(x) to f(xq).

Let’s try to solve the q-differential equation

(3.8.5) Dq f(x) = f(qx), which is equivalent to f(qx) =
f(x)− f(qx)

x(1− q)
.

A little algebra (which we leave as an exercise) allows us to rewrite (3.8.5) as

f(x) = (1 + x(1− q)) f(qx).

Iterating this n times we get

f(x) = (1 + x(1− q)) (1 + xq(1− q)) · · ·
(
1 + xqn−1(1− q)

)
f(xqn)

= (−x(1− q); q)n f(xq
n).

Letting n → ∞ and using the assumption |q| < 1 we get

f(x) = (−x(1− q); q)∞ f(0).

As with ordinary first order differential equations, there is typically an arbitrary
constant in the general solution of a first order q-differential equation. The simplest
assumption we could make is f(0) = 0, but we see that in that case f(x) would
be identically zero. The next simplest assumption would be f(0) = 1, and this
is reasonable because a solution of (3.8.5) should be another q-analogue of the
exponential function. So let’s denote the unique solution of (3.8.5) satisfying f(0) =
1 by Eq(x). Then we just proved that

(3.8.6) Eq(x) = (−x(1− q); q)∞ .

We would like to have an infinite series expansion of Eq(x) so that we could make
a statement like (3.8.3). There are several ways we could proceed. The cheap way
would be to look back at section 3.6 to see how to expand (3.8.6), but it is more
interesting to try to use the q-Taylor theorem (2.4.9). To do this, we need to be able
to evaluate the nth q-derivative of Eq(x) at x = 0, and there are two alternatives.
We could try to compute q-derivatives of the infinite product in (3.8.6), or we could
hope to find them from the functional equation (3.8.5). The former is not as hard
as it sounds (see problem 6), but let’s try the latter. We need to be able to find

Dn
q f(x)

∣∣
x=0

, where f∗(x) = Dq f(x) = f(qx)

and f(0) = 1. Using (2.4.5), we have

D2
q f(x) = Dq f(qx) = qf∗(qx) = qf(q2x).

Using (2.4.5) again, we have

D3
q f(x) = Dq qf(q

2x) = q3f∗(q2x) = q3f(q3x),

and it looks as though

(3.8.7) Dn
q f(x) = q(

n
2)f(qnx).

We know (3.8.7) already for n = 0, 1, 2, 3. Assuming it holds for n, we have

Dn+1
q f(x) = Dq q

(n2)f(qnx).

By (2.4.5) and (3.8.5) this becomes

Dn+1
q f(x) = q(

n
2)+nf∗(qnx) = q(

n+1
2 )f(qn+1x),
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which is (3.8.7) with n + 1 in place of n, so (3.8.7) holds for every nonnegative
integer n. Setting n = 0 there we have

Dn
q f(x)

∣∣
x=0

= q(
n
2)f(0) = q(

n
2).

Therefore the q-Taylor series of f(x) = Eq(x) is

∞∑
n=0

q(
n
2) xn

n!q
,

and, assuming convergence, we have

(3.8.8)

∞∑
n=0

q(
n
2) xn

n!q
= Eq(x) = (−x(1− q); q)∞ .

This series converges for every x when |q| < 1, so it could be considered a better
q-analogue of the exponential series than (3.8.3). It is Euler’s theorem (3.6.1) with
x replaced by x(1− q).

There are two relations between the q-exponential functions eq(x) and Eq(x).
One is fairly obvious, while the other is more subtle. From the infinite product
expansions it is clear that Eq(x) and eq(x) are almost reciprocals of each other:

eq(−x) =
1

(−x(1− q); q)∞
=

1

Eq(x)
.

For the second relation we start by observing that

q(
n
2) n!q−1 = q1+2+···+(n−1)(1 + q−1) · · · (1 + q−1 + q−2 + · · ·+ q1−n)

= (q + 1)(q2 + q + 1) . . . (qn−1 + qn−2 + · · ·+ q + 1)

= n!q.(3.8.9)

If we change q to q−1 in either eq(x) or Eq(x), the series still make sense if x is
sufficiently small (see problem 4), and by (3.8.8) we have

Eq−1(x) =

∞∑
n=0

q−(
n
2) xn

n!q−1

=
∞∑

n=0

xn

q(
n
2)n!q−1

=
∞∑

n=0

xn

n!q
= eq(x).

Evidently we also have eq−1(x) = Eq(x) (why?). One of the characteristic properties
of an exponential function is that the reciprocal is found by changing x to −x, and
we see that these q-exponential functions almost have the same property:

eq(−x) =
1

eq−1(x)
and Eq(−x) =

1

Eq−1(x)
.

Recall that

Dq eq(x) = eq(x) and Dq Eq(x) = Eq(xq).

What would a function look like if it satisfied the equation

(3.8.10) Dq f(x) = u f(x) + v f(xq)
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for some constants u and v? Let’s also assume that f(0) = 1, as with the two q-
exponential functions we already have. As before, we can solve (3.8.10) by iteration.
A little algebra (exercise) shows that it is equivalent to

f(x) = f(xq)
1 + vx(1− q)

1− ux(1− q)
.

By induction we then have

(3.8.11) f(x) = f(xqn)
(−vx(1− q); q)n
(ux(1− q); q)n

for any nonnegative integer n. Returning to our usual assumption that |q| < 1, and
recalling that f(0) = 1, letting n → ∞ in (3.8.11) gives

f(x) =
(−vx(1− q); q)∞
(ux(1− q); q)∞

as the unique solution of (3.8.10) with f(0) = 1. Now we would like to get an
identity like (3.8.8) or (3.8.3) for this function. It is convenient to rename it first:
we have shown that

g(x;u, v) :=
(−vx(1− q); q)∞
(ux(1− q); q)∞

is the unique solution of

(3.8.12) Dq g(x;u, v) = u g(x;u, v) + v g(xq;u, v) with g(0;u, v) = 1.

On the other hand, if we compute the q-derivative of g(x;u, v) directly we get

Dq g(x;u, v) =

(−vx(1−q);q)∞
(ux(1−q);q)∞

− (−vxq(1−q);q)∞
(uxq(1−q);q)∞

x(1− q)

=
(−vxq(1− q); q)∞
(ux(1− q); q)∞

1 + vx(1− q)− (1− ux(1− q))

x(1− q)
.

The first of the two fractions on the previous line is g(x;u, vq), and the second
simplifies to u+ v, so we have

Dq g(x;u, v) = (u+ v) g(x;u, vq).

Iterating this n times gives

Dn
q g(x;u, v) = (u+ v)(u+ vq) · · · (u+ vqn−1) g(x;u, vqn)

for any nonnegative integer n (where (u+ v)(u+ vq) · · · (u+ vqn−1) = 1 if n = 0),
and hence

Dn
q g(x;u, v)

∣∣
x=0

= (u+ v)(u+ vq) · · · (u+ vqn−1) g(0;u, vqn)

= (u+ v)(u+ vq) · · · (u+ vqn−1).(3.8.13)

The q-Taylor theorem (2.4.9) therefore implies that

g(x;u, v) =
∞∑
n=0

(u+ v)(u+ vq) · · · (u+ vqn−1)
xn

n!q
,

and so our analogue of (3.8.8) and (3.8.3) is

(3.8.14)
(−vx(1− q); q)∞
(ux(1− q); q)∞

= g(x;u, v) =

∞∑
n=0

(u+ v)(u+ vq) · · · (u+ vqn−1)
xn

n!q
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXERCISES 145

This is just the Cauchy/Crelle series in a different notation. If we replace x by
x(1− q) in (3.7.3) and take b = u and a = −v, the result is (3.8.14).

Exercises

1. Show that if

f(x) =
f(x)− f(qx)

x(1− q)
,

then f(x) = f(qx)/(1− x(1− q)), and that if

f(qx) =
f(x)− f(qx)

x(1− q)
,

then f(x) = (1 + x(1− q)) f(qx).

2. Use the ratio test to show that if |q| < 1, then
∞∑

n=0

xn

n!q

converges for |x| < 1/|1− q|.
3. Use the ratio test to show that if |q| < 1, then

∞∑
n=0

q(
n
2) xn

n!q

converges for all x.

4. Since the series in problems 2 and 3 reduce to ex if q = 1, they converge for all
x then (as is easily checked by the ratio test). We never assume q is large, but
what if we did? Show that if q > 1, then the series in problem 2 converges for
all x, while the series in problem 3 converges for |x| < 1/|1− 1

q |.
5. Show directly that

Dq

∞∑
n=0

xn

n!q
=

∞∑
n=0

xn

n!q
.

6. (a) Show directly that

Dq
1

(x(1− q); q)∞
=

1

(x(1− q); q)∞
.

(b) Use (a) and (2.4.9) to prove (3.8.3).

7. (a) Show that if a is independent of x, then

Dq (ax; q)∞ = −a(axq; q)∞
1− q

.

In particular,

Dq (−x(1− q); q)∞ = (−xq(1− q); q)∞ .

(b) Iterate the second result of part (a) to show that

Dn
q (−x(1− q); q)∞ = q(

n
2) (−xqn(1− q); q)∞ .

(c) Use (b) and (2.4.5) to prove (3.8.8).
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146 3. PARTITIONS I: ELEMENTARY THEORY

8. (a) Show that

Dq
1

(x; q)n+1
=

[n+ 1]q
(x; q)n+2

.

(b) Show that for any nonnegative integer k we have

Dk
q

1

(x; q)n+1
=

[n+ 1]q[n+ 2]q · · · [n+ k]q
(x; q)n+k+1

=
(n+ k)!q

n!q

1

(x; q)n+k+1
.

(c) Use (b) and (2.4.9) to prove that

1

(x; q)n+1
=

∞∑
k=0

(
n+ k

k

)
q

xk.

This is Cauchy’s theorem (3.5.3).

9. Suppose |q| < 1, and let f(x) be a function that is finite at x = 0. If

(3.8.15) F (x) = x(1− q)
∞∑
n=0

qn f(xqn),

show that Dq F (x) = f(x). Since F (0) = 0, F is called the q-integral of f from
0 to x.

10. If a is any nonnegative number and |q| < 1, show directly from (3.8.15) that the
q-integral of xa is xa+1/[a+ 1]q.

11. Show directly from (3.8.15) that the q-integral of

eq(x) =
∞∑

m=0

xm

m!q

is eq(x)− 1.

12. It is surprisingly hard to show directly from (3.8.15) that the q-integral of

eq(x) =
1

(x(1− q); q)∞

is eq(x)− 1, but it is a nice application of several of the identities in sections 3.5
and 3.6.

(i) We have to evaluate

x(1− q)

∞∑
n=0

qneq (xq
n) = x(1− q)

∞∑
n=0

qn

(xqn(1− q); q)∞
.

Show that this can be rewritten as

x(1− q)

(x(1− q); q)∞

∞∑
n=0

qn (x(1− q); q)n .

(ii) Show that (i) can be rewritten as

x(1− q)

(x(1− q); q)∞

∞∑
n=0

qn
n∑

k=0

(
n

k

)
q

(−1)kq(
k
2)xk(1− q)k.

(iii) Show that (ii) can be rewritten as

x(1− q)

(x(1− q); q)∞

∞∑
k=0

(−1)kq(
k
2)xk(1− q)k

∞∑
n=k

(
n

k

)
q

qn.
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(iv) After setting n = m+ k in (iii), show that it becomes

1

(x(1− q); q)∞

∞∑
k=0

(−1)kq(
k+1
2 ) x

k+1(1− q)k+1

(q; q)k+1
.

(v) Show that (iv) can be rewritten as

1

(x(1− q); q)∞

⎡
⎣1− ∞∑

j=0

(−1)jq(
j
2) x

j(1− q)j

(q; q)j

⎤
⎦

and that this expression equals eq(x)− 1.

13. Suppose that yx = qxy, and that t and q commute with x and y and each other.
Show that eq(xt) eq(yt) = eq ((x+ y)t). This seems to be what Schützenberger
wanted his (and Potter’s) q-binomial theorem for.

14. Show directly from the series expansion

g(x;u, v) =
∞∑

n=0

(u+ v)(u+ vq) · · · (u+ vqn−1)
xn

n!q

that Dq g(x;u, v) = u g(x;u, v) + v g(xq;u, v).

15. The higher q-derivatives of g(x;u, v) can also be computed directly from the
q-differential equation (3.8.12), with the aid of (2.4.5). For convenience we
suppress the u and v from the notation: if

Dq g(x) = u g(x) + v g(xq),

show that

(i) D2
q g(x) = u2 g(x) + [2]quv g(xq) + qv2 g(xq2).

(ii) D3
q g(x) = u3 g(x) + [3]qu

2v g(xq) + [3]qquv
2 g(xq2) + q3v3 g(xq3).

(iii) Dn
q g(x) =

∑n
k=0

(
n
k

)
q
q(

k
2)ukvn−kg(xqk) for any nonnegative integer n.

(iv) Assuming that g(0) = 1, explain why (iii) implies (3.8.13).

16. (a) Show that

Dq
(ax; q)n
(bx; q)n

= [n]q(b− a)
(axq; q)n−1

(bx; q)n+1
.

(b) Calculate D2
q

(ax;q)n
(bx;q)n

. Since this answer is not nearly as nice as the answer to

(a), we should not expect (ax; q)n/(bx; q)n to have a nice expansion in powers
of x.

17. (a) Show that

Dq
xn

(bx; q)n
=

[n]qx
n−1

(bx; q)n+1
.

What does this reduce to if q → 1?

(b) Show more generally that

Dq
xm

(bx; q)n
=

xn−1 ([m]q + bxqn[n−m]q)

(bx; q)n+1
.

Therefore the result in (a) does not iterate nicely.
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148 3. PARTITIONS I: ELEMENTARY THEORY

(c) Nevertheless, xm/(bx; q)n has a nice expansion in powers of x. Starting from
the result of problem 8(c), or otherwise, show that

xm

(bx; q)n
=

∞∑
k=m

(
n+ k −m− 1

n− 1

)
q

xkbk−m.

3.9. Bibliographical Notes

Though Leibniz had thought about them, nothing of significance was done on
partitions before Euler’s work. Chapter 16 of his great book [94] is still as good
a place as any to start learning about partitions. Some of this chapter is also in
the papers [93] and [97]. The standard reference for partitions since 1976 has been
Andrews’s book [15]. More recently he has written the more elementary book [30]
with Kimmo Eriksson, which is an excellent alternative reference for many of the
topics presented here. Most of what I know about partitions I learned from [15], or
from Andrews’s other writings, or from him directly. In particular, the original plan
of this chapter and the next was loosely based on the introductory part of [16], and
several of the exercises are lifted from [15]. Problem 7 in section 73. is adapted from
a problem on the 1990 Putnam exam that he presumably contributed. Problems 7
and 8 in section 1 come from section 52 of Jacobi’s Fundamenta Nova [148]. The
last three problems in that section are adapted from one on the 2014 Putnam exam.
Problem 11 in section 3.2 is adapted from a problem on the 1960 Putnam Exam,
and problems 6 and 7 in section 3.4 from one on the 2003 Putnam exam. Problem
22 in section 3.2 comes from Jacobi’s paper [151], and problem 19 in that section
from [176]. Euler’s lemma—problem 18 in section 3.3—is Propositio 1 in [100],
except that it is stated for infinite products there. It becomes problem 5 on the
1952 Putnam exam if we replace each ej by −aj and rearrange. Nicole’s identity in
problem 21 [175],[159] is equivalent and even older. The further equivalent forms
in problems 22 and 19 come from [156] and [158] respectively.

Glaisher’s bijection appears in [123]. Cayley’s theorem appears in [71], and
much later in Sylvester’s paper [232], which is the other great work on partitions
(besides [94]) before 1900. Franklin’s argument at the end of section 3.4 is in
section 20 of [232]. Ferrers diagrams first appeared in print in [227], a short paper
published by Sylvester in 1853. (There is an interesting footnote in this paper
concerning the astronomer John Couch Adams, which is amplified upon in [155].)
Sylvester publicized Ferrers’ idea on several other occasions [228], [229], [231], but
it was probably not until [232] that it really became well-known. Norman Ferrers
coedited the Quarterly Journal of Pure and Applied Mathematics with Sylvester at
one time. The Andrews–Deutsch and Smoot–Yang theorems are taken from [170],
which also has a bijective proof of the Smoot–Yang theorem.

Problem 10 in section 3.6 comes from [139] and section 1.3 of [140]. The
references for the Cauchy/Crelle series are [67], [90], [150] and [137]. Ramanujan
also knew it [192], and gave the same proof as Cauchy and Jacobi.
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CHAPTER 4

Partitions II: Geometric Theory

4.1. Euler’s pentagonal number theorem

So far we have seen all of Euler’s major contributions to partition theory except
one: his so-called pentagonal number theorem. Just as we started Chapter 3 with
Euler’s remarkably successful attempt to expand (−q; q)∞ in powers of q, we start
this chapter with his rather more laborious attempt to expand (q; q)∞:

(q; q)∞ = (1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6)(1− q7)(1− q8) · · ·
= 1− q − q2 − q3 + q3 − q4 + q4 − q5 + q5 + q5 − q6 + q6 + q6 − q6

− q7 + q7 + q7 + q7 − q7 − q8 + q8 + q8 + q8 − q8 − q8 . . .

= 1− q − q2 + q5 + q7 + . . . .

On the evidence of the first several terms, we can see that some powers of q appear
with a +, some with a −, and some not at all. Euler wanted to know which powers
were going to show up, and with what signs. It is also not at all obvious that we
won’t eventually get something like 5q37; i.e., the coefficients of the first several
powers are all 0 or ±1, but that doesn’t necessarily mean they are all like that—
although it turns out that they are. Euler wrote out many more terms, and found
that

(q; q)∞ = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + . . . .

To see what the pattern of the exponents is he looked at the differences between
them, which are

1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, . . . .

This told Euler that the exponents must be quadratic (see problem 2), and he
soon came up with the formula n(3n± 1)/2 for them. He knew that the sequence
n(3n−1)/2 which, starting with n = 1, goes 1, 5, 12, 22, 35, . . . , were the pentagonal
numbers (see problem 1), and n(3n+1)/2 can be thought of as a pentagonal number
with a negative n since

(−n){3(−n) + 1}
2

=
n(3n− 1)

2
.

So Euler knew pretty quickly what the theorem should be, but proving it was
another matter. The argument he eventually found began with Euler’s lemma

149
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150 4. PARTITIONS II: GEOMETRIC THEORY

from problem 18 of section 3.3. Taking Ei = 1− qi and ei = −qi there we get

(q; q)n = 1− q − (1− q)q2 − (1− q)(1− q2)q3 − . . .

− (1− q)(1− q2) · · · (1− qn−1)qn

= 1− q −
n−1∑
k=1

(q; q)k q
k+1.(4.1.1)

It is not difficult to prove this directly; see problem 3. If |q| < 1, then both sides
converge as n → ∞, and we have

(q; q)∞ = 1− q −
∞∑
k=1

(q; q)k q
k+1

= 1− q − (1− q)q2 − (1− q)(1− q2)q3

− (1− q)(1− q2)(1− q3)q4 − (1− q)(1− q2)(1− q3)(1− q4)q5 − . . . .

Next, distribute all the factors of 1− q here:

(q; q)∞ = 1− q −
{
q2 − q3

}
−
{
(1− q2)q3 − (1− q2)q4

}
−
{
(1− q2)(1− q3)q4 − (1− q2)(1− q3)q5

}
− . . .

= 1− q − q2 + q3
(
1− (1− q2)

)
+ q4(1− q2)

(
1− (1− q3)

)
+ q5(1− q2)(1− q3)

(
1− (1− q4)

)
− . . .

= 1− q − q2 + q5 + (1− q2)q7 + (1− q2)(1− q3)q9 + . . .

= 1− q − q2 + q5 +

∞∑
k=1

(q2; q)k q
2k+5.

Writing this out broadly we have

(q; q)∞ = 1−q−q2+q5+(1−q2)q7+(1−q2)(1−q3)q9+(1−q2)(1−q3)(1−q4)q11+. . . ,

and now we distribute all the factors of 1− q2:

(q; q)∞ = 1− q − q2 + q5 +
{
q7 − q9

}
+
{
(1− q3)q9 − (1− q3)q11

}
+
{
(1− q3)(1− q4)q11 − (1− q3)(1− q4)q13

}
+ . . .

= 1− q − q2 + q5 + q7 + q9(−1 + 1− q3)

+ q11(1− q3)(−1 + 1− q4) + q13(1− q3)(1− q4)(−1 + 1− q5) + . . .

= 1− q − q2 + q5 + q7 − q12 − (1− q3)q15 + (1− q3)(1− q4)q18 − . . .

= 1− q − q2 + q5 + q7 − q12 −
∞∑
k=1

(q3; q)k q
3k+12.

In general we have

Lemma 3. For any positive integer n,

(4.1.2) (q; q)∞ =
n∑

k=1−n

(−1)k q
k(3k−1)

2 + (−1)n q
n(3n−1)

2

∞∑
k=1

(qn; q)k q
nk.
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4.1. EULER’S PENTAGONAL NUMBER THEOREM 151

We have seen the cases n = 1, 2, 3 of this already. We prove it by induction on
n by the same method as before. Consider the sum

∞∑
k=1

(qn; q)k q
nk = (1−qn)qn+(1−qn)(1−qn+1)q2n+(1−qn)(1−qn+1)(1−qn+2)q3n

+ (1− qn)(1− qn+1)(1− qn+2)(1− qn+3)q4n + . . . .

Distribute each of the factors of 1− qn:

(1− qn)qn + (1− qn)(1− qn+1)q2n + (1− qn)(1− qn+1)(1− qn+2)q3n

+ (1− qn)(1− qn+1)(1− qn+2)(1− qn+3)q4n + . . .

= qn +
{
q2n(1− qn+1)− q3n(1− qn+1)

}
+
{
q3n(1− qn+1)(1− qn+2)− q4n(1− qn+1)(1− qn+2)

}
+

{
q4n(1− qn+1)(1− qn+2)(1− qn+3)

− q5n(1− qn+1)(1− qn+2)(1− qn+3)

}
+ . . .

= qn + (1− qn+1 − 1)q2n + (1− qn+1)(1− qn+2 − 1)q3n

+ (1− qn+1)(1− qn+2)(1− qn+3 − 1)q4n + . . .

= qn − q3n+1 − (1− qn+1)q4n+2 − (1− qn+1)(1− qn+2)q5n+3 − . . .

= qn − q3n+1 −
∞∑
k=1

(qn+1; q)k q
(n+1)k+3n+1

= qn − q3n+1 − q3n+1
∞∑
k=1

(qn+1; q)k q
(n+1)k.

Substituting this in (4.1.2) we get

(q; q)∞ =

n∑
k=1−n

(−1)k q
k(3k−1)

2 + (−1)n qn+
n(3n−1)

2 + (−1)n+1 q3n+1+n(3n−1)
2

+ (−1)n+1 q3n+1+n(3n−1)
2

∞∑
k=1

(qn+1; q)k q
(n+1)k.

Now

3n+ 1 +
n(3n− 1)

2
=

3n2 + 5n+ 2

2
=

(n+ 1)(3n+ 2)

2
=

(n+ 1) (3(n+ 1)− 1)

2

and

n+
n(3n− 1)

2
=

n(3n+ 1)

2
=

(−n) (3(−n)− 1)

2
,

so the two terms above that aren’t inside a sum are the k = n + 1 and k = −n
terms respectively of the first sum, and we have

(q; q)∞ =

n+1∑
k=−n

(−1)k q
k(3k−1)

2 + (−1)n+1 q
(n+1)(3(n+1)−1)

2

∞∑
k=1

(qn+1; q)k q
(n+1)k,

which is (4.1.2) with n + 1 in place of n. Hence (4.1.2) holds for n + 1 if it holds
for n, and since it holds for n = 1, 2, 3, it holds for all positive integers n.
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152 4. PARTITIONS II: GEOMETRIC THEORY

Now we let n → ∞ in (4.1.2). The series

∞∑
k=1

(qn; q)k q
nk

converges (we leave this as an exercise), so the second term in (4.1.2) tends to zero

as n → ∞ because of the factor q
n(3n−1)

2 , since |q| < 1. Thus we get

Theorem 31 (Euler’s pentagonal number theorem). If |q| < 1, then

(q; q)∞ =

∞∑
k=−∞

(−1)k q
k(3k−1)

2

= 1 +
∞∑
k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

)

= 1 +
∞∑
k=1

(−1)k q
k(3k−1)

2

(
1 + qk

)
.

Euler worked so hard to prove this because he had two applications in mind.
We’ll see the second one in section 4.4. For the first one, recall that if p(j) is the
number of partitions of the integer j, then

(4.1.3)
1

(q; q)∞
=

∞∑
j=0

p(j) qj .

Multiplying this by (q; q)∞ and expanding the right side by the pentagonal number
theorem, we get

1 =

⎛
⎝ ∞∑

j=0

p(j) qj

⎞
⎠(1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 −−++ . . .

)
.

If n ≥ 1, then the coefficient of qn on the right side must be zero. This coefficient
is evidently

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− p(n− 12)− p(n− 15) . . . ,

so

(4.1.4) p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+p(n−12)+p(n−15)−−++ . . . ,

where the series alternates between pairs of positive terms and pairs of negative
terms, and continues until we drop below p(0). For example,

p(38) = p(37) + p(36)− p(33)− p(31) + p(26) + p(23)− p(16)− p(12) + p(3).

The series stops at this point because the next term would be p(−2), which is not
part of (4.1.3). The recurrence (4.1.4) gives a reasonably good way of constructing
a table of values of p(n); certainly much better than direct counting of all the
partitions.
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Exercises

1. To see why 1, 5, 12, 22, 35, . . . are called the pentagonal numbers, start by draw-
ing a dot. Then draw four more dots to make a pentagon. Then draw seven
more dots to create a pentagon whose sides are twice as long, and which has
the original pentagon in one corner. Then draw ten more dots to create a pen-
tagon with sides three times as long as the original, and so on. The sequence
1, 5, 12, 22, . . . is really 1, 1 + 4, 1 + 4 + 7, 1 + 4 + 7 + 10, . . . . Show that

1 + 4 + 7 + 10 + · · ·+ (3n− 2) =
n(3n− 1)

2
.

2. The first forward difference of a function f(n) is f(n + 1) − f(n) and the first
backward difference is f(n)−f(n−1), and the second difference is the difference
of the first difference. Show that a quadratic function has constant second dif-
ferences (either forward or backward, whichever you prefer). This is how Euler
knew that the sequence 1, 5, 12, 22, 35, . . . would be quadratic.

3. Give a direct proof of (4.1.1) by rewriting qk+1 = 1−
(
1− qk+1

)
.

4. Prove that the series
∞∑
k=1

(qn; q)k q
nk

converges for any positive integer n if |q| < 1. Does it converge if n = 0?

5. Show that the last two lines of the statement of Euler’s pentagonal number
theorem above are equivalent to the first line.

6. Compute p(n) up through p(5) by counting all the relevant partitions. (You can
check your answers in Chapter 3; recall that p(0) = 1 by convention.) Then use
(4.1.4) to compute p(6) through p(15).

7. Show that if |q| < 1, then

(4.1.5) q
(
q24; q24

)
∞ =

∞∑
n=−∞

(−1)nq(6n−1)2 .

This was pointed out by Gauss, and will be used in section 8.2.

8. Show that if |q| < 1, then

(x; q)∞ = 1− x

∞∑
k=0

qk (x; q)k.

You can start by applying Euler’s lemma to (x; q)n, or by imitating problem 3.
9. Show that for any nonnegative integer j we have

1−
∞∑
k=j

xqk (xqj ; q)k−j = (1− xqj)

⎡
⎣1− ∞∑

k=j+1

xqk (xqj+1; q)k−(j+1)

⎤
⎦

and use this to give an alternative proof of the result of problem 8.

10. In another paper Euler considered the function

S(x; q) =
∞∑
k=1

qk

qk − 1

(
x
q ; q
)
k
.
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Show that the series converges for all x if |q| < 1 and that

1 + S(xq; q)− S(x; q) = 1− x

∞∑
k=0

qk (x; q)k = (x; q)∞.

11. Suppose we take x = q−n in the result of problem 11, where n is a nonnegative
integer. Explain why this gives

1 =
n∑

k=0

qk−n (q−n; q)k.

12. Show that if we replace q by q−1 in the result of problem 11 we get

1

(q; q)n
=

n∑
j=0

qj

(q; q)j
,

which we have seen already in the previous two chapters.

13. Suppose we take x = q−n in the result of problem 10, where n is a nonnegative
integer. Explain why this gives

1 +
n∑

k=1

qk

qk − 1

(
q−n; q

)
k
=

n+1∑
k=1

qk

qk − 1

(
q−(n+1); q

)
k
.

14. Show that if we replace q by q−1 in the result of problem 13 we get

1 +
n∑

k=1

(
n

k

)
q

(q; q)k−1 =
n+1∑
k=1

(
n+ 1

k

)
q

(q; q)k−1,

and use this fact to show that
n∑

k=1

(
n

k

)
q

(q; q)k−1 = n.

We saw this result in section 2.9; this is essentially Euler’s proof of it.

15. In the same paper that engendered problems 10–14, Euler considered the sum

fm(q) =
∞∑
k=1

(qk; q)m qk−1

for |q| < 1 and a nonnegative integer m.

(i) Show that the series for fm(q) converges.

(ii) For nonnegative integers m and n define

fm,n(q) =

n∑
k=1

(qk; q)m qk−1.

Use induction on n to show that

fm,n(q) =
(qn; q)m+1

1− qm+1
.

(iii) Show that fm(q) = 1/(1− qm+1). What does this say if m = 0?
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16. Euler’s proof of (ii) in the previous problem did not use induction. Instead he
wrote

(1− qm+1)fm,n(q) =

n∑
k=1

(qk; q)m
(
qk−1 − qk+m

)

=

n∑
k=1

(qk; q)m
(
(1− qk+m)− (1− qk−1)

)
.

Finish the calculation to show that (1− qm+1)fm,n(q) = (qn; q)m+1.

17. Legendre gave an interesting variation of Euler’s proof of the pentagonal number
theorem. Here is an outline of it:

(i) Legendre started with

(q; q)∞ = 1 +
∞∑
k=1

(−1)k q
k(k+1)

2

(q; q)k
,

which follows from one of the identities in Chapter 3. Which one? Explain.

(ii) Show that, if k ≥ 1, then

q
k(k+1)

2

(q; q)k
=

q
k(k+1)

2

(q; q)k−1
+

q
k(k+3)

2

(q; q)k
.

(iii) Using (i) and (ii), show that

(q; q)∞ = 1− q +
∞∑
k=2

(−1)k q
k(k+1)

2

(q; q)k−1
+

∞∑
k=1

(−1)k q
k(k+3)

2

(q; q)k
.

(iv) By reindexing the first sum in (iii) and combining it with the second,
show that

(q; q)∞ = 1− q +
∞∑
k=1

(−1)k
q

k(k+3)
2 (1− q)

(q; q)k
.

(v) Show that the identity in (iv) can be rewritten as

(q; q)∞ = 1− q − q2 +
∞∑
k=1

(−1)k+1 q
(k+1)(k+4)

2

(q2; q)k
.

This completes the first iteration of Legendre’s argument.

(vi) For the second iteration of Legendre’s argument, show that if k ≥ 1,
then

q
(k+1)(k+4)

2

(q2; q)k
=

q
(k+1)(k+4)

2

(q2; q)k−1
+

q
(k+1)(k+6)

2

(q2; q)k
,

and repeat the same steps as above. The final result should be

(q; q)∞ = 1− q − q2 + q5 + q7 +
∞∑
k=1

(−1)k
q

(k+2)(k+7)
2

(q3; q)k
.

(vii) Legendre contented himself with one or two more iterations, but there
is a general result here that we can prove, namely

(4.1.6) (q; q)∞ =
n∑

k=−n

(−1)k q
k(3k−1)

2 +
∞∑
k=1

(−1)k+n q
(k+n)(k+3n+1)

2

(qn+1; q)k
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for all nonnegative integers n. Show that (i), (v), and (vi) are the cases n = 0, 1, 2
respectively of (4.1.6).

(viii) Show that

q
(k+n)(k+3n+1)

2

(qn+1; q)k
=

q
(k+n)(k+3n+1)

2

(qn+1; q)k−1
+

q
(k+n)(k+3n+3)

2

(qn+1; q)k
,

and use this to prove (4.1.6) by induction on n by the same procedure as in parts
(iii)–(v).

(ix) Show that (4.1.6) can be rewritten as

(4.1.7) (q; q)∞ =

n∑
k=−n

(−1)k q
k(3k−1)

2 + (−1)n q
n(3n+1)

2

∞∑
k=1

(−1)k
q2nk q

k(k+1)
2

(qn+1; q)k
.

(x) Show that the series

∞∑
k=1

(−1)k
q2nk q

k(k+1)
2

(qn+1; q)k

converges for any n, under our usual assumption that |q| < 1.

(xi) Explain why (x) implies that if we let n → ∞ in (4.1.7), we get Euler’s
pentagonal number theorem.

This is a long and challenging problem, but Nick Bartlett got all the way
through it as a freshman, so it can be done. Eric Moss has done the next
problem.

18. Jacobi also gave an interesting variation of Euler’s proof of the pentagonal num-
ber theorem. Here is an outline of it:

(i) Jacobi started by defining, for a nonnegative integer m,

fm(z) = 1− z + z(1− z)(1− zq) + z2(1− z)(1− zq)(1− zq2) + . . .

+ zm−1(1− z)(1− zq) · · · (1− zqm−1) =

m∑
k=1

(z; q)k z
k−1,

where f0(z) := 0. Write out f1(z), f2(z), and f3(z), and show that

f2(z) = 1−z2q−z2(1−zq) and f3(z)+z3q2f1(zq) = 1−z2q−z3(1−zq)(1−zq2).

(ii) Show that fm(z) = fm−1(z) + (z; q)m zm−1 if m ≥ 1.

(iii) Jacobi found a less obvious recurrence relation for fm(z) than the one
in (ii). By induction on m or otherwise, show that

(4.1.8) fm(z) + z3q2fm−2(zq) = 1− z2q − zm(zq; q)m−1 for m ≥ 2.

You did the cases m = 2, 3 already in (i).

(iv) Use (4.1.8) and induction on n to show that

f2n(z) =

n−1∑
k=0

(−1)kq
k(3k+1)

2 z3k +

n∑
k=1

(−1)kq
k(3k−1)

2 z3k−1

−
n−1∑
k=0

(−1)kq2nk−(
k
2)z2n+k(1− zqk+1)(1− zqk+2) · · · (1− zq2n−1−k)
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for n ≥ 1.

(v) The formula for f2n−1(z) is similar but has an extra term. Show that

f2n−1(z) =

n−1∑
k=0

(−1)kq
k(3k+1)

2 z3k +

n−1∑
k=1

(−1)kq
k(3k−1)

2 z3k−1 + (−1)nq3(
n
2)z3n−2

−
n−2∑
k=0

(−1)kq(2n−1)k−(k2)z2n−1+k(1− zqk+1)(1− zqk+2) · · · (1− zq2n−2−k)

for n ≥ 1.

(vi) Show that the results of (iv) and (v) can be combined into

(4.1.9) fm(z) =

�m−1
2 �∑

k=0

(−1)kq
k(3k+1)

2 z3k +

�m
2 �∑

k=1

(−1)kq
k(3k−1)

2 z3k−1

+
1− (−1)m

2
(−1)�

m
2 q3(

�m
2

�
2 )zm+�m

2 �

−
�m−2

2 �∑
k=0

(−1)kqmk−(k2)zm+k(1− zqk+1)(1− zqk+2) · · · (1− zqm−1−k)

for m ≥ 1, where 
x� denotes the floor of x, which is the greatest integer ≤ x,
and �x� denotes the ceiling of x, which is the smallest integer ≥ x.

(vii) Assuming as usual that |q| < 1, define

f(z) = lim
m→∞

fm(z) =

∞∑
k=1

(z; q)kz
k−1.

Show that the series converges if |z| < 1. It also converges if z = 1. Why?

(viii) If |z| < 1, the last sum in (4.1.9) approaches zero as m → ∞ because
of the factors zm and qmk. Thus Jacobi could conclude that if |z| < 1, then

(4.1.10) f(z) =

∞∑
k=1

(−1)kq
k(3k−1)

2 z3k−1 +

∞∑
k=0

(−1)kq
k(3k+1)

2 z3k.

But if z = 1 we have to be a little more careful; (4.1.10) is false if z = 1. The
terms of the last series in (4.1.9) still go to zero as m → ∞ because of the m in
the exponent of q, but the k = 0 term doesn’t have this exponent, so it survives.
Why does this imply Euler’s pentagonal number theorem?

4.2. Durfee squares

One of the greatest British mathematicians in the 19th century was James
Joseph Sylvester. He was an exception to the oft-stated “rule” that mathematicians
tend to do their best work when they are young, as perhaps the best period of his
career was the several years he spent at Johns Hopkins University around 1880,
when he was past 60. One of his students there was W. P. Durfee, for whom the
Durfee square is named. (It might be the earliest mathematical concept to be
named after an American.)
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The Durfee square of a partition is simply the largest square that fits in its
Ferrers diagram. For example, the partition 8+5+4+3+3+1 has a 3× 3 Durfee
square:

∗ ∗ ∗ • • • • •
∗ ∗ ∗ • •
∗ ∗ ∗ •
• • •
• • •
•

Is this a useful concept? In Chapter 5 we will discuss a famous theorem of Jacobi
called the triple product identity, from several points of view. To do Jacobi’s
argument we will need to prove

Theorem 32 (Jacobi’s Durfee square identity). If |q| < 1 and x �= q−1, q−2, . . . ,
then

(4.2.1)
1

(xq; q)∞
=

∞∑
k=0

qk
2

xk

(q; q)k (xq; q)k
.

We know from (3.6.4) that the left side of (4.2.1) is the generating function
for partitions; i.e., the coefficient of xn in (4.2.1) is the generating function for
partitions with exactly n parts. Suppose a partition with n parts has a Durfee
square of side k. Then it has two other components, one below the square and the
other to the right. It is possible that one or both of these could be empty, e.g., the
partition 4 + 4 + 4 + 4

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

has a Durfee square of side 4, and nothing else.
The lower component of a partition whose Durfee square is k× k is a partition

into some number of parts, all of which are at most k. We look at the conjugate of
the other (right) component, which is also a partition whose parts are at most k.

A Durfee square of side k contributes xk qk
2

to the generating function. The
(conjugate of the) right component has the other pieces of the k parts in the square,
and these pieces are all ≤ k, so the right component contributes 1/(q; q)k to the
generating function. Finally the lower component contributes some more parts
which are ≤ k, and the generating function for it is 1/(xq; q)k. (It has an x too
because the whole partition probably has more than k parts.) Summing over all k
we get (4.2.1). We will see how Jacobi proved (4.2.1) in Chapter 5. For another
proof see problem 7.

By the same sort of argument we can generalize this. (However, see problem
1.) Given a nonnegative integer r, we could look instead for the largest k× (k+ r)
rectangle that fits in the Ferrers diagram. This rectangle contributes xkqk(k+r) to
the generating function. The right component again has the remaining pieces of the
largest k parts, so the conjugate is a partition with parts ≤ k, so it again contributes
1/(q; q)k to the generating function. The lower component has the remaining parts,
all of which are ≤ k+ r, so the generating function for it is 1/(xq; q)k+r. Therefore
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we have

(4.2.2)
1

(xq; q)∞
=

∞∑
k=0

qk(k+r) xk

(q; q)k (xq; q)k+r
.

We turn next to partitions with distinct parts. The partition 9+6+5+4+3+1
has a Durfee square of side 4:

∗ ∗ ∗ ∗ • • • � �
∗ ∗ ∗ ∗ • •
∗ ∗ ∗ ∗ •
∗ ∗ ∗ ∗
� � �
�

Note that in this case we can add a 3×3 isosceles triangle to the right of the Durfee
square. We will call it the Franklin triangle, after Fabian Franklin, another of
Sylvester’s students. (This is not a standard name; we use it for reasons that will
become clear in the next section.) Whenever we have a Durfee square of side k in
a partition with distinct parts, we will always have a Franklin triangle whose side
is either k − 1 or k, according to whether the bottom of the Durfee square is a
complete part, as in the above example; or only part of a part, as for example with
8 + 6 + 4 + 3 + 2 + 1:

∗ ∗ ∗ • • • � �
∗ ∗ ∗ • • �
∗ ∗ ∗ •
� � �
� �
�

Here the Durfee square and the Franklin triangle both have side 3.
Let’s try the same argument as above on partitions with distinct parts. The

coefficient of xn in (−xq; q)∞ is the generating function for partitions with exactly
n parts which are all distinct. Suppose such a partition has a Durfee square of
side k. We consider two cases, as in the above examples. The first case is that
the Franklin triangle has side k − 1. Then the square and the triangle contribute

xk qk
2+(k2) to the generating function. To the right of the triangle are the remaining

pieces of the first k parts, which are themselves, when read diagonally, a partition
whose parts are at most k− 1. These pieces therefore contribute 1/(q; q)k−1 to the
generating function. Finally, below the square are some more parts whose size is at
most k − 1 (not k, because the bottom of the Durfee square is a complete part of
size k). Since these parts are distinct, they contribute (−xq; q)k−1 to the generating
function. So the generating function for the first case is

(4.2.3)
∞∑
k=1

xk qk
2+(k2) (−xq; q)k−1

(q; q)k−1
.

In the second case the Durfee square and the Franklin triangle both have side k.

This time they contribute xk qk
2+(k+1

2 ) to the generating function. To the right
of the triangle are the remaining pieces of the first k parts, which are now a par-
tition whose parts are at most k when we read them diagonally; and below the
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square are some distinct parts of size ≤ k. These contribute 1/(q; q)k and (−xq; q)k
respectively to the generating function for the second case, which is

(4.2.4)
∞∑
k=0

xk qk
2+(k+1

2 ) (−xq; q)k
(q; q)k

.

Combining (4.2.3) and (4.2.4) we have (leaving some of the steps as exercises)

Theorem 33 (Sylvester’s identity). For |q| < 1 and for all x,

(4.2.5) (−xq; q)∞ = 1 +

∞∑
k=1

xk q
k(3k−1)

2
(−xq; q)k−1

(q; q)k
(1 + xq2k).

This identity is interesting historically because, as remarked by George An-
drews, it “holds the distinction of being the first q-series identity whose first proof
was purely combinatorial.” It is interesting for another reason, as noted by Sylvester:
if we set x = −1 in (4.2.5), it reduces to

(4.2.6) (q; q)∞ = 1 +

∞∑
k=1

(−1)k q
k(3k−1)

2 (1 + qk),

which is equivalent to Euler’s pentagonal number theorem.

We can rewrite (4.2.5) in a slightly different form, which is interesting for a
reason we’ll see in problem 12:

(−xq; q)∞ = 1 +
∞∑
k=1

xk q
k(3k−1)

2
(−xq; q)k−1

(q; q)k

{
(1− qk) + qk(1 + xqk)

}

= 1 +
∞∑
k=1

xk q
k(3k−1)

2
(−xq; q)k−1

(q; q)k−1
+

∞∑
k=1

xk q
k(3k+1)

2
(−xq; q)k
(q; q)k

=

∞∑
k=0

xk q
k(3k+1)

2
(−xq; q)k
(q; q)k

+

∞∑
k=0

xk+1 q
(k+1)(3k+2)

2
(−xq; q)k
(q; q)k

,

where on the last line we added the 1 to one of the sums, reindexed the other, and
switched them. Combining the last two sums we get

(4.2.7) (−xq; q)∞ =

∞∑
k=0

xk q
k(3k+1)

2
(−xq; q)k
(q; q)k

(1 + xq2k+1).

Presumably, the second q-series identity whose first proof was purely combina-
torial was a finite form of (4.2.5) which comes right after it in Sylvester’s paper.
This time we want to find a similar expansion of (−xq; q)n, which we know is the
generating function for partitions with distinct parts each no larger than n. The
proof is much the same as that of (4.2.5), but we will make another distinction:
whether there is an underpart of the same size as the Durfee square right below
it. So we’ll consider four cases, though one of them is trivial and two of the others
could be combined. Case 0 is the trivial one, the empty partition of zero, which
contributes 1 to the generating function.

Case 1 is the underpart case: suppose there is a Durfee square of side j and a

part of size j below it (the underpart). The Durfee square contributes xjqj
2

and the
underpart xqj to the generating function. Since the parts are distinct, the Franklin

triangle must have side length j, so it contributes q1+2+···+j = q(
j+1
2 ). There are,
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in general, more distinct parts of size at most j − 1 below the underpart, and they
contribute (−xq; q)j−1. Finally, the first j parts, which were at most n, have had
j subtracted from them (the Durfee square); also the largest part has had another
j subtracted from it (the Franklin triangle), and so on. What remains of them
after the square and triangle have been removed are at most j parts each at most
n− j− j = n− 2j. So these parts contribute

(
n−j
j

)
q
to the generating function (by

Cayley’s theorem), and hence the generating function for case 1 is

(4.2.8) Wn(x) :=
∑
j≥1

(
n− j

j

)
q

(−xq; q)j−1 q
3j(j+1)

2 xj+1.

In case 2 there is a Durfee square of side j, a Franklin triangle of side j, but
this time no underpart of size j below the square. The analysis here is exactly the
same as in case 1, with the only difference being that there is no factor of xqj now
since there is no underpart. Hence the generating function for case 2 is

Vn(x) :=
∑
j≥1

(
n− j

j

)
q

(−xq; q)j−1 q
j(3j+1)

2 xj .

We could combine this with cases 1 and 0 to get

(4.2.9) 1 +
∑
j≥1

(
n− j

j

)
q

(−xq; q)j q
j(3j+1)

2 xj =
∑
j≥0

(
n− j

j

)
q

(−xq; q)j q
j(3j+1)

2 xj .

This corresponds to the second case in the proof of (4.2.5).
In case 3 there is a Durfee square of side j and a Franklin triangle of side j− 1,

which means that there cannot be an underpart of size j (why?). The square still

contributes xjqj
2

to the generating function, but the Franklin triangle now only

contributes q0+1+···+(j−1) = q(
j
2). The parts below the square again contribute

(−xq; q)j−1. Finally, the first j parts, which were at most n, have had j subtracted
from them, and the largest part has had another j − 1 subtracted from it, and so
on. Since the Franklin triangle has a smaller side than the Durfee square and the
parts are distinct, the jth part must be j exactly; there can’t be anything to it but
the bottom of the square. This means that what remains of the first j parts after
the square and triangle have been removed are at most j − 1 parts each at most
n − j − (j − 1) = n − 2j + 1. So these parts contribute

(
n−j
j−1

)
q
to the generating

function for this case, which is

Un(x) :=
∑
j≥1

(
n− j

j − 1

)
q

(−xq; q)j−1 q
j(3j−1)

2 xj .

Combining this with (4.2.9), we have proved that
(4.2.10)

(−xq; q)n =
∑
j≥1

(
n− j

j − 1

)
q

(−xq; q)j−1 q
j(3j−1)

2 xj +
∑
j≥0

(
n− j

j

)
q

(−xq; q)j q
j(3j+1)

2 xj .

However, Sylvester chose to write this differently. Rather than combining cases
0,1,2 to get (4.2.9), he combined cases 2 and 3 to get

(4.2.11) Tn(x) := Un(x) + Vn(x) =
∑
j≥1

(
n+ 1− j

j

)
q

(−xq; q)j−1 q
j(3j−1)

2 xj ,
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and so his form of (4.2.10) is

(4.2.12)

(−xq; q)n = 1 +
∑
j≥1

(
n+ 1− j

j

)
q

(−xq; q)j−1 q
j(3j−1)

2 xj

+
∑
j≥1

(
n− j

j

)
q

(−xq; q)j−1 q
3j(j+1)

2 xj+1.

Exercises

1. Show that (4.2.2) follows from (4.2.1) by changing x to xqr.

2. Show that
∞∑
k=0

qk
2

(q; q)2k
=

1

(q; q)∞
=

∞∑
k=0

qk
2+k

(q; q)k (q; q)k+1
.

3. Show that

2

(q; q)∞
=

∞∑
k=0

qk
2−k

(q; q)2k
and

1 + q

(q; q)∞
=

∞∑
k=0

qk
2

(q; q)k (q; q)k+1
.

4. For n ≥ 0, define

An =
n∑

k=0

(
n

k

)
q

qk
2

(q; q)k
,

and for n ≥ 1 define

Bn =

n∑
k=1

(
n

k

)
q

qk
2−k

(q; q)k−1
and Cn =

n∑
k=1

(
n− 1

k − 1

)
q

qk
2−k

(q; q)k
.

(i) Calculate A0, A1, A2, B1, B2, C1, and C2.

After doing (i), it is reasonable to hope that

(a) An =
1

(q; q)n
and (b) Bn =

1

(q; q)n−1
and (c) Cn =

1

(q; q)n
,

and the rest of the problem proves this.

(ii) Show that (1− qn)Cn = Bn.

(iii) Show that An = An−1 + qnCn and Bn = Bn−1 + qn−1An−1.

(iv) Knowing (ii) and (iii), there is a painless proof of (a)–(c) by induction.
Assuming (a) and (c) hold for n− 1, explain why (b) holds for n− 1, and then
why (a)–(c) must hold for n.

5. Prove (a) from problem 4 by a Durfee square argument.

6. Prove (b) and (c) from problem 4 as in problem 5, but using a k × (k − 1)
rectangle (with both orientations) instead of a square.

7. Prove Jacobi’s Durfee square identity (4.2.1) by expanding

1

(xq; q)k

via Cauchy’s identity (3.5.3) (note that it can only be used for k ≥ 1) and using
(c) from problem 4.
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8. Prove the identity

(4.2.13)
1

(xq; q)n
=

n∑
k=0

(
n

k

)
q

qk
2

xk

(xq; q)k

from problem 10 in section 2.3 by a Durfee square argument. This is a finite
form of Jacobi’s Durfee square identity (4.2.1).

9. Show that combining (4.2.3) and (4.2.4) gives the right side of (4.2.5).

10. Assuming that |q| < 1, show that the series in (4.2.5) converges for all x.

11. Show that (4.2.5) reduces to (4.2.6) when x = −1.

12. The quotation from Andrews begs the question: how hard is it to prove (4.2.5)
analytically? Cayley published such a proof in Sylvester’s American Journal of
Mathematics a few years after Sylvester’s identity appeared there. Here is an
outline of it:

(i) First set F (x) equal to the right side of (4.2.5), and note that F (x) also
equals the right side of (4.2.7). What is the k = 0 term of (4.2.7)?

(ii) Rewrite the right side of (4.2.7) to show that

F (x) = (1 + xq)

(
1 +

∞∑
k=1

xk q
k(3k+1)

2
(−xq2; q)k−1

(q; q)k

(
1 + xq2k+1

))
,

and explain why this implies F (x) = (1 + xq)F (xq).

(iii) Prove that F (x) = (−xq; q)∞ by iterating the result of (ii).

13. Imitate the proof of (4.2.7) to show that, if

G(x) = 1 +

∞∑
n=1

(−1)n x2n q
n(5n−1)

2
(xq; q)n−1

(q; q)n
(1− xq2n),

then also

G(x) =
∞∑

n=0

(−1)n x2n q
n(5n+1)

2
(xq; q)n
(q; q)n

(1− x2q4n+2).

We will use this fact in Chapter 11.

14. Redo the proof of (4.2.5) by using the four cases in the proof of (4.2.10) and
(4.2.12). What form of (4.2.5) do you get if you combine the cases as in (4.2.12)?

15. Andrews worked out an analytic proof of (4.2.12) similar to Cayley’s argument
in problem 12. Define Sn(x) = 1 + Tn(x) +Wn(x), where Wn(x) was defined in
(4.2.8) and Tn(x) in (4.2.11). Note that S0(x) = 1 + 0 + 0 = 1.

(i) Show that

(4.2.14) Tn(x) +Wn(x) =∑
j≥1

(q; q)n−j (−xq; q)j−1

(q; q)n−2j+1 (q; q)j
q

j(3j−1)
2 xj

{
1− qn+1−j + xq2j(1− qn+1−2j)

}
.

(ii) Show that

(4.2.15) 1− qn+1−j + xq2j(1− qn+1−2j) = 1− qj + qj(1− qn+1−2j)(1 + xqj).

(You can start by adding and subtracting qj .)
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(iii) By using (4.2.15) in (4.2.14), show that

(4.2.16) Sn(x) = 1 +
∑
j≥1

(
n− j

j − 1

)
q

(−xq; q)j−1 q
j(3j−1)

2 xj

+
∑
j≥1

(
n− j

j

)
q

(−xq; q)j q
j(3j−1)

2 (xq)j .

(iv) Show that the last sum in (4.2.16) is (1 + xq)Tn−1(xq).

(v) Show that the rest of (4.2.16) is

1 + xq +
∑
j≥1

(
n− j − 1

j

)
q

(−xq; q)j q
(3j+2)(j+1)

2 xj+1,

and that this equals 1 + xq + (1 + xq)Wn−1(xq).

(vi) From (iv) and (v) it follows that Sn(x) = (1 + xq)Sn−1(xq), and hence
(4.2.12) holds. Explain.

4.3. Euler’s pentagonal number theorem: Franklin’s proof

Recall that (−q; q)∞ is the generating function for partitions with distinct parts.
(q; q)∞ is the same product, except that the signs are all different, and we get lots
of cancellation:

(q; q)∞ = (1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6)(1− q7)(1− q8) · · ·
= 1− q − q2 +

{
−q3 + q2+1

}
+
{
−q4 + q3+1

}
+
{
−q5 + q4+1 + q3+2

}
+
{
−q6 + q5+1 + q4+2 − q3+2+1

}
+ . . . .

We still get a term for each partition into distinct parts, but some of the terms are
positive and some negative. More precisely, when the number of factors is even the
sign is positive, and when it is odd the sign is negative. This has two interesting
consequences. We know from (3.6.3) that

q(
k+1
2 )

(q; q)k

is the generating function for partitions with exactly k distinct parts, so

(4.3.1) (q; q)∞ =

∞∑
k=0

(−1)kq(
k+1
2 )

(q; q)k
.

It also tells us that the coefficient of qn in (q; q)∞ equals the number of partitions
of n into an even number of distinct parts minus the number of partitions of n into
an odd number of distinct parts, which implies

Theorem 34 (Legendre’s pentagonal number theorem). There are exactly as
many partitions of n into an even number of distinct parts as into an odd number

of distinct parts, unless n is a number of the form k(3k−1)
2 or k(3k+1)

2 (a pentagonal
number), in which case there is one more or one less partition with an even number
of distinct parts according to whether k is even or odd.
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4.3. EULER’S PENTAGONAL NUMBER THEOREM: FRANKLIN’S PROOF 165

Euler seems not to have noticed this, but it was pointed out by Legendre in his
Theorie des Nombres. Could one prove this form of the pentagonal number theorem
directly, without using generating functions? This is what Franklin accomplished.

Let’s start with the example 8 + 7 + 6 + 4 + 3, a partition of 28 with an odd
number of distinct parts, and try to transform it to a partition of 28 with an even
number of distinct parts in a simple way. We distinguish four regions: the Durfee
square, the Franklin triangle, the “lower region” below the square, and the “upper
region” to the right of the triangle. We think of the latter as diagonals parallel to
the triangle.

∗ ∗ ∗ ∗ • • • �
∗ ∗ ∗ ∗ • • �
∗ ∗ ∗ ∗ • �
∗ ∗ ∗ ∗
� � �

If we made the diagonal of �’s a new row in the lower region, we would get a
partition with two 3’s, but if we take the row of �’s in the lower region and make
it a new diagonal in the upper region, we get:

∗ ∗ ∗ ∗ • • • � �
∗ ∗ ∗ ∗ • • � �
∗ ∗ ∗ ∗ • � �
∗ ∗ ∗ ∗

This is 9 + 8 + 7 + 4, which is a partition of 28 with an even number of distinct
parts. Now we cannot always apply this transformation. We certainly could not
apply it to 9 + 8 + 7 + 4, which does not have a part in the lower region. It also
would not apply to 9 + 6 + 3 + 2

∗ ∗ ∗ • • � � ◦ ×
∗ ∗ ∗ • � �
∗ ∗ ∗
� �

because it would give

∗ ∗ ∗ • • � � ◦ × �
∗ ∗ ∗ • � � �
∗ ∗ ∗

which is not a legitimate Ferrers diagram. The general rule is

Proposition 1 (Franklin’s rule). If the smallest part in the lower region is no
larger than the last diagonal in the upper region, then make it the new last diagonal
in the upper region. If the smallest part in the lower region is bigger than the last
diagonal in the upper region, or if there is no smallest part in the lower region,
then make the last diagonal in the upper region the new smallest part in the lower
region.

In the case of 9+ 8+ 7+ 4, when there is no part in the lower region, this tells
us to move the diagonal of �’s down there, giving us back 8 + 7+ 6 + 4+ 3. In the
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166 4. PARTITIONS II: GEOMETRIC THEORY

case of 9 + 6 + 3 + 2, it says we should move the × down below the row of �’s

∗ ∗ ∗ • • � � ◦
∗ ∗ ∗ • � �
∗ ∗ ∗
� �
×

to get 8 + 6 + 3 + 2 + 1. The rule obviously changes the number of parts by one,
so it always pairs one with an even number of parts with one with an odd number
of parts. It is also an involution, a fancy word which means that if you apply it
twice, you get back where you started; as we saw with 8+ 7+ 6+ 4+ 3. The parts
remain distinct because the last diagonal in the upper region is never as large as a
side of the Durfee square.

Let’s look at all the partitions of 7 with distinct parts. We have:

7 : ∗ • � � ◦ × �

6 + 1 :
∗ • � � ◦ ×
�

5 + 2 :
∗ ∗ • � �
∗ ∗

4 + 3 :
∗ ∗ • •
∗ ∗ •

4 + 2 + 1 :
∗ ∗ • �
∗ ∗
�

For 7 we can move the � to the lower region to get 6+1. For 6+1 the smallest
part in the lower region is the same size as the last diagonal, so we move the � to
the upper region as the new last diagonal, which gives 7. For 5 + 2 we move the
� to the lower region to get 4 + 2 + 1, and for 4 + 2 + 1 the smallest part in the
lower region is again the same size as the last diagonal, so it becomes the new last
diagonal and we get back 5 + 2.

But for 4+3 there is nothing we can do, since both the lower and upper regions
are empty! This is the only way that Franklin’s rule can fail. In order for this to
occur, a partition must consist of a Durfee square and a Franklin triangle, and
nothing else, which can happen in two different ways: the square and the triangle
could have the same side length, as with 4 + 3; or the square could be one unit
longer, as with 3 + 2:

∗ ∗ •
∗ ∗
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4.4. DIVISOR SUMS 167

Suppose the Durfee square has side k. If the Franklin triangle also has side k, then

it represents 1 + 2 + 3 + · · ·+ k = k(k+1)
2 , and the partition has the form

(k + 1) + (k + 2) + (k + 3) + · · ·+ (k + k) = k2 +
k(k + 1)

2
=

k(3k + 1)

2
.

If the Franklin triangle has side k− 1, then it represents 1+ 2+ 3+ · · ·+ (k− 1) =
k(k−1)

2 , and the partition has the form

(k + 0) + (k + 1) + (k + 2) + · · ·+ (k + (k − 1)) = k2 +
k(k − 1)

2
=

k(3k − 1)

2
.

These are the partitions that Franklin’s bijection does not apply to. Since they
have k parts, this means there is an extra partition of this form with an even
number of parts if k is even, and an extra one of this form with an odd number of
parts if k is odd. This is exactly the way that Legendre restated the pentagonal
number theorem, so the proof is complete. As Igor Pak has pointed out, Franklin’s
argument also proves

Theorem 35 (Fine’s pentagonal number theorem). There are exactly as many
partitions of n into distinct parts where the largest part is even as into distinct parts

where the largest part is odd, unless n is a number of the form k(3k+1)
2 or k(3k−1)

2 ,
in which case there is one more or one less, respectively, with the largest part even.

The “one more” with largest part even is

(k + 1) + (k + 2) + (k + 3) + · · ·+ (k + k),

and the extra one with largest part odd is

(k + 0) + (k + 1) + (k + 2) + · · ·+ (k + (k − 1)) .

Exercises

1. There are ten partitions of 10 with distinct parts. Draw the Ferrers diagram
with Durfee square and Franklin triangle for each of them, and say which ones
match up under Franklin’s bijection.

2. There are fifteen partitions of 12 with distinct parts. Draw the Ferrers diagram
with Durfee square and Franklin triangle for each of them. Which ones match
up under Franklin’s bijection, and which one is left over?

3. There are twenty-seven partitions of 15 with distinct parts. Draw the Ferrers
diagram with Durfee square and Franklin triangle for each of them. Which ones
match up under Franklin’s bijection, and which one is left over?

4. Of which identity from Chapter 3 is (4.3.1) a special case?

4.4. Divisor sums

We start with a simple observation due to Lambert, a contemporary of Euler’s.
Consider the sum

∞∑
k=1

qk

1− qk
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168 4. PARTITIONS II: GEOMETRIC THEORY

and expand the denominator into a geometric series:

∞∑
k=1

qk

1− qk
=

∞∑
k=1

(
qk + q2k + q3k + . . .

)
=

∞∑
k=1

∞∑
j=1

qjk.

If we set this double sum equal to a single sum, i.e.,

∞∑
k=1

qk

1− qk
=

∞∑
k=1

∞∑
j=1

qjk =

∞∑
n=1

d(n)qn,

what are the coefficients d(n)? Let’s look at the case n = 6. We will get a q6

term from all the ways that jk can equal 6 for positive integers j and k, and this
can happen in four ways: j = 1 and k = 6; j = 2 and k = 3; and the same two
combinations with j and k switched. In other words, we get one q6 term for each of
the four divisors of 6, and clearly this is true in general: the number of ways that
jk = n is the number of k’s that divide n. We have proved

Theorem 36 (Lambert’s theorem). If |q| < 1 and d(n) is the number of divisors
of n, then

(4.4.1)
∞∑
k=1

qk

1− qk
=

∞∑
n=1

d(n)qn.

By exactly the same argument we have

(4.4.2)

∞∑
k=1

f(k) qk

1− qk
=

∞∑
n=1

qn
∑
k|n

f(k),

where k|n denotes that the sum is over all the divisors k of n, and f(n) is arbitrary
as long as it does not grow so rapidly as to make the series diverge. A series of this
type is called a Lambert series, for obvious reasons. When f(n) is identically
1, (4.4.2) reduces to (4.4.1). Another interesting case is f(n) = n, when (4.4.2)
becomes

(4.4.3)

∞∑
k=1

k qk

1− qk
=

∞∑
n=1

σ(n) qn,

where σ(n) denotes the sum of the divisors of n. Lambert knew this too, but Euler
knew it before him. Our main object in this section is to prove a remarkable theorem
of Euler about σ(n), but let’s find some elementary properties of this function first.
If n is a prime number, p then its only divisors are 1 and p, so σ(p) = 1 + p. If
n = p2 for some prime number p, then the divisors are 1, p, p2, so σ(p2) = 1+p+p2,
and more generally

σ(pb) = 1 + p+ p2 + · · ·+ pb =
pb+1 − 1

p− 1

if p is prime and b is a nonnegative integer. (Note that this is even right for b = 0.)
But we can do better than this. If n is any integer greater than 1, we can write
n = pb11 pb22 · · · pbmm for distinct primes p1, . . . , pm and positive integers b1, . . . , bm,
and we can see that the divisors of n are all the numbers pa1

1 pa2
2 · · · pam

m , where
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0 ≤ ai ≤ bi for each i, 1 ≤ i ≤ m. It follows that

σ(pb11 pb22 · · · pbmm ) =

b1∑
a1=0

· · ·
bm∑

am=0

pa1
1 pa2

2 · · · pam
m

=
pb1+1
1 − 1

p1 − 1
· · · p

bm+1
m − 1

pm − 1

=

m∏
i=1

pbi+1
i − 1

pi − 1
.(4.4.4)

In number theory, a function f(n) defined on the positive integers is called mul-
tiplicative if f(mn) = f(m) f(n) whenever m and n are relatively prime, so that
their greatest common divisor is 1. Since this means they have no prime factor in
common, (4.4.4) shows that σ(n) is multiplicative.

A major reason why Euler tried so hard to prove his pentagonal number theo-
rem

(4.4.5) (q; q)∞ = 1 +
∞∑
k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

)
is that he wanted to apply it to prove something about σ(n). Following Euler we
calculate the logarithmic derivative of (q; q)∞ with respect to q:

d

dq
log (q; q)∞ =

d

dq

∞∑
n=1

log(1− qn) =
∞∑

n=1

−nqn−1

1− qn
.

If we multiply this by −q we will have the sum in (4.4.3). This suggests that
something good might happen if we perform the same operations on the other side
of (4.4.5). Taking the logarithmic derivative we get

∞∑
k=1

(−1)k
(

k(3k−1)
2 q

k(3k−1)
2 −1 + k(3k+1)

2 q
k(3k+1)

2 −1
)

1 +
∞∑
k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

) .

Multiplying this by −q and using (4.4.3) we finally have

∞∑
n=1

σ(n) qn =

∞∑
k=1

(−1)k−1
(

k(3k−1)
2 q

k(3k−1)
2 + k(3k+1)

2 q
k(3k+1)

2

)
1 +

∞∑
k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

) ,

or

(4.4.6)

⎛
⎝ ∞∑

j=1

σ(j) qj

⎞
⎠(1 + ∞∑

k=1

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

))

=

∞∑
m=1

(−1)m−1

(
m(3m− 1)

2
q

m(3m−1)
2 +

m(3m+ 1)

2
q

m(3m+1)
2

)
.

To figure out what (4.4.6) is trying to tell us, we consider the coefficient of qn on
both sides. Let’s first suppose that n is not a pentagonal number. In that case the

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



170 4. PARTITIONS II: GEOMETRIC THEORY

coefficient of qn on the right side is zero, so the coefficient on the left side must be
too. The left side of (4.4.6) is

(
1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 . . .

) ∞∑
j=1

σ(j) qj ,

and we see that the coefficient of qn is

σ(n)−σ(n−1)−σ(n−2)+σ(n−5)+σ(n−7)−σ(n−12)−σ(n−15)+σ(n−22) . . . .

Since this equals zero, it follows that if n is not a pentagonal number, then

σ(n) = σ(n−1)+σ(n−2)−σ(n−5)−σ(n−7)+σ(n−12)+σ(n−15)−σ(n−22) . . . ,

where we keep subtracting pentagonal numbers p from n until we drop below zero,
and the sign pattern is + + − − + + − − + + − − . . . . Note that σ(0) does not
occur in the series, for two reasons: by assumption n is not a pentagonal number,
so n− p is never zero; and even if it was, we would not include this term since the
first sum on the left side of (4.4.6) starts at j = 1.

What if n is a pentagonal number? The only thing that changes is that the
coefficient of qn on the right side of (4.4.6) is now ±n. The sign may seem trou-
blesome until we observe that it must be the opposite of the sign of the qn term
in

1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + q51 + q57 . . . .

This means that if we move this term to the other side, it must continue the same
sign pattern as before. We have proved

Theorem 37 (Euler’s divisor dum theorem). If n is any positive integer and
σ(n) denotes the sum of the divisors of n, then

σ(n) = σ(n−1)+σ(n−2)−σ(n−5)−σ(n−7)+σ(n−12)+σ(n−15)−σ(n−22) . . . ,

where we keep subtracting pentagonal numbers p from n until we reach or drop below
zero, the sign pattern on the right side is + + − − + + − − + + − − . . . , and if
we do reach σ(0), which happens if and only if n is itself a pentagonal number, we
substitute n for it with whichever sign continues the pattern.

Euler knew this amazing result for years before he could prove it, just as he
knew the pentagonal number theorem. Let’s do a couple of examples of it. We
have

(4.4.7)
σ(56) = σ(55) + σ(54)− σ(51)− σ(49) + σ(44) + σ(41)

− σ(34)− σ(30) + σ(21) + σ(16)− σ(5),

the sequence ending here because the next pentagonal number is 57. To check this
we use (4.4.4) or its special cases and the multiplicativity of σ(n). Since

σ(pb) =
pb+1 − 1

p− 1
,
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we have σ(5) = 6, σ(16) = 31, σ(41) = 42, and σ(49) = 57. The multiplicative
property gives

σ(56) = σ(7)σ(8) = 8× 15 = 120,

σ(55) = σ(5)σ(11) = 6× 12 = 72,

σ(54) = σ(2)σ(27) = 3× 40 = 120,

σ(51) = σ(3)σ(17) = 4× 18 = 72,

σ(44) = σ(4)σ(11) = 7× 12 = 84,

σ(34) = σ(2)σ(17) = 3× 18 = 54,

σ(30) = σ(5)σ(6) = 6× 12 = 72,

σ(21) = σ(3)σ(7) = 4× 8 = 32.

Then the right side of (4.4.7) is

72 + 120− 72− 57 + 84 + 42− 54− 72 + 32 + 31− 6 = 120 = σ(56),

so Euler’s theorem checks. (Note, however, that no one in their right mind would
compute σ(56) this way unless they were trying to check Euler’s theorem.) Let’s
try σ(57) also. Here we have

(4.4.8)
σ(57) = σ(56) + σ(55)− σ(52)− σ(50) + σ(45) + σ(42)

− σ(35)− σ(31) + σ(22) + σ(17)− σ(6)− σ(0),

where σ(0) is to be interpreted as 57 in this case. Using multiplicativity to compute
the other values we get

120 + 72− 98− 93 + 78 + 96− 48− 32 + 36 + 18− 12− 57 = 80 = σ(57).

Euler did the examples 101 and 301.

We devote the remainder of this section to two variations of (4.4.1). One is

Theorem 38 (Uchimura’s theorem). If |q| < 1 and d(n) is the number of
divisors of n, then

(4.4.9)

∞∑
k=1

d(k)qk = (q; q)∞

∞∑
n=1

n qn

(q; q)n
.

To see this we apply Euler’s identity (2.9.2) from section 2.9 to the sum on the
right:

∞∑
n=1

n qn

(q; q)n
=

∞∑
n=1

qn

(q; q)n

n∑
k=1

(
n

k

)
q

(q; q)k−1

=

∞∑
n=1

n∑
k=1

qn

(1− qk)(q; q)n−k

=

∞∑
n=1

n∑
k=1

qk

1− qk
qn−k

(q; q)n−k
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.
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The double sum goes over all n and k with 1 ≤ k ≤ n < ∞, so we can just as well
write it as

∞∑
k=1

∞∑
n=k

qk

1− qk
qn−k(q; q)n−k =

∞∑
k=1

qk

1− qk

∞∑
n=k

qn−k

(q; q)n−k

=
∞∑
k=1

qk

1− qk

∞∑
j=0

qj

(q; q)j
.

Several identities from Chapter 3 tell us that

∞∑
j=0

qj

(q; q)j
=

1

(q; q)∞
,

so we have proved that

∞∑
n=1

n qn

(q; q)n
=

∞∑
k=1

qk

1− qk

∞∑
j=0

qj

(q; q)j

=
∞∑
k=1

qk

1− qk
1

(q; q)∞

=
1

(q; q)∞

∞∑
k=1

qk

1− qk
.

In view of Lambert’s theorem (4.4.1), this is equivalent to Uchimura’s theorem. A
similar identity was stated without proof much earlier by Eisenstein.

Theorem 39 (Eisenstein’s theorem). If |q| < 1 and d(n) is the number of
divisors of n, then

(4.4.10) (q; q)∞

∞∑
k=1

d(k)qk =
∞∑

n=1

(−1)n−1n q(
n+1
2 )

(q; q)n
.

The proof is very similar to that of (4.4.9), though perhaps slightly harder.
We start with the sum on the right and apply the variant form (2.9.3) of Euler’s
theorem from section 2.9:

∞∑
n=1

(−1)n−1n q(
n+1
2 )

(q; q)n
=

∞∑
n=1

(−1)n−1q(
n+1
2 )

(q; q)n

n∑
k=1

(
n

k

)
q

(−1)k−1q(
k+1
2 )−nk(q; q)k−1

=

∞∑
n=1

n∑
k=1

(−1)n−k

(q; q)n−k

q(
n+1
2 )+(k+1

2 )−nk

1− qk
.

Now(
n+ 1

2

)
+

(
k + 1

2

)
− nk =

n2 + n+ k2 + k − 2nk

2
=

(n− k)2 + n+ k

2

=
(n− k)2 + (n− k) + 2k

2
= k +

(
n− k + 1

2

)
.
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Using this above and changing the order of summation as before we have

∞∑
n=1

(−1)n−1n q(
n+1
2 )

(q; q)n
=

∞∑
k=1

∞∑
n=k

qk

1− qk
(−1)n−kq(

n−k+1
2 )

(q; q)n−k

=

∞∑
k=1

qk

1− qk

∞∑
j=0

(−1)jq(
j+1
2 )

(q; q)j
.

Using (4.3.1) from the previous section we have

∞∑
n=1

(−1)n−1n q(
n+1
2 )

(q; q)n
=

∞∑
k=1

qk

1− qk
(q; q)∞ = (q; q)∞

∞∑
k=1

qk

1− qk
.

Eisenstein’s theorem (4.4.10) now follows from Lambert’s theorem (4.4.1).

Exercises

1. This interesting problem is popular in mathematics education circles. A ver-
sion of it was problem B-4 on the 1967 William Lowell Putnam Mathematical
Competition. Quigley High School has 420 seniors, each of whom has a private
locker. Miraculously, all 420 show up for school one day. Less miraculously, they
find all 420 lockers closed, and they form a queue. The first student in line opens
all the lockers. The second student closes the second, fourth, sixth, eighth, . . . ,
and four hundred twentieth lockers. The third student closes the third locker,
opens the sixth, closes the ninth, opens the twelfth, and so on. In general the
nth student goes to all the lockers whose numbers are multiples of n and changes
them—closing them if they are open, and opening them if they are closed. (Note
that this leaves the second half of the class with rather little to do.) After all
420 students have gone through the lockers, which ones are open? Explain.

2. Fundamentally, the size of the senior class doesn’t affect the answer to problem
1, but why is 420 a good choice?

3. You may be wondering what problem 1 has to do with q-analysis. There is
another q-identity for the divisor sum due to Clausen, namely

∞∑
k=1

qk
2 1 + qk

1− qk
=

∞∑
n=1

d(n) qn.

Show this by expanding (1+qk)/(1−qk) into a series and reasoning as in problem
1 (or otherwise). Hint: Which divisors does the k = 1 term q(1 + q)/(1 − q)
take care of?

4. Assuming as usual that |q| < 1, show that

∞∑
n=1

n qn

1− qn

converges.

5. Assuming as usual that |q| < 1, show that

∞∑
n=1

n! qn

1− qn
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does not converge. In other words, (4.4.2) does not apply if f(n) = n!.

6. Assuming as usual that |q| < 1, show that

− log
{
(1− q)(1− q2)

1
2 (1− q3)

1
3 · · ·

}
=

∞∑
n=1

qn

n
d(n).

7. Students often wonder why 1 is not considered a prime number. Euler pointed
out one reason for it, having to do with σ(n). What do you think it was?

8. Check the values of σ(n) in the calculation of σ(57).

9. Check Euler’s divisor sum theorem for n = 38 and n = 40.

10. Check Euler’s divisor sum theorem for his two examples, n = 101 (which is
prime) and n = 301 = 43× 7.

11. Assuming |q| < 1, show that

q

1− q
=

q

1− q2
+

q2

1− q4
+

q4

1− q8
+

q8

1− q16
+

q16

1− q32
+ . . .

by expanding all the terms on both sides into geometric series.

12. Show the result of problem 11 by finding the sum of the first n terms on the
right side and letting n → ∞.

13. Show that the method of problem 12 still works if |q| > 1, but the sum is
different.

14. (This problem was suggested by Emil Lalov.) Another interesting case of (4.4.2)
is f(k) = ϕ(k), the Euler phi function, which counts the number of positive
integers ≤ k and relatively prime to k. Like σ(k), ϕ(k) is a multiplicative
function, and clearly we have ϕ(p) = p− 1 for any prime number p. Assuming
as usual that |q| < 1, show that

∞∑
k=1

ϕ(k) qk

1− qk
=

∞∑
n=1

nqn =
q

(1− q)2
.

Hint: To show the first equality, let Sk(n) be the set of integers m with 1 ≤
m ≤ n whose greatest common divisor with n is k, and explain why there are
exactly ϕ(nk ) numbers in Sk(n).

15. This problem treats Uchimura’s proof of (4.4.9).

(i) In the first place, Uchimura prefers to write his theorem as

(4.4.11)

∞∑
n=1

nqn
(
qn+1; q

)
∞ =

∞∑
n=1

qn

1− qn
=

∞∑
n=1

d(n)qn.

Explain why this is equivalent to (4.4.9).

(ii) Uchimura proves (4.4.11) by means of two auxiliary theorems. One is

(4.4.12) a

∞∑
n=1

nqn
(
aqn+1; q

)
∞ =

∞∑
j=1

(−1)j−1ajq(
j+1
2 )

(q; q)j (1− qj)
.

To see this, first expand
(
aqn+1; q

)
∞ by (3.6.1). After changing orders of sum-

mation and possibly renaming a summation index, show that this gives

∞∑
j=1

(−1)j−1ajq(
j
2)

(q; q)j−1

∞∑
n=1

nqnj .
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Use the second equality in problem 14 to do the inner sum and complete the
proof of (4.4.12).

(iii) A second auxiliary theorem is

(4.4.13)
∞∑
k=1

bqk

1− bqk
=

∞∑
j=1

(−1)j−1bjq(
j+1
2 )

(bq; q)j (1− qj)
.

To see this, denote the right side of (4.4.13) by U(b, q) and explain why

U(b, q)− U(bq, q) =

∞∑
j=1

(−1)j−1bjq(
j+1
2 )

(bq; q)j+1

=

∞∑
j=1

(−1)j−1bjq(
j+1
2 ) [(1− bqj+1

)
+ bqj+1

]
(bq; q)j+1

=

∞∑
j=1

(−1)j−1bjq(
j+1
2 )

(bq; q)j
−

∞∑
j=1

(−1)jbj+1q(
j+2
2 )

(bq; q)j+1

=
bq

1− bq
.

Having made the right side telescope, we now do the same on the left side. Since
U(0, q) = 0 (why?), and assuming as usual that |q| < 1, explain why we have

U(b, q) = [U(b, q)− U(bq, q)] +
[
U(bq, q)− U(bq2, q)

]
+
[
U(bq2, q)− U(bq3, q)

]
+ · · · =

∞∑
k=1

bqk

1− bqk
.

(iv) Explain how (4.4.11) follows from (4.4.12) and (4.4.13).

(v) Uchimura uses a slightly different left side in (4.4.13). Assuming that
|b| ≤ 1 and |q| < 1, show that

∞∑
n=1

bnqn

1− qn
=

∞∑
k=1

bqk

1− bqk
.

(Expand one side using a geometric series, change the order of summation, and
resum.)

16. Show that the series
∞∑

n=1

(
qn

1− qn
− zqn

1− zqn

)(
1

1− zq
+

1

1− zq2
+ · · ·+ 1

1− zqn

)

converges if |q| < 1, by using the ratio test or otherwise.

17. For |q| < 1, define F (z) to be the series in problem 16, which was introduced by
Bailey to treat the Lambert series in (viii) below.

(i) Show that

F (0) =

∞∑
n=1

nqn

1− qn
.

(ii) Show that F (z)− F (zq) = −zq/(1− zq)2.
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(iii) Explain why it follows from (ii) that

F (z)− F (zqn) =

n∑
k=1

−zqk

(1− zqk)2

for any positive integer n.

(iv) Explain why it follows from (i) and (iii) that

F (z) =
∞∑

n=1

nqn

1− qn
−

∞∑
k=1

zqk

(1− zqk)2
.

(v) Recall from problem 14 that

∞∑
n=1

nxn =
x

(1− x)2

for |x| < 1. Take x = zqk here and change the order of summation to show that

∞∑
k=1

zqk

(1− zqk)2
=

∞∑
n=1

nznqn

1− qn
.

(vi) Explain why it follows from (v) that for |q| < 1

∞∑
n=1

(
qn

1− qn
− zqn

1− zqn

)(
1

1− zq
+

1

1− zq2
+ · · ·+ 1

1− zqn

)

=
∞∑

n=1

nqn(1− zn)

1− qn
.

(vii) Show that the left side in (vi) can be rewritten as

∞∑
n=1

qn(1− z)

(1− qn)(1− zqn)

(
1

1− zq
+

1

1− zq2
+ · · ·+ 1

1− zqn

)
.

(viii) After changing the left side of (vi) to (vii), divide both sides by 1− z
and then let z → 1. Show that for |q| < 1 this gives

∞∑
n=1

qn

(1− qn)2

(
1

1− q
+

1

1− q2
+ · · ·+ 1

1− qn

)
=

∞∑
n=1

n2qn

1− qn
.

(ix) What does (4.4.2) say about the Lambert series on the right side of
(viii)?

18. Bailey conceived another approach to part (viii) of the previous problem. For
|q| < 1 and |z| < 1, define

B(z) =
∞∑

n=1

(q; q)n−1z
n

(1− qn)(z; q)n
.

(i) Show that this series converges, given |q| < 1 and |z| < 1.

(ii) Show that

B(z)−B(zq) =

∞∑
n=1

(q; q)n−1z
n

(z; q)n+1
.
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(iii) The series on the right side of (ii) can be made to telescope. By multi-
plying top and bottom by 1− z, and taking 1− z = 1− zqn − z(1− qn) on top,
show that

B(z)−B(zq) =
z

(1− z)2
.

(iv) Explain why (iii) implies that

B(z)−B(zqn) =

n−1∑
k=0

zqk

(1− zqk)2

for any positive integer n.

(v) Explain why (iv) implies that

B(z) =
∞∑
k=0

zqk

(1− zqk)2
.

Show also that this series only needs |q| < 1 for convergence.

(vi) As in part (vi) of the previous problem, show that

B(z) =

∞∑
n=1

nzn

1− qn
.

(vii) So far the details have been easier than in the previous problem, and
we have established that if |q| < 1 and |z| < 1, then

∞∑
n=1

(q; q)n−1z
n

(1− qn)(z; q)n
=

∞∑
n=1

nzn

1− qn
.

It is clear how to get the right side to look something like the right side of (ix)
in the previous problem: take the derivative with respect to z and then multiply
by z. The difficulty is that we have to do the same operations to the left side.
Show that this gives

(4.4.14)

∞∑
n=1

(q; q)n−1z
n

(1− qn)(z; q)n

(
1

1− z
+

1

1− zq
+ · · ·+ 1

1− zqn−1

)
=

∞∑
n=1

n2zn

1− qn
.

Logarithmic differentiation might help.

(viii) Show that if z = q, then (4.4.14) reduces to

∞∑
n=1

qn

(1− qn)2

(
1

1− q
+

1

1− q2
+ · · ·+ 1

1− qn

)
=

∞∑
n=1

n2qn

1− qn
.

19. Bailey went on to consider the series

∞∑
n=1

(
qn

(1− qn)2
− zqn

(1− zqn)2

)⎛⎜⎜⎝
1

1− q
+

1

1− q2
+ · · ·+ 1

1− qn

+
z

1− z
+

zq

1− zq
+ · · ·+ zqn−1

1− zqn−1

⎞
⎟⎟⎠ .

(i) Show that the series converges if |q| < 1.
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(ii) Denote the series by H(z), where |q| < 1. Show that

H(z)−H(zq) =

∞∑
n=1

qn

(1− qn)2

[
z

1− z
− zqn

1− zqn

]

−
∞∑

n=1

zqn

(1− zqn)2

[
1

1− qn
+

z

1− z

]

and that these two sums cancel each other.

(iii) After (ii) we know that H(z) = H(zq). Explain why it follows that
H(z) = H(zqm) for any nonnegative integer m.

(iv) Explain why it follows that H(z) = H(0). (Thus H(z) does not actually
depend on z.)

(v) Explain why it follows from one of the previous two problems that

H(z) =

∞∑
n=1

n2qn

1− qn
.

20. Show that

∞∑
n=1

n2qn

1− qn
=

∞∑
n=1

(
qn

(1− qn)2
− qn+1

(1− qn+1)2

)(
1 + q

1− q
+

1 + q2

1− q2
+ · · ·+ 1 + qn

1− qn

)

=
∞∑

n=1

(
qn

(1− qn)2
+

qn+1

(1 + qn+1)2

)(
1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q2n

1− q2n

)
.

Besides z = 0, these are the other two special cases that Bailey gives of the
result of the previous problem.

21. In a subsequent paper Bailey uses the result of problem 19 in a much more
involved way.

(i) Show that setting z = −1 there gives

∞∑
n=1

n2qn

1− qn

= 2
∞∑
n=1

qn(1 + q2n)

(1− q2n)2

(
−1

2
+

1

1− qn
+

1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q2n−2

1− q2n−2

)
.

(ii) Explain why (i) is equivalent to

∞∑
k=1

4k2q2k

1− q2k
+

∞∑
k=0

(2k + 1)2q2k+1

1− q2k+1

= 2

∞∑
k=1

q2k(1 + q4k)

(1− q4k)2

(
−1

2
+

1

1− q2k
+

1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q4k−2

1− q4k−2

)

+2

∞∑
k=0

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
−1

2
+

1

1− q2k+1
+

1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q4k

1− q4k

)
.
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(iii) The reason for rewriting (i) as (ii) is that Bailey now changes q to −q
in (ii) and subtracts the result from (ii). Show that this gives

∞∑
k=0

(2k + 1)2q2k+1

1− q4k+2
=

∞∑
k=0

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
−1 +

2

1− q4k+2

)

+ 2
∞∑
k=1

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q4k

1− q4k

)

after some simplification.

(iv) The simple fact
1 + q2j

1− q2j
=

2

1− q2j
− 1 is used in each direction in

the rest of Bailey’s derivation. Using it once gives

∞∑
k=0

(2k + 1)2q2k+1

1− q4k+2
=

∞∑
k=0

q2k+1(1 + q4k+2)2

(1− q4k+2)3

+ 2

∞∑
k=1

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q4k

1− q4k

)
.

Show that

∞∑
k=0

q2k+1(1 + q4k+2)2

(1− q4k+2)3
=

∞∑
k=0

q2k+1

1− q4k+2
+ 4

∞∑
k=0

q6k+3

(1− q4k+2)3
.

(v) Explain why (iv) implies that

∞∑
k=1

2k(k + 1)q2k+1

1− q4k+2
= 2

∞∑
j=0

q6j+3

(1− q4j+2)3

+

∞∑
k=1

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q4k

1− q4k

)
,

where we changed the summation index to j in one of the sums for a reason that
will appear in the next part.

(vi) There is a surprising simplification in (v). From Cauchy’s identity (3.5.3)
in section 3.5 we know that

1

(1− z)3
=

∞∑
j=0

(
j + 2

2

)
zj if |z| < 1,

and hence (
x

1− x2

)3

=
∞∑
j=0

(
j + 2

2

)
x2j+3 =

∞∑
k=1

(
k + 1

2

)
x2k+1.

By taking x = q2j+1 here and changing the order of summation, show that

2
∞∑
j=0

q6j+3

(1− q4j+2)3
=

∞∑
k=1

k(k + 1)q2k+1

1− q4k+2
,
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and hence (v) becomes

∞∑
k=1

k(k + 1)q2k+1

1− q4k+2
=

∞∑
k=1

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
1 + q2

1− q2
+

1 + q4

1− q4
+ · · ·+ 1 + q4k

1− q4k

)
.

(vii) We could stop here, but Bailey uses the simple fact in (iv) in the other
direction on this. Show that doing so and dividing by 2 again gives

∞∑
k=1

q2k+1(1 + q4k+2)

(1− q4k+2)2

(
1

1− q2
+

1

1− q4
+ · · ·+ 1

1− q4k

)

=

∞∑
k=1

(
k + 1

2

)
q2k+1

1− q4k+2
+

∞∑
k=1

kq2k+1(1 + q4k+2)

(1− q4k+2)2
.

4.5. Sylvester’s fishhook bijection

Consider a partition with odd parts, say 21 + 19 + 15 + 15 + 15 + 9 + 7 + 7 +
3 + 1 + 1 + 1, and write the Ferrers diagram as a series of right angles:

• • • • • • • • • • •
• ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
• ∗ � � � � � � � �
• ∗ � � � � � � � � �
• ∗ � � ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• ∗ � � ◦ × × × × ×
• ∗ � � ◦ × � � � �
• ∗ � � ◦ × � � � � �
• ∗ � � ◦ × � � ⊕ ⊕
• ∗ � � ◦ × � � ⊕ �
• ∗ � ◦ � �

◦ ��

This is not a standard Ferrers diagram because of the gaps in the last two rows
and columns; that the parts are not all distinct causes this. But it is only an
intermediate step toward a new partition. The oddness of the parts means it is still
symmetric about its main diagonal. We reread the graph as a series of “fishhooks”:
the first fishhook goes all the way up the main diagonal, and then across the top
row. The second fishhook goes up the diagonal right below the main one (which
begins with ⊕), and then down the first column. The third fishhook goes up the
diagonal right above the main one (which also begins with ⊕) to the second row,
and then across. The fourth fishhook goes up the lower of the two diagonals which
begin with � to the second column, and then down. The fifth fishhook goes up the
other diagonal which begins with � to the third row, and then across; and so on
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4.5. SYLVESTER’S FISHHOOK BIJECTION 181

until every node is contained in a fishhook:

• • • • • • • • • • •
� • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
� � • ∗ � � � � � �
� × � • ∗ � � � � � �
� × × � • ∗ � � ◦ ◦ ◦ ◦
� × ⊕ × � • ∗ � � ◦
� × ⊕ ⊕ × � • ∗ � �
� × ⊕ � ⊕ × � • ∗ � �
� × ⊕ � � ⊕ × � • ∗
� × ⊕ � � � ⊕ × � •
� × � � ⊕ •

� •
Now we write down the lengths of the fishhooks: 22 + 18 + 16 + 14 + 11 + 10 +
9 + 6 + 5 + 3. This is a partition into distinct parts, although it is not the same
partition into distinct parts that the Glaisher bijection would give us (see problem
1). It has an extra property that the Glaisher bijection lacks: 21 + 19 + 15 +
15 + 15 + 9 + 7 + 7 + 3 + 1 + 1 + 1 has 7 different odd parts (21, 19, 15, 9, 7, 3, 1),
and correspondingly 22 + 18 + 16 + 14 + 11 + 10 + 9 + 6 + 5 + 3 has 7 sequences
(22, 18, 16, 14, 11 + 10 + 9, 6 + 5, 3). In this section we want to understand this
bijection.

To see why this procedure changes odd parts into distinct ones, we describe the
fishhooks in general. Let’s call n the radius of the odd part 2n+1. Then the length
of the first fishhook is the number of parts of the original partition (because each
part has one node on the main diagonal) plus the radius of the largest part. The
second fishhook is the number of parts ≥ 3 plus the radius of the largest part minus
1. The third fishhook is the number of parts ≥ 3 minus 1, plus the radius of the
second largest part minus 1. To describe what happens in general, let’s introduce
some notation. Given a partition into odd parts, let Pi denote the number of parts
whose size is at least i, let Rj denote the radius of the jth largest part, and let Fk

denote the length of the kth fishhook. Then we have

F1 = P1 +R1, F2 = P3 + (R1 − 1) ,

F3 = (P3 − 1) + (R2 − 1) , F4 = (P5 − 1) + (R2 − 2) ,

F5 = (P5 − 2) + (R3 − 2) , F6 = (P7 − 2) + (R3 − 3) ,

F7 = (P7 − 3) + (R4 − 3) , F8 = (P9 − 3) + (R4 − 4) ,

and so forth; in general

(4.5.1)
F2n−1 = (P2n−1 − (n− 1)) + (Rn − (n− 1)) ,

F2n = (P2n+1 − (n− 1)) + (Rn − n) .

It is clear from these relations that Fk is always strictly bigger than Fk+1, so this
does give us distinct parts. The relation F1 = P1 +R1 implies

Theorem 40 (Fine’s refinement of Euler’s partition theorem). There are ex-
actly as many partitions of n into distinct parts with largest part k as there are
partitions of n into odd parts such that the largest part plus twice the number of
parts equals 2k + 1.
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182 4. PARTITIONS II: GEOMETRIC THEORY

To see this, note that F1 is the largest part on the distinct side and that on the
odd side P1 is the number of parts and, since R1 is the largest radius, 2R1 + 1 is
the largest odd part. Since F1 = P1 +R1 we have 2F1 + 1 = 2P1 + 2R1 + 1, which
is precisely Fine’s theorem.

Fine also pointed out another refinement of Euler’s partition theorem that
follows from F1 = P1 + R1. Suppose n, the number we are partitioning, is even.
Then a partition of n with all parts odd must have an even number of parts, so that
P1 is even. Hence F1 and R1 are either both even or both odd. If R1 is even, then
call it 2j, so that the largest part on the odd side has the form 2(2j)+1 = 4j+1 (in
other words, it is ≡ 1 (mod 4)); while the largest number on the distinct side, F1,
is even. If F1 is odd, then R1 is odd, so R1 = 2i + 1 for some i, and therefore the
largest part on the odd side has the form 2(2i+1)+1 = 4i+3 (it is ≡ 3 (mod 4)).

Conversely, suppose n is odd. Then a partition of n with all parts odd must
have an odd number of parts, so that P1 is odd. Hence one of F1 and R1 is even
and the other odd. In this case, if the largest part on the distinct side F1 is odd,
then the largest part on the odd side has the form 4j + 1, and if F1 is even then
the largest part on the odd side has the form 4i+ 3. We state this formally as

Theorem 41 (Another Fine refinement of Euler’s partition theorem). If n is
even, there are exactly as many partitions of n into odd parts where the largest part
is ≡ 1 (mod 4) as there are partitions of n into distinct parts where the largest part
is even. Also, if n is even, there are exactly as many partitions of n into odd parts
where the largest part is ≡ 3 (mod 4) as there are partitions of n into distinct parts
where the largest part is odd.

Conversely, if n is odd there are exactly as many partitions of n into odd parts
where the largest part is ≡ 1 (mod 4) as there are partitions of n into distinct parts
where the largest part is odd; and exactly as many partitions of n into odd parts
where the largest part is ≡ 3 (mod 4) as there are partitions of n into distinct parts
where the largest part is even.

Further information can be gleaned from the relations (5.1). For example, we
have F1−F2− 1 = P1−P3, which tells us how many 1’s the original partition had.
We have F2 − F3 − 1 = R1 − R2, which tells us how much bigger the first part is
than the second, and so forth; in general

(4.5.2) F2n−1 − F2n − 1 = P2n−1 − P2n+1 and F2n − F2n+1 − 1 = Rn −Rn+1.

These relations show us that if any two consecutive parts in the original partition are
different, then there is a corresponding difference of at least 2 between consecutive
fishhooks, and this proves

Theorem 42 (Sylvester’s refinement of Euler’s “odd equals distinct” theorem).
There are exactly as many partitions of n into odd parts with k different sizes as
there are partitions of n into distinct parts which have k sequences of consecutive
parts.

We have used the word “bijection” to describe Sylvester’s procedure. In order
to justify that word, we have to be able to reconstruct the original partition from
the new one. This is easy enough if we have the new parts in the form of fishhooks,
but if all we know is the length of each hook, how do we know what shape they
should have? We make some observations that will help us understand this. First,
if the number of fishhooks is even, then the last one bends vertically, and the one
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4.5. SYLVESTER’S FISHHOOK BIJECTION 183

before it horizontally, and the one before it vertically, and so forth; whereas if the
number of fishhooks is odd, then the last one bends horizontally, and they alternate
before that. Moreover, the last fishhook cannot actually bend at all: if there is an
even number of hooks, then the last one must just be a column, with no diagonal
piece; because if it did have a diagonal piece, then there would be a symmetric
diagonal piece above the main diagonal which would be part of a shorter fishhook,
which is a contradiction. If there is an odd number of hooks, then the last one
can’t have a flat piece—it must consist solely of a diagonal piece. If it did have a
flat piece, it would be (part of) a row, and there would be a symmetric column on
the other side of the main diagonal which would be part of a shorter fishhook, and
this again contradicts the assumption that we are looking at the last fishhook.

We now know enough to be able to run Sylvester’s bijection backwards. Sup-
pose we want to know what partition 15 + 11 + 8 + 5 + 4 came from. It has four
sequences (15, 11, 8, 5+4), so there must be four different odd part sizes; and it has
an odd number of fishhooks, so the last one must be just a diagonal. This means
that

4 = F5 = (P5 − 2) + (R3 − 2) = 4 + 0,

so P5 = 6 and R3 = 2. Then there are six parts ≥ 5, and the radius of the third
largest part is 2, so the third largest part is 5. Hence the fourth, fifth, and sixth
largest parts are also 5. We keep working our way up through the fishhooks from
here. We have

5 = F4 = (P5 − 1) + (R2 − 2) ,

and since we know P5 = 6, this tells us that

5 = F4 = 5 + (R2 − 2) = 5 + 0,

which gives us the shape of the fourth fishhook (it is also just a diagonal) and says
R2 = 2, so the second largest part is 5. Next,

8 = F3 = (P3 − 1) + (R2 − 1) ,

and we know R2 = 2, so

8 = F3 = (P3 − 1) + 1 = 7 + 1,

which gives us the shape of the third fishhook and tells us P3 = 8. Then there are
eight parts ≥ 3, and since P5 = 6, we can conclude that exactly two of the parts
are equal to 3. Next,

11 = F2 = P3 + (R1 − 1) = 8 + (R1 − 1) = 8 + 3,

which gives us the shape of the second fishhook and says R1 = 4, so the largest
part is 9. Finally,

15 = F1 = P1 +R1 = P1 + 4 = 11 + 4,

which gives the shape of the first fishhook and tells us there are 11 parts in all.
Since eight parts are ≥ 3, there are exactly three 1’s.

We can now reconstruct the partition in either of two ways. We know the shapes
of all the fishhooks, so we can just glue them together and read the diagram. But
we also know what all the parts are from the above calculations: the largest part
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is 9, and then there are five 5’s, two 3’s, and three 1’s. The diagram is:

• • • • •
∗ • � �
∗ ∗ • � �
∗ ◦ ∗ • � �
∗ ◦ ∗ • � �

◦ ∗ • � �
◦ ∗ • �

◦ ∗ • �
∗ •

•
•

Let’s do one more example, 21 + 19 + 16 + 13 + 12 + 8 + 6 + 3. This has eight
fishhooks, so the last one is just a column, which means that

3 = F8 = (P9 − 3) + (R4 − 4) = 1 + 2,

so P9 = 4 and R4 = 6; there are four parts ≥ 9, and the fourth largest part is 13,
so there are no 9’s or 11’s. Next,

6 = F7 = (P7 − 3) + (R4 − 3) = (P7 − 3) + 3 = 3 + 3,

so P7 = 6, which implies that there are exactly two 7’s since P9 = 4.

8 = F6 = (P7 − 2) + (R3 − 3) = 4 + (R3 − 3) = 4 + 4,

so R3 = 7 and the third largest part is 15.

12 = F5 = (P5 − 2) + (R3 − 2) = (P5 − 2) + 5 = 7 + 5,

so P5 = 9, which implies that there are exactly three 5’s since P7 = 6.

13 = F4 = (P5 − 1) + (R2 − 2) = 8 + (R2 − 2) = 8 + 5,

so R2 = 7 and the second largest part is also 15.

16 = F3 = (P3 − 1) + (R2 − 1) = (P3 − 1) + 6 = 10 + 6,

so P3 = 11, which implies that there are exactly two 3’s since P5 = 9.

19 = F2 = P3 + (R1 − 1) = 11 + (R1 − 1) = 11 + 8,

so R1 = 9 and the largest part is 19. Finally,

21 = F1 = P1 +R1 = P1 + 9 = 12 + 9,
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4.5. SYLVESTER’S FISHHOOK BIJECTION 185

so there are twelve parts, only one of which is a 1 since P3 = 11. The partition is
19 + 15 + 15 + 13 + 7 + 7 + 5 + 5 + 5 + 3 + 3 + 1, and the diagram is:

• • • • • • • • • •
∗ • � � � � � � �
∗ ∗ • � � � � � �
∗ ◦ ∗ • � � � � � �
∗ ◦ ◦ ∗ • � � �
∗ ◦ × ◦ ∗ • � � �
∗ ◦ × × ◦ ∗ • � �
∗ ◦ × � × ◦ ∗ • � �
∗ ◦ × � × ◦ ∗ • � �
∗ × � ◦ ∗ • �

◦ ∗ • �
∗ •

Recall Gauss’s identity

(4.5.3) (−q; q)n =
n∑

k=0

(
n

k

)
q2
qk

from section 2.5. The left side generates partitions with distinct parts which do
not exceed n. What about the right side? It follows from Cayley’s theorem that(
n
k

)
q2

generates partitions into at most k even parts, each at most 2n− 2k. Think

of the qk in (4.5.3) as q1+1+···+1. Thus we have k 1’s to play with, so let’s add 1
to each of the at most k even parts (or exactly k even parts, some of which might
be 0) above. This gives us exactly k parts, all odd and at most 2n− 2k+1. Or, in
the terminology of the fishhook bijection, it gives us exactly k odd parts each with
radius at most n− k, so that the maximum length of the corresponding fishhook is
k + (n − k) = n. Therefore the right side of (4.5.3) is the generating function for
the kinds of partitions with odd parts that we get by applying the inverse fishhook
bijection to the partitions with distinct parts generated by the left side. In other
words, the fishhook bijection gives us a combinatorial proof of Gauss’s identity. It
is a little surprising that it takes such a tricky argument to prove what had seemed
like a fairly simple identity, but a simpler combinatorial proof is not known.

It is also interesting to try to find the q-identity that corresponds to Sylvester’s
refinement of Euler’s “odd equals distinct” theorem. As George Andrews pointed
out, it is not too hard to find the generating function on the odd side. We claim it
is (

1 + bq + bq2 + bq3 + . . .
) (

1 + bq3 + bq6 + bq9 + . . .
)

×
(
1 + bq5 + bq10 + bq15 + . . .

) (
1 + bq7 + bq14 + bq21 + . . .

)
· · · ,

in the sense that the coefficient of bkqn in this product is the number of partitions
of n using only odd parts and only k different ones. The first factor is the source
of all the 1’s, the second of all the 3’s, the third of all the 5’s, the fourth of all
the 7’s, and so on. Taking the 1 from a factor corresponds to not using any of the
parts that go with that factor, and taking any other term from a factor gives us
exactly one b, no matter how many copies of that part we use. We can rewrite this
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expression as(
1 +

bq

1− q

)(
1 +

bq3

1− q3

)(
1 +

bq5

1− q5

)(
1 +

bq7

1− q7

)
· · · ,

which is

(4.5.4)
∞∏

m=0

(
1 +

bq2m+1

1− q2m+1

)
=

∞∏
m=0

1− q2m+1 + bq2m+1

1− q2m+1
=

(
(1− b)q; q2

)
∞

(q; q2)∞
.

Andrews was able to identify the generating function of the distinct side of
Sylvester’s theorem as

(4.5.5)
∞∑

m=0

((1− b)q; q)m+1

(q; q)m
q(

m+1
2 )

and asked for a simple explanation, which was furnished by Ramamani and Venkat-
achaliengar. We can rewrite (4.5.5) as

∞∑
m=0

((1− b)q; q)m
(q; q)m

q(
m+1

2 ) (1 + (b− 1)qm+1
)

=
∞∑

m=0

((1− b)q; q)m
(q; q)m

q(
m+1

2 ) + (b− 1)
∞∑

m=0

((1− b)q; q)m
(q; q)m

q(
m+2

2 ).

Reindexing the last sum and breaking off the m = 0 term from the one before it,
this becomes

1 +
∞∑

m=1

((1− b)q; q)m
(q; q)m

q(
m+1

2 ) + (b− 1)
∞∑

m=1

((1− b)q; q)m−1

(q; q)m−1
q(

m+1
2 ),

and combining these two sums we get

(4.5.6) 1 + b
∞∑

m=1

((1− b)q; q)m−1

(q; q)m
q(

m+1
2 ).

Now this is

1 +
∞∑

m=1

bq(
m+1

2 ) 1 + (b− 1)q

1− q

1 + (b− 1)q2

1− q2
. . .

1 + (b− 1)qm−1

1− qm−1

1

1− qm

= 1 +

∞∑
m=1

bq1+2+···+m

(
1 +

bq

1− q

)(
1 +

bq2

1− q2

)
· · ·
(
1 +

bqm−1

1− qm−1

)
1

1− qm
.

Distributing the exponents of q and expanding each fraction we get

(4.5.7) 1+b

∞∑
m=1

[ (
q + bq2 + bq3 + . . .

) (
q2 + bq4 + bq6 + . . .

)
· · ·

×
(
qm−1 + bq2m−2 + bq3m−3 + . . .

) (
qm + q2m + q3m + . . .

)
]

as an equivalent form of (4.5.5) and (4.5.6). Again the first factor inside the sum
in (4.5.7) is the source of all the 1’s, the second factor of all the 2’s, and so on. For
a given m, the partitions generated by

b

[ (
q + bq2 + bq3 + . . .

) (
q2 + bq4 + bq6 + . . .

)
· · ·

×
(
qm−1 + bq2m−2 + bq3m−3 + . . .

) (
qm + q2m + q3m + . . .

)
]

have at least one copy of each of 1, 2, . . . ,m, and if they have more than one j
for 1 ≤ j ≤ m − 1 (but not m), then a b comes with the overage. Therefore the

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXERCISES 187

coefficient of bkqn counts the number of partitions of n with p1 1’s, p2 2’s, and
so on up to pm m’s, where each of p1, . . . , pm is at least 1, and exactly k − 1 of
p1, . . . , pm−1 are larger than 1.

Let’s write down an example at this point. If m = 9, a partition of 81 of this
kind is 9+8+8+7+6+6+6+6+5+5+4+3+2+2+2+1+1, with k = 6 since
five of the parts from 1 through 8 are repeated. Writing the parts as columns, the
Ferrers diagram is

• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • •
• • • • • • • •
• • • •
• • •
•

and the conjugate is 17 + 15+ 12+ 11+ 10+ 8+ 4+ 3+ 1, with distinct parts and
k = 6 different sequences of parts. The parts of the conjugate must be distinct in
any example of this kind, because the original partition does not skip any part sizes.
The number of sequences must be k, because any pj larger than 1, except for pm,
stops a sequence. To see this, start from the smallest parts of the original partition
and work up. Because there are two 1’s, the sequence beginning with 17 stops after
one term, and so does the sequence beginning with 15 since there are three 2’s.
Since there is only one 3 and one 4, the sequence starting with 12 continues to 11
and 10, before stopping because there are two 5’s. The sequence starting with 8
stops there because there are four 6’s. The sequence starting with 4 continues to 3
because there is only one 7, but stops there since there are two 8’s. If the largest
part is 9, then having more copies of it just makes all the parts uniformly larger
without affecting the sequences. Hence the conjugates of the partitions generated
by (4.5.7), and therefore by (4.5.6) and (4.5.5), are precisely the ones counted by
the distinct side of Sylvester’s theorem. Combining it with (4.5.4) and (4.5.5), we
must therefore have

∞∑
m=0

((1− b)q; q)m+1

(q; q)m
q(

m+1
2 ) =

(
(1− b)q; q2

)
∞

(q; q2)∞
.

We can simplify this by replacing (1− b)q by a, which leaves

(4.5.8)
∞∑

m=0

(a; q)m+1

(q; q)m
q(

m+1
2 ) =

(
a; q2

)
∞

(q; q2)∞
.

We will come back to (4.5.8) in section 5.4.

Exercises

1. Find the partition with distinct parts that corresponds to 21 + 19 + 15 + 15 +
15 + 9 + 7 + 7 + 3 + 1 + 1 + 1 under Glaisher’s bijection. (Answer: 30 + 21 +
19 + 15 + 14 + 9 + 3 + 2 + 1.)
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188 4. PARTITIONS II: GEOMETRIC THEORY

2. Find the partition with odd parts that corresponds to 22 + 18 + 16 + 14 + 11 +
10 + 9 + 6 + 5 + 3 under Glaisher’s bijection. (Answer: 11 + 11 + 11 + 9 + 9 +
9 + 7 + 7 + 5 + 5 + 5 + 3 + 3 + 3 plus 16 1’s.)

3. Find the partition with distinct parts that corresponds to 15+15+13+9+7+
3+3+3+3 under the fishhook bijection. (Answer: 16+15+14+9+7+6+3+1.)

4. Find the partition with odd parts that corresponds to 21+20+14+12+9+6+5+4
under the inverse fishhook bijection. (Answer: 29 + 19 + 15 + 15 + 5 + 5 + 3.)

5. Make up your own examples of partitions with odd parts, and find the corre-
sponding partitions into distinct parts under the fishhook bijection.

6. Make up your own examples of partitions with distinct parts, and find the cor-
responding partitions into odd parts under the inverse fishhook bijection.

7. How many partitions with odd parts can you think of that map to the same
partition under Glaisher’s bijection that they do under the fishhook bijection?

8. Same question as 7 for distinct parts and the inverse maps.

9. Take n = 5 in Gauss’s identity (4.5.3). Write down all the partitions with odd
parts generated by the right side and apply the fishhook bijection to them. Show
that this gives all the partitions generated by the left side of (4.5.3).

10. Take n = 4 in Gauss’s identity (4.5.3). Write down all the partitions with
distinct parts generated by the left side and apply the inverse fishhook bijection
to them. Show that this gives all the partitions generated by the right side of
(4.5.3).

11. Verify (4.5.6).

12. Show that the alternating sum of the first 2n− 1 fishhooks is

F1 − F2 + F3 − F4 + · · ·+ F2n−1 = P1 +Rn − (n− 1),

and that the alternating sum of the first 2n fishhooks is

F1 − F2 + F3 − F4 + · · ·+ F2n−1 − F2n = P1 − P2n+1 + n.

Explain why this implies that the alternating sum of all the fishhooks equals P1.

4.6. Bibliographical Notes

In one of his provocative and entertaining blog posts [252], Doron Zeilberger
calls Sylvester “the GREATEST Mathematician of ALL TIMES”, and writes “if I
had to name a mathematician who, all things considered (constructing a measure
that is more concentrated on the things that really count, like vision, originality
and foresight) then Sylvester has no rivals.” One is reminded of Hardy’s dictum
(quoted by C. P. Snow on p. 46 of [130]) “It is never worth a first class man’s time
to express a majority opinion. By definition, there are plenty of others to do that.”
In any case, Sylvester’s coming to Johns Hopkins was one of the most important
events in 19th century American mathematics, a story very well documented by
Karen Hunger Parshall in [179] and [180].

The first of Euler’s papers to contain the pentagonal number theorem is [93],
which was presented to the St. Petersburg Academy in the early 1740s. They did
not get around to publishing [93] until 1751, by which time the theorem had already
appeared in his book [94]. It is also in [95], [97], and [99] (which is basically the
same as [95] except for the language). The proof in section 3.1 is sketched in

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



4.6. BIBLIOGRAPHICAL NOTES 189

[100], and presented in a bit more detail much later in [101], but Euler never
did the induction step (Lemma 3). I don’t know of anyone who did before Hans
Rademacher, in his masterly book [190]. Euler’s theorem on divisor sums is in
[95], [99] and [100]. Chapter 6 of Pólya’s book [184] is a beautiful essay on [95].

Gauss’s variation (4.1.5) of the pentagonal number theorem in problem 7 in

section 4.1 is (29) on p. 450 of [117], with x
1
8 in place of q. Problems 11–17 come

from [96]. Problem 18 comes from [164], as does the form of the pentagonal number
theorem in section 4.3. Problem 19 comes from [149], which also has a history of
the pentagonal number theorem. Jacobi proved his triple product identity in 1829
and derived the pentagonal number theorem as a special case [148], yet 17 years
later he was still willing to work out and publish a new proof of the latter.

The material of section 4.2 is in Sylvester’s monumental paper [231], and also
in Andrews’s [16]. Andrews has written two penetrating commentaries on [231],
the other being [20], from whence the quotation and problems 12 and 15 come.
The original source for problem 12 is [73].

Franklin’s proof appeared first in [108], and then in [231]. A version of it
without a diagram is in [230]. The fishhook bijection appears first in [232] in
a somewhat different form, as a “Cord Rule”. It was recast with fishhooks by
MacMahon in the second volume of [168], although he does not use that word.
Still another form of it is in Bressoud’s wonderful book [61]. The remark that it
proves Gauss’s identity was made to me once by Krishnaswami Alladi. At the end
of section 4.5 we have followed [8] and [191].

Igor Pak pointed out in [177] that Franklin’s argument would also prove Fine’s
pentagonal number theorem, and that Fine’s theorems in section 4.3 followed from
the fishhook bijection. Fine’s theorems were stated without proof in [102]. He
published proofs of them in his book [103], which appeared 40 years later—just
in time to be part of a renaissance in q-series that also included [19], [114], and
Berndt’s exegesis of Ramanujan’s notebooks, for which see the notes to Chapter 6.

Lambert’s identity for the divisor sum is on p. 507 of [160]. Clausen’s identity
is stated without proof at the end of [79]. The proof hinted at in problem 3 of
section 4.4 is more or less the same as those of Scherk [211] and Glaisher [122].
Eisenstein’s and Uchimura’s identities for the divisor sum come from [89] and [239],
respectively. Uchimura’s auxiliary theorem (4.4.13) was also known to Ramanujan
[50]. The last several problems of section 4 come from [41] and [42]. In [41]
Bailey sketched a very involved proof of the result of problem 19 (for which see
the problems in section 13.3), but he soon realized [42] that it could be proved as
we have outlined there. The results of this group of problems have applications in
number theory, but they are too complicated to get into here.
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CHAPTER 5

More q-identities: Jacobi, Gauss, and Heine

5.1. Jacobi’s triple product

We know from (3.6.5) in section 3.6 that if |q| < 1, then

(5.1.1) (−zq; q2)∞ = (1 + zq)(1 + zq3)(1 + zq5) · · · =
∞∑

n=0

qn
2

zn

(q2; q2)n

for all z, and it follows that

(5.1.2) (− q
z ; q

2)∞ =
(
1 +

q

z

)(
1 +

q3

z

)(
1 +

q5

z

)
· · · =

∞∑
n=0

qn
2

z−n

(q2; q2)n

for all z �= 0. The product in (5.1.1) is zero when z = −q−1,−q−3,−q−5, . . . , and
the product in (5.1.2) is zero when z = −q,−q3,−q5, . . . . If we continue either of
these geometric progressions below its starting point (for example, divide −q5 by
q2 to get −q3, divide this by q2 to get −q, and then divide by q2 again), it runs into
the other geometric progression. Since the two products fit together in this sense,
we might hope that their product would have a nice expansion. Since all integer
powers of z will occur, it would look like

(5.1.3) (−zq; q2)∞

(
−q

z
; q2
)
∞

=

∞∑
n=−∞

cn(q) z
n

for some coefficients cn(q). Because the product is unchanged if we replace z by 1
z ,

we must have cn(q) = c−n(q).
There is a very natural way to start trying to find cn(q) that was used by Gauss.

Jacobi used it too but covered his tracks when he wrote it up. If Euler had been
confronted with the product (5.1.3), he would surely have tried replacing z by zq2

there, as Gauss and Jacobi did. This gives

(5.1.4) (−zq3; q2)∞

(
− 1

zq
; q2
)

∞
=

∞∑
n=−∞

cn(q) q
2n zn,

and the point is that the left side of (5.1.4) is almost the same as the left side of
(5.1.3). What are the differences? The product side of (5.1.3) has one factor that
(5.1.4) lacks, namely 1+ zq, and it lacks one factor that (5.1.4) has, namely 1+ 1

zq .

191
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192 5. MORE q-IDENTITIES: JACOBI, GAUSS, AND HEINE

But 1 + 1
zq = zq+1

zq , so we can rewrite the product side of (5.1.4) as

(−zq3; q2)∞

(
− 1

zq
; q2
)

∞
= (−zq3; q2)∞

(
1 +

1

zq

)(
−q

z
; q2
)
∞

= (−zq3; q2)∞ (1 + zq)
1

zq

(
−q

z
; q2
)
∞

= (−zq; q2)∞
1

zq

(
−q

z
; q2
)
∞

or in other words

(5.1.5) zq (−zq3; q2)∞

(
− 1

zq
; q2
)

∞
= (−zq; q2)∞

(
−q

z
; q2
)
∞

.

From (5.1.3), (5.1.4), and (5.1.5) it follows that
∞∑

n=−∞
cn(q) z

n = zq

∞∑
n=−∞

cn(q) q
2nzn

=

∞∑
n=−∞

cn(q) q
2n+1 zn+1

=

∞∑
n=−∞

cn−1(q) q
2n−1 zn,

where we changed n to n− 1 in the last line. Equating coefficients of zn it follows
that

(5.1.6) cn(q) = q2n−1 cn−1(q).

Since cn(q) = c−n(q), we only have to find cn(q) for n ≥ 0. If n > 0, we can use
(5.1.6) to iterate our way down to c0(q), as we have done many times before. The
result is

(5.1.7) cn(q) = q(2n−1)+(2n−3)+···+5+3+1 c0(q) = qn
2

c0(q),

and this holds for all n since (−n)2 is the same as n2. Thus we can rewrite (5.1.3)
as

(5.1.8) (−zq; q2)∞
(
−q

z
; q2
)
∞

= c0(q)

∞∑
n=−∞

qn
2

zn,

and we still have to find c0(q). There are many ways to do this. Perhaps the
cleverest is due to Gauss, which has the additional advantage that it does not rely
on any previous q-identity.

Suppose we take z = i in (5.1.8). The left side becomes

(−iq; q2)∞
(
−q

i
; q2
)
∞

= (−iq; q2)∞
(
iq; q2

)
∞

=
{
(1 + iq)(1 + iq3)(1 + iq5) . . .

}
×
{
(1− iq)(1− iq3)(1− iq5) . . .

}
= (1 + iq)(1− iq)(1 + iq3)(1− iq3)(1 + iq5)(1− iq5) . . .

= (1 + q2)(1 + q6)(1 + q10) . . .

= (−q2; q4)∞.
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5.1. JACOBI’S TRIPLE PRODUCT 193

The series becomes
∞∑

n=−∞
qn

2

in = 1 + q
(
i+ i−1

)
+ q4

(
i2 + i−2

)
+ q9

(
i3 + i−3

)
+ q16

(
i4 + i−4

)
+ . . .

= 1 + q · 0 + q4(−2) + q9 · 0 + q16(2) + q25 · 0 + q36(−2) + . . .

= 1− 2q4 + 2q16 − 2q36 + 2q64 −+ . . .

=
∞∑

n=−∞
(−1)n q4n

2

,

so when z = i (5.1.8) says

(5.1.9) (−q2; q4)∞ = c0(q)
∞∑

n=−∞
(−1)n q4n

2

.

On the other hand, we can get the same series by replacing q by q4 in (6.5.4) and
setting z = −1. This gives

(5.1.10) (q4; q8)2∞ = c0(q
4)

∞∑
n=−∞

(−1)n q4n
2

.

From (5.1.9) and (5.1.10) we have

c0(q)

(−q2; q4)∞
=

1
∞∑

n=−∞
(−1)n q4n2

=
c0(q

4)

(q4; q8)2∞
,

or

(5.1.11) c0(q) = c0(q
4)

(−q2; q4)∞
(q4; q8)2∞

.

Now multiply both sides of (5.1.11) by
(
q2; q2

)
∞. On the right side we use (exercise)

(5.1.12)

(
q2; q2

)
∞ =

(
q2; q4

)
∞
(
q4; q4

)
∞

=
(
q2; q4

)
∞
(
q4; q8

)
∞
(
q8; q8

)
∞ .

This cancels one of the factors of
(
q4; q8

)
∞ in (5.1.11), leaving

(5.1.13) c0(q)
(
q2; q2

)
∞ = c0(q

4)
(
q8; q8

)
∞

(
q2; q4

)
∞
(
−q2; q4

)
∞

(q4; q8)∞
.

But (
q2; q4

)
∞
(
−q2; q4

)
∞ = (1− q2)(1− q6)(1− q10)(1− q14) · · ·

× (1 + q2)(1 + q6)(1 + q10)(1 + q14) · · ·
= (1− q4)(1− q12)(1− q20) · · · = (q4; q8)∞,

so (5.1.13) becomes

c0(q)
(
q2; q2

)
∞ = c0(q

4)
(
q8; q8

)
∞ .

This says that the expression c0(q) (q
2; q2)∞ is unaltered if we replace q by q4. It is

also unchanged if we replace q by q16, because this is equivalent to changing q to q4

twice. And it is also unchanged if we replace q by q256, because this is equivalent to
changing q to q16 twice. And it is also unchanged if we replace q by q65536, which
is q �→ q256 done twice, and so on. It is unchanged if we replace q by qN , where
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N is an arbitrarily large power of 4. Since |q| < 1, this means the expression is
unchanged if we replace q by 0. But (0; 0)∞ = 1, and also c0(0) = 1 since both
products on the left side of (5.1.8) equal 1 when q = 0, and the sum on the right
equals 1 (from the n = 0 term). Therefore

c0(q) (q
2; q2)∞ = 1, so c0(q) =

1

(q2; q2)∞
.

We have proved

Theorem 43 (Jacobi’s triple product identity). If |q| < 1 and z �= 0, then

(5.1.14) (−zq; q2)∞
(
−q

z
; q2
)
∞

(q2; q2)∞ =
∞∑

n=−∞
qn

2

zn.

Euler’s pentagonal number theorem

(5.1.15) (q; q)∞ =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = 1− q − q2 + q5 + q7 −−++ . . .

from section 4.1 gives us another simple way to find c0(q). Replace q by q2 here and
note that (q2; q2)∞ = (q2; q6)∞(q4; q6)∞(q6; q6)∞. Then the pentagonal number
theorem is equivalent to

(5.1.16) (q2; q6)∞(q4; q6)∞(q6; q6)∞ =

∞∑
n=−∞

(−1)nq3n
2−n.

On the other hand, if we replace q by q3 in (5.1.14) we have

(5.1.17) (−zq3; q6)∞

(
−q3

z
; q6
)

∞
= c0(q

3)

∞∑
n=−∞

q3n
2

zn.

To make the series in (5.1.16) and (5.1.17) the same we need z = − 1
q , which changes

(5.1.17) into

(q2; q6)∞
(
q4; q6

)
∞ = c0(q

3)

∞∑
n=−∞

q3n
2

(−q)−n.

Comparing this with (5.1.12) we see that c0(q
3) = 1/(q6; q6)∞. Therefore c0(q) =

1/(q2; q2)∞ as before. Since the triple product is much more general than (5.1.15)
and at the same time easier to prove, this argument is more commonly used the
other way around, to derive (5.1.16) from (5.1.14).

A theta product is a product of the form (a; p)∞(b; p)∞ with ab = p. The
characteristic property of the product side of (5.1.14) is that the factors containing
z are a theta product with p = q2, a = −zq, and b = − q

z . We can rewrite (5.1.14)

by replacing q2 by q and then z by −x
√
q, which gives

Theorem 44 (Jacobi’s triple product identity, alternate form). If |q| < 1 and
x �= 0, then

(5.1.18) (x; q)∞
( q
x
; q
)
∞

(q; q)∞ =
∞∑

n=−∞
(−1)n q

n(n−1)
2 xn.

This again expands a theta product, now with p = q, a = x, and b = q
x .
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Exercises

1. Explain why (q2; q2)∞ = (q2; q6)∞(q4; q6)∞(q6; q6)∞.

2. Prove (5.1.12).

3. How would you prove the pentagonal number theorem (5.1.15) from (5.1.18)?

4. Show that letting n → ∞ in any of the three identities in problem 10 from
section 2.5 gives the pentagonal number theorem.

5. If |q| < 1, show that
∞∑

n=−∞
qn

2

zn converges for any z other than z = 0. (Use the

ratio test or the root test on
∞∑

n=0

qn
2

zn and
−1∑

n=−∞
qn

2

zn =
∞∑

n=1

qn
2

z−n

separately.)

6. If |ab| < 1, show that

(5.1.19)
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

This is the form in which Ramanujan rediscovered Jacobi’s triple product.

7. Explain why we can rewrite (5.1.14) as

(−zq; q2)∞
(
−q

z
; q2
)
∞

(q2; q2)∞ =
∞∑

m=−∞
q4m

2

z2m
(
1 + zq4m+1

)
and (5.1.18) as

(x; q)∞
( q
x
; q
)
∞

(q; q)∞ =
∞∑

m=−∞
x2mq2m

2−m
(
1− xq2m

)
.

8. Set x = i in (5.2.7) to show that

(5.1.20) (−q2; q2)∞(q; q)∞ =
∞∑
k=0

(−1)k
[
q(

2k+1
2 ) − q(

2k+2
2 )
]
.

9. Show that the left side of (5.1.20) can be rewritten as (q; q2)∞ (q4; q4)∞.

10. In view of problem 9, (5.1.20) has an interpretation similar to that of the pen-
tagonal number theorem: the left side generates partitions with an even number
of distinct parts minus partitions with an odd number of distinct parts, where
the parts must either be odd or else multiples of 4. (To put it another way, the
parts must be distinct and not congruent to 2 mod 4.) Explain. Write out all
the partitions of this type up to n = 10, and check that this interpretation is
consistent with the right side of (5.1.20).

11. Show that the sum in (5.1.20) can be rewritten as
∞∑
k=0

(−1)k
[
q(

2k+1
2 ) − q(

2k+2
2 )
]
=

∞∑
k=0

(−1)kqk(2k+1) +
∞∑
k=0

(−1)k+1q(k+1)(2k+1)

=

∞∑
j=−∞

(−1)jqj(2j+1) =

∞∑
j=−∞

q2j
2

(−q)j .
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196 5. MORE q-IDENTITIES: JACOBI, GAUSS, AND HEINE

Show that this sum equals (q; q4)∞ (q3; q4)∞ (q4; q4)∞. Is this consistent with
problem 9?

12. Show that
∞∑

n=−∞
q

n(3n+1)
2 = (−q; q3)∞(−q2; q3)∞(q3; q3)∞ =

(q3; q3)∞
(q; q6)∞(q5; q6)∞

.

One might call this Gauss’s pentagonal number theorem.

13. Gauss wrote down the expansion

1 + q + q5 + q8 + q16 + q21 + q33 + · · · = (−q; q6)∞(−q5; q6)∞(q6; q6)∞.

What is the series on the left side? Explain.

14. Show that the series in the previous problem also equals

(−q; q2)∞

∞∑
n=−∞

(−1)nq6n
2+3n.

15. Use Jacobi’s triple product to show that

q + q9 + q25 + q49 + · · · =
∞∑
n=0

q(2n+1)2 = q
(
−q8; q8

)2
∞
(
q8; q8

)
∞ .

Hint: How are
∞∑

n=0

q(2n+1)2 and
∞∑

n=−∞
q(2n+1)2 related?

16. Gauss claimed that

q + q9 + q25 + q49 + . . .

=
[
q(1 + q8)(1 + q16)(1 + q24) · · ·

] [
1− q16 − q32 + q80 + q112 . . .

]
.

Use the previous problem to show this. Use Euler’s pentagonal number theorem
(5.1.15) to interpret the sum on the right side.

17. Gauss further claimed that

q3 + q27 + q75 + . . .

=
[
q(1 + q8)(1 + q16)(1 + q24) · · ·

] [
q2 − q10 − q42 + q66 + q130 . . .

]
.

Show this. The series on the right side is

q2
∞∑

n=−∞
(−1)nq8n(3n+2)

although Gauss doesn’t tell you this. Use problem 15 with q replaced by q3 for
the left side.

18. Show that ( ∞∑
n=−∞

q
n(n+1)

2

)2

= 2

( ∞∑
n=−∞

qn
2

)( ∞∑
n=−∞

qn
2+n

)
.

This was observed by Cauchy.
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19. Either directly or by rewriting the result of the previous problem, show that( ∞∑
n=0

q
n(n+1)

2

)2

=

( ∞∑
n=−∞

qn
2

)( ∞∑
n=0

qn
2+n

)
.

20. Show that the identity (4.2.13)

1

(xq; q)n
=

n∑
k=0

(
n

k

)
q

qk
2

xk

(xq; q)k
,

which was also problem 10 in section 2.3, becomes (5.1.22) after replacing q by
q2 and letting n → ∞.

21. This problem gives another determination of c0(q) that completes the proof of
the triple product.

(i) If we multiply (5.1.1) and (5.1.2) together we get

(5.1.21) (−zq; q2)∞
(
−q

z
; q2
)
∞

=

⎛
⎝ ∞∑

j=0

qj
2

zj

(q2; q2)j

⎞
⎠( ∞∑

k=0

qk
2

z−k

(q2; q2)k

)
.

Now c0(q) is the constant term (i.e., the term independent of z) in this product.
Explain why we get a term independent of z in (5.1.21) exactly when j = k, and
hence

c0(q) =

∞∑
k=0

(
qk

2

(q2; q2)k

)2

.

(ii) If we replace q by q2 in Jacobi’s Durfee square identity (4.2.1), we get

(5.1.22)
1

(zq2; q2)∞
=

∞∑
k=0

q2k
2

zk

(q2; q2)k (zq2; q2)k
.

What value does this give for c0(q)?

22. Here is an outline of Jacobi’s proof of (5.1.22). He wants to find the coefficients
An in the expansion

(5.1.23)
1

(zq; q)∞
=

∞∑
n=0

An z
n

(zq; q)n
.

(i) Explain how we can see that A0 = 1.

(ii) Jacobi observes that the left side of (5.1.23) is unchanged if we replace
z by zq and then multiply by 1

1−zq . Show that this gives

(5.1.24)
1

(zq; q)∞
=

∞∑
n=0

An z
n qn

(zq; q)n+1
.

(iii) Show that 1
1−zqk

= 1 + zqk

1−zqk
.
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(iv) Use (iii) to rewrite (5.1.24) as

1

(zq; q)∞
=

∞∑
n=0

An z
n qn

(zq; q)n

(
1 +

zqn+1

1− zqn+1

)

=

∞∑
n=0

An z
n qn

(zq; q)n
+

∞∑
n=0

An z
n+1 q2n+1

(zq; q)n+1
.(5.1.25)

(v) By comparing (5.1.25) and (5.1.23), show that
∞∑

n=0

An z
n(1− qn)

(zq; q)n
=

∞∑
n=0

An z
n+1 q2n+1

(zq; q)n+1

and explain why this can be rewritten as
∞∑

n=1

An z
n(1− qn)

(zq; q)n
=

∞∑
n=1

An−1 z
n q2n−1

(zq; q)n
.

(vi) Jacobi now equates coefficients of zn/(zq; q)n to conclude that

(5.1.26) An =
q2n−1

1− qn
An−1.

We will discuss the legitimacy of this step in Chapter 6. Assuming it is okay,
explain how we know that

An =
qn

2

(q; q)n
.

Hence (5.1.23) becomes

1

(zq; q)∞
=

∞∑
n=0

qn
2

zn

(q; q)n (zq; q)n
,

and this in turn becomes (5.1.22) if we replace q by q2.

23. Jacobi saw that (5.1.22) was powerful enough to derive the triple product directly
from (5.1.3) without needing (5.1.8), and this argument was what he chose to
publish.

(i) Since cn(q) = c−n(q) in (5.1.3), we just have to be able to find cn(q) for
n ≥ 0. By setting j = n+ k, explain why

cn(q) =
∞∑
k=0

q(n+k)2

(q2; q2)n+k

qk
2

(q2; q2)k

at least if n ≥ 0.

(ii) Explain why the result of (i) can be rewritten as

cn(q) =
qn

2

(q2; q2)n

∞∑
k=0

q2k
2+2nk

(q2n+2; q2)k (q2; q2)k

if n ≥ 0. (We need this restriction because we have not yet defined (q2; q2)n for
a negative n.)

(iii) Explain why (5.1.22) allows us to do the sum in (ii), resulting in

cn(q) =
qn

2

(q2; q2)n

1

(q2n+2; q2)∞
=

qn
2

(q2; q2)∞
.
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Note that this is symmetric in n and −n, so we no longer need to assume n ≥ 0.

(iv) Show that the triple product (5.1.14) follows from (iii).

24. Following Gauss, show that the triple product (5.1.14) can be put in the form

q
1
4

(
y +

1

y

)(
−q2y2; q2

)
∞

(
− q2

y2 ; q
2
)
∞

(q2; q2)∞ =

∞∑
n=0

q(n+
1
2 )

2
(
y2n+1 +

1

y2n+1

)
.

25. Bunyakowsky tried to expand the function

F (x, q) =

(
x− 1

x

)(
q2x2; q2

)
∞

(
q2

x2
; q2
)

∞
in powers of x.

(i) Explain why if cm is the coefficient of xm in the expansion of F (x, q),
then −cm is the coefficient of x−m.

(ii) Explain why the expansion of F (x, q) only contains odd powers of x.
Because of this and (i), Bunyakowsky takes the expansion in the form

F (x, q) =

∞∑
n=0

A2n+1(q)
(
x2n+1 − x−2n−1

)
.

(iii) Show that F (x, q) = −x2q F (xq, q), and hence

0 =

∞∑
n=0

A2n+1(q)
(
x2n+1 − x−2n−1

)
+ x2q

∞∑
n=0

A2n+1(q)
(
(xq)2n+1 − (xq)−2n−1

)
.

(iv) Show that the result of (iii) can be rewritten as

0 =
∞∑

n=0

A2n+1(q)x
2n+1 −

∞∑
n=0

A2n+1(q)x
−2n−1

+

∞∑
n=1

A2n−1(q)q
2nx2n+1 −

∞∑
n=−1

A2n+3(q)q
−2n−2x−2n−1,

and that this reduces to

0 =
∞∑

n=1

(
A2n+1(q) + q2nA2n−1(q)

)
x2n+1

−
∞∑

n=0

(
A2n+1(q) + q−2n−2A2n+3(q)

)
x−2n−1.

(v) Explain why it follows from (iv) that A2n+1(q) + q2nA2n−1(q) = 0 for
n ≥ 1, and A2n+1(q) + q−2n−2A2n+3(q) = 0 for n ≥ 0, and explain why these
two equations say the same thing.

(vi) Show that A2n+1(q) = (−1)nqn(n+1)A1(q) for n ≥ 0.

At this point Bunyakowsky has
(5.1.27)(

x− 1

x

)(
q2x2; q2

)
∞

(
q2

x2
; q2
)

∞
= A1(q)

∞∑
n=0

(−1)nqn(n+1)
(
x2n+1 − x−2n−1

)
,

and it remains to find A1(q). He has two ideas for doing this.
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(vii) He divides (5.1.27) by x− 1
x and then lets x → 1. Show that this gives

(5.1.28) (q2; q2)2∞ = A1(q)

∞∑
n=0

(−1)n(2n+ 1)qn(n+1).

(viii) He sets x = i in (5.1.27). Show that this gives

(5.1.29) (−q2; q2)2∞ = A1(q)
∞∑
n=0

qn(n+1).

(ix) Bunyakowsky never does find A1(q) (but see the next several problems).
He concludes this investigation by dividing (5.1.28) by (5.1.29) and changing q2

to q. Show that this gives

1− 3q + 5q3 − 7q6 + 9q10 . . .

1 + q + q3 + q6 + q10 + . . .
=

(q; q)4∞
(q2; q2)2∞

.

26. Use a result from this section to show that (5.1.28) implies A1(q) = 1/(q2; q2)∞.

27. Use a result from this section to show that (5.1.29) implies A1(q) = 1/(q2; q2)∞.

28. Show that one can derive Bunyakowsky’s expansion by taking z = −qx2 in
(5.1.14) and multiplying by x.

29. In problem 22 in section 3.2, I asked you to verify seven quotients of infinite
products that Jacobi said were equal to (−q; q)∞. You can find them in the
q-shifted factorial notation below. Jacobi went on to expand the numerator and
denominator of each fraction using the triple product identity. For aesthetic
reasons, I’ll leave the limits off of the summations below, as Jacobi did—they
all go from j = −∞ to ∞. Show that

(q2; q2)∞
(q; q)∞

=

∑
(−1)jqj(3j+1)∑
(−1)jq

j(3j+1)
2

,

(−q; q2)∞ (q2; q2)∞
(q2; q2)∞

=

∑
qj(2j+1)∑

(−1)jqj(3j+1)
,

(q; q)∞
(q; q2)2∞ (q2; q2)∞

=

∑
(−1)jq

j(3j+1)
2∑

(−1)jqj2
,

(−q; q2)∞ (q2; q2)∞
(q2; q4)2∞ (q4; q4)∞

=

∑
(−1)

j(j+1)
2 q

j(3j+1)
2∑

(−1)jq2j2
,

(q4; q4)∞
(q; q4)∞ (q3; q4)∞ (q4; q4)∞

=

∑
(−1)jq2j(3j+1)∑
(−1)jqj(2j+1)

,

(−q; q3)∞ (−q2; q3)∞ (q3; q3)∞
(q3; q6)2∞ (q6; q6)∞

=

∑
q

j(3j+1)
2∑

(−1)jq3j2
,

(−q3; q12)∞ (−q9; q12)∞ (q12; q12)∞
(q; q6)∞ (q5; q6)∞ (q6; q6)∞

=

∑
q3j(2j+1)∑

(−1)jqj(3j+2)
.

The minus signs are a little tricky in the fourth expansion.
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5.2. OTHER PROOFS AND RELATED RESULTS 201

5.2. Other proofs and related results

Another proof of (5.1.14) comes from MacMahon’s q-binomial theorem in sec-
tion 2.7, which we rewrite with a slightly different notation here:

(5.2.1)
(
− q

x
; q2
)
m

(
−qx; q2

)
n
=

n∑
k=−m

(
m+ n

m+ k

)
q2
qk

2

xk.

It is obvious what happens to the product on the left as m and n go to infinity.
On the right, we need to use Tannery’s theorem from the appendix. Except for the
bilateral nature of the series, the application is quite straightforward. We can write

n∑
k=−m

(
m+ n

m+ k

)
q2
qk

2

xk =

−1∑
k=−m

(
m+ n

m+ k

)
q2
qk

2

xk +

n∑
k=0

(
m+ n

m+ k

)
q2
qk

2

xk,

and we treat the latter sum first. Since k is nonnegative, it is natural to write(
m+ n

m+ k

)
q2

=
(1− q2m+2k+2)(1− q2m+2k+4) . . . (1− q2m+2n)

(q2; q2)n−k
.

For −1 < q < 1, this increases to 1/(q2; q2)∞ as m and n tend to ∞, and

∞∑
k=0

qk
2

xk

(q2; q2)∞

converges for any x when |q| < 1, so we can take

ak =
qk

2

xk

(q2; q2)∞
= Ck

in Tannery’s theorem if qx > 0. (We have to use |q| and |x| for Ck in general, but
this does not affect the convergence of the series.) We have also to deal with the
sum from k = −m to −1, but we can do this painlessly by changing k to −k and
switching m and n, when the previous argument applies for any x �= 0. Therefore

lim
m,n→∞

(
− q

x
; q2
)
m

(
−qx; q2

)
n
= lim

m,n→∞

n∑
k=−m

(
m+ n

m+ k

)
q2
qk

2

xk

becomes (
− q

x
; q2
)
∞

(
−qx; q2

)
∞ =

1

(q2; q2)∞

∞∑
k=−∞

qk
2

xk

for all nonzero x, which is (5.1.14).

Frobenius devised an interesting system of notation for partitions. Let’s write
down the Ferrers diagram for our earlier example 7 + 6 + 6 + 3 + 3 + 1:

∗ • • • • • •
◦ ∗ • • • •
◦ ◦ ∗ • • •
◦ ◦ ◦
◦ ◦ ◦
◦
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Now record the lengths of the rows above the main diagonal, and of the columns
below the main diagonal, in a 2-dimensional array:(

6 4 3
5 3 2

)
is the Frobenius symbol of 7+6+6+3+3+1. Note that the number of columns
of the array is the length of the main diagonal; so that, even though the ∗’s are not
counted in any of the numbers in the Frobenius symbol, no information is lost. In
general, a Frobenius symbol looks like(

a1 a2 a3 . . . an
b1 b2 b3 . . . bn

)
,

where a1 > a2 > · · · > an ≥ 0 and b1 > b2 > · · · > bn ≥ 0, the number being
partitioned is a1 + a2 + · · · + an + b1 + b2 + · · · + bn + n, and n is the length of
the main diagonal in the Ferrers diagram. It can happen that one or both of the
entries in the last column are 0.

The main point of this notation is that it reveals the conjugate of a partition
immediately. For example, the conjugate of(

6 4 3
5 3 2

)
is

(
5 3 2
6 4 3

)
,

and generally the conjugate of(
a1 a2 a3 . . . an
b1 b2 b3 . . . bn

)
is

(
b1 b2 b3 . . . bn
a1 a2 a3 . . . an

)
.

By giving up this conjugate property we can get a modified Frobenius symbol
whose entries add up to the number being partitioned. Let’s look at the example
8 + 6 + 6 + 3 + 2 + 2:

◦ • • • • • • •
◦ ◦ • • • •
◦ ◦ ◦ • • •
◦ ◦ ◦
◦ ◦
◦ ◦

This time we include the main diagonal in the lower region, rather than separating
it out, so the modified symbol would be(

7 4 3
6 5 2

)
and the number being partitioned is 7+ 4+3+ 6+ 5+2 = 27. A general modified
symbol looks like (

c1 c2 c3 . . . cn
d1 d2 d3 . . . dn

)
,

where c1 > c2 > · · · > cn ≥ 0 and d1 > d2 > · · · > dn > 0, the number being
partitioned is c1 + c2 + · · ·+ cn+ d1 + d2 + · · ·+ dn, and n is the length of the main
diagonal.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



5.2. OTHER PROOFS AND RELATED RESULTS 203

One can also complete the proof of Jacobi’s triple product identity with the
aid of these modified symbols. It is most convenient to apply the argument to the
product

(5.2.2) (−z; q)∞
(
− q

z ; q
)
∞ =

∞∑
n=−∞

bn(q) z
n,

where we need to find the coefficients bn(q). By the same kind of argument as in
section 5.1 we have (exercise)

(5.2.3) bn(q) = q
n(n−1)

2 b0(q) for all n.

In other words, (5.2.2) becomes

(5.2.4) (−z; q)∞
(
− q

z ; q
)
∞ = b0(q)

∞∑
n=−∞

q
n(n−1)

2 zn,

and we still have to find b0(q), which we took outside the sum since it does not
depend on n.

Since b0(q) is the coefficient of z0 in the product on the left side of (5.2.4),
we get a contribution to it from any combination of factors of (−z; q)∞ and the
same number of factors of

(
− q

z ; q
)
∞. Of course there are infinitely many such

combinations, so adding them all up seems a daunting task, but let’s look at a
typical combination, say

(1 + z)
(
1 + zq3

) (
1 + zq11

) (
1 + zq37

) (
1 + q

z

) (
1 + q4

z

)(
1 + q6

z

)(
1 + q19

z

)
.

If we multiply together the z terms from just these factors, taking the 1’s from all
the other factors, we get a term

z1+1+1+1−1−1−1−1q0+3+11+37+1+4+6+19 = q81,

which is one of the many constituents of c0(q). We could encode this term as(
37 11 3 0
19 6 4 1

)
which is a modified Frobenius symbol. In other words, there is a 1-1 correspondence
between the constituents of the constant term b0(q) and the modified Frobenius
symbols. To put it another way, b0(q) is the generating function for all modified
Frobenius symbols. But these symbols are in 1-1 correspondence with partitions
(for example, (

37 11 3 0
19 6 4 1

)
corresponds to 38 + 13 + 6 + 4 + 3 + 3 + 2 + twelve 1’s), so b0(q) is the generating
function for partitions. Therefore

b0(q) =
1

(q; q)∞
.

Putting this in (5.2.4) we get (5.1.18).
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For several reasons, it is interesting to rewrite (5.1.18) as a sum from n = 0 to
infinity. It is convenient to start by replacing n by −n. Since −n(−n−1) = n(n+1),
and since (−1)−n = (−1)n, this gives

(x; q)∞
( q
x
; q
)
∞

(q; q)∞ =
∞∑

n=−∞
(−1)n q

n(n+1)
2 x−n.

Next, split off the terms of the series with a negative n:

∞∑
n=−∞

(−1)n q
n(n+1)

2 x−n =

∞∑
n=0

(−1)n q
n(n+1)

2 x−n +

−∞∑
n=−1

(−1)n q
n(n+1)

2 x−n

=
∞∑

n=0

(−1)n q
n(n+1)

2 x−n +
∞∑
k=1

(−1)k q
k(k−1)

2 xk,

where in the last step we replaced n by −k and used −k(−k+1) = k(k−1). Finally,
we reindex the last sum above by letting k − 1 = n. This gives

∞∑
n=−∞

(−1)n q
n(n+1)

2 x−n =
∞∑

n=0

(−1)n q
n(n+1)

2 x−n +
∞∑
n=0

(−1)n+1 q
n(n+1)

2 xn+1

=
∞∑

n=0

(−1)n q(
n+1
2 ) x−n

(
1− x2n+1

)
,

where we can use
(
n+1
2

)
for n(n+1)

2 now since n is nonnegative. Hence

(5.2.5) (x; q)∞
( q
x
; q
)
∞

(q; q)∞ =
∞∑

n=0

(−1)n q(
n+1
2 ) x−n

(
1− x2n+1

)
.

One advantage this has over (5.1.18) is that the right side is obviously zero when
x = 1, as it must be since (1; q)∞ has a factor of 1− 1. If we set x = −1 in (5.2.5)
and divide by 2 (noting that 1 + 1 is the first factor of (−1; q)∞), we get

(5.2.6)

∞∑
n=0

q(
n+1
2 ) = (−q; q)2∞ (q; q)∞.

This is essentially due to Gauss, and we will come back to it. Perhaps the most
interesting thing to do with (5.2.5) is to divide by 1−x, using the fact that (x; q)∞ =
(1− x)(xq; q)∞. This gives
(5.2.7)

(xq; q)∞
(
q
x ; q
)
∞ (q; q)∞ =

∞∑
n=0

(−1)n q(
n+1
2 ) x−n 1− x2n+1

1− x

=

∞∑
n=0

(−1)n q(
n+1
2 ) x−n

(
1 + x+ x2 + · · ·+ x2n

)

=

∞∑
n=0

(−1)n q(
n+1
2 ) (x−n + · · ·+ x−1 + 1 + x+ · · ·+ xn

)
.

A beautiful identity of Jacobi now follows on setting x = 1.
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Theorem 45 (Jacobi’s cube identity). If |q| < 1, then

(5.2.8) (q; q)3∞ =

∞∑
n=0

(−1)n (2n+ 1) q(
n+1
2 ).

It also appears in Gauss’s Nachlass. If we use Euler’s pentagonal number
theorem (5.1.15) on the left side, we can rewrite (5.2.8) (again following Jacobi) as

(5.2.9)
(
1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + q51 + q57 . . .

)3
= 1− 3q + 5q3 − 7q6 + 9q10 − 11q15 + 13q21 − 15q28 + 17q36 . . . .

Exercises

1. Find the Frobenius symbol of 9 + 8 + 5 + 4 + 4 + 2.

2. Find the Frobenius symbol of 9 + 8 + 6 + 6 + 5 + 2 + 2 + 1.

3. Find the Frobenius symbol of 9 + 8+ 6+ 6+ 6+ 5+ 2+ 2+ 1. Any comments?

4. For a self-conjugate partition, what can you say about the Ferrers diagram?
About the Frobenius symbol?

5. Explain why we have a1 > a2 > · · · > an and b1 > b2 > · · · > bn in a Frobenius
symbol. Can you make a stronger statement if you know the partition has
distinct parts?

6. This problem outlines a derivation of (5.2.3).

(i) Show that replacing z by zq in (5.2.2) leads to

bn(q) = qn−1 bn−1(q).

(ii) Show that iterating (i) gives

bn(q) = q
n(n−1)

2 b0(q) if n ≥ 0.

(iii) If n is not positive, we can set n = 1−m in (i) to get

b1−m(q) = q−m b−m(q) or b−m(q) = qm b1−m(q),

where m is a positive integer. Show that iterating this gives

b−m(q) = q
m(m+1)

2 b0(q) if m > 0,

or

bn(q) = q
n(n−1)

2 b0(q) if n < 0.

7. Show that

(5.2.10) (−zq; q2)∞

(
−q

z
; q2
)
∞

(q2; q2)∞ =

∞∑
n=0

qn
2

z−n
(
1 + (zq)

2n+1
)
.

This is (5.1.14) put in a form like (5.2.5).
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8. The triple product affords an easy proof of an identity that Gauss obtained
differently:

(5.2.11)
(q; q)∞
(−q; q)∞

= 1− 2q + 2q4 − 2q9 + 2q16 −+ . . . .

(i) Explain why the right side is
∞∑

n=−∞
(−1)n qn

2

.

(ii) Use the triple product to sum the series in (i).

(iii) Explain why your answer to (ii) can be rewritten as

(q; q2)∞ (q; q)∞ or as
(q; q)∞
(−q; q)∞

.

9. Gauss observed a simple but pretty corollary of (5.2.11). If

F (q) = 1− 2q + 2q4 − 2q9 + 2q16 − 2q25 +− . . . ,

then (5.2.11) tells us that

F (q) =
(q; q)∞
(−q; q)∞

=
(1− q)(1− q2)(1− q3)(1− q4) · · ·
(1 + q)(1 + q2)(1 + q3)(1 + q4) · · · .

Show that F (q)F (−q) =
[
F (q2)

]2
.

10. Show that (5.2.6) can be rewritten as

(5.2.12)
∞∑

n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

.

This is the form in which Gauss evaluated this sum, except that because of
his preference for working with (q; q)∞, which he denoted as [q], he would have
written

∞∑
n=0

q(
n+1
2 ) =

[q2]2

[q]
.

Show that this is equivalent. (He would actually have written [qq]2 instead of
[q2]2, and he used x instead of q.)

11. Following Gauss, show that

∞∑
n=−∞

(−1)nq(3n−1)2 = q − q4 − q16 + q25 + q49 . . .

= q(q3; q18)∞(q15; q18)∞(q18; q18)∞

= q−
1
8 (q3; q6)∞

∞∑
n=0

q
9
8 (2n+1)2 .

12. Gauss claimed that

(5.2.13) 1− 2q9 + 2q36 − 2q81 +− · · · = (1− q3)(1− q9)(1− q15) · · ·

× q−
1
8

[
q

1
8 + q

25
8 + q

49
8 + . . .

]
,
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where I have written the equation almost exactly as he did. In the first place,
this is an excellent illustration of the limitations of the notation . . . : one might
guess that

q
1
8 + q

25
8 + q

49
8 + . . . means

∞∑
n=0

q
1
8 (24n+1).

(i) What does this series converge to?

(ii) In fact, Gauss means by 1, 25, 49, . . . the odd squares that are not mul-
tiples of 3. Show that with this interpretation,

q
1
8 + q

25
8 + q

49
8 + · · · =

∞∑
n=−∞

q
1
8 (6n+1)2 ,

and evaluate this sum using Jacobi’s triple product.

(iii) What is the series on the left side of (5.2.13)? Evaluate it by Jacobi’s
triple product, and prove (5.2.13).

13. Just as MacMahon’s q-binomial theorem is a finite form of the Jacobi triple
product, Hirschhorn’s identity (2.7.9) is a finite form of Jacobi’s cube identity.
Show that letting n → ∞ in

(q; q)2∞ =

n∑
k=0

(−1)k(2k + 1)q(
k+1
2 )
(
2n+ 1

n− k

)
q

gives (5.2.8). (Again, this technically requires Tannery’s theorem.)

14. Weierstrass’s first paper was clearly influenced by Jacobi. In it he sets

φ(z) =
(
qz2; q2

)
∞ and F (z) =

φ(z)φ
(
1
z

)
φ(1)φ(1)

.

He expands first F and then φ in powers of z, but the other order makes more
sense.

(i) Explain why φ(z) = (1− qz2)φ(zq).

(ii) Because φ is a function of z2, it has an expansion of the form

φ(z) =
∞∑

n=0

Bn(q)z
2n.

Use (i) to show that

Bn(q) =
−q2n−1

1− q2n
Bn−1(q) for n ≥ 1.

(iii) Use (ii) to show that

φ(z) =

∞∑
n=0

(−1)nqn
2

(q2; q2)n
z2n.

(iv) Similarly, F has an expansion of the form

F (z) =
∞∑

n=−∞
An(q)z

2n.

Explain why An(q) = A−n(q).

(v) Explain why F (z) = −qz2 F (zq).
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(vi) Use (v) to show that An(q) = −q2n−1 An−1(q) for all n.

(vii) Use (vi) to show that An(q) = (−1)nqn
2

A0(q) for all n.

(viii) Weierstrass does not find A0(q). Explain why he could at least have
said that

A0(q) =
1

∞∑
n=−∞

(−1)nqn2

.

(ix) Find A0(q) and write down the final form of the expansion of F (z).

15. Gauss’s original proof of (5.2.11) is ingenious but rather tricky, and since it
appears in his Nachlass, it has to be fleshed out a little. Assume throughout
this problem that |q| < 1, as usual, and assume that m is nonnegative.

(i) Gauss starts with the series

P (m) = 1 +
qm

1 + qm
1− q2m+1

1 + qm+1
+

q2m

1 + qn
1− q2m+2

1 + qm+1

1− qm+1

1 + qm+2

+
q3m

1 + qm
1− q2m+3

1 + qm+1

1− qm+1

1 + qm+2

1− qm+2

1 + qm+3
+ . . .

= 1 +
∞∑
k=1

qkm(1− q2m+k)
(qm+1; q)k−1

(−qm; q)k+1

and

Q(m) =
qm

1 + qm
+

q2m

1 + qm
1− qm+1

1 + qm+1
+

q3m

1 + qm
(1− qm+1)(1− qm+2)

(1 + qm+1)(1 + qm+2)
+ . . .

=

∞∑
k=1

qkm
(qm+1; q)k−1

(−qm; q)k
.

Show that these converge for any m > 0, but not for m = 0.

(ii) Because of the divergence when m = 0, we must work with partial sums.
We define Pn(m) and Qn(m) to be the sums of the first n+1 terms of the series
for P (m) and Q(m) respectively; that is,

Pn(m) = 1 +
n∑

k=1

qkm(1− q2m+k)
(qm+1; q)k−1

(−qm; q)k+1

and

Qn(m) =

n+1∑
k=1

qkm
(qm+1; q)k−1

(−qm; q)k
.

Show that Qn(m) can be rewritten as

(a) Qn(m) =
qm

1 + qm
+

n∑
k=1

q(k+1)m (qm+1; q)k
(−qm; q)k+1

and as

(b) Qn(m) =
n∑

k=1

qkm
(qm+1; q)k−1

(−qm; q)k
+ qm(n+1) (qm+1; q)n

(−qn; q)n+1
.
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(iii) Define φn(m) = Pn(m)−Qn(m). Using (a), show that

φn(m) =

n∑
k=0

qkm
(qm; q)k

(−qm; q)k+1
.

(iv) Using (b), show that

φn(m) = 1− qm(n+1) (qm+1; q)n
(−qm; q)n+1

−
n∑

k=1

q(k+1)(m+1)−1 (qm+1; q)k−1

(−qm+1; q)k
.

(v) Use (iii) and (iv) to show that

n∑
k=0

qkm
(qm; q)k

(−qm; q)k+1
= 1− qm(n+1) (qm+1; q)n

(−qm; q)n+1

− q2m+1
n−1∑
k=0

qk(m+1) (qm+1; q)k
(−qm+1; q)k+1

.

(vi) Assuming that m > 0, show that letting n → ∞ in (v) gives

∞∑
k=0

qkm
(qm; q)k

(−qm; q)k+1
= 1− q2m+1

∞∑
k=0

qk(m+1) (qm+1; q)k
(−qm+1; q)k+1

.

Denoting the left side of this by φm(q), explain why we have

φm(q) = 1− q2m+1φm+1(q)

for m > 0.

(vii) Explain why (vi) implies that

φm(q) =
k−1∑
j=0

(−1)jqj(2m+j) + (−1)kqk(2m+k)φm+k(q)

for any m > 0 and any nonnegative integer k, and why this implies that

φm(q) =
∞∑
j=0

(−1)jqj(2m+j)

for m > 0.

(viii) If m = 0, the result of (vi) is false (as Gauss pointed out), but we can
still let n → ∞ in (v). Show that this gives

1

2
= 1− 1

2

(q; q)∞
(−q; q)∞

− qφ1(q).

(ix) Use (vii) and (viii) to show that

(q; q)∞
(−q; q)∞

= 1− 2q + 2q4 − 2q9 +− · · · =
∞∑

j=−∞
(−1)jqj

2

.

This completes Gauss’s original proof of (5.2.11). (This problem is dedicated
to my father, Robert Shepard Johnson, who helped me translate the relevant
passage in Gauss shortly before he died.)
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16. Gauss’s original proof of (5.2.12), the identity of problem 10, is very much like
the one in problem 15. Again assume that |q| < 1 and that n is nonnegative.

(i) Gauss starts with the series

P (n) =

∞∑
k=1

q(k−1)n(1− q2n+2k)
(qn+2; q2)k−1

(qn+1; q2)k

and

Q(n) =

∞∑
k=1

qkn
(qn+2; q2)k
(qn+1; q2)k

.

Show that these converge for any n > 0, but not for n = 0.

(ii) Define Pm(n) and Qm(n) to be the sums of the first m terms of the series
for P (n) and Q(n) respectively. Show that

Pm(n) =

m∑
k=1

q(k−1)n(1− q2n+2k)
(qn+2; q2)k−1

(qn+1; q2)k

= 1 + qn+1 +

m−1∑
k=1

qkn(1− q2n+2k+2)
(qn+2; q2)k

(qn+1; q2)k+1

and that

Qm(n) =
m∑

k=1

qkn
(qn+2; q2)k
(qn+1; q2)k

=
m−1∑
k=1

qkn
(qn+2; q2)k
(qn+1; q2)k

+ qmn (qn+2; q2)m
(qn+1; q2)m

.

(iii) Define ψm(n) = Pm(n)−Qm(n). Using the first expressions for Pm(n)
and Qm(n) in (ii), show that

ψm(n) =
m∑

k=1

q(k−1)n (qn; q2)k
(qn+1; q2)k

.

(iv) Using the last expressions for Pm(n) and Qm(n) in (ii), show that

ψm(n) = 1 + qn+1 − qmn (qn+2; q2)m
(qn+1; q2)m

+ q2n+3
m−1∑
k=1

q(k−1)(n+2) (q
n+2; q2)k

(qn+3; q2)k
.

Hence
m∑

k=1

q(k−1)n (qn; q2)k
(qn+1; q2)k

= 1 + qn+1 − qmn (qn+2; q2)m
(qn+1; q2)m

+ q2n+3
m−1∑
k=1

q(k−1)(n+2) (q
n+2; q2)k

(qn+3; q2)k
.

(v) Assume that n > 0 and let m → ∞ in (iv). Defining

ψn(q) =
∞∑
k=1

q(k−1)n (qn; q2)k
(qn+1; q2)k

,
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show that we have

ψn(q) = 1 + qn+1 + q2n+3ψn+2(q)

for n > 0.

(vi) Explain why (v) implies that

ψn(q) =

2k−1∑
j=0

qnj+(
j+1
2 ) + q2nk+(

2k+1
2 )ψn+2k(q)

for any n > 0 and any nonnegative integer k, and why this implies that

ψn(q) =
∞∑
j=0

qnj+(
j+1
2 )

for any nonnegative integer n.

(vii) If n = 0, the result of (v) is false (as Gauss again realized), but we can
still let m → ∞ in (iv). Show that this gives

0 = 1 + q − (q2; q2)∞
(q; q2)∞

+ q3ψ2(q),

and that therefore

(q2; q2)∞
(q; q2)∞

=

∞∑
m=0

q(
m+1

2 ).

It may help to observe that if j is a nonnegative integer, then 2j + 3 =
(
j+1
1

)
+(

j+2
1

)
.

17. Gauss sketched a proof of (5.2.8) that is somewhat different from Jacobi’s.

(i) Assuming as usual that |q| < 1, he starts with

(5.2.14)

[(
x− 1

x

)
q −
(
x3 − 1

x3

)
q9 +

(
x5 − 1

x5

)
q25 − . . .

]

×
[(

x+
1

x

)
q +

(
x3 +

1

x3

)
q9 +

(
x5 +

1

x5

)
q25 + . . .

]

=
(
1− 2q8 + 2q32 − . . .

) [(
x2 − 1

x2

)
q2 −

(
x6 − 1

x6

)
q18 + . . .

]
,

by which he means( ∞∑
n=−∞

(−1)nq(2n+1)2x2n+1

)( ∞∑
n=−∞

q(2n+1)2x2n+1

)

=

( ∞∑
n=−∞

(−1)nq8n
2

)( ∞∑
n=−∞

(−1)nq2(2n+1)2x4n+2

)
.

Prove this by using Jacobi’s triple product on all four sums.

(ii) Next he divides both sides of (5.2.14) by(
x− 1

x

)(
x+

1

x

)
=

(
x2 − 1

x2

)
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and then lets x → 1. Show that this gives

(q − 3q9 + 5q25 − . . . )(q + q9 + q25 + . . . )

= (1− 2q8 + 2q32 − . . . )(q2 − 3q18 + 5q50 − . . . ),

or

(1− 3q + 5q3 − 7q6 + . . . )(1 + q + q3 + q6 + . . . )

= (1− 2q + 2q4 − 2q9 + . . . )(1− 3q2 + 5q6 − 7q12 + . . . )

after dividing by q2 and then replacing q8 by q. In series form this is( ∞∑
n=0

(−1)n(2n+ 1)q(
n+1
2 )

)( ∞∑
n=0

q(
n+1
2 )

)

=

( ∞∑
n=−∞

(−1)nqn
2

)( ∞∑
n=0

(−1)n(2n+ 1)qn(n+1)

)
.

(iii) Define

f(q) =

∞∑
n=0

(−1)n(2n+ 1)q(
n+1
2 ).

Using (ii) and problems 8 and 10, show that

f(q)

(q; q)3∞
=

f(q2)

(q2; q2)3∞
.

(iv) Show that iterating the result of (iii) gives f(q) = (q; q)3∞. This is
(5.2.8).

18. Gauss considered the three functions

P (q) =

∞∑
n=−∞

qn
2

= 1 + 2q + 2q4 + 2q9 + 2q16 + 2q25 + . . . ,

Q(q) =

∞∑
n=−∞

(−1)nqn
2

= 1− 2q + 2q4 − 2q9 + 2q16 − 2q25 +− . . . ,

R(q) =

∞∑
n=−∞

q(n+
1
2 )

2

= q
1
4

∞∑
n=−∞

qn
2+n

= 2q
1
4

∞∑
n=0

qn
2+n = 2q

1
4

(
1 + q2 + q6 + q12 + q20 + . . .

)
.

Show that they are related by

P (q4) +R(q4) = P (q) and P (q4)−R(q4) = Q(q).

19. One of the most beautiful identities from Gauss’s Nachlass is

(5.2.15)
(
1 + 2q + 2q4 + 2q9 + . . .

)4
=
(
1− 2q + 2q4 − 2q9 + . . .

)4
+ 16q

(
1 + q2 + q6 + q12 + . . .

)4
.

This problem sketches a proof hinted at in the Nachlass. See also the next
problem.
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(i) Show that (5.2.15) is equivalent to

(P (q))4 = (Q(q))4 + (R(q))4

with P,Q,R as in the previous problem.

(ii) Use the triple product to show that

P (q) = (−q; q2)2∞(q2; q2)∞,

Q(q) = (q; q2)2∞(q2; q2)∞ = (q; q)∞(q; q2)∞,

R(q) = 2q
1
4 (−q2; q2)2∞(q2; q2)∞ = 2q

1
4 (−q2; q2)∞(q4; q4)∞.

(iii) Show that

P (q)Q(q) =
(
Q(q2)

)2
.

(iv) From (iii) and the previous problem, deduce that[
P (q4)

]2 − [R(q4)
]2

=
(
Q(q2)

)2
.

(v) Show that

P (q4) + iR(q4) = P (iq) and P (q4)− iR(q4) = Q(iq),

and deduce that[
P (q4)

]2
+
[
R(q4)

]2
= P (iq)Q(iq) =

(
Q(−q2)

)2
=
(
P (q2)

)2
.

(vi) Finally, deduce that(
P (q4)

)4 − (R(q4)
)4

=
(
Q(q4)

)4
,

which becomes (5.2.15) if we replace q4 by q.

20. In a different place in the Nachlass, Gauss gives more details of a variation on
the proof of (5.2.15) outlined in the preceding problem. It proceeds in the same
way through the first three parts, so we’ll start the numeration there.

(iii) In addition to

P (q)Q(q) =
(
Q(q2)

)2
, show also that 2P (q2)R(q2) = (R(q))

2
.

(iv) Show that

P (q) +Q(q) = 2P (q4), and P (q)−Q(q) = 2R(q4),

and deduce that
(P (q))

2 − (Q(q))
2
= 2
(
R(q2)

)2
.

(v) Show that

(1 + i)Q(iq) = P (q) + iQ(q)

(1− i)P (iq) = P (q)− iQ(q).

Hint: Separate the series for P (q) and Q(q) into odd and even exponents.

(vi) Deduce that

(P (q))2 + (Q(q))2 = 2
(
Q(−q2)

)2
= 2
(
P (q2)

)2
.

(vii) Finally, deduce that

(P (q))4 − (Q(q))4 = (R(q))4 .
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5.3. The quintuple product identity

We recall the Chen–Chu–Gu identity from section 2.10:

Theorem 46 (The Chen–Chu–Gu identity). For any nonnegative integers m
and n, for all q, and for all z �= 0, we have

1(
− q

z ; q
)
m
(−z; q)n+1

=

n∑
k=−m

(
m+ n

m+ k

)
q

q
k(3k−1)

2 z3k(1− zqk)(
q
z2 ; q

)
m−k

(z2; q)n+k+1

.

The reason why we worked so hard to get this is that it is a finite form of the
quintuple product identity. If we assume |q| < 1 and let m and n go to infinity
here, then

(
m+ n

m+ k

)
q

=
(q; q)m+n

(q; q)m+k(q; q)n−k
→ (q; q)∞

(q; q)∞(q; q)∞
=

1

(q; q)∞

as we have seen before, and we have (formally)

1(
− q

z ; q
)
∞ (−z; q)∞

=

∞∑
k=−∞

q
k(3k−1)

2 z3k(1− zqk)

(q; q)∞
(

q
z2 ; q

)
∞ (z2; q)∞

,

or

(5.3.1)
∞∑

k=−∞
q

k(3k−1)
2 z3k(1− zqk) =

(q; q)∞
(

q
z2 ; q

)
∞ (z2; q)∞(

− q
z ; q
)
∞ (−z; q)∞

.

As in other arguments of this type, one technically needs Tannery’s theorem to
justify this. We do not need any restriction on z, other than z �= 0, because the
series converges for all other z due to the quadratic exponent of q.

At the moment, (5.3.1) has five products, but one might prefer a “quintuple
product” to have them all in the numerator. To this end we have

(z2; q)∞
(−z; q)∞

=
(1− z2)(1− z2q)(1− z2q2)(1− z2q3)(1− z2q4)(1− z2q5) · · ·

(1 + z)(1 + zq)(1 + zq2)(1 + zq3) · · ·

=
(1− z2)(1− z2q2)(1− z2q4)(1− z2q6) · · ·

(1 + z)(1 + zq)(1 + zq2)(1 + zq3) · · ·
× (1− z2q)(1− z2q3)(1− z2q5)(1− z2q7) · · ·

= (1− z)(1− zq)(1− zq2) · · · × (1− z2q)(1− z2q3)(1− z2q5) · · ·
= (z; q)∞(z2q; q2)∞
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5.3. THE QUINTUPLE PRODUCT IDENTITY 215

and similarly(
q
z2 ; q

)
∞(

− q
z ; q
)
∞

=

(
1− q

z2

) (
1− q2

z2

)(
1− q3

z2

)(
1− q4

z2

)(
1− q5

z2

)(
1− q6

z2

)
· · ·(

1 + q
z

) (
1 + q2

z

)(
1 + q3

z

)(
1 + q4

z

)
· · ·

=

(
1− q2

z2

)(
1− q4

z2

)(
1− q6

z2

)
· · ·(

1 + q
z

) (
1 + q2

z

)(
1 + q3

z

)
· · ·

×
(
1− q

z2

)(
1− q3

z2

)(
1− q5

z2

)
· · ·

=
(
1− q

z

)(
1− q2

z

)(
1− q3

z

)
· · · ×

(
1− q

z2

)(
1− q3

z2

)(
1− q5

z2

)
· · ·

=
(q
z
; q
)
∞

( q

z2
; q2
)
∞

.

Therefore (5.3.1) is equivalent to

Theorem 47 (The quintuple product identity). If |q| < 1 and z �= 0, then

(5.3.2)
∞∑

k=−∞
q

k(3k−1)
2 z3k(1−zqk) = (q; q)∞(z; q)∞

( q
z
; q
)
∞

(z2q; q2)∞
( q

z2
; q2
)
∞

.

Note that the product side is the triple product with two more groups of factors
put on. One can also give a functional equation proof of the quintuple product.
Let

(5.3.3) f(z) = (z; q)∞
( q
z
; q
)
∞

(z2q; q2)∞
( q

z2
; q2
)
∞

,

which has all the factors of the quintuple product that include z. Because we have
infinitely many positive and negative powers of z in this product, it should have an
expansion

(5.3.4) f(z) =

∞∑
n=−∞

cnz
n

for some coefficients cn, which we will try to find. Look at

f(z)

f(zq)
=

(z; q)∞
(
q
z ; q
)
∞ (z2q; q2)∞

(
q
z2 ; q

2
)
∞

(zq; q)∞
(
1
z ; q
)
∞ (z2q3; q2)∞

(
1

qz2 ; q2
)
∞

=
(z; q)∞
(zq; q)∞

×
(
q
z ; q
)
∞(

1
z ; q
)
∞

× (z2q; q2)∞
(z2q3; q2)∞

×
(

q
z2 ; q

2
)
∞(

1
qz2 ; q2

)
∞

= (1− z)× 1

1− 1
z

× (1− z2q)× 1

1− 1
qz2

= (1− z)× −z

1− z
× (1− z2q)× −qz2

1− qz2
= qz3.

So f(z) = qz3 f(zq), which means that
∞∑

n=−∞
cnz

n =
∞∑

m=−∞
cm(zq)m(qz3) =

∞∑
m=−∞

cmqm+1zm+3 =
∞∑

n=−∞
cn−3q

n−2zn

after changing the summation index m to n− 3 to line up the powers of z. Hence
cn = qn−2cn−3. If we use this to work our way from a generic n towards zero, we
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will ultimately land either on n = 1 or on n = 0 or on n = −1, depending on where
we start. Let’s make another observation before we try to force these coefficients
out. Consider

f(z)

f
(
1
z

) =
(z; q)∞

(
q
z ; q
)
∞ (z2q; q2)∞

(
q
z2 ; q

2
)
∞(

1
z ; q
)
∞ (zq; q)∞

(
q
z2 ; q2

)
∞ (z2q; q2)∞

=
(z; q)∞
(zq; q)∞

×
(
q
z ; q
)
∞(

1
z ; q
)
∞

=
1− z

1− 1
z

= −z.

So f(z) = −z f
(
1
z

)
, which means that

∞∑
n=−∞

cnz
n =

∞∑
m=−∞

cmz−m(−z) =
∞∑

m=−∞
−cmz1−m =

∞∑
n=−∞

−c1−nz
n

after changing the summation index from m to 1 − n to line up the powers of z.
Hence cn = −c1−n. In particular, taking n = 2 here we find that c2 = −c−1. But
if we take n = 2 in our other relation cn = qn−2cn−3, we find that c2 = c−1. Hence
c−1 = −c−1, so c−1 = 0. This means that c2, c5, c8, c11, . . . are all zero, as are
c−4, c−7, c−10, . . . , since by repeated use of our two relations these would become
c−1 times some power of q.

Let n be a multiple of 3, say n = 3k, and assume for the moment that k is
nonnegative. Then we have c3k = q3k−2c3k−3, and using this on itself repeatedly
we get

c3k = q3k−2c3k−3 = c3k = q3k−2
(
q3k−5c3k−6

)
= q(3k−2)+(3k−5)

(
q3k−8c3k−9

)
= . . .

(5.3.5)

= q(3k−2)+(3k−5)+(3k−8)+···+4+1c0 = c0q
k(3k−1)

2 ,

(5.3.6)

at least for k ≥ 0. Similarly, if n ≡ 1 (mod 3), say n = 3k + 1, then c3k+1 =
q3k−1c3k−2, and using this repeatedly we get

(5.3.7) c3k+1 = c1q
k(3k+1)

2

at least for k ≥ 0. Note that cn = −c1−n implies that c1 = −c0. Also, taking
n = 3k + 1 in this relation we have

c1q
k(3k+1)

2 = c3k+1 = −c−3k, or c−3k = c0q
k(3k+1)

2

for k ≥ 0. Changing k to −k, this says

c3k = c0q
−k(−3k+1)

2 = c0q
k(3k−1)

2

for k ≤ 0, so (5.3.5) holds for all integers k, positive or not. Changing −k back to
k in (5.3.5) and invoking cn = −c1−n again, we then have that

−c0q
k(3k+1)

2 = −c−3k = c3k+1

for all integers k, or equivalently that (5.3.7) holds for all integers k.
If we split (5.3.4) into three series

f(z) =
∞∑

k=−∞
c3k−1z

3k−1 +
∞∑

k=−∞
c3kz

3k +
∞∑

k=−∞
c3k+1z

3k+1,
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the coefficients of the first series are all zero, and the other two combine into
(5.3.8)

f(z) =

∞∑
k=−∞

c0

(
q

k(3k−1)
2 z3k − q

k(3k+1)
2 z3k+1

)
= c0

∞∑
k=−∞

q
k(3k−1)

2 z3k
(
1− zqk

)
.

We just have to find c0 now, which can come out of the series since it does not
depend on k. There are several proofs of the quintuple product in the literature
that are more or less the same as this one up to this point. To find c0 we follow
Bailey: set z = −1, so that (5.3.8) becomes

f(−1) = c0

∞∑
k=−∞

(−1)kq
k(3k−1)

2

(
1 + qk

)
= c0

∞∑
k=−∞

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

)
.

If we split this into two sums and change k to −k in one of them, we see that they
are the same. In fact, this is two copies of Euler’s pentagonal number theorem,
so we have f(−1) = 2c0(q; q)∞. Alternatively, we can do both sums with Jacobi’s
triple product, as in section 5.1.

On the other hand, according to (5.3.3) we have

f(−1) = (−1; q)∞(−q; q)∞(q; q2)2∞

( q

z2
; q2
)
∞

,

and the very first factor is 1 + 1 = 2, so

f(−1) = 2
(
(−q; q)∞(q; q2)∞

)2
.

But Euler’s “odd equals distinct” theorem says that

1

(q; q2)∞
= (−q; q)∞,

so in fact f(−1) = 2. Therefore 2 = 2c0(q; q)∞, so c0 = 1/(q; q)∞. Putting this
into (5.3.8) and comparing with (5.3.3), we have rederived the quintuple product
identity.

There are many equivalent forms of the quintuple product identity. We content
ourselves with one more that will be useful later. Replacing q by q6 in (5.3.2) and
splitting the series (as we may, since both pieces converge), we have

(5.3.9)

∞∑
k=−∞

q3k(3k−1)z3k −
∞∑

k=−∞
q3k(3k+1)z3k+1

= (q6; q6)∞(z; q6)∞

(
q6

z
; q6
)

∞
(z2q6; q12)∞

(
q6

z2
; q12
)

∞
.

The reason for splitting the series is that we want to reindex only one of the two
sums. Replacing k by n in the first sum and by −n− 1 in the second, the left side
of (5.3.9) becomes

∞∑
n=−∞

q9n
2−3nz3n −

∞∑
n=−∞

q9n
2+15n+6z−3n−2.
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Replacing z by zq3 equalizes the powers of q on the sum side of (5.3.9), leaving

∞∑
n=−∞

q9n
2+6n

(
z3n − z−3n−2

)
= (q6; q6)∞(zq3; q6)∞

(
q3

z
; q6
)

∞
(z2q12; q12)∞

(
1

z2
; q12
)

∞
,

and multiplying this by zq gives the following result.

Theorem 48 (The quintuple product identity, alternate form). If |q| < 1 and
z �= 0, then

(5.3.10)

∞∑
n=−∞

q(3n+1)2
(
z3n+1 − z−3n−1

)
= zq(q6; q6)∞(zq3; q6)∞

(
q3

z
; q6
)

∞
(z2q12; q12)∞

(
1

z2
; q12
)

∞
.

Since (
1

z2
; q12

)
∞

=

(
1− 1

z2

)(
q12

z2
; q12
)

∞
,

this can be made still more symmetric:

(5.3.11)
∞∑

n=−∞
q(3n+1)2

(
z3n+1 − z−3n−1

)
= q
(
z − z−1

)
(q6; q6)∞(zq3; q6)∞

(
q3

z
; q6
)

∞
(z2q12; q12)∞

(
q12

z2
; q12
)

∞
.

Exercises

1. Evaluate
∞∑

n=−∞
q(3n+1)2z3n+1 −

∞∑
n=−∞

q(3n+1)2z−3n−1

by Jacobi’s triple product, and compare the result with (5.3.11).

2. The remaining exercises for this section are concerned with an identity of Gauss
that is superficially similar to the quintuple product, but not as deep. For |q| < 1
and arbitrary nonzero x and y, let

(5.3.12)

F (x, y, q) =
(
−qxy; q2

)
∞

(
− q

xy
; q2
)

∞

(
−qx

y
; q2
)

∞

(
−qy

x
; q2
)
∞

(q2; q2)2∞.

Gauss set himself the problem of expanding F (x, y, q) in powers of x and y.

(i) We first make several observations about F (x, y, q). It is symmetric in x
and y, it is symmetric in y and 1

y , and it is symmetric in x and 1
x . Explain why,

in addition, any term in the expansion of (5.3.12) that has an even power of y,
positive or negative, must also have an even power of x, positive or negative.
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(ii) We first try to expand F (x, y, q) in powers of y. Let fn(x, q) be the
coefficient of yn, so

(5.3.13) F (x, y, q) =
∞∑

n=−∞
fn(x, q) y

n.

Explain why fn(x, q) = f−n(x, q).

(iii) Show that F (x, y, q) = y2q2F (x, yq2, q).

(iv) Show that (iii) implies fn(x, q) = q2n−2fn−2(x, q).

(v) Show that (iv) implies

f2k(x, q) = q2k
2

f0(x, q) and f2k+1(x, q) = q2k(k+1)f1(x, q)

for all integer k. (First prove these when k is positive, then explain why we can
extend them to the other values.)

(vi) Because of (v), we can rewrite (5.3.13) as

F (x, y, q) = f0(x, q)

∞∑
k=−∞

q2k
2

y2k + f1(x, q)

∞∑
k=−∞

q2k(k+1) y2k+1.

Explain why (i) implies that we can further rewrite

(5.3.14) F (x, y, q) = P (q)

∞∑
j=−∞

q2j
2

x2j
∞∑

k=−∞
q2k

2

y2k

+Q(q)
∞∑

j=−∞
q2j(j+1) x2j+1

∞∑
k=−∞

q2k(k+1) y2k+1,

where P (q) and Q(q) depend only on q.

(vii) To find P (q), Gauss sets y = i in (5.3.14). Explain why this eliminates
the last sum, and use Jacobi’s triple product on the other one to get

F (x, i, q) = P (q)
(
−x2q2; q4

)
∞

(
− q2

x2
; q4
)

∞
(q2; q2)2∞.

Show that setting y = i in (5.3.12) and comparing with this gives P (q) = 1.
This leaves us with

(5.3.15) F (x, y, q) =

∞∑
j=−∞

q2j
2

x2j
∞∑

k=−∞
q2k

2

y2k

+Q(q)
∞∑

j=−∞
q2j(j+1) x2j+1

∞∑
k=−∞

q2k(k+1) y2k+1,

where it remains to find Q(q).

3. Gauss has two ideas for finding Q(q) in (5.3.15). Show that setting y = −xq
makes F (x,−xq, q) = 0, and use Jacobi’s triple product to show Q(q) = q, so
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that we have

(5.3.16)
(
−qxy; q2

)
∞

(
− q

xy
; q2
)

∞

(
−qx

y
; q2
)

∞

(
−qy

x
; q2
)
∞

(q2; q2)2∞

=

⎛
⎝ ∞∑

j=−∞
q2j

2

x2j

⎞
⎠( ∞∑

k=−∞
q2k

2

y2k

)

+ q

⎛
⎝ ∞∑

j=−∞
q2j(j+1) x2j+1

⎞
⎠( ∞∑

k=−∞
q2k(k+1) y2k+1

)

for |q| < 1 and arbitrary nonzero x and y.

4. Gauss’s other idea for finding Q(q) is to set y = iq in (5.3.15). Show that this
gets rid of the other sum, and hence completes a second derivation of (5.3.16).

5. By using Jacobi’s triple product, show that (5.3.16) can be rewritten as

(5.3.17)
(
−qxy; q2

)
∞

(
− q

xy
; q2
)

∞

(
−qx

y
; q2
)

∞

(
−qy

x
; q2
)
∞

(q2; q4)2∞

=
(
−x2q2; q4

)
∞

(
− q2

x2
; q4
)

∞

(
−y2q2; q4

)
∞

(
− q2

y2
; q4
)

∞

+ qxy
(
−x2q4; q4

)
∞

(
− 1

x2
; q4
)

∞

(
−y2q4; q4

)
∞

(
− 1

y2
; q4
)

∞
.

6. Show that (5.3.17) can be rewritten as

(
−qxy; q2

)
∞

(
− q

xy
; q2
)

∞

(
−qx

y
; q2
)

∞

(
−qy

x
; q2
)
∞

(q2; q4)2∞

=
(
−x2q2; q4

)
∞

(
− q2

x2
; q4
)

∞

(
−y2q2; q4

)
∞

(
− q2

y2
; q4
)

∞

+
q

xy

(
−x2; q4

)
∞

(
− q4

x2
; q4
)

∞

(
−y2; q4

)
∞

(
− q4

y2
; q4
)

∞
.

7. There is a simpler proof of (5.3.16) by series manipulation. Here is an outline:

(i) Explain why the left side of (5.3.16) is( ∞∑
r=−∞

qr
2

(xy)
r

)( ∞∑
s=−∞

qs
2

(
x

y

)s
)

=

∞∑
r=−∞

∞∑
s=−∞

qr
2+s2xr+syr−s.

(ii) The exponents r+ s and r− s are either both even or both odd (why?).
In the former case, set r + s = 2j and r − s = 2k, and we have

∑
−∞<r<∞
−∞<s<∞
r−s even

qr
2+s2xr+syr−s =

⎛
⎝ ∞∑

j=−∞
q2j

2

x2j

⎞
⎠( ∞∑

k=−∞
q2k

2

y2k

)
.
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5.4. LEBESGUE’S IDENTITY 221

In the latter case, set r + s = 2j + 1 and r − s = 2k + 1, and we have

∑
−∞<r<∞
−∞<s<∞
r−s odd

qr
2+s2xr+syr−s = q

⎛
⎝ ∞∑

j=−∞
q2j(j+1) x2j+1

⎞
⎠( ∞∑

k=−∞
q2k(k+1) y2k+1

)
.

Combining the two cases we get the right side of (5.3.16), which proves Gauss’s
identity. Fill in the details.

8. We can make the left side of Gauss’s identity more general, at a cost of making
the right side less satisfying. Show that

(
−qu; q2

)
∞

(
− q

u
; q2
)
∞

(
−qv; q2

)
∞

(
− q

v
; q2
)
∞

(q2; q4)2∞

=
(
−uvq2; q4

)
∞

(
− q2

uv
; q4
)

∞

(
−q2u

v
; q4
)

∞

(
−q2v

u
; q4
)

∞

+ qu
(
−uvq4; q4

)
∞

(
− 1

uv
; q4
)

∞

(
−q4u

v
; q4
)

∞

(
−v

u
; q4
)
∞

.

5.4. Lebesgue’s identity

Some readers will have heard of Henri Lebesgue and the Lebesgue integral,
which revolutionized real analysis at the beginning of the 20th century. Several
years before Cauchy published the Cauchy/Crelle series, a vaguely similar identity
was given by another man named Lebesgue, who died in 1875, 18 days before Henri
Lebesgue was born. (The two were apparently unrelated.) Victor-Amédée Lebesgue
considered the series

(5.4.1) f(a) :=
∞∑
n=0

(a; q)n
(q; q)n

q(
n+1
2 ),

though he was not the first to do so—the identity Lebesgue found for f(a) appears
11 years earlier in Jacobi’s 1829 paper, right after (5.2.9). Since many other re-
sults bear Jacobi’s name, and Lebesgue furnished a proof but Jacobi did not, the
traditional name is the best.

Let’s look at f(a) − f(aq), which is more or less what Euler would probably
have done if faced with this series. In both cases the n = 0 term is 1, so we have

f(a)− f(aq) =

∞∑
n=1

q(
n+1
2 )

(q; q)n
[(a; q)n − (aq; q)n] .

Now

(a; q)n − (aq; q)n = (aq; q)n−1 [1− a− (1− aqn)] = −a(1− qn)(aq; q)n−1,

so

f(a)− f(aq) =

∞∑
n=1

−a(1− qn)

(q; q)n
(aq; q)n−1q

(n+1
2 ) = −a

∞∑
n=1

(aq; q)n−1

(q; q)n−1
q(

n+1
2 ),
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or after reindexing

f(a)− f(aq) =

∞∑
n=0

(aq; q)n
(q; q)n

q(
n+2
2 )(−a).

This looks similar to the series in (5.4.1), and we can make it look more similar by
writing (

n+ 2

2

)
=

(
n+ 1

2

)
+

(
n+ 1

1

)
=

(
n+ 1

2

)
+ n+ 1.

Then

f(a)− f(aq) =

∞∑
n=0

(aq; q)n
(q; q)n

q(
n+1
2 ) (−aqn+1

)
.

Next we rewrite −aqn+1 = 1− aqn+1 − 1, and note that (exercise)

(1− aqn+1)(aq; q)n = (aq; q)n+1 = (1− aq)(aq2; q)n.

Then

f(a)− f(aq) =

∞∑
n=0

(aq; q)n+1

(q; q)n
q(

n+1
2 ) −

∞∑
n=0

(aq; q)n
(q; q)n

q(
n+1
2 )

= (1− aq)

∞∑
n=0

(aq2; q)n
(q; q)n

q(
n+1
2 ) − f(aq) = (1− aq)f(aq2)− f(aq),

and we finally have f(a) = (1− aq) f(aq2). (Now that we know this, we might try
to relate f(a) to f(aq2) directly, but this does not seem to be any easier.) As usual,
the next step is to iterate. Replacing a by aq2 we have f(aq2) = (1− aq3) f(aq4),
which implies that f(a) = (1− aq)(1− aq3) f(aq4). If we iterate n times we get

f(a) = (1− aq)(1− aq3) · · · (1− aq2n−1) f(aq2n)

= (aq; q2)n f(aq
2n).

Letting n → ∞ under our usual assumption that |q| < 1, this becomes

(5.4.2) f(a) = (aq; q2)∞ f(0).

There are several ways to finish off the calculation. We give a straightforward one
here; a slicker way appears in the problems. We need to find f(0), which is

f(0) =

∞∑
n=0

q(
n+1
2 )

(q; q)n
=

∞∑
n=0

q(
n
2) qn

(q; q)n
.

But this is a series we’ve seen before. All we have to do is set x = q in Euler’s
identity (3.6.1), which was

(−x; q)∞ =

∞∑
n=0

q(
n
2) xn

(q; q)n
,

and we see that f(0) = (−q; q)∞. This proves

Theorem 49 (Lebesgue’s identity). If |q| < 1 and a is arbitrary, then

(5.4.3)

∞∑
n=0

(a; q)n
(q; q)n

q(
n+1
2 ) = (aq; q2)∞ (−q; q)∞ =

(aq; q2)∞
(q; q2)∞

.
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The last step follows from Euler’s “odd equals distinct” theorem in section 3.2.
If we change a to aq and multiply both sides by 1− a, we get

∞∑
n=0

(a; q)n+1

(q; q)n
q(

n+1
2 ) =

(a; q2)∞
(q; q2)∞

,

which was (4.5.8), the analytic equivalent of Sylvester’s generalization of Euler’s
“odd equals distinct” theorem. Section 4.5 therefore provides a combinatorial proof
of Lebesgue’s identity. There is a generalization due to George Andrews.

Theorem 50 (The double Lebesgue identity). If |q| < 1 and a and b are
arbitrary, then

(5.4.4)

∞∑
n=0

(a; q)n(b; q)n
(q; q)n(abq; q2)n

q(
n+1
2 ) =

(aq; q2)∞(bq; q2)∞
(q; q2)∞(abq; q2)∞

.

Note that this is symmetric in a and b, and it reduces to Lebesgue’s identity
if either a or b is zero. We will outline a proof in one of the problems. Andrews’s
proof is in section 5.6.

Exercises

1. Verify that (1− aqn+1)(aq; q)n = (aq; q)n+1 = (1− aq)(aq2; q)n.

2. We were able to find f(0) above because we had already spent a lot of time on
q-series, and f(0) was a series we’d encountered before. It is fair to ask: is there
a nice way to find f(0) without knowing other q-series? We could set a = 1 in
(5.4.2) to get f(1) = (q; q2)∞ f(0). Now

f(1) =

∞∑
n=0

(1; q)n
(q; q)n

q(
n+1
2 ).

What is (1; q)n? Explain why this implies that f(1) = 1, and how this allows us
to find f(0).

3. Find f(0) by setting a = q in (5.4.2) and using Gauss’s identity (5.2.12).

4. Lebesgue’s identity was rediscovered by Atle Selberg, who considered the func-
tion

Lk(x) =
∞∑

n=0

(−1)nq(
n+1
2 )−nk (xq; q)n

(q; q)n

with |q| < 1.

(i) Show that the series converges for all x and all k.

(ii) Show that

qk (Lk(x)− Lk(xq)) = Lk(xq)−
(
1− xq2

)
Lk(xq

2).

(iii) Selberg now chooses k to satisfy qk = −1 and calls the resulting function
L(x). Explain why this gives

L(x) =
∞∑

n=0

q(
n+1
2 ) (xq; q)n

(q; q)n
and L(x) = (1− xq2)L(xq2).

(iv) Explain how Lebesgue’s identity follows from (iii).
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(v) Which value of k gives qk = −1?

5. Prove that

(5.4.5)
∞∑
n=0

(a; q)n
(q; q)n

q(
n+1
2 )zn = (a; q)∞(−zq; q)∞

∞∑
k=0

ak

(q; q)k(−zq; q)k
.

Hint: Explain why (5.4.5) can be rewritten as

∞∑
n=0

q(
n+1
2 )zn

(q; q)n (aqn; q)∞
=

∞∑
k=0

ak

(q; q)k

(
−zqk+1; q

)
∞ ,

and then use Euler’s theorems (3.5.1) and (3.6.1).

6. Prove that

(5.4.6)
∞∑

n=0

(a; q)n
(q; q)n

q(
n+1
2 )zn = (−zq; q)∞

∞∑
j=0

(−1)jqj
2

ajzj

(q; q)j(−zq; q)j
.

Hint: Rewrite the right side as in the previous problem, then use (3.6.1) and
Rothe’s q-binomial theorem.

7. Show that the right sides of (5.4.5) and (5.4.6) reduce to

(aq; q2)∞(−q; q)∞ =
(aq; q2)∞
(q; q2)∞

when z = 1. This gives two more proofs of Lebesgue’s identity.

8. From (5.4.5) and (5.4.6) it follows that

(a; q)∞

∞∑
n=0

an

(q; q)n(−zq; q)n
=

∞∑
k=0

(−1)kqk
2

akzk

(q; q)k(−zq; q)k
,

or
∞∑

n=0

an

(q; q)n(−zq; q)n
=

1

(a; q)∞

∞∑
k=0

(−1)kqk
2

akzk

(q; q)k(−zq; q)k
.

Give a direct proof of the latter by using (3.5.1) and (4.2.13).

9. Recall Rowell’s identity (2.5.13)

n∑
k=0

(
n

k

)
q

(−a; q)k q
(k+1

2 ) =
n∑

j=0

(
n

j

)
q2
(−q; q)n−j q

j2aj

from problem 13 in section 2.5. Show that letting n → ∞ here (invoking Tan-
nery’s theorem again) gives Lebesgue’s identity in the form

∞∑
k=0

(−a; q)k
(q; q)k

q(
k+1
2 ) = (−aq; q2)∞ (−q; q)∞.

10. Show that
∞∑
k=0

(a; q)k
(q; q)k

q
k(k+3)

2 =
(aq; q2)∞ − (a; q2)∞

a(q; q2)∞

=
1

(q; q2)∞

∞∑
k=0

(−a)kqk(k+1)

(q2; q2)k (1 + qk+1)
.
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11. Jacobi proved another identity that is somewhat similar to Lebesgue’s. He con-
sidered the function

f(z) =
∞∑
k=0

(z2; q2)k
(q2; q2)k

(−1)k qk
2

+
z

q

∞∑
k=0

(z2; q2)k
(q2; q2)k

(−1)k q(k+1)2 .

Here is an outline of his argument:

(i) Combining the sums above,

f(z) =

∞∑
k=0

(z2; q2)k
(q2; q2)k

(−1)k qk
2

(1 + zq2k).

(ii) On the other hand, we could rewrite the first sum in the definition of
f(z) as

1 +

∞∑
k=0

(z2; q2)k+1

(q2; q2)k+1
(−1)k+1 q(k+1)2 .

Combine this with the other sum in the definition to get

f(z) = 1 +
∞∑
k=0

(z2; q2)k
(q2; q2)k+1

(−1)k+1 q(k+1)2
(
1− z

q

)(
1 + zq2k+1

)
.

(iii) Replace z by zq in the final expression in (ii) and then multiply it by
1 + z. After reindexing, show that this gives f(z) = (1 + z) f(zq).

(iv) Iterate the result in (iii) to get f(z) = (−z; q)∞ f(0).

(v) There are several ways to find f(0). Jacobi finds f(1) first, as in problem
2. Perhaps better (as suggested to me by Sarah Schaller) is to find f(q) first.
Show by any method that f(0) = 1/(−q; q)∞. This proves that

f(z) =
(−z; q)∞
(−q; q)∞

.

12. Show that Jacobi’s identity in problem 11 reduces to Gauss’s identity (5.2.11)
from problems 8 and 15 of section 5.2 if z = −q.

13. Show how Jacobi or Gauss could have used (5.2.11) and Euler’s “odd equals
distinct” theorem to finish the proof of the triple product identity in section 5.1.

14. Following Jacobi, use the result of problem 11 to show

1

2

(−z; q)∞ + (z; q)∞
(−q; q)∞

=
∞∑
k=0

(z2; q2)k
(q2; q2)k

(−1)k qk
2

,(a)

q

2z

(−z; q)∞ − (z; q)∞
(−q; q)∞

=
∞∑
k=0

(z2; q2)k
(q2; q2)k

(−1)k q(k+1)2 .(b)

15. Give an alternative derivation of (5.2.11) by setting z = q or z = −q in (a) or
(b) of problem 14 respectively.

16. Lebesgue conceived an alternate approach to the identities of problems 11 and
14, starting from the two series in problem 14. Define

θ(z) =
∞∑
k=0

(−1)k qk
2 (z2; q2)k
(q2; q2)k

and φ(z) =
∞∑
k=0

(−1)k q(k+1)2 (z2; q2)k
(q2; q2)k

,
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and

(5.4.7) f(z) = θ(z) +
z

q
φ(z).

(i) Explain why φ(−z) = φ(z) and θ(−z) = θ(z).

(ii) Explain why

θ(z) = 1 +
∞∑
k=1

(−1)k qk
2 (z2; q2)k
(q2; q2)k

and φ(z) =
∞∑
k=1

(−1)k−1 qk
2 (z2; q2)k−1

(q2; q2)k−1
.

(iii) Starting from the forms in (ii), show that

θ(zq) + φ(zq) =
1

q
φ(z) and θ(zq) + z2 φ(zq) = θ(z).

(iv) Use (iii) to show that f(z) = (1 + z)f(zq).

(v) Use (iv) to show (assuming as usual that |q| < 1) that

f(z) = (−z; q)∞f(0) =
(−z; q)∞
(−q; q)∞

.

(vi) Use (5.4.7) and (i) to show that

f(z) + f(−z) = 2θ(z) and f(z)− f(−z) =
2z

q
φ(z).

Then use these to prove the identities in problem 14.

17. This problem outlines a proof of the double Lebesgue identity. Set

f(a, b) =

∞∑
n=0

(a; q)n(b; q)n
(q; q)n(abq; q2)n

q(
n+1
2 ) and g(a, b) =

∞∑
n=0

(a; q)n(bq; q)n
(q; q)n(abq; q2)n

q(
n+1
2 ).

The argument will succeed in evaluating f(a, b), which is the left side of (5.4.4).
I do not know a nice formula for g(a, b), but it is a convenient thing to subtract
from f(a, b).

(i) Show that

f(a, b)− g(a, b) = −b

∞∑
n=1

(a; q)n
(abq; q2)n

(bq; q)n−1

(q; q)n−1
q(

n+1
2 ).

(ii) After reindexing the series, show that (i) can be rewritten as

f(a, b)− g(a, b) =
∞∑

n=0

(a; q)n(bq; q)n
(q; q)n(abq; q2)n+1

q(
n+1
2 ) [1− bqn+1 −

(
1− abq2n+1

)]
.

(iii) Show that (ii) can be rewritten as

f(a, b)− g(a, b) =

∞∑
n=0

(a; q)n(bq; q)n+1

(q; q)n(abq; q2)n+1
q(

n+1
2 ) −

∞∑
n=0

(a; q)n(bq; q)n
(q; q)n(abq; q2)n

q(
n+1
2 ).

(iv) Explain why (iii) implies that

f(a, b) =

∞∑
n=0

(a; q)n(bq; q)n+1

(q; q)n(abq; q2)n+1
q(

n+1
2 ) =

1− bq

1− abq
f(a, bq2).

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



5.5. BASIC HYPERGEOMETRIC SERIES 227

(v) Explain why (iv) implies that

f(a, b) =
(bq; q2)∞
(abq; q2)∞

f(a, 0),

and complete the proof of the double Lebesgue identity.

5.5. Basic hypergeometric series

In the last several sections of this chapter we will scratch the surface of the
vast subject of q-hypergeometric series. These are sometimes also called, somewhat
misleadingly, basic hypergeometric series, as in the standard reference with that
title by Gasper and Rahman. In this context “basic” refers to the “base” q, and is
not synonymous with “elementary”.

For us, a basic hypergeometric series is a series of the form

(5.5.1) r+1φr

(
a1, . . . , ar+1

b1, . . . , br
; q, x

)
:=

∞∑
n=0

(a1; q)n · · · (ar+1; q)n
(b1; q)n · · · (br; q)n

xn

(q; q)n
.

This is usually an infinite series, but it can be finite if one of the numerator param-
eters aj is q to a negative integer power. When it is infinite, it converges if |x| < 1
(assuming as always that |q| < 1); we leave this as an exercise. In this section r
will always be 0 or 1, but there are interesting results with r as large as 9.

We already know what happens when r = 0. This is the q-binomial series

(5.5.2) 1φ0

(
s

− ; q, x

)
:=

∞∑
n=0

(s; q)n
(q; q)n

xn =
(sx; q)∞
(x; q)∞

if |x| < 1

from section 3.7. Indeed, the main reason why this result occurs in the literature
much more often than the superficially more general Cauchy/Crelle series is that it
fits into the q-hypergeometric series framework.

We move on to the case r = 1. The development here follows Heine’s epoch-
making paper of 1847. A generic 2φ1 series looks like

(5.5.3) 2φ1

(
a, b

c
; q, z

)
:=

∞∑
n=0

(a; q)n (b; q)n
(c; q)n (q; q)n

zn.

Unlike the q-binomial series, it is not possible to sum this for generic values of the pa-
rameters, but there are a few specific values for which we can find the sum. We start
by transforming (5.5.3) into another 2φ1 series. Take the quotient (b; q)n/(c; q)n in
(5.5.3) and rewrite it as

(b; q)n
(c; q)n

=
(b; q)∞

(bqn; q)∞

(cqn; q)∞
(c; q)∞

=
(b; q)∞
(c; q)∞

∞∑
k=0

( cb ; q)k

(q; q)k
(bqn)

k
,

where the last equality uses (5.5.2) with s = c
b and x = bqn. Substituting this in

(5.5.3) we have

2φ1

(
a, b

c
; q, z

)
=

(b; q)∞
(c; q)∞

∞∑
n=0

∞∑
k=0

(a; q)n
(q; q)n

( cb ; q)k

(q; q)k
bkznqnk

=
(b; q)∞
(c; q)∞

∞∑
k=0

( cb ; q)k

(q; q)k
bk

∞∑
n=0

(a; q)n
(q; q)n

(
zqk
)n

.
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Using (5.5.2) again with x = zqk and s = a, the inner sum is
∞∑
n=0

(a; q)n
(q; q)n

(
zqk
)n

=
(azqk; q)∞
(zqk; q)∞

=
(az; q)∞
(az; q)k

(z; q)k
(z; q)∞

.

Using this in the previous calculation we have

2φ1

(
a, b

c
; q, z

)
=

(b; q)∞
(c; q)∞

(az; q)∞
(z; q)∞

∞∑
k=0

( cb ; q)k

(q; q)k

(z; q)k
(az; q)k

bk.

Note that the new series is again a 2φ1 with b as the power series variable, so we
had better assume that |b| < 1 for convergence. Thus we have proved

Theorem 51 (Heine’s q-Pfaff transformation). If q, z, b are all less than 1 in
absolute value, then

(5.5.4) 2φ1

(
a, b

c
; q, z

)
=

(b; q)∞ (az; q)∞
(c; q)∞ (z; q)∞

2φ1

( c
b , z

az
; q, b

)
.

One reason why this is important is that it gives us a 2φ1 that we can sum, for
if we take z = c

ab , then the right side reduces to a 1φ0 that can be evaluated by
(5.5.2) with s = c

ab and x = b:

2φ1

(
a, b

c
; q,

c

ab

)
=

(b; q)∞ ( cb ; q)∞

(c; q)∞ ( c
ab ; q)∞

1φ0

( c
ab

− ; q, b

)

=
(b; q)∞ ( cb ; q)∞

(c; q)∞ ( c
ab ; q)∞

( ca ; q)∞

(b; q)∞
.

After simplifying the last line we have

Theorem 52 (Heine’s q-Gauss summation formula). If |q| < 1 and |c| < |ab|,
then

(5.5.5) 2φ1

(
a, b

c
; q,

c

ab

)
=

( ca ; q)∞ ( cb ; q)∞

(c; q)∞ ( c
ab ; q)∞

.

An equivalent form of (5.5.5) was found (more or less) by Jacobi a year earlier:

Theorem 53 (Jacobi’s q-Gauss summation formula). If |q| < 1 and |t| < 1,
then

(5.5.6) 2φ1

(
a, b

abt
; q, t

)
=

(at; q)∞ (bt; q)∞
(t; q)∞ (abt; q)∞

.

This follows from (5.5.5) on replacing c by abt. Ramanujan gave a similar form,
which we leave as an exercise.

Theorem 54 (Ramanujan’s q-Gauss summation formula). If |q| < 1 and
|abt| < 1, then

(5.5.7) 2φ1

( 1
a ,

1
b

t
; q, abt

)
=

(at; q)∞ (bt; q)∞
(t; q)∞ (abt; q)∞

.

Next we are going to use the q-Pfaff transformation on itself. It is easy to get
confused while doing this, so let’s restate it first with different names for most of
the parameters:

(5.5.8) 2φ1

(u, v
w

; q, x
)
=

(v; q)∞ (ux; q)∞
(w; q)∞ (x; q)∞

2φ1

( w
v , x

ux
; q, v

)
.
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We want to match the left side of this to

2φ1

( c
b , z

az
; q, b

)
,

the sum on the right side of (5.5.4). We have to take x = b and w = az, but we have
two choices for the other parameters: we can either take u = c

b and v = z, or the
other way around. If we do the former, then we will undo the q-Pfaff transformation
(we leave this as an exercise), so we take u = z and v = c

b . Then w
v = abz

c and
ux = bz and (5.5.8) becomes

2φ1

( c
b , z

az
; q, b

)
=

( cb ; q)∞ (bz; q)∞

(az; q)∞ (b; q)∞
2φ1

( abz
c , b

bz
; q,

c

b

)
.

Putting this in (5.5.4) we get

Theorem 55 (Heine’s intermediate transformation). If q, z, c
b are all less than

1 in absolute value, then

(5.5.9) 2φ1

(
a, b

c
; q, z

)
=

( cb ; q)∞ (bz; q)∞

(c; q)∞ (z; q)∞
2φ1

( abz
c , b

bz
; q,

c

b

)
.

The proof also tacitly assumes |b| < 1, but it is possible to relax this. As such,
(5.5.9) does not seem to be a very interesting identity, but if we apply (5.5.8) to it,
then we will get the formula we are really after. Again we want to make the left
side of (5.5.8) match

2φ1

( abz
c , b

bz
; q,

c

b

)
,

the right side of (5.5.9). We have to take w = bz and x = c
b . If we take u = abz

c
and v = b, then we’ll get back to (5.5.4) (exercise), so we instead take u = b and
v = abz

c . Then w
v = c

a and ux = c and (5.5.8) becomes

2φ1

( abz
c , b

bz
; q,

c

b

)
=

(abzc ; q)∞ (c; q)∞

(bz; q)∞ (z; q)∞
2φ1

( c
a ,

c
b

c
; q,

abz

c

)
.

Putting this into (5.5.9) we have

Theorem 56 (Heine’s q-Euler transformation). If q, z, abz
c are all less than 1

in absolute value, then

(5.5.10) 2φ1

(
a, b

c
; q, z

)
=

(abzc ; q)∞

(z; q)∞
2φ1

( c
a ,

c
b

c
; q,

abz

c

)
.

The proof also tacitly assumes | cb | < 1, but it is possible to relax this. The
right side of (5.5.10) has a very important feature that distinguishes it from the
right sides of (5.5.4) and (5.5.9): it is visibly symmetric in a and b, as the left side
is. This means that we can’t get any more transformation formulas by repeated
use of (5.5.8), as the reader may be relieved to hear. In the previous applications
of (5.5.8) one choice of u and v reversed a previous step and one didn’t, but now
they both do because of the symmetry.
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Exercises

1. Use the ratio test to show that, assuming |q| < 1, the series (5.5.1) converges if
|x| < 1.

2. Show that the right side of (5.5.4) can also be summed if a = 1, but that this
only leads to 1 = 1. (What is (1; q)n?)

3. Show that if we set a = q−n in (5.5.5) and then replace c by bt, we get

n∑
k=0

(
n

k

)
q

(−t)kq(
k
2) (b; q)k

(bt; q)k
=

(t; q)n
(bt; q)n

and that this is equivalent to (2.3.12) from problem 16 in section 2.3. (2.3.11)
might help.

4. Deduce Ramanujan’s q-Gauss summation (5.5.7) from Heine’s form (5.5.5) or
from Jacobi’s form (5.5.6).

5. Show that taking u = c
b and v = z along with x = b and w = az in (5.5.8)

reverses the q-Pfaff transformation.

6. Give an alternate proof of the q-Gauss summation formula by taking z = c
ab in

(5.5.9).

7. Jacobi’s form (5.5.6) of the q-Gauss summation formula is a generalization of
the q-binomial series (5.5.2). Explain.

8. This problem outlines Ramanujan’s proof of his form (5.5.7) of the q-Gauss
summation formula. First note that

(
1
a ; q
)
k
ak = (a− 1)(a− q) · · · (a− qk−1), so

the sum side of (5.5.7) is

∞∑
k=0

(a− 1)(a− q) · · · (a− qk−1)(b− 1)(b− q) · · · (b− qk−1)

(t; q)k(q; q)k
tk.

(i) Explain why (t; q)∞/(bt; q)∞ times this sum is

∞∑
k=0

(tqk; q)∞
(bt; q)∞

× (a− 1)(a− q) · · · (a− qk−1)(b− 1)(b− q) · · · (b− qk−1)

(q; q)k
tk.

(ii) Explain why

(tqk; q)∞
(bt; q)∞

=
∞∑
j=0

(b− qk)(b− qk+1) · · · (b− qk+j−1)

(q; q)j
tj .

(iii) Using (ii), show that the right side of (i) becomes

∞∑
j,k=0

(a− 1)(a− q) · · · (a− qk−1)(b− 1)(b− q) · · · (b− qk+j−1) tk+j

(q; q)k+j

(
k + j

k

)
q

,

and explain why this is

∞∑
n=0

(b− 1)(b− q) · · · (b− qn−1)

(q; q)n
tn

n∑
k=0

(
n

k

)
q

(a− 1)(a− q) · · · (a− qk−1).
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(iv) The inner sum occurred as a special case of Jacobi’s q-binomial theorem
in section 2.6. Hence show that the sum in (iii) is

∞∑
n=0

(b− 1)(b− q) · · · (b− qn−1)

(q; q)n
(at)n,

and explain why the right side is (at; q)∞/(abt; q)∞. Why does this prove (5.5.7)?

9. Heine’s form of the q-Gauss summation formula implies a formula of Cauchy
that we’ll see in section 6.3. For convenience we rewrite (5.5.5) with different
letters here:

(5.5.11)
∞∑

n=0

(r; q)n (s; q)n
(t; q)n (q; q)n

(
t

rs

)n

=
( tr ; q)∞ ( ts ; q)∞

(t; q)∞ ( t
rs ; q)∞

.

(i) Show that

(s; q)n
sn

= (−1)n
(
1− 1

s

)(
q − 1

s

)
· · ·
(
qn−1 − 1

s

)
.

(ii) With the aid of (i), show that letting s → ∞ (or, if you prefer, replacing
1
s by σ and then setting σ = 0) in (5.5.11) gives

(5.5.12)

∞∑
n=0

(r; q)n q
(n2)

(t; q)n (q; q)n

(
−t

r

)n

=
( tr ; q)∞

(t; q)∞
.

(iii) If t = bx and t
r = ax, what is r? Show that if we make these replace-

ments in (5.5.12), we get

(ax; q)∞
(bx; q)∞

=

∞∑
k=0

q(
k
2) xk

(q; q)k (bx; q)k
(b− a)(bq − a) · · · (bqk−1 − a),

which is Cauchy’s formula. Ramanujan proves this from (5.5.7) in a similar way.

10. By changing q to q2 in (5.5.12) and then setting r = −q2 and t = q3, show that

∞∑
n=0

(−q2; q2)n
(q; q)2n+1

qn
2

=
(−q; q2)∞
(q; q2)∞

.

11. In Heine’s intermediate transformation (5.5.9) set a = t
u , b = w, c = v, and

z = u
w and let w → ∞. Show that this gives Ramanujan’s transformation

(v; q)∞

∞∑
n=0

(
t
u ; q
)
n
(−1)nq(

n
2)un

(q; q)n(v; q)n
= (u; q)∞

∞∑
n=0

(
t
v ; q
)
n
(−1)nq(

n
2)vn

(q; q)n(u; q)n
.

Thus this function is symmetric in u and v.

12. Bailey found still another derivation of (4.4.14), based on the q-Gauss sum. He
used (5.5.5), but let’s use Ramanujan’s form, which we rewrite as

2φ1

( 1
a ,

1
b

z
; q, abz

)
=

(az; q)∞ (bz; q)∞
(z; q)∞ (abz; q)∞

to get the same letter as in (4.4.14).
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(i) Show that taking the derivative of this (use logarithmic differentiation)
with respect to z gives

∞∑
n=1

(
1
a ; q
)
n

(
1
b ; q
)
n
(ab)nzn−1

(z; q)n(q; q)n

n−1∑
k=0

1

1− zqk

=
(az; q)∞ (bz; q)∞
(z; q)∞ (abz; q)∞

∞∑
k=0

(1− a)(1− b)(1− abz2q2k)qk

(1− zqk)(1− azqk)(1− bzqk)(1− abzqk)
.

(ii) Show that this simplifies a little, to

∞∑
n=1

(
q
a ; q
)
n−1

(
q
b ; q
)
n−1

(abz)n−1

(z; q)n(q; q)n

n−1∑
k=0

1

1− zqk

=
(az; q)∞ (bz; q)∞
(z; q)∞ (abz; q)∞

∞∑
k=0

(1− abz2q2k)qk

(1− zqk)(1− azqk)(1− bzqk)(1− abzqk)
.

(iii) Show that multiplying (ii) by z and setting a and b equal to 1 gives

∞∑
n=1

(q; q)n−1z
n

(z; q)n(1− qn)

n−1∑
k=0

1

1− zqk
=

∞∑
k=0

zqk(1 + zqk)

(1− zqk)3
.

(iv) We now have the left side of (4.4.14), but not the right side. Use (9.1.2)
from the problems in section 9.1 with x = zqk to transform the right side of (iii),
and hence show that

∞∑
n=1

(q; q)n−1z
n

(z; q)n(1− qn)

n−1∑
k=0

1

1− zqk
=

∞∑
n=0

n2zn

1− qn
,

which is (4.4.14).

13. This problem outlines an alternative proof of (5.4.5) by using Heine’s q-Pfaff
transformation (5.5.4).

(i) Show that changing z to x, a to −zq/x, and b to a in (5.5.4) gives

∞∑
n=0

(a; q)n (x+ zq)(x+ zq2) · · · (x+ zqn)

(c; q)n(q; q)n

=
(a; q)∞(−zq; q)∞
(c; q)∞(x; q)∞

∞∑
k=0

(
c
a ; q
)
k
(x; q)k

(q; q)k(−zq; q)k
ak.

(ii) Show that setting c and x equal to zero in (i) gives (5.4.5).

14. (a) Show that taking a = − q
z , b = q, and c = xq in Heine’s intermediate

transformation (5.5.9) and letting z → 0 gives

∞∑
n=0

q(
n+1
2 )

(xq; q)n
= (1− x)

∞∑
n=0

(x+ q)(x+ q2) · · · (x+ qn).

(b) Show that the right side of (a) can be rewritten as

1 +

∞∑
n=0

(x+ q)(x+ q2) · · · (x+ qn)qn+1.
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This gives an alternative proof of the result of (ii) in problem 14 in section 3.5.

(c) Assuming as usual that |q| < 1, for which values of x do these series converge?

15. Imitate the proof of Heine’s q-Pfaff transformation to prove Andrews’s q-Pfaff
transformation: if q, z, b are all less than 1 in absolute value and r is a positive
integer, then

(5.5.13)
∞∑

n=0

(a; qr)n
(qr; qr)n

(b; q)rn
(c; q)rn

zn =
(b; q)∞
(c; q)∞

(az; qr)∞
(z; qr)∞

∞∑
k=0

( cb ; q)k

(q; q)k

(z; qr)k
(az; qr)k

bk.

5.6. More 2φ1 identities

Another summable 2φ1 arises when we take c = bq
a and z = − q

a in (5.5.4). This
gives

2φ1

(
a, b
bq
a

; q,− q

a

)
=

(b; q)∞ (−q; q)∞

( bqa ; q)∞ (− q
a ; q)∞

2φ1

( q
a ,−

q
a

−q
; q, b

)

=
(b; q)∞ (−q; q)∞

( bqa ; q)∞ (− q
a ; q)∞

∞∑
n=0

( qa ; q)n (−
q
a ; q)n

(q; q)n (−q; q)n
bn

=
(b; q)∞ (−q; q)∞

( bqa ; q)∞ (− q
a ; q)∞

∞∑
n=0

( q
2

a2 ; q
2)n

(q2; q2)n
bn.

The point is that we have made the right side into the “q2-binomial series”; that

is, we can sum this series by (5.5.2), changing q to q2 there and then taking s = q2

a2

and x = b. We get

(5.6.1) 2φ1

(
a, b
bq
a

; q,− q

a

)
=

(b; q)∞ (−q; q)∞

( bqa ; q)∞ (− q
a ; q)∞

( bq
2

a2 ; q
2)∞

(b; q2)∞
,

and a small amount of simplification yields

Theorem 57 (The Bailey–Daum summation formula). If |q| < |a| and |q| < 1,
then

(5.6.2) 2φ1

(
a, b
bq
a

; q,− q

a

)
=

(bq; q2)∞ ( bq
2

a2 ; q
2)∞

( bqa ; q)∞ (− q
a ; q)∞ (q; q2)∞

.

This is another of those curious instances in mathematics when two people (you
guessed it, Bailey and Daum) working independently found the same theorem at
almost exactly the same time. This simple proof is due to George Andrews.

The Bailey–Daum formula is an extension of Lebesgue’s identity from section
5.3; see problem 7 for the details. Our main goal in this section is to rederive the
double Lebesgue identity (5.4.4). We start with a 3φ2 transformation of Newman
Hall. A generic 3φ2 series is

3φ2

(
a, b, c

e, f
; q, z

)
=

∞∑
n=0

(a; q)n(b; q)n(c; q)n
(e; q)n(f ; q)n(q; q)n

zn,

which, using the fact that (a; q)∞ = (a; q)n(aq
n; q)∞, we can rewrite as

(5.6.3) 3φ2

(
a, b, c

e, f
; q, z

)
=

∞∑
n=0

(b; q)n(c; q)n
(q; q)n

zn
(a; q)∞(eqn; q)∞(fqn; q)∞
(aqn; q)∞(e; q)∞(f ; q)∞

.
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We want to use Jacobi’s q-Gauss summation formula

(5.6.4) 2φ1

(r, s
rst

; q, t
)
=

(rt; q)∞ (st; q)∞
(t; q)∞ (rst; q)∞

on the infinite products containing qn. We take rt = eqn, st = fqn, and t = aqn,
which makes r = e

a and s = f
a , so rst = ef

a qn. We need to put in (rst; q)∞ to have
the setup for (5.6.4), so we rewrite the right side of (5.6.3) as

(a; q)∞
(e; q)∞(f ; q)∞

∞∑
n=0

(b; q)n(c; q)n
(q; q)n

zn
(
efqn

a
; q

)
∞

(eqn; q)∞(fqn; q)∞

(aqn; q)∞( efq
n

a ; q)∞

=
(a; q)∞( efa ; q)∞

(e; q)∞(f ; q)∞

∞∑
n=0

(b; q)n(c; q)n

(q; q)n(
ef
a ; q)n

zn
(eqn; q)∞(fqn; q)∞

(aqn; q)∞( efq
n

a ; q)∞
.

Using (5.6.4) with r, s, t as above, this is

(5.6.5) 3φ2

(
a, b, c

e, f
; q, z

)
=

(a; q)∞( efa ; q)∞

(e; q)∞(f ; q)∞

×
∞∑

n=0

(b; q)n(c; q)n

(q; q)n(
ef
a ; q)n

zn
∞∑
k=0

( ea ; q)k(
f
a ; q)k

( efq
n

a ; q)k(q; q)k
(aqn)k.

Note that

(5.6.6)

(
ef

a
; q

)
n

(
efqn

a
; q

)
k

=

(
ef

a
; q

)
n+k

=

(
ef

a
; q

)
k

(
efqk

a
; q

)
n

.

Using this in (5.6.5) and changing orders of summation we have

(5.6.7) 3φ2

(
a, b, c

e, f
; q, z

)
=

(a; q)∞( efa ; q)∞

(e; q)∞(f ; q)∞

×
∞∑
k=0

( ea ; q)k(
f
a ; q)k

( efa ; q)k(q; q)k
ak

∞∑
n=0

(b; q)n(c; q)n

(q; q)n(
efqk

a ; q)n
(zqk)n.

We now choose z so that (5.6.4) works on the inner sum. For this we need bczqk =
efqk

a , so z = ef
abc . Then (5.6.4) gives

3φ2

(
a, b, c

e, f
; q,

ef

abc

)
=

(a; q)∞( efa ; q)∞

(e; q)∞(f ; q)∞

∞∑
k=0

( ea ; q)k(
f
a ; q)k

( efa ; q)k(q; q)k
ak

( efq
k

ab ; q)∞( efq
k

ac ; q)∞

( efq
k

a ; q)∞( efq
k

abc ; q)∞
.

Now

(5.6.8)

(
ef

a
; q

)
k

(
efqk

a
; q

)
∞

=

(
ef

a
; q

)
∞

,

so this simplifies a little to

3φ2

(
a, b, c

e, f
; q,

ef

abc

)
=

(a; q)∞
(e; q)∞(f ; q)∞

∞∑
k=0

( ea ; q)k(
f
a ; q)k

(q; q)k
ak

( efq
k

ab ; q)∞( efq
k

ac ; q)∞

( efq
k

abc ; q)∞
.

Finally, we multiply top and bottom inside the sum by(
ef

ab
; q

)
k

(
ef

ac
; q

)
k

(
ef

abc
; q

)
k

.
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5.6. MORE 2φ1 IDENTITIES 235

Using (5.6.8) again, this gives

3φ2

(
a, b, c

e, f
; q,

ef

abc

)
=

(a; q)∞( efab ; q)∞( efac ; q)∞

(e; q)∞(f ; q)∞( ef
abc ; q)∞

∞∑
k=0

( ea ; q)k(
f
a ; q)k(

ef
abc ; q)k

( efab ; q)k(
ef
ac ; q)k(q; q)k

ak,

which is

Theorem 58 (Newman Hall’s 3φ2 transformation). If |q| < 1, then

(5.6.9) 3φ2

(
a, b, c

e, f
; q,

ef

abc

)
=

(a; q)∞( efab ; q)∞( efac ; q)∞

(e; q)∞(f ; q)∞( ef
abc ; q)∞

3φ2

(
e
a ,

f
a ,

ef
abc

ef
ab ,

ef
ac

; q, a

)
.

It is interesting to observe that

ef
ab · ef

ac
e
a · f

a · ef
abc

= a,

so the new 3φ2 series is of the same type as the old one: the power series variable
equals the product of the denominator parameters divided by the product of the
numerator parameters. This means that (5.6.9) can be applied to itself, and the
result turns out to be a slightly simpler transformation. To make this a bit less
confusing, we rewrite (5.6.9) with different letters:

3φ2

(
r, s, t

u, v
; q,

uv

rst

)
=

(r; q)∞(uvrs ; q)∞(uvrt ; q)∞

(u; q)∞(v; q)∞( uv
rst ; q)∞

3φ2

( u
r ,

v
r ,

uv
rst

uv
rs ,

uv
rt

; q, r

)
.

Taking r = f
a , s =

e
a , t =

ef
abc , u = ef

ab , and v = ef
ac here, we have uv

rst = a and

3φ2

(
e
a ,

f
a ,

ef
abc

ef
ab ,

ef
ac

; q, a

)
=

( fa ; q)∞( efbc ; q)∞(e; q)∞

( efab ; q)∞( efac ; q)∞(a; q)∞
3φ2

(
e
b ,

e
c , a

ef
bc , e

; q,
f

a

)
.

Using this in (5.6.9) we get

Theorem 59 (Hall’s iterated transformation). If |q| < 1, then

(5.6.10) 3φ2

(
a, b, c

e, f
; q,

ef

abc

)
=

( fa ; q)∞( efbc ; q)∞

(f ; q)∞( ef
abc ; q)∞

3φ2

(
a, e

b ,
e
c

e, ef
bc

; q,
f

a

)
.

A key lemma of Andrews is a limiting case of (5.6.10). Note that

lim
c→∞

(c; q)n
cn

= (−1)nq(
n
2)

from (i) of problem 9 in the previous section. Setting f = xa in (5.6.10) and letting
c → ∞ then gives

Lemma 4 (Andrews’s lemma). If |q| < 1, then

(5.6.11)
∞∑

n=0

(a; q)n(b; q)n
(e; q)n(q; q)n(ax; q)n

(
−ex

b

)n
q(

n
2) =

(x; q)∞
(ax; q)∞

2φ1

(
a, e

b

e
; q, x

)
.

Andrews makes two applications of this lemma. First he takes e =
√
qab and

x = −
√

qb
a , so that − ex

b = q and

(e; q)n(ax; q)n = (
√
qab; q)n(−

√
qab; q)n = (qab; q2)n.
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236 5. MORE q-IDENTITIES: JACOBI, GAUSS, AND HEINE

This makes the left side of (5.6.11) into

∞∑
n=0

(a; q)n(b; q)n
(q; q)n(qab; q2)n

.

On the right side we have

(−
√

qb
a ; q)∞

(−
√
qab; q)∞

2φ1

(
a,
√

qa
b√

qab
; q,−

√
qb

a

)

and the Bailey–Daum formula (rewritten with b = r and a = s)

(5.6.12) 2φ1

(
r, s
qr
s

; q,−q

s

)
=

(rq; q2)∞ ( q
2r
s2 ; q2)∞

( qrs ; q)∞ (− q
s ; q)∞ (q; q2)∞

applies to this sum. Taking r = a and s =
√

qa
b and simplifying we have

(5.6.13)
∞∑

n=0

(a; q)n(b; q)n
(q; q)n(qab; q2)n

q(
n+1
2 ) =

(aq; q2)∞(bq; q2)∞
(q; q2)∞(qab; q2)∞

.

This is Andrews’s proof of the double Lebesgue identity (5.4.4).

For a second application of Andrews’s lemma, we take a = q
b and x = −b, and

rename e as z. Then ax = −q, so on the left side of (5.6.10) (ax; q)n(q; q)n becomes
(−q; q)n(q; q)n = (q2; q2)n. On the right side we have

(−b; q)∞
(−q; q)∞

2φ1

( q
b ,

z
b

z
; q,−b

)
.

Using (5.6.11) we get

(5.6.14)

∞∑
n=0

(b; q)n(
q
b ; q)n

(z; q)n(q2; q2)n
q(

n
2)zn =

(zb; q)∞( zb ; q)∞

(z; q)∞

after a little reduction.

Exercises

1. Show that (5.6.1) reduces to the Bailey–Daum formula.

2. Verify (5.6.6).

3. Check the details of the proof of (5.6.10). How does the 3φ2 on the right become
a 2φ1?

4. Check the details of the proof of (5.6.13).

5. Check the details of the proof of (5.6.14).

6. Following Hall, take a = b = z, e = f = qz, and c = q in (5.6.9). Show that
after multiplying the result by z/(1− z)2, we have

∞∑
n=0

(q; q)nz
n+1

(1− qn+1)(z; q)n+1
=

∞∑
k=0

zqk

(1− zqk)2
,
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EXERCISES 237

which Bailey proves in a more elementary way in problem 18 in section 4.4. As
in that problem, this also implies

∞∑
n=0

(q; q)nz
n+1

(1− qn+1)(z; q)n+1
=

∞∑
n=1

nzn

1− qn
.

7. In this problem we will develop the remark in the text that the Bailey–Daum
formula (5.6.12) is a generalization of Lebesgue’s identity.

(i) Show that

(s; q)n

(
−q

s

)n
=
(
q − q

s

)(
q2 − q

s

)
· · ·
(
qn − q

s

)
.

(ii) Show that we get Lebesgue’s identity if we let s → ∞ in (5.6.12) and
use (i).

8. This problem outlines Fine’s proof of the Rogers–Fine identity: if |q| < 1 and
|x| < 1, then

(5.6.15)
∞∑

n=0

(a; q)n
(b; q)n

xn =
∞∑

n=0

(a; q)n
(b; q)n

qn
2

(x; q)n+1

(
1− axq2n

) (axq
b

; q
)
n

(
bx

q

)n

.

(i) Denoting the left side of (5.6.15) by F (a, b, x), show that

F (a, b, x) = 1 +
1− a

1− b
x

∞∑
n=1

(aq; q)n−1

(bq; q)n−1
xn−1,

and explain why this implies that

(5.6.16) F (a, b, x) = 1 +
1− a

1− b
xF (aq, bq, x).

(ii) The purpose of the next several steps is to derive a relation that will
allow us to change (5.6.16) into an identity connecting F (a, b, x) to F (aq, bq, xq)
instead of F (aq, bq, x). If fn = (a; q)n/(b; q)n, show that

fn(1− aqn) = fn+1(1− bqn),

and hence
∞∑
n=0

fn(1− aqn)xn+1 =
∞∑

n=0

fn+1(1− bqn)xn+1.

(iii) By rearranging the result of (ii), show that

(5.6.17) (1− x)F (a, b, x) = 1− b

q
+

(
b

q
− ax

)
F (a, b, xq).

(iv) Use (5.6.16) with (5.6.17) to show that

(5.6.18) F (a, b, x) =
1− ax

1− x
+

1− a

1− b

1− axq
b

1− x
bxF (aq, bq, xq).

(v) Using (5.6.18) on itself, show that

F (a, b, x) =
1− ax

1− x
+

1− a

1− b

(1− axq
b )(1− axq2)

(1− x)(1− xq)
bx

+
(1− a)(1− aq)

(1− b)(1− bq)

(1− axq
b )(1− axq2

b )

(1− x)(1− xq)
b2x2q2 F (aq2, bq2, xq2).
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238 5. MORE q-IDENTITIES: JACOBI, GAUSS, AND HEINE

(vi) Check that

(5.6.19) F (a, b, x) =
s−1∑
n=0

(a; q)n
(b; q)n

(axqb ; q)n

(x; q)n+1

(
1− axq2n

)(bx

q

)n

qn
2

+
(a; q)s
(b; q)s

(axqb ; q)s

(x; q)s

(
bx

q

)s

qs
2

F (aqs, bqs, xqs)

holds if s = 0, 1, 2. (Recall that an empty sum equals zero.)

(vii) Use (5.6.18) to prove (5.6.19) by induction on s.

(viii) Explain why |q| < 1 implies that letting s → ∞ in (5.6.19) proves
(5.6.15).

9. Why is it interesting to take b = q in the Rogers–Fine identity?

10. One might expect that changing a to −a in (5.6.15) and letting b → 0 would
reproduce (3.5.6). Show that it gives instead

(5.6.20)

∞∑
n=0

(−a; q)nx
n =

∞∑
n=0

(−a; q)n
(x; q)n+1

(
1 + axq2n

)
anx2nq

n(3n−1)
2

=
∞∑

n=0

q(
n
2)(ax)n

(x; q)n+1
,

where the last equality is by (3.5.6).

11. Change q to q2 in (5.6.15) and take a = q, x = q, and b = −q3. Show that the
result can be written as

∞∑
n=0

(q; q2)n
(−q; q2)n+1

qn =
∞∑

n=0

(−1)nq2n(n+1).

12. (a) Show that changing q to q2 in (5.6.15) and taking a = y = x and b = yq
gives

∞∑
n=0

(y; q2)n
(yq; q2)n

yn =
∞∑

n=0

y2nqn(2n−1)
(
1 + yq2n

)
.

(b) Show that the right side can be rewritten as
∞∑
k=0

ykq(
k
2).

13. This problem outlines a direct proof of the result of the previous problem.

(i) Assuming as usual that |q| < 1, show that
∞∑

n=0

(y; q2)n
(yq; q2)n

yn

converges if |y| < 1.

(ii) Let f(y) denote the series in (i), and write

f(y) = 1 +
∞∑
n=0

(y; q2)n+1

(yq; q2)n+1
yn+1

in the first instance of f(y) below. Show that

f(y)− y2q f(yq2) = 1 + y

∞∑
n=0

(yq2; q2)n y
n

(yq; q2)n+1

[
1− y − yq2n+1(1− yq)

]
.
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5.7. THE q-PFAFF–SAALSCHÜTZ IDENTITY 239

(iii) By rewriting 1 − y − yq2n+1(1 − yq) = 1 − yq2n+1 − y
(
1− yq2n+2

)
,

show that (ii) simplifies to f(y)− y2q f(yq2) = 1 + y.

(iv) Set f(y) =
∞∑
n=0

cn(q)y
n, where cn(q) is independent of y. Use the result

of (iii) to show that

cn+2(q) = q2n+1cn(q) for n ≥ 0, with c0(q) = 1 = c1(q).

(v) Show that cn(q) = q(
n
2), and hence

∞∑
n=0

(y; q2)n
(yq; q2)n

yn =

∞∑
n=0

ynq(
n
2).

14. Using either (5.5.2) or the result of the previous problem, show that

∞∑
n=0

(q; q2)n
(q2; q2)n

qn =
(q2; q2)∞
(q; q2)∞

.

15. Show that taking a = z2q
x and b = −zq in (5.6.15) and letting x → 0 gives

∞∑
n=0

(−1)nz2nq(
n+1
2 )

(−zq; q)n
=

∞∑
n=0

z2nq
n(3n+1)

2

(
1− z2q2n+1

)
.

5.7. The q-Pfaff–Saalschütz identity

Suppose we rewrite Heine’s q-Euler transformation (5.5.10) as

(5.7.1)
(z; q)∞

(abzc ; q)∞
2φ1

(
a, b

c
; q, z

)
= 2φ1

( c
a ,

c
b

c
; q,

abz

c

)
.

The fraction on the left can be expanded by the q-binomial series (5.5.2) with
x = abz

c and s = c
ab . Putting this in (5.7.1) and writing out the other series there

we have

(5.7.2)

∞∑
j=0

( c
ab ; q)j

(q; q)j

(
abz

c

)j ∞∑
k=0

(a; q)k (b; q)k
(c; q)k (q; q)k

zk =

∞∑
n=0

( ca ; q)n (
c
b ; q)n

(c; q)n (q; q)n

(
abz

c

)n

.

On the left side of (5.7.2) we set j + k = n. It is also convenient to insert
(q; q)n/(q; q)n there and to rewrite zk = (abzc )k( c

ab )
k, so that the left side of (5.7.2)

now looks like

(5.7.3)
∞∑

n=0

∑
j+k=n

(
abz
c

)n
(q; q)n

(
n

k

)
q

( c

ab
; q
)
j

(a; q)k (b; q)k
(c; q)k

( c

ab

)k
.

Since j ≥ 0, the inner sum in (5.7.3) will go from k = 0 to k = n if we take k as the
summation index, as is natural, replacing the remaining j by n− k. The coefficient
of (abzc )n/(q; q)n in (5.7.3) must be the same as it is on the right side of (5.7.2), so
we have

(5.7.4)
n∑

k=0

(
n

k

)
q

( c

ab
; q
)
n−k

(a; q)k (b; q)k
(c; q)k

( c

ab

)k
=

( ca ; q)n (
c
b ; q)n

(c; q)n
.
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240 5. MORE q-IDENTITIES: JACOBI, GAUSS, AND HEINE

This is one of the many forms of the q-Pfaff–Saalschütz identity. We will see several
others both in the text and in the exercises. The simple fact

(5.7.5) (s; q)n = (s; q)k (sq
k; q)n−k

(which we leave as an exercise) is often useful in showing these equivalences. For
example, (5.7.5) allows us to rewrite

(5.7.6)
( c

ab
; q
)
n−k

=
( c
ab ; q)n

( cq
n−k

ab ; q)k
.

Using this in (5.7.4) we get

(5.7.7)

n∑
k=0

(
n

k

)
q

(a; q)k (b; q)k

(c; q)k (
cqn−k

ab ; q)k

( c

ab

)k
=

( ca ; q)n (
c
b ; q)n

(c; q)n (
c
ab ; q)n

.

In this guise we see that the q-Pfaff–Saalschütz identity is a finite form of the
q-Gauss summation formula (5.5.5). (See problem 3.)

One can also rewrite the q-Pfaff–Saalschütz identity as a q-hypergeometric se-
ries. The factors inside the sum in (5.7.7) that need to be redone are

(5.7.8)
(q; q)n

(q; q)n−k

(
c
ab

)k
( cq

n−k

ab ; q)k
;

the other factors

(5.7.9)
(a; q)k (b; q)k
(c; q)k (q; q)k

are fine as they are. Using (5.7.5) again we can rewrite (5.7.8) as

(5.7.10)

(
c
ab

)k
(qn−k+1; q)k

( cq
n−k

ab ; q)k
=

(
c
ab

)k
(1− qn−k+1) · · · (1− qn)(

1− cqn−k

ab

)
· · ·
(
1− cqn−1

ab

) .

Now comes a bit of messy algebra: we want to turn these two products around so
that we can describe them as q-shifted factorials without having to put k in the
exponents, so we factor everything out of them. For example, we rewrite

1− qn−k+1 = qn−k+1
(
qk−1−n − 1

)
= −qn−k+1

(
1− qk−1−n

)
,

and we do the same thing with all the other factors. Then (5.7.10) becomes(
c
ab

)k
(qn−k+1) · · · (qn)(−1)k(

c
ab

)k
(qn−k) · · · (qn−1)(−1)k

(1− q−n) · · · (1− qk−1−n)

(1− ab
c q1−n) · · · (1− ab

c qk−n)
= qk

(q−n; q)k

(abc q1−n; q)k
.

Putting this together with (5.7.9) and (5.7.7) we have

(5.7.11)
n∑

k=0

(a; q)k (b; q)k
(c; q)k (q; q)k

(q−n; q)k

(abc q1−n; q)k
qk =

( ca ; q)n (
c
b ; q)n

(c; q)n (
c
ab ; q)n

as another alternate form of the q-Pfaff–Saalschütz identity. Now note that

(q−n; q)k = (1− q−n) · · · (1− qk−1−n)

equals zero (because it has a factor of 1 − 1) if k ≥ n + 1. Therefore the sum in
(5.7.11) would be no different if k went all the way to infinity—this would just add
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an infinite number of zeros to it. So we can rewrite (5.7.11) one more time, as a
q-hypergeometric series:

(5.7.12) 3φ2

(
q−n, a, b

c, ab
c q1−n

; q, q

)
=

( ca ; q)n (
c
b ; q)n

(c; q)n (
c
ab ; q)n

.

This is the form in which the formula was first written, by F. H. Jackson. A q-
hypergeometric series is called balanced if the product of the numerator parameters
and the power series variable is the same as the product of the denominator param-
eters. Here both products are abq1−n, so (5.7.12) gives the sum of a terminating
balanced 3φ2.

Exercises

1. Verify (5.7.5).

2. Verify (5.7.6), and show that it follows from (5.7.5).

3. Show that, at least formally, (5.7.7) becomes (5.5.5) when n → ∞.

4. Show that the “Jacobi” form of the q-Pfaff–Saalschütz identity is

n∑
k=0

(
n

k

)
q

(a; q)k (b; q)k t
k

(abt; q)k (tqn−k; q)k
=

(at; q)n (bt; q)n
(t; q)n (abt; q)n

.

5. Show that letting a → 0 in (5.7.12) gives

n∑
k=0

(
n

k

)
q

(−1)kq(
k+1
2 )−nk (b; q)k

(c; q)k
=

(b− c)(b− cq) · · · (b− cqn−1)

(c; q)n

and that this is equivalent to (2.3.10) from problem 15 in section 2.3. Problem
16 in that section might help.

6. This problem shows that the Z-identity from section 1.7 is a consequence of
the q-Pfaff–Saalschütz identity. It is convenient to start by replacing a, b, c by
1
u ,

1
v , w respectively in (5.7.4) to get

(5.7.13)

n∑
k=0

(
n

k

)
q

(uvw; q)n−k

( 1u ; q)k (
1
v ; q)k

(w; q)k
(uvw)

k
=

(uw; q)n (vw; q)n
(w; q)n

.

Rewriting the Z-identity with m replaced by −m and with the q-binomial and
multinomial coefficients broken down we have

∑
m

(q; q)a+b+c+d+e−m q(d+m)(e+m)

(q; q)a−m(q; q)b−m(q; q)c−m(q; q)d+m(q; q)e+m

=
(q; q)a+b+d+e(q; q)a+c+d+e(q; q)b+c+d+e

(q; q)a+d(q; q)a+e(q; q)b+d(q; q)b+e(q; q)c+d(q; q)c+e
.

(i) Since the Z-identity is symmetric in d and e and in a, b, c, we can assume
without loss of generality that d ≤ e and a ≤ b, c. We set e + m = k and
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a + e = n, thus replacing a and m by n and k. Show that this converts the
Z-identity into

n∑
k=0

(
n

k

)
q

(q; q)b+c+d+e+n−k q
k(d−e+k)

(q; q)b+e−k(q; q)c+e−k(q; q)d−e+k

=
(q; q)n+b+d(q; q)n+c+d(q; q)b+c+d+e

(q; q)d−e+n(q; q)b+d(q; q)b+e(q; q)c+d(q; q)c+e
.

(ii) Show that

(q; q)b+e = (q; q)b+e−k(q
b+e−k+1; q)k and (q; q)n+b+d = (q; q)b+d(q

b+d+1; q)n

and do something similar with (q; q)b+c+d+e+n−k. Show that this transforms the
result of (i) into

n∑
k=0

(
n

k

)
q

(qb+c+d+e+1; q)n−k
(qb+e−k+1; q)k(q

c+e−k+1; q)k
(qd−e+1; q)k

qk(d−e+k)

= (qb+d+1; q)n (q
c+d+1; q)n.

(iii) In order to make this match (5.7.13) we have to rewrite (qb+e−k+1; q)k
and (qc+e−k+1; q)k in the form (x; q)k with an x that doesn’t depend on k. By
factoring out all the powers of q, show that

(qb+e−k+1; q)k = (1− qb+e−k+1)(1− qb+e−k+2) · · · (1− qb+e)

= (−1)kqk(b+e)−(k2)(q−b−e; q)k.

(iv) Show that using (iii) (twice) in (ii) we have

n∑
k=0

(
n

k

)
q

(qb+c+d+e+1; q)n−k
(q−b−e; q)k(q

−c−e; q)k
(qd−e+1; q)k

qk(b+c+d+e+1)

= (qb+d+1; q)n (q
c+d+1; q)n.

Now choose u, v, w to make (5.7.13) match this.

7. This problem outlines a proof of the q-Pfaff–Saalschütz identity by the methods
of Chapter 2. We consider the sum

Sn(a, b; c) :=

n∑
k=0

(
n

k

)
q

(a; q)k(b; q)k
(

c
ab ; q

)
n−k

(
cqk; q

)
n−k

( c

ab

)k
.

(i) Explain why S0(a, b; c) = 1, and show that

S1(a, b; c) =
(
1− c

a

)(
1− c

b

)
.

(ii) Show that

(1− a)(1− b)
cqn

ab
Sn(aq, bq; cq)

=

n+1∑
j=1

(
n

j − 1

)
q

(a; q)j(b; q)j

(
c

abq ; q
)
n+1−j

(
cqj ; q

)
n+1−j

( c

ab

)j
qn−j+1.
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(iii) Show that

(1− cqn)
(
1− cqn

ab

)
Sn(a, b; c)

=

n∑
j=0

(
n

j

)
q

(a; q)j(b; q)j
(

c
ab ; q

)
n−j

(
cqj ; q

)
n+1−j

(
1− cqn

ab

)( c

ab

)j
.

(iv) Using (ii) and (iii), show that

(1− a)(1− b)
cqn

ab
Sn(aq, bq; cq) + (1− cqn)

(
1− cqn

ab

)
Sn(a, b; c)

=

n+1∑
j=0

(
n+ 1

j

)
q

(a; q)j(b; q)j
(

c
ab ; q

)
n+1−j

(
cqj ; q

)
n+1−j

( c

ab

)j
.

(v) Explain why (iv) shows that

Sn+1(a, b; c) = (1− a)(1− b)
cqn

ab
Sn(aq, bq; cq) + (1− cqn)

(
1− cqn

ab

)
Sn(a, b; c).

(vi) Use (v) to prove that

Sn(a, b; c) =
n∑

k=0

(
n

k

)
q

(a; q)k(b; q)k
(

c
ab ; q

)
n−k

(
cqk; q

)
n−k

( c

ab

)k
=
(
c
a ; q
)
n

(
c
b ; q
)
n

(5.7.14)

by induction on n.

(vii) Show that multiplying (5.7.4) by (c; q)n and using (5.7.5) gives (5.7.14).
Thus (5.7.14) is another equivalent form of the q-Pfaff–Saalschütz identity.

5.8. Bibliographical Notes

Jacobi’s triple product is in section 64 of his Fundamenta Nova [148] of 1829,
the work that made him a superstar at the age of 24. The steps up to (5.1.8)
are sketched in a letter [147] from Jacobi to Legendre on April 12, 1828; see also
Pieper’s edition [183] of the Jacobi/Legendre correspondence and the nice bio-
graphical article [182].

The reasons why we use q in this subject, rather than some other letter, are (i)
unlike x or z, q is infrequently used in other contexts in mathematics (exceptions
are elementary probability, where it often equals 1− p for some probability p; and
elementary logic, where p and q are often two generic propositions); (ii) Jacobi
used it in this sense in [148]; (iii) Heine, who was very much influenced by Jacobi,
used it in this sense in [137], from which most of section 5.5 comes; and (iv) the
Reverend F. H. Jackson, who found the q-Pfaff–Saalschütz formula [144] and made
many other contributions to q-analysis, always used it.

The triple product appears in several places in volume 3 of Gauss’s Werke
[117]. The proof of section 5.1 is sketched in equations 6–9 on pp. 446–447, and
the derivation from the symmetric (m = n) MacMahon q-binomial theorem is on
p. 464. The latter is also in Cauchy [68]. In the form (5.1.19), the triple product
is Entry 19 in Chapter 16 of Ramanujan’s notebooks [49].
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The beautiful identity (5.2.8) is (5) in the 66th and last section of [150]. In
Gauss it is on p. 440 of [117] and p. 293 of [118]; his proof in problem 17 of section
5.2 is sketched in both places. The connection with (2.7.9) was pointed out by
Hirschhorn in [138] and [140], as was the connection between problem 4 in section
5.1 and problem 10 in section 2.5. The incredible formula (5.2.15) in section 5.2 is
equation 19 on p. 447 of [117] and equation 22 on p. 467. The proof in problem
19 is sketched on p. 447 and that of problem 20 on pp. 466–67. Problems 15 and
16 in that section come from pp. 437–440 of [117] (problems 8 and 9 come from
p. 449), and are repeated on pp. 290–292 of [118]. Despite the reverence that many
mathematicians have for Gauss, these arguments have received surprisingly little
attention, but Ranjan Roy also discusses them in [210]. Problem 14 in this section
comes from [247]. Problem 17 in section 5.1 comes from [68], problem 24 from
[54], and problem 12 and several others from [118].

The determination of c0(q) from Frobenius symbols is more or less the same as
the one in section 3 of [18], or in [61]. See pp. 67–68 of Pak’s paper [178] for tren-
chant comments on the history of this proof. Frobenius symbols were introduced
in [110].

The best reference for the quintuple product identity, which has been given in
many different forms and with many different proofs, is the beautiful paper [80] by
Shaun Cooper, a friend of mine from graduate school. In his book [81] he prefers the
form (5.3.11). The quintuple product is often associated with G. N. Watson, who
called attention to it in [245] and [246], two of his many papers on Ramanujan’s
notebooks, and realized that Ramanujan must have known it. For the references
to Ramanujan see [25], p. 14; [26], pp. 53–54; and [49], pp. 80–83. An equivalent
form is in Fricke’s 1916 book [109] on elliptic functions. In some sense it dates back
to the 19th century, since a result on sigma functions that implies it is in Schwarz’s
account [217] of Weierstrass’s lectures on elliptic functions.

Lebesgue’s identity is (8) in section 66 of [148]. Lebesgue published it 11 years
later [162], with a reference to Gauss but not to Jacobi. Problems 14 and 15 in
section 5.4 also come from this section of [148]—(a) and (b) in problem 14 are
(9) and (10) in section 66—and problem 16 is from [162]. Jacobi does not get
around to proving (a) and (b) until 1849 [151], when he discusses the function
f(z) from problem 11. The result of that problem may have a better claim to
the name “Lebesgue’s identity” than Lebesgue’s identity does. Problem 4 in this
section is essentially equation (40) in [219], to which we will return in Chapter
12. Problems 5–8 come from [191], as does problem 12 in section 5.5. Problem
9 comes from [209], which has some further discussion of Lebesgue’s identity and
partitions. The double Lebesgue identity comes from [13], as does section 5.6 with
Andrews’s simple proof of the Bailey–Daum formula. The original references for
the latter are [43] and [85]. Ramanujan’s transformation in problem 11 of section
5.5 comes from [25]. An equivalent form is used in [56], from which problem 10
in that section comes. Problem 14 is from [26]. The q-Gauss sum dates back to
Jacobi [150] and Heine [137].

The Rogers–Fine identity in problem 8 in section 5.6 first appeared in [202],
and is one of the major results in the first chapter of Fine’s fine book [103]. It
is also the centerpiece of Chapter 9 in the first volume of Andrews and Berndt’s
edition of Ramanujan’s “lost notebook” [25]. Several problems in section 5.6 are
from this chapter. So is (5.5.13), which originally appeared in [7] and may also be
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found in [26]. This notebook almost certainly contains the work Ramanujan did
in the last year of his short life, whereas the other notebooks are of earlier vintage.
The fifth and final installment of Andrews and Berndt’s work on this is [29], and
only the fourth volume [28] does not discuss q-analysis.

A few of the problems in this book were adapted from lectures by George
Gasper at the University of Toronto in 1995, in which he made a point of trying
to give different proofs than in [114], the standard reference for q-hypergeometric
series. Problem 5 in section 5.7 comes from [253].
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CHAPTER 6

Ramanujan’s 1ψ1 Summation Formula

6.1. Ramanujan’s formula

This chapter is devoted to a formula found by Ramanujan around the start
of the first World War, although it did not appear in print until Hardy’s book on
Ramanujan was published near the start of the second World War, and there was
no published proof until after the war.

Theorem 60 (Ramanujan’s 1ψ1 summation formula). If |q| < 1 and
∣∣ b
a

∣∣ <
|x| < 1, then

(6.1.1)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(
b
a ; q
)
∞

(x; q)∞
(

b
ax ; q

)
∞ (b; q)∞

(
q
a ; q
)
∞

=
∞∑

n=−∞

(a; q)n
(b; q)n

xn.

We will give four proofs in section 6.2, two in the text and two more in the
exercises. Section 6.3 has Schlosser’s proof, which is of the finite to infinite type.
A historically motivated proof, due in part to Cauchy, is in sections 6.4–6.6. Com-
putationally, the simplest proof is that of Mourad Ismail. We will give part of it in
the last exercise in this section, and sketch the rest in Chapter 13. But we need to
tie up several loose ends first.

A series with both positive and negative powers of x, like (6.1.1) or Jacobi’s
triple product, is called a Laurent series. These are rarely discussed in real analysis,
but are fundamental in complex analysis. Such a series obviously cannot converge
if x = 0. If it has infinitely many positive powers, then it may diverge if |x| is
sufficiently large; if it has infinitely many negative powers, then it may diverge if∣∣ 1
x

∣∣ is sufficiently large, so a Laurent series typically converges between two values
of |x|. If we think of x as a complex variable, then the region of convergence is an
annulus in the complex plane; in other words, a ring-shaped region with an inner
circle and a concentric outer circle. Jacobi’s triple product is particularly nice in
that this annulus is the whole complex plane except the origin, the largest possible
for a nontrivial Laurent series.

For (6.1.1), the inner radius is
∣∣ b
a

∣∣ and the outer radius is 1. The ratio test
shows this, as we will see presently, but it is easy to spot these two values by looking
at the denominator on the left side of (6.1.1): (x; q)∞ would have zero as a factor
if x = 1, and

(
b
ax ; q

)
∞ would be zero if x = b

a . Note that (x; q)∞ is also zero if

x = q−1, q−2, q−3, . . . , but these are all outside the outer circle |x| = 1 since |q| < 1.

Also
(

b
ax ; q

)
∞ is zero if x = bq

a ,
bq2

a , bq3

a , . . . , but these are all inside the inner circle

|x| = | ba |, so the product side of (6.1.1) is a well-behaved function (an analytic
function, in the language of complex analysis) of x inside its annulus.

247
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Another aspect of (6.1.1) has to be explained before we go any further: what
does (a; q)n mean if n is negative? If n is not negative, we can write

(a; q)n = (1− a)(1− aq) · · ·
(
1− aqn−1

)
= (1− a)(1− aq) · · ·

(
1− aqn−1

) (1− aqn)
(
1− aqn+1

)
· · ·

(1− aqn) (1− aqn+1) · · ·

=
(a; q)∞

(aqn; q)∞
.

This probably seems like a silly idea—why would we want to replace a simple finite
product, convergent for any q, by a quotient of two infinite products that need
|q| < 1 for convergence? The answer is that the right side makes sense if n is a
negative integer—in fact for any n, though we will not use the idea at this level of
generality—so we can take it as the definition of the left side for a generic n. In
other words, we now define

(6.1.2) (a; q)n =
(a; q)∞

(aqn; q)∞
.

Let’s see what this looks like for a negative integer. Replacing n by −n in (6.1.2)
we have

(6.1.3) (a; q)−n =
(a; q)∞

(aq−n; q)∞
=

1

(1− aq−n) · · · (1− aq−1)
=

1

(aq−n; q)n
,

where we assume n is a positive integer. If we multiply top and bottom by
(−1)nq1+2+···+n we have

(a; q)−n =
(−1)nq(

n+1
2 )

(a− q)(a− q2) · · · (a− qn)
,

and factoring out the a’s now gives

(6.1.4) (a; q)−n =
1

(aq−n; q)n
=

(−1)nq(
n+1
2 )

an
(
q
a ; q
)
n

.

This will be useful below, and we will use (6.1.3) when we apply the ratio test to
the terms of (6.1.1) at the end of section 6.3.

We conclude this section with a partial explanation of the name of the formula.
Ramanujan’s 1ψ1 is the simplest member of another family of q-hypergeometric
sums of a somewhat different character than the r+1φr’s. When there is a ψ instead
of a φ, there is no factor (q; q)n built into the denominator, the number of numerator
parameters aj is typically the same as the number of denominator parameters bj
(rather than one more), and the series runs through all integers instead of just the
nonnegative integers. One of the deepest results in q-analysis is a 6ψ6 sum due to
Bailey that we will discuss in our last chapter.

This is also a good place to illuminate the purpose of the denominator factor
(q; q)n in a q-hypergeometric series. Why insist that such a factor be present? If
we set a = q in (6.1.2), then we have

(6.1.5)
1

(q; q)n
=

(qn+1; q)∞
(q; q)∞

=
(1− qn+1)(1− qn+2) · · · (1− qn+k) · · ·

(q; q)∞
.

Now suppose that n is a negative integer, say n = −k for some positive integer
k. Then the factor 1 − qn+k will be zero, so the whole numerator will be zero,
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so the whole fraction will be zero. Therefore, if we have a factor (q; q)n in the
denominator of a series where n is the summation index, that causes any terms
with a negative n to be zero. To put it another way, in a series r+1φr the sum,
which is supposed to go from n = 0 to ∞, could just as well run from n = −∞ to
∞, because the extra terms would all be zero due to the built-in factor of (q; q)n
in the denominator. Thus the purpose of this factor is to force the sum to start at
n = 0, and this is why the ψ sums, which do not have this factor built in, run from
n = −∞ to ∞. The theory of these sums is less well developed than that of the

r+1φr’s, but Ramanujan’s evaluation of the 1ψ1 is one of the most beautiful results
in all of q-analysis. In this notation it reads

(6.1.6) 1ψ1

(a
b
; q, x

)
=

∞∑
n=−∞

(a; q)n
(b; q)n

xn =
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(
b
a ; q
)
∞

(x; q)∞
(

b
ax ; q

)
∞ (b; q)∞

(
q
a ; q
)
∞

,

where |q| < 1 and | ba | < |x| < 1. By the above remark, if b = q it simplifies to

(6.1.7)

∞∑
n=0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

,

the q-binomial series (3.7.4), which holds when |q| and |x| are both less than 1.

Exercises

1. Show that
(a; q)n
(aq; q)n

=
1− a

1− aqn

for all values of n.

2. Show that

(6.1.8) (a; q)n (aq
n; q)m = (a; q)n+m = (a; q)m (aqm; q)n

for all values of n and m.

3. Suppose that a sequence cn satisfies cn = (1 − aqn−1)cn−1. If n is a positive
integer, we know this implies that cn = (a; q)n c0. Show that this holds for any
integer n. Hint: If n is not a positive integer, set n = 1 − m for a positive
integer m.

4. This problem needs (3.5.6), which was

(6.1.9)
∞∑

n=0

q(
n
2)(az)n

(z; q)n+1
=

∞∑
n=0

(−a; q)nz
n.

Evidently we have
∞∑

n=−∞

(q
s
; q
)
n
tn+1 =

∞∑
n=0

(q
s
; q
)
n
tn+1 +

∞∑
n=1

(q
s
; q
)
−n

t1−n.

Use (6.1.4) and (6.1.9) to rewrite this as

(6.1.10)
∞∑

n=−∞

(q
s
; q
)
n
tn+1 =

∞∑
n=0

(q
s
; q
)
n
tn+1 −

∞∑
n=0

(q
t
; q
)
n
sn+1.

This will be used in another exercise later in this chapter.
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250 6. RAMANUJAN’S 1ψ1 SUMMATION FORMULA

5. In this problem we begin to outline Ismail’s proof of the 1ψ1 summation formula.

(i) If b = qm+1, where m is a nonnegative integer, explain why the right side
of (6.1.1) becomes

∞∑
k=−m

(a; q)k
(qm+1; q)k

xk = (q; q)m

∞∑
k=−m

(a; q)k
(q; q)k+m

xk.

(ii) By multiplying top and bottom by (1− aq−m) · · · (1− aq−1) and setting
k +m = n, show that (i) becomes

(q; q)m
xm (aq−m; q)m

∞∑
n=0

(aq−m; q)n
(q; q)n

xn.

(iii) Show that (ii) becomes

(ax; q)∞
(x; q)∞

(axq−m; q)m
(aq−m; q)m

(q; q)m
xm

after using (6.1.7).

(iv) Show that (iii) can be rewritten as

(6.1.11)
(ax; q)∞
(x; q)∞

(
q
ax ; q

)
m(

q
a ; q
)
m

(q; q)m.

(v) Show that the left side of (6.1.1) reduces to (6.1.11) if b = qm+1 for a
nonnegative integerm, so (6.1.1) holds in this case. These are all the calculations
that Ismail’s argument needs. See the end of section 13.7 for how it concludes.

6.2. Four proofs

One of the first proofs of (6.1.1) was given around 1950 by Margaret Jackson,
a student of Bailey. (We use her first name both to emphasize her gender and
to distinguish her from the Reverend F. H. Jackson, a q-analyst from an earlier
generation.) Assuming as usual that |q| < 1, consider the product

r(x) =
(ax; q)∞
(x; q)∞

(
q
ax ; q

)
∞(

b
ax ; q

)
∞
.

We can expand each fraction by the q-binomial series (6.1.7), where we need |x| < 1
for the first fraction in r(x) and | b

ax | < 1 for the second one. Thus we have
(6.2.1)

r(x) =
∞∑
j=0

(a; q)j
(q; q)j

xj
∞∑
k=0

(
q
b ; q
)
k

(q; q)k

(
b

ax

)k

=
∞∑
j=0

∞∑
k=0

(a; q)j
(
q
b ; q
)
k

(q; q)j (q; q)k

(
b

a

)k

xj−k

for | ba | < |x| < 1. Like Jacobi’s triple product, this is a bilateral series, containing
infinitely many positive and negative powers of x. Let’s first set j = k + n for a
nonnegative integer n. Then the coefficient of xn in r(x) is

∞∑
k=0

(a; q)k+n

(
q
b ; q
)
k

(q; q)k+n (q; q)k

(
b

a

)k

.
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6.2. FOUR PROOFS 251

Writing (a; q)k+n = (a; q)n(aq
n; q)k and similarly for (q; q)k+n, this becomes

(6.2.2)
(a; q)n
(q; q)n

∞∑
k=0

(aqn; q)k
(
q
b ; q
)
k

(qn+1; q)k (q; q)k

(
b

a

)k

.

Now recall the q-Gauss sum (5.5.6) in the Jacobi form

(6.2.3)
∞∑

m=0

(u; q)m(v; q)m
(q; q)m(uvw; q)m

wm =
(uw; q)∞(vw; q)∞
(w; q)∞(uvw; q)∞

,

where |w| < 1. This applies to (6.2.2) because

aqn · q
b
· b
a
= qn+1

and | ba | < 1, so (6.2.2) becomes

(a; q)n
(q; q)n

(bqn; q)∞
(
q
a ; q
)
∞

(qn+1; q)∞
(
b
a ; q
)
∞

(b; q)n
(b; q)n

=
(a; q)n
(b; q)n

(b; q)∞
(
q
a ; q
)
∞

(q; q)∞
(
b
a ; q
)
∞
.

This then is the coefficient of xn in r(x) when n is nonnegative. To deal with the
case when n is negative, we can set k = j + n in (6.2.1). Then the coefficient of
x−n there is

∞∑
j=0

(a; q)j
(
q
b ; q
)
j+n

(q; q)j (q; q)j+n

(
b

a

)j+n

.

After a manipulation similar to the positive case, this becomes

(6.2.4)

(
q
b ; q
)
n

(q; q)n

(
b

a

)n ∞∑
j=0

(a; q)j

(
qn+1

b ; q
)
j

(q; q)j (qn+1; q)j

(
b

a

)j

.

The q-Gauss sum applies to this because

a · q
n+1

b
· b
a
= qn+1

and | ba | < 1, so (6.2.4) becomes

(
q
b ; q
)
n

(q; q)n

(
b

a

)n (b; q)∞
(

qn+1

a ; q
)
∞

(qn+1; q)∞
(
b
a ; q
)
∞

(
q
a ; q
)
n(

q
a ; q
)
n

=

(
q
b ; q
)
n(

q
a ; q
)
n

(
b

a

)n (b; q)∞
(
q
a ; q
)
∞

(q; q)∞
(
b
a ; q
)
∞
.

This then is the coefficient of x−n in r(x) when n is nonnegative. Note that we
get the same four infinite products as in the xn case, so we have proved that for
| ba | < |x| < 1 we have

(ax; q)∞
(x; q)∞

(
q
ax ; q

)
∞(

b
ax ; q

)
∞

=
(b; q)∞

(
q
a ; q
)
∞

(q; q)∞
(
b
a ; q
)
∞

( ∞∑
n=0

(a; q)n
(b; q)n

xn +
∞∑
n=1

(
q
b ; q
)
n(

q
a ; q
)
n

(
b

a

)n

x−n

)
.

Putting all the infinite products on the same side, this becomes
(6.2.5)

(ax; q)∞
(

q
ax ; q

)
∞ (q; q)∞

(
b
a ; q
)
∞

(x; q)∞
(

b
ax ; q

)
∞ (b; q)∞

(
q
a ; q
)
∞

=

∞∑
n=0

(a; q)n
(b; q)n

xn +

∞∑
n=1

(
q
b ; q
)
n(

q
a ; q
)
n

(
b

a

)n

x−n.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



252 6. RAMANUJAN’S 1ψ1 SUMMATION FORMULA

This is Ramanujan’s summation formula, but it is possible to write it more neatly
by using (6.1.4), which implies that(

q
b ; q
)
n(

q
a ; q
)
n

(
b

a

)n

=
(a; q)−n

(b; q)−n
.

Therefore the second sum in (6.2.5) combines naturally with the first to give (6.1.1).

George Andrews gave an elegant variation of Jackson’s proof, also based on
Jacobi’s q-Gauss summation (6.2.3). The argument uses the observation that we
can write

(6.2.6) 1ψ1

(a
b
; q, x

)
=

∞∑
n=−∞

(a; q)n
(b; q)n

xn =

∞∑
n=−∞

(a; q)n+m

(b; q)n+m
xn+m

for any integer m, because as n runs through all the integers so does n+m.
Andrews starts with

(6.2.7)
(ax; q)∞ (q; q)∞

(
b
a ; q
)
∞

(x; q)∞ (b; q)∞
(
q
a ; q
)
∞

,

which is most, but not all, of the right side of (6.1.6). He writes

(6.2.8)
(ax; q)∞
(x; q)∞

=

∞∑
n=0

(a; q)n
(q; q)n

xn =

∞∑
n=−∞

(a; q)n
(q; q)n

xn,

using (6.1.7) and the remark at the end of section 6.1 about having (q; q)n in the
denominator of a series, and he plugs this into (6.2.7) to get

(ax; q)∞ (q; q)∞
(
b
a ; q
)
∞

(x; q)∞ (b; q)∞
(
q
a ; q
)
∞

=
(q; q)∞

(
b
a ; q
)
∞

(b; q)∞
(
q
a ; q
)
∞

∞∑
n=−∞

(a; q)n
(q; q)n

xn

=
∞∑

n=−∞

(a; q)n
(b; q)n

xn
(qn+1; q)∞

(
b
a ; q
)
∞

(bqn; q)∞
(
q
a ; q
)
∞

after using (6.1.5) and (6.1.2) with x = b.
In (6.2.3) take

r =
b

q
, s = aqn, and t =

q

a
,

so that rt =
b

a
, st = qn+1, and rst = bqn.

Then (6.2.3) tells us that

(ax; q)∞ (q; q)∞
(
b
a ; q
)
∞

(x; q)∞ (b; q)∞
(
q
a ; q
)
∞

=

∞∑
n=−∞

(a; q)n
(b; q)n

xn
(qn+1; q)∞

(
b
a ; q
)
∞

(bqn; q)∞
(
q
a ; q
)
∞

=
∞∑

n=−∞

(a; q)n
(b; q)n

xn
∞∑

m=0

( bq ; q)m (aqn; q)m

(bqn; q)m (q; q)m

( q

ax

)m
xm

=

∞∑
m=0

( bq ; q)m

(q; q)m

( q

ax

)m ∞∑
n=−∞

(a; q)n+m

(b; q)n+m
xn+m,
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EXERCISES 253

where we used (6.1.8) to glue some of the products together. By (6.2.6) the inner
sum is Ramanujan’s 1ψ1, which can come out of the outer sum since it does not
depend on m. This gives

(ax; q)∞ (q; q)∞
(
b
a ; q
)
∞

(x; q)∞ (b; q)∞
(
q
a ; q
)
∞

= 1ψ1

(a
b
; q, x

) ∞∑
m=0

( bq ; q)m

(q; q)m

( q

ax

)m

= 1ψ1

(a
b
; q, x

) ( b
ax ; q)∞

( q
ax ; q)∞

,

where we used (6.1.7) in the last step. This proves (6.1.6).

Exercises

1. Show that changing q to q2 in (6.2.5) and then setting x = −cqz, a = 1
c , and

b = dq2 gives

(6.2.9)
(−qz; q2)∞

(
− q

z ; q
2
)
∞ (q2; q2)∞

(
cdq2; q2

)
∞

(−cqz; q2)∞

(
−dq

z ; q2
)
∞

(cq2; q2)∞ (dq2; q2)∞

= 1 +

∞∑
n=1

(
1
c ; q

2
)
n
(−cq)n

(dq2; q2)n
zn +

∞∑
n=1

(
1
d ; q

2
)
n
(−dq)n

(cq2; q2)n
z−n,

and that the convergence condition becomes |dq| < |z| < 1
|cq| . This is Ramanu-

jan’s original form of the 1ψ1.

2. Show that (6.2.9) is unchanged if we interchange c and d while replacing z by
1
z . Some authors prefer (6.2.9) to (6.1.1) since this symmetry property is not
evident in the latter, and for other reasons.

3. Andrews has given a similar proof of Jacobi’s triple product from Euler’s iden-
tities

(−x; q)∞ =
∞∑

n=0

q(
n
2)xn

(q; q)n
and

1

(x; q)∞
=

∞∑
n=0

xn

(q; q)n
.

It is convenient to replace q by q2 in both and x by zq in the former, so the
proof actually uses

(−zq; q2)∞ =

∞∑
n=0

qn
2

zn

(q2; q2)n
and

1

(x; q2)∞
=

∞∑
n=0

xn

(q2; q2)n
.

It starts with the former and with m in place of n.

(i) Explain why

(−zq; q2)∞ =
∞∑

m=0

qm
2

zm
(q2m+2; q2)∞
(q2; q2)∞

.

(ii) Explain why we can rewrite this as

(−zq; q2)∞ =
1

(q2; q2)∞

∞∑
m=−∞

qm
2

zm(q2m+2; q2)∞.
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254 6. RAMANUJAN’S 1ψ1 SUMMATION FORMULA

(iii) Explain why we can rewrite this as

(−zq; q2)∞(q2; q2)∞ =

∞∑
m=−∞

qm
2

zm
∞∑

n=0

(−1)nqn
2

qn(2m+1)

(q2; q2)n
.

(iv) Explain why we can rewrite this as

(−zq; q2)∞(q2; q2)∞ =
∞∑

m=−∞

∞∑
n=0

qn
2+2mn+m2

zn+m
(
−q

z

)n 1

(q2; q2)n
.

(v) Explain why we can rewrite this as

(−zq; q2)∞(q2; q2)∞ =

∞∑
n=0

(
− q

z

)n
(q2; q2)n

∞∑
k=−∞

qk
2

zk

and how Jacobi’s triple product follows from this.

4. Askey has given a beautiful functional equation proof of (6.1.1). We set

f(a, b, x) =

∞∑
n=−∞

(a; q)n
(b; q)n

xn

and note that, because of (6.2.8), we have

f(a, q, x) =

∞∑
n=−∞

(a; q)n
(q; q)n

xn =

∞∑
n=0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

.

(i) Explain why we can rewrite

f(a, b, x) =
(a; q)∞
(b; q)∞

g(b), where g(b) =
∞∑

n=−∞

(bqn; q)∞
(aqn; q)∞

xn.

(ii) Explain why

g(q) =
(ax; q)∞(q; q)∞
(x; q)∞(a; q)∞

.

(iii) Explain why

g(b) =
∞∑

n=−∞

(bqn+1; q)∞
(aqn; q)∞

xn (1− bqn)

=
∞∑

n=−∞

(bqn+1; q)∞
(aqn; q)∞

xn

[
1− b

a
+

b

a
(1− aqn)

]
implies that

g(b) =
1− b

a

1− b
ax

g(bq).

(iv) Explain why (iii) implies that

g(b) =

(
b
a ; q
)
∞(

b
ax ; q

)
∞

g(0).

(v) Set b = q in (iv) to find g(0).

(vi) Find g(b) and complete the proof of (6.1.1).
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5. There is an earlier functional equation proof of (6.1.1) due to Andrews and Askey
that works with the given sum side, rather than rewriting it as in part (i) of the
previous problem. Again set

f(a, b, x) =

∞∑
n=−∞

(a; q)n
(b; q)n

xn

and note that, because of (6.2.8), we have

f(a, q, x) =
∞∑

n=−∞

(a; q)n
(q; q)n

xn =
∞∑

n=0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

.

(i) Show that f(a, bq, x)− a f(a, bq, xq) =
1− b

x
f(a, b, x).

(ii) Show that b f(a, bq, xq) = f(a, bq, x)− (1− b) f(a, b, x).

(iii) Show that eliminating f(a, bq, xq) from (i) and (ii) gives

(b− a) f(a, bq, x) = (1− b)

(
b

x
− a

)
f(a, b, x),

and that this can be rewritten as

f(a, b, x) =
1− b

a

(1− b)
(
1− b

ax

) f(a, bq, x).
(iv) Explain why (iii) implies that

f(a, b, x) =

(
b
a ; q
)
∞

(b; q)∞
(

b
ax ; q

)
∞

f(a, 0, x).

(v) Set b = q in (iv) to find f(a, 0, x) and complete the proof of (6.1.1).

6. This exercise presents a very interesting cautionary example, due to Askey. It
will be convenient to have the 1ψ1 with different letters: if

∣∣ s
r

∣∣ < |z| < 1, then

(6.2.10)
∞∑

n=−∞

(r; q)n
(s; q)n

zn =
(rz; q)∞

(
q
rz ; q

)
∞ (q; q)∞

(
s
r ; q
)
∞

(z; q)∞
(

s
rz ; q

)
∞ (s; q)∞

(
q
r ; q
)
∞

.

Askey tries to expand a similar product in a Laurent series:

(6.2.11)
(ax; q)∞

(
b
x ; q
)
∞

(dx; q)∞
(

q
dx ; q

)
∞

=
∞∑

n=−∞
cn x

n

for some coefficients cn, where we expect the expansion to be valid when |q| <
|dx| < 1 from looking at the denominator.

(i) Show that replacing x by qx in (6.2.11) and dividing the result into
(6.2.11) gives

q(1− ax)

∞∑
n=−∞

cnx
nqn = d(b− xq)

∞∑
n=−∞

cnx
n.

(ii) Show that (i) implies

cn = cn−1
q

b

1− aqn−1

d

1− qn+1

bd

.
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256 6. RAMANUJAN’S 1ψ1 SUMMATION FORMULA

(iii) Explain why (ii) implies

cn = c0

(q
b

)n (a
d ; q
)
n(

q2

bd ; q
)
n

for every integer n. Exercise 3 from the previous section might help.

(iv) Using (iii) in (6.2.11) we have

(ax; q)∞
(
b
x ; q
)
∞

(dx; q)∞
(

q
dx ; q

)
∞

= c0

∞∑
n=−∞

(
a
d ; q
)
n(

q2

bd ; q
)
n

(qx
b

)n
,

and we still need to find c0. But (6.2.10) applies to this with z = qx
b , r = a

d , and

s = q2

bd . Show that this gives

(ax; q)∞
(
b
x ; q
)
∞

(dx; q)∞
(

q
dx ; q

)
∞

= c0

(
aqx
bd ; q

)
∞
(
bd
ax ; q

)
∞ (q; q)∞

(
q2

ab ; q
)
∞(

qx
b ; q
)
∞
(

q
ax ; q

)
∞

(
q2

bd ; q
)
∞

(
qd
a ; q
)
∞

if
∣∣ q
a

∣∣ < |x| <
∣∣∣ bq ∣∣∣.

(v) This expression for c0 can’t be correct, because c0 is supposed to be
independent of x. If we ignore that problem, the argument gives

∞∑
n=−∞

(
a
d ; q
)
n(

q2

bd ; q
)
n

(qx
b

)n
=

(
aqx
bd ; q

)
∞
(
bd
ax ; q

)
∞ (q; q)∞

(
q2

ab ; q
)
∞(

qx
b ; q
)
∞
(

q
ax ; q

)
∞

(
q2

bd ; q
)
∞

(
qd
a ; q
)
∞

,

which is correct if
∣∣ q
a

∣∣ < |x| <
∣∣∣ bq ∣∣∣. However, it is not an expansion of the product

we started with in (6.2.11), because that cancelled in the final step.
We are left to try to explain why this argument failed to expand the product

in (6.2.11). It could only have succeeded when |q| < |dx| < 1, which is a possible
range for x, but if x is in this range, then qx is not. (Explain.) Therefore, we
cannot get a functional equation for cn by replacing x by qx. For power series,
which contain no negative powers of x, replacing x by qx is always a good step
because it moves us farther inside the circle of convergence. For Laurent series,
it can move us inside the inner circle of the annulus of convergence into a region
of divergence.

6.3. From the q-Pfaff–Saalschütz sum to Ramanujan’s 1ψ1 summation

The argument of this section is essentially due to Michael Schlosser, although
our arrangement of it is a little different. Section 5.7 contained several variants of
the q-Pfaff–Saalschütz identity

(6.3.1)
n∑

k=0

(
n

k

)
q

( c

ab
; q
)
n−k

(a; q)k (b; q)k
(c; q)k

( c

ab

)k
=

( ca ; q)n (
c
b ; q)n

(c; q)n
,
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but there is yet another fruitful way to rewrite it. Start by changing n to n + m
and k to k +m in (6.3.1). Noting that this does not change n− k, we then have
(6.3.2)

n∑
k=−m

(
m+ n

m+ k

)
q

( c

ab
; q
)
n−k

(a; q)m+k (b; q)m+k

(c; q)m+k

( c

ab

)m+k

=
( ca ; q)m+n (

c
b ; q)m+n

(c; q)m+n
.

The next step is to use (6.1.8) several times to simplify the sum, and also the related
fact ( c

ab
; q
)
n−k

=

(
c
ab ; q

)
n(

cqn−k

ab ; q
)
k

.

This gives

(a; q)m(b; q)m
(c; q)m

( c

ab
; q
)
n

( c

ab

)m n∑
k=−m

(
m+ n

m+ k

)
q

(aqm; q)k (bq
m; q)k

(cqm; q)k

(
cqn−k

ab ; q
)
k

( c

ab

)k

=
( ca ; q)m+n (

c
b ; q)m+n

(c; q)m+n
,

or

n∑
k=−m

(
m+ n

m+ k

)
q

(aqm; q)k (bq
m; q)k

(cqm; q)k

(
cqn−k

ab ; q
)
k

( c

ab

)k

=
( ca ; q)m+n (

c
b ; q)m+n

(a; q)m(b; q)m(cqm; q)n
(

c
ab ; q

)
n

(
ab

c

)m

after another application of (6.1.8). Now replace a and c by aq−m and cq−m

respectively to get

n∑
k=−m

(
m+ n

m+ k

)
q

(a; q)k (bq
m; q)k

(c; q)k

(
cqn−k

ab ; q
)
k

( c

ab

)k

=
( ca ; q)m+n (

c
bqm ; q)m+n

( a
qm ; q)m(b; q)m(c; q)n

(
c
ab ; q

)
n

(
ab

c

)m

.

Using (6.1.8) one more time, this is

(6.3.3)
n∑

k=−m

(
m+ n

m+ k

)
q

(a; q)k (bq
m; q)k

(c; q)k

(
cqn−k

ab ; q
)
k

( c

ab

)k

=
( ca ; q)m+n (

c
b ; q)n

(b; q)m(c; q)n
(

c
ab ; q

)
n

(
ab

c

)m ( cq
−m

b ; q)m

(aq−m; q)m
.

By (6.1.4) we have

(aq−m; q)m = (−1)mamq−(
m+1

2 ) ( q
a ; q
)
m
,

and using this also with a replaced by c
b gives

(
ab

c

)m ( cq
−m

b ; q)m

(aq−m; q)m
=

(
bq
c ; q
)
m(

q
a ; q
)
m

,
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so (6.3.3) becomes
(6.3.4)

n∑
k=−m

(
m+ n

m+ k

)
q

(a; q)k (bq
m; q)k

(c; q)k

(
cqn−k

ab ; q
)
k

( c

ab

)k
=

( ca ; q)m+n(
c
b ; q)n(

bq
c ; q)m

(b; q)m( qa ; q)m(c; q)n
(

c
ab ; q

)
n

.

One might call (6.3.4) the MacMahon/Schlosser form of the q-Pfaff–Saalschütz
identity. Schlosser gives a similar form with m = n, and it is analogous to MacMa-
hon’s q-binomial theorem of section 2.7, which had been given earlier by Cauchy
and Gauss with the two parameters a and b both equal to n.

The point of writing the q-Pfaff–Saalschütz identity in the form of (6.3.4) is
that if we formally let m and n approach infinity, assuming as usual that |q| < 1,
we get Ramanujan’s 1ψ1 summation. Because |q| < 1, two of the finite products on
the sum side of (6.3.4) approach (0; q)k = 1 as m,n → ∞; moreover, the q-binomial
coefficient becomes

(q; q)∞
(q; q)∞(q; q)∞

=
1

(q; q)∞
.

Moving this term to the other side of (6.3.4) we have

(6.3.5)

∞∑
k=−∞

(a; q)k
(c; q)k

( c

ab

)k
=

( ca ; q)∞( cb ; q)∞( bqc ; q)∞(q; q)∞

(b; q)∞( qa ; q)∞(c; q)∞
(

c
ab ; q

)
∞
.

This is more commonly written with c/ab renamed as z; i.e., with b = c
az . Making

this change we finally have

∞∑
k=−∞

(a; q)k
(c; q)k

zk =
(az; q)∞( q

az ; q)∞(q; q)∞( ca ; q)∞

(z; q)∞( c
az ; q)∞(c; q)∞( qa ; q)∞

.

To justify this argument rigorously we can use Tannery’s theorem. It certainly
won’t work unless the series converges, and we content ourselves with investigating
this. Using the ratio test, we have to look at

lim
k→∞

∣∣∣∣∣∣
(a;q)k+1

(c;q)k+1
zk+1

(a;q)k
(c;q)k

zk

∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣1− aqk

1− cqk
z

∣∣∣∣ = |z|,

since |q| < 1. So the series converges if |z| < 1. But since it is bilateral, we also
have to look at what happens to the ratio of successive terms when k → −∞. If k
is a positive integer, then we have

(a; q)−k =
1

(1− aq−k)(1− aq1−k) · · · (1− aq−1)

from section 6.1. Then

lim
k→∞

∣∣∣∣∣∣
(a;q)−(k+1)

(c;q)−(k+1)
z−(k+1)

(a;q)−k

(c;q)−k
z−k

∣∣∣∣∣∣ = lim
k→∞

∣∣∣∣ 1− cq−(k+1)

1− aq−(k+1)

1

z

∣∣∣∣ = lim
k→∞

∣∣∣∣ qk+1 − c

qk+1 − a

1

z

∣∣∣∣ = ∣∣∣ caz
∣∣∣ .

So we also need Schlosser’s parameter b = c
az to be less than one in absolute value

for the series to converge. In other words, it converges if
∣∣ c
a

∣∣ < |z| < 1.
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Exercises

1. Use Tannery’s theorem to justify the above limiting process.

6.4. Another identity of Cauchy, and its finite form

To start our final proof of Ramanujan’s 1ψ1 summation formula, we prove
another identity of Cauchy. This will also provide an occasion for some remarks
on one of our standard methods. Cauchy posed to himself the following question.
Consider a function φ(x) which satisfies the functional equation

φ(x) =
1− ax

1− bx
φ(xq)

and the initial condition φ(0) = 1. By iterating the functional equation as before,
under our standard assumption that |q| < 1, we have that φ(x) = (ax; q)∞/(bx; q)∞.
Cauchy asked what the coefficients cn are if we expand φ(x) in a certain type of
series:

φ(x) =

∞∑
n=0

cn x
n

(bx; q)n
.

One answer to this question is that

cn = (b− a)(b− aq) · · · (b− aqn−1)
(bx; q)n
(q; q)n

,

because this gives us back the Cauchy/Crelle series for φ(x); but this is not a good
answer, because these cn’s are not independent of x. To have a series that is really
of the desired type we need cn’s that are.

A principle we have often used is that if we expand a (sufficiently nice) function
in a series of powers of x, then the coefficients are uniquely determined (so any
legitimate method of finding them can be used; this, in a sense, is the real content
of Taylor’s theorem). If we have two infinite series in powers of x which are equal,
then the coefficient of xn is the same on each side for every nonnegative integer n,
and we have used this to prove some of our identities. In the language of linear
algebra, this comes down to the fact that the power functions {xn} are a basis for
a certain class of functions, which we will be content with a very vague description
of: “nice functions which are finite at the origin”. But the power functions are far
from being the only such basis—any set of polynomials {Pn(x)} with exactly one
member of each degree is nearly as good. And while the functions xn/(bx; q)n that
Cauchy wanted to use in his expansion are not polynomials, they are still a basis
for the class of functions we’re interested in, because no other xk/(bx; q)k besides
xn/(bx; q)n has xn as its lowest power.

Why did Cauchy ask himself this? He wanted to generalize Jacobi’s Durfee
square identity (4.2.1), and therefore he imitated Jacobi’s argument from problem
21 in section 5.1. Since φ(0) = 1, we must have c0 = 1, and if

φ(x) =
1− ax

1− bx
φ(xq) and φ(x) =

∞∑
n=0

cn x
n

(bx; q)n
,
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then
∞∑

n=0

cn x
n

(bx; q)n
=

1− ax

1− bx

∞∑
n=0

cn x
n qn

(bxq; q)n

=
∞∑

n=0

cn x
n qn

(bx; q)n

1− ax

1− bxqn
.

Cauchy rewrites

1− ax

1− bxqn
=

1− bxqn + bxqn − ax

1− bxqn
= 1 +

x(bqn − a)

1− bxqn
.

Then
∞∑

n=0

cn x
n

(bx; q)n
=

∞∑
n=0

cn x
n qn

(bx; q)n
+

∞∑
n=0

cn x
n qn

(bx; q)n

x(bqn − a)

1− bxqn
.

Moving the first sum on the right to the other side we have
∞∑

n=0

cn x
n (1− qn)

(bx; q)n
=

∞∑
n=0

cn q
n xn+1 (bqn − a)

(bx; q)n+1

=

∞∑
n=1

cn−1 q
n−1 xn (bqn−1 − a)

(bx; q)n
.

Note that the n = 0 term on the left side is zero. As usual, we now equate
coefficients on each side. If the cn are independent of x we must have

(6.4.1) cn (1− qn) = cn−1 q
n−1 (bqn−1 − a).

Then

cn = cn−1 q
n−1 bqn−1 − a

1− qn
for n ≥ 1,

and iterating this down to c0 gives

cn = c0
q(

n
2)

(q; q)n
(bqn−1 − a) . . . (bq − a)(b− a).

This proves Cauchy’s identity

(6.4.2) φ(x) =
(ax; q)∞
(bx; q)∞

=

∞∑
k=0

q(
k
2) xk

(q; q)k (bx; q)k
(b− a)(bq − a) · · · (bqk−1 − a).

When a = 0 and b = q this reduces to (4.2.1). The case x = 1 of (4.2.1) has
sometimes been attributed to Euler, but this seems doubtful.

Exercises

1. Show that (6.4.1) is false if

cn = (b− a)(b− aq) · · · (b− aqn−1)
(bx; q)n
(q; q)n

.

These are the cn’s in the Cauchy/Crelle series, which are not independent of x.

2. Justify the assertion in the text that no other xk/(bx; q)k besides xn/(bx; q)n
has xn as its lowest power.
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3. Jacobi found a finite form of (6.4.2). Define

Sn(a, b;x) :=

n∑
k=0

(
n

k

)
q

q(
k
2) xk

(bx; q)k
(b− a)(bq − a) · · · (bqk−1 − a).

Show that S0(a, b;x) = 1 and

Sn+1(a, b;x) =
1− ax

1− bx
Sn(aq, bq;x),

and explain why this implies

(6.4.3)

n∑
k=0

(
n

k

)
q

q(
k
2) xk

(bx; q)k
(b− a)(bq − a) · · · (bqk−1 − a) =

(ax; q)n
(bx; q)n

.

4. Show that (6.4.3) reduces to (4.2.13) if a = 0 and either b or x equals q.

5. Give an alternative proof of (6.4.2) by letting n → ∞ in (6.4.3).

6. Show that (6.4.3) can be rewritten as

(6.4.4) (ax; q)n =

n∑
k=0

(
n

k

)
q

q(
k
2) xk

(
bxqk; q

)
n−k

(b− a)(bq − a) · · · (bqk−1 − a).

7. What form of the binomial theorem does (6.4.4) reduce to when q = 1?

8. Alladi has given a different proof of (6.4.2), starting from the sum side. Justify
each of the following steps:

(i) By Rothe’s q-binomial theorem, the right side of (6.4.2) is

∞∑
k=0

k∑
j=0

q(
k
2)+(

j
2) (bx)j(−ax)k−j

(q; q)j(q; q)k−j(bx; q)k
.

(ii) By interchanging orders of summation and setting n = k − j, this can
be rewritten as

∞∑
j=0

∞∑
n=0

q(
j
2)+(

n+j
2 ) (bx)j(−ax)n

(q; q)j(q; q)n(bx; q)n+j
.

(iii) This in turn can be rewritten as

∞∑
n=0

q(
n
2)(−ax)n

(q; q)n

∞∑
j=0

qj(j+n)
(

bx
q

)j
(q; q)j(bx; q)n+j

.

(iv) Cauchy’s theorem now follows after first using (4.2.2) and then Euler’s
theorem (3.6.1).

9. Recall (5.2.12) from section 5.2:

(6.4.5)
∞∑

n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

.

For reasons connected with partitions, in the paper that engendered the previous
problem Alladi finds several other q-expansions of the right side of (6.4.5). By
changing q to q2 in (6.4.2) and then setting ax = q2 and bx = q, show that

(q2; q2)∞
(q; q2)∞

=
∞∑
k=0

(−1)k qk
2+k

(q2; q2)k

1− q−1

1− q2k−1
.
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10. Alladi finds another q-expansion of (6.4.5) by using Euler’s theorems from Chap-
ter 3.

(i) By using (3.5.1) with q2 in place of q, show that

(q2; q2)∞
(q; q2)∞

= (q2; q2)∞

∞∑
m=0

qm

(q2; q2)m
=

∞∑
m=0

qm
(
q2m+2; q2

)
∞ .

(ii) By using (3.6.1) with q2 in place of q, show that the right side of (i) is

∞∑
m=0

∞∑
k=0

(−1)kqk
2+k+m(2k+1)

(q2; q2)k
.

(iii) By changing the order of summation in (ii), show that

(q2; q2)∞
(q; q2)∞

=
∞∑
k=0

(−1)k qk
2+k

(q2; q2)k (1− q2k+1)
.

11. From the previous two problems we know that

(6.4.6)

∞∑
k=0

(−1)k qk
2+k

(q2; q2)k (1− q2k+1)
=

∞∑
k=0

(−1)k qk
2+k

(q2; q2)k

1− q−1

1− q2k−1
,

because both sides are equal to (q2; q2)∞/(q; q2)∞. Alladi gives two direct proofs
of (6.4.6) by working with the partial sums

An(q) =
n∑

k=0

(−1)k qk
2+k

(q2; q2)k (1− q2k+1)
and Bn(q) =

n∑
k=0

(−1)k qk
2+k

(q2; q2)k

1− q−1

1− q2n−1
.

We outline the second proof, which was suggested by Andrews.

(i) By breaking off the k = n term of An(q) and the k = 0 term of Bn(q),
and then reindexing the sum for Bn(q), show that

An(q)−Bn(q) =
(−1)n qn

2+n

(q2; q2)n (1− q2n+1)
− 1 +

n−1∑
k=0

(−1)k qk
2+k

(q2; q2)k+1
.

(ii) The sum in (i) can be made to telescope by writing

(−1)k qk
2+k

(q2; q2)k+1
=

(−1)k qk
2+k
(
1− q2k+2 + q2k+2

)
(q2; q2)k+1

.

Show that this gives

(6.4.7) An(q)−Bn(q) =
(−1)n qn

2+3n+1

(q2; q2)n (1− q2n+1)
,

and explain why (6.4.6) follows.

12. Prove (6.4.7) by induction on n. This was Alladi’s other proof of (6.4.6).
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6.5. Cauchy’s “mistaken identity”

Jacobi needed (4.2.1) to finish his proof of the triple product, and Cauchy
wanted (6.4.2) because he was trying to generalize the triple product. He would
have succeeded but for a careless error. In this section we’ll work out the identity
that Cauchy should have found. Suppose we try to expand the function

f(x) :=
(ax; q)∞

(
q
ax ; q

)
∞

(bx; q)∞
in powers of x. Because of the negative powers in the numerator, this expansion
has the form

(6.5.1) f(x) =
(ax; q)∞

(
q
ax ; q

)
∞

(bx; q)∞
=

∞∑
n=−∞

γn x
n

for some coefficients γn, which we seek. The following argument is probably similar
to what Cauchy had in mind: consider

f(x)

f(xq)
=

(ax; q)∞
(axq; q)∞

(
q
ax ; q

)
∞(

1
ax ; q

)
∞

(bxq; q)∞
(bx; q)∞

=

∞∑
n=−∞

γn x
n

∞∑
n=−∞

γn xn qn
.

There is a great deal of cancellation in the infinite products, and there results

ax

bx− 1
=

∞∑
n=−∞

γn x
n

∞∑
n=−∞

γn xn qn
.

Rewrite this as

ax

∞∑
n=−∞

γn x
n qn = (bx− 1)

∞∑
n=−∞

γn x
n

and rearrange to get
∞∑

n=−∞
γn x

n =

∞∑
n=−∞

γn x
n+1 (b− aqn)

=

∞∑
n=−∞

γn−1 x
n
(
b− aqn−1

)
.

By equating coefficients we have γn = γn−1

(
b− aqn−1

)
. If n > 0 we may iterate

this to get
γn = γ0 (b− a)(b− aq) · · · (b− aqn−1),

which we may rewrite as

γn = γ0 b
n
(
1− a

b

)(
1− aq

b

)
· · ·
(
1− aqn−1

b

)
= γ0

(a
b
; q
)
n
bn for n ≥ 0.(6.5.2)

If n < 0 we replace n by 1−m in γn = γn−1

(
b− aqn−1

)
to get

γ−m =
γ1−m

b− aq−m
=

γ1−m qm

bqm − a
,
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where m is nonnegative. Iterating this upwards gives

γ−m =
γ0

(b− aq−m) · · · (b− aq−1)

=
γ0 q

(m+1
2 )

(bqm − a) · · · (bq − a)
.

Taking −a out of each denominator factor makes this

γ−m =
γ0 (−1)mq(

m+1
2 )

am
(
1− bq

a

)
· · ·
(
1− bqm

a

)
=

γ0 (−1)mq(
m+1

2 )

am
(

bq
a ; q
)
m

=
γ0 (−1)mq(

m+1
2 )

bm
(
a
b

)m ( bq
a ; q
)
m

.

Now recall (6.1.4)

(a; q)−n =
(−1)nq(

n+1
2 )

an
(
q
a ; q
)
n

from section 6.1. This shows that

γ−m = γ0 b
−m
(a
b
; q
)
−m

for m ≥ 0.

Combining this with (6.5.2) we have

(6.5.3) γn = γ0 b
n
(a
b
; q
)
n

for all integers n.

It remains to determine γ0, and it was here that Cauchy went wrong. γ0 is the
constant term (i.e., the term independent of x) in (6.5.1). One way to find it is to
separate the function in (6.5.1) as

(ax; q)∞
(bx; q)∞

( q

ax
; q
)
∞

.

We can expand the fraction by the Cauchy/Crelle series, and the other infinite
product by Euler’s identity (3.6.1) from Chapter 3. Hence

(ax; q)∞
(

q
ax ; q

)
∞

(bx; q)∞
=

∞∑
j=0

(b− a)(b− aq) · · ·
(
b− aqj−1

)
(q; q)j

xj
∞∑
k=0

q(
k
2)
(
− q

ax

)k
(q; q)k

.

The constant term in this comes from setting j = k:

γ0 =

∞∑
k=0

(b− a)(b− aq) · · ·
(
b− aqk−1

)
(q; q)k (q; q)k

q(
k
2)
(
− q

a

)k

=

∞∑
k=0

(a− b)(aq − b) · · ·
(
aqk−1 − b

)
(q; q)k (q; q)k

q(
k
2)
( q
a

)k
.(6.5.4)
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Here is a series that Cauchy could easily have summed, for if we interchange a and
b in (6.4.2), then we have

(bx; q)∞
(ax; q)∞

=
∞∑
k=0

q(
k
2) xk

(q; q)k (ax; q)k
(a− b)(aq − b) · · · (aqk−1 − b).

Setting x = q
a in this we get the series (6.5.4), and therefore

γ0 =

(
bq
a ; q
)
∞

(q; q)∞
.

Substituting this in (6.5.3) and comparing with (6.5.1), we finally have

(6.5.5)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(bx; q)∞

(
bq
a ; q
)
∞

=

∞∑
n=−∞

(a
b
; q
)
n
bn xn.

Assuming that |q| < 1, the series converges if x �= 0 and |bx| < 1. We propose to
call this Cauchy’s mistaken identity, as the version of (6.5.5) in Cauchy’s paper is

missing the factor
(

bq
a ; q
)
∞

in the denominator. If b = 0, then (6.5.5) reduces to

Jacobi’s triple product identity in the form

(ax; q)∞

( q

ax
; q
)
∞

(q; q)∞ =

∞∑
n=−∞

q
n(n−1)

2 (−ax)
n
.

Cauchy seems to have been misled by this—he apparently thought that his identity
would have the same constant term as Jacobi’s.

Exercises

1. Here is another way to find γ0 above: we have

(ax; q)∞
(

q
ax ; q

)
∞

(bx; q)∞
= γ0

∞∑
n=−∞

(a
b
; q
)
n
(bx)n.

Multiply both sides by (q; q)∞ and rename (q; q)∞ γ0 as C. Then we need to
find C in the equation

(ax; q)∞

( q

ax
; q
)
∞

(q; q)∞
1

(bx; q)∞
= C

∞∑
n=−∞

(a
b
; q
)
n
(bx)n.

(i) Explain why

(ax; q)∞

( q

ax
; q
)
∞

(q; q)∞
1

(bx; q)∞
=

⎛
⎝ ∞∑

j=−∞
q

j(j−1)
2 (−ax)j

⎞
⎠( ∞∑

k=0

(bx)k

(q; q)k

)
.

(ii) Explain why C is the coefficient of x0 in⎛
⎝ ∞∑

j=−∞
q

j(j−1)
2 (−ax)j

⎞
⎠( ∞∑

k=0

(bx)k

(q; q)k

)
.
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266 6. RAMANUJAN’S 1ψ1 SUMMATION FORMULA

(iii) Explain why

C =

∞∑
k=0

q
k(k+1)

2

(q; q)k

(
− b

a

)k

=

∞∑
k=0

q(
k
2)

(q; q)k

(
−bq

a

)k

.

(iv) Explain why C =
(

bq
a ; q
)
∞
. This completes the proof.

2. Use Cauchy’s mistaken identity (6.5.5) to show that

∞∑
n=−∞

(q
s
; q
)
n
tn+1 −

∞∑
n=−∞

(q
t
; q
)
n
sn+1 =

2(t− s) (q; q)∞
(
qs
t ; q
)
∞
(
qt
s ; q
)
∞

(s; q)∞(t; q)∞
.

3. Use the previous problem and (6.1.10) to show that

(6.5.6)
∞∑
n=0

(q
s
; q
)
n
tn+1 −

∞∑
n=0

(q
t
; q
)
n
sn+1 =

(t− s) (q; q)∞
(
qs
t ; q
)
∞
(
qt
s ; q
)
∞

(s; q)∞(t; q)∞
.

4. Use (6.1.9) to rewrite (6.5.6) as

(6.5.7) t
∞∑

n=0

q(
n+1
2 )

(t; q)n+1

(
− t

s

)n

− s
∞∑

n=0

q(
n+1
2 )

(s; q)n+1

(
−s

t

)n

=
(t− s) (q; q)∞

(
qs
t ; q
)
∞
(
qt
s ; q
)
∞

(s; q)∞(t; q)∞
.

This is Ramanujan’s reciprocity theorem.

5. Use (5.6.20) from the exercises in section 5.6 to rewrite (6.5.7) as

(6.5.8)
∞∑

n=0

(
q
s ; q
)
n

(t; q)n+1

(
s− tq2n+1

)
(−1)n

t2n+1

sn+1
q

n(3n+1)
2

−
∞∑
n=0

(
q
t ; q
)
n

(s; q)n+1

(
t− sq2n+1

)
(−1)n

s2n+1

tn+1
q

n(3n+1)
2

=
(t− s) (q; q)∞

(
qs
t ; q
)
∞
(
qt
s ; q
)
∞

(s; q)∞(t; q)∞
.

6. Show that setting t = − q
z and s = −z in (6.5.8) gives the quintuple product

identity (5.3.1), namely

∞∑
k=−∞

(
1− zqk

)
z3kq

k(3k−1)
2 =

(z2; q)∞
(

q
z2 ; q

)
∞ (q; q)∞

(−z; q)∞
(
− q

z ; q
)
∞

.

You will eventually need to change n to −k−1 in one of the two sums in (6.5.8).

6.6. Ramanujan’s formula again

Cauchy’s mistaken identity is, in a sense, halfway between Jacobi’s triple prod-
uct and Ramanujan’s 1ψ1 summation. In this section we use an argument much
like that of the previous section to derive the 1ψ1. Since (6.5.5) arises from putting
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6.6. RAMANUJAN’S FORMULA AGAIN 267

an infinite product in the denominator of Jacobi’s triple product, it is natural to
try the same thing on (6.5.5) itself. We set

(6.6.1) g(x) :=
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(bx; q)∞

(
bq
a ; q
)
∞

(
c
ax ; q

)
∞

=
∞∑

n=−∞
rn x

n

and use the same method as before to work out the coefficients rn. We have

g(x)

g(xq)
=

(ax; q)∞
(axq; q)∞

(
q
ax ; q

)
∞(

1
ax ; q

)
∞

(bxq; q)∞
(bx; q)∞

(
c

aqx ; q
)
∞(

c
ax ; q

)
∞

=

∞∑
n=−∞

rn x
n

∞∑
n=−∞

rn xn qn
.

Again there is much cancellation in the infinite products, and we get

c
q − ax

1− bx
=

∞∑
n=−∞

rn x
n

∞∑
n=−∞

rn xn qn

or (
c

q
− ax

) ∞∑
n=−∞

rn x
n qn = (1− bx)

∞∑
n=−∞

rn x
n.

Rearrange this to

∞∑
n=−∞

rn x
n
(
1− cqn−1

)
=

∞∑
n=−∞

rn x
n+1 (b− aqn)

=

∞∑
n=−∞

rn+1 x
n
(
b− aqn−1

)
and equate coefficients of xn to get

rn = rn−1
b− aqn−1

1− cqn−1
.

As before this may be iterated to get rn in terms of r0, and the result is

(6.6.2) rn = r0 b
n

(
a
b ; q
)
n

(c; q)n

for all integers n.
To find the constant term r0, we separate the infinite products in (6.6.1) as

(ax; q)∞
(

q
ax ; q

)
∞ (q; q)∞

(bx; q)∞

(
bq
a ; q
)
∞

1(
c
ax ; q

)
∞
.

Using (6.5.5) to expand the former and Euler’s identity (3.5.1) from Chapter 3 for
the latter we have

(ax; q)∞
(

q
ax ; q

)
∞ (q; q)∞

(bx; q)∞

(
bq
a ; q
)
∞

(
c
ax ; q

)
∞

=

∞∑
n=−∞

(a
b
; q
)
n
bn xn

∞∑
k=0

(
c
ax

)k
(q; q)k

.
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268 6. RAMANUJAN’S 1ψ1 SUMMATION FORMULA

The constant term arises when n = k, so

r0 =
∞∑

n=0

(
a
b ; q
)
n

(q; q)n

(
bc

a

)n

=
∞∑

n=0

(b− a)(b− aq) · · · (b− aqn−1)

(q; q)n

( c
a

)n

=

(
a c

a ; q
)
∞(

b c
a ; q
)
∞

=
(c; q)∞(
bc
a ; q
)
∞

from the Cauchy/Crelle series. Together with (6.6.2) and (6.6.1), this proves

Theorem 61 (Ramanujan’s 1ψ1 summation formula). If
∣∣ c
a

∣∣ < |x| < 1
|b| , so

that the series in (6.6.3) below converges, then

(6.6.3)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(
bc
a ; q
)
∞

(bx; q)∞
(

c
ax ; q

)
∞ (c; q)∞

(
bq
a ; q
)
∞

=

∞∑
n=−∞

(
a
b ; q
)
n

(c; q)n
(bx)

n
.

To get (6.1.1) from (6.6.3) we set b = 1 and then rename c as b. (6.6.3) is not
really more general, since (exercise) we can get (6.6.3) from (6.1.1) by renaming b
as c and then replacing a by a

b and x by bx.

Exercises

1. Use the ratio test to show that the series in (6.6.3) converges if
∣∣ c
a

∣∣ < |x| < 1
|b| .

Again, you should consider both positive and negative values of n.

2. Show that (6.1.1) becomes (6.6.3) if we rename b as c and then replace a by a
b

and x by bx. Check the convergence conditions also.

6.7. Bibliographical Notes

The 1ψ1 summation “was first brought before the mathematical world”, as
Bruce Berndt eloquently expressed it, by Hardy in Chapter 12 of [133] in 1940, in
the form (6.2.9). This form is entry 17 in Chapter 16 of Ramanujan’s notebooks
[49]. The very natural proof of Jackson is in [146], and Andrews’s variation in
[10]. Ismail’s proof appeared first in [142], and may also be found in [143] and
[24]. There are also combinatorial proofs by Corteel and Lovejoy [83] and by Yee
[248]. Andrews’s proof of the triple product is in [6].

No account of q-series could be complete without mentioning Berndt’s edition
of Ramanujan’s notebooks [47], [48], [49], [50], [51], which has the entire mathe-
matical community in his debt. These notebooks contain thousands of wonderful
facts about q-series and other topics. Some were published by Ramanujan, and oth-
ers were either known before him or rediscovered since, but many were still new 75
or more years after the fact. Chapter 17 contains Ramanujan’s initial development
of q-series; his version of the q-Gauss sum is entry 4 there. Berndt often uses (6.2.9)
instead of (6.1.1) in his work, and (6.2.9) was also preferred by Venkatachaliengar
in [241] and by Cooper in [81].
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Askey’s proof of Ramanujan’s 1ψ1 summation formula is in [33], the An-
drews/Askey proof is in [23], and Askey’s cautionary example is in [36]. Schlosser’s
proof is in [213].

Cauchy’s identities from sections 6.4 and 6.5 are in [67]. He found several other
special cases of the 1ψ1 in [69]. See the next chapter for these and applications
to number theory. Jacobi’s identity (6.4.4) is in [150]. The last four problems in
section 6.5 come from [5]. Alladi proves there a special case of (6.4.2) that appears
in Ramanujan’s lost notebook, but both the result and the argument extend easily
to (6.4.2). Much of the material in sections 6.4–6.6 comes from my paper [153].
Ramanujan’s reciprocity theorem (6.5.7) is in [26] and [53], and one can see these
works for further references. We have more or less followed one of the proofs in
[53], which also has the remark that it implies the quintuple product.
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CHAPTER 7

Sums of Squares

7.1. Cauchy’s formula

In this short chapter we give some applications of q-analysis to sums of two
and four squares. The key identity is

(7.1.1)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)2∞

(x; q)∞
(
q
x ; q
)
∞ (a; q)∞

(
q
a ; q
)
∞

=
∞∑

n=−∞

xn

1− aqn
,

where the series converges if either |q| < |x| < 1 or |q| > |x| > 1, but we will assume
the former. This was stated without proof by Cauchy in 1843, though he did prove
two special cases. It is itself the special case b = aq of Ramanujan’s 1ψ1 summation
formula.

Theorem 62 (Ramanujan). If |q| < 1 and
∣∣ b
a

∣∣ < |x| < 1, then

(7.1.2)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(
b
a ; q
)
∞

(x; q)∞
(

b
ax ; q

)
∞ (b; q)∞

(
q
a ; q
)
∞

=
∞∑

n=−∞

(a; q)n
(b; q)n

xn.

Therefore we may take it for granted if we have read Chapter 6. If we haven’t,
then we can use a partial fractions expansion from Chapter 2 instead:

Theorem 63. For any nonnegative integer n, and all x except q−n, . . . , qn, we
have

(ax; q)n
(

q
ax ; q

)
n

(x; q)n+1

(
q
x ; q
)
n

=
n∑

k=−n

(a; q)n−k

(
q
a ; q
)
n+k

(q; q)n−k(q; q)n+k

ak

1− xqk
.

If we let n → ∞ here (see the appendix for the justification of the limiting
process via Tannery’s theorem), we get

(7.1.3)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)2∞

(x; q)∞
(
q
x ; q
)
∞ (a; q)∞

(
q
a ; q
)
∞

=

∞∑
k=−∞

ak

1− xqk
,

if |q| < |a| < 1. Assuming we also have |q| < |x| < 1, the left side of (7.1.3) is
symmetric in x and a, so the right side must be too, and (7.1.1) follows. We will
generally assume both |q| < |x| < 1 and |q| < |a| < 1 in (7.1.1) to assure the
symmetry in x and a. In (7.1.1) and (7.1.3), neither a nor x can be 1 because of
the denominator factors (a; q)∞ and (x; q)∞.

Cauchy’s two special cases of (7.1.1) are equally beautiful, and we will need
one of them in the next section. If we change q to q2 in (7.1.1) and then replace x
by xq, we get

(7.1.4)
(aqx; q2)∞

(
q
ax ; q

2
)
∞ (q2; q2)2∞

(qx; q2)∞
(
q
x ; q

2
)
∞ (a; q2)∞

(
q2

a ; q2
)
∞

=

∞∑
n=−∞

xnq2n

1− aq2n
.

271
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272 7. SUMS OF SQUARES

We lose a little symmetry in doing so, but in the two cases of interest it is possible
to restore it. If we set a = −1 we get

(7.1.5)
(−qx; q2)∞

(
− q

x ; q
2
)
∞ (q2; q2)2∞

(qx; q2)∞
(
q
x ; q

2
)
∞ (−q2; q2)2∞

=
∞∑

n=−∞

2xnqn

1 + q2n
,

while if we set a = −q we get

(7.1.6)

(√
x+

1√
x

) (−xq2; q2)∞
(
− q2

x ; q2
)
∞

(q2; q2)2∞

(qx; q2)∞
(
q
x ; q

2
)
∞ (−q; q2)2∞

=
∞∑

n=0

qn

1 + q2n+1

(
(
√
x)2n+1 + (

√
x)−2n−1

)
.

We leave these two statements as exercises. The second is trickier than the first.

Exercises

1. Recall from Chapter 6 that for a general n (not necessarily a nonnegative inte-
ger), we define

(a; q)n =
(a; q)∞

(aqn; q)∞
.

Show that with this definition we have

(a; q)n
(aq; q)n

=
1− a

1− aqn

for all n. Use this fact to show that (7.1.1) is the case b = aq of (7.1.2).

2. Explain why neither a nor x can be q in (7.1.1) and (7.1.3).

3. Show that setting a = −1 in (7.1.4) gives (7.1.5).

4. Show that setting a = −q in (7.1.4) gives (7.1.6). This takes some fiddling
around.

5. Show that, under the usual assumption that |q| < 1, and also assuming a �= 0,
the series in (7.1.4) converges for |q| < |x| < 1

|q| . Consider both positive and

negative values of n.

6. By the previous problem, the series in (7.1.5) (and also (7.1.6)) converges for
|q| < |x| < 1

|q| if |q| < 1. If |q| > 1, when does it converge? (Hint: There is a

cheap way to do this.) What if |q| = 1?

7. Use the ratio test to show that
∞∑

n=−∞

xn

1− aqn

converges if |q| < |x| < 1 or if |q| > |x| > 1. Consider both positive and negative
values of n.

8. Suppose |p| > |z| > 1. Then

∞∑
n=−∞

zn

1− apn
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EXERCISES 273

should converge, according to the previous problem. To see what it converges
to, we can proceed as follows:

(i) Set p = 1
q and z = 1

x . Show that

∞∑
n=−∞

zn

1− apn
=

∞∑
n=−∞

1
xn

1− a
qn

=

∞∑
n=−∞

qn

xn(qn − a)
,

where |q| < |x| < 1.

(ii) Show that the sum in (i) can be rewritten as

−1

a

∞∑
n=−∞

(
q
x

)n
1− qn

a

.

(iii) Show that (7.1.1) can be used on the last sum, with x replaced by q
x

and with a replaced by 1
a . Hence show that

∞∑
n=−∞

qn

xn(qn − a)
=

(
q
ax ; q

)
∞ (ax; q)∞ (q; q)2∞(

q
x ; q
)
∞ (x; q)∞

(
q
a ; q
)
∞ (a; q)∞

.

9. Show that
∞∑
k=0

q6k+1 + q5(6k+1)

1− q6(6k+1)
−

∞∑
k=0

q6k+5 + q5(6k+5)

1− q6(6k+5)
=

∞∑
k=−∞

q6k+1 + q5(6k+1)

1− q6(6k+1)
,

and use (7.1.1) to evaluate the latter sum. (See also the next two problems.)

10. You might have been surprised that half of the sum in the previous problem
evaluates to zero; at least I was. Use (7.1.1) to show that

∞∑
k=−∞

qrk

1− qrk+s(k+1)
= 0.

11. The previous problem is somewhat unsatisfying in that it doesn’t seem to give
a really good reason why the sum is zero. Show that

∞∑
k=−∞

qrk

1− qrk+s(k+1)
=

∞∑
k=0

qrk

1− qrk+s(k+1)
−

∞∑
k=0

qsk

1− qsk+r(k+1)
,

and (always assuming |q| < 1) show that everything cancels if we expand the
denominators on the right into geometric series. Alternatively, expand one of
the denominators and argue that the expansion is symmetric in r and s.

12. Problem 1 in section 2.8 was to show that

1

(x; q)n+1

(
q
x ; q
)
n

=
1

(1− x)(q; q)2n
+

n∑
k=1

(−1)kq(
k+1
2 )

(q; q)n+k(q; q)n−k

(
1

1− xqk
+

1

qk − x

)
.

Show that letting n → ∞ here gives

(q; q)2∞
(x; q)∞

(
q
x ; q
)
∞

=

∞∑
k=−∞

(−1)kq
k(k+1)

2

1− xqk
.
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274 7. SUMS OF SQUARES

13. The Bailey–Daum formula (5.6.2) can be used to give another proof of (7.1.5).

(i) Show that

(−xq; q2)∞
(xq; q2)∞

(
− q

x ; q
2
)
∞(

q
x ; q

2
)
∞

=

∞∑
j=0

xjqj
(−1; q2)j
(q2; q2)j

∞∑
k=0

qk

xk

(−1; q2)k
(q2; q2)k

.

(ii) We want to combine the two series on the right side in (i) into a single

series
∞∑

n=−∞
cnx

n. Explain how we know that c−n must be the same as cn.

(iii) Explain why

c0 =
∞∑
j=0

(
(−1; q2)j
(q2; q2)j

)2

q2j ,

and use the Bailey–Daum formula to show that

c0 =

(
(−q2; q2)∞
(q2; q2)∞

)2

.

(iv) More generally, we can evaluate cn for a positive n by setting j = k+n
in (i). Show that this gives

cn =
∞∑
k=0

(−1; q2)k+n(−1; q2)k
(q2; q2)k+n(q2; q2)k

q2k+n

= qn
(−1; q2)n
(q2; q2)n

∞∑
k=0

(−q2n; q2)k(−1; q2)k
(q2n+2; q2)k(q2; q2)k

q2k.

(v) Use the Bailey–Daum formula to evaluate the sum in (iv). You should
get

cn =
2qn

1 + q2n

(
(−q2; q2)∞
(q2; q2)∞

)2

.

(vi) Since 2qn/(1 + q2n) is symmetric in n and −n (or in q and q−1), we
have c−n = cn, so the formula in (v) is correct for all integers n. Show how this
gives (7.1.5).

14. Although he was a friend and contemporary of Abel and Jacobi, the two young
men who revolutionized the subject of elliptic functions in the late 1820s, and
a great mathematician in his own right, Gustav Peter Lejeune Dirichlet wrote
very little about elliptic functions or q-series. But he did state one interesting
theorem in passing in one of his papers:

(7.1.7)
(
q + q9 + q25 + . . .

) (
1 + 2q2 + 2q8 + 2q18 + . . .

)
=

q

1− q2
+

q3

1− q6
− q5

1− q10
− q7

1− q14
+ . . . ,

where the sign pattern on the right is supposed to continue ++−−++−− . . . .
This is the only example Dirichlet gives of a deep theorem in number theory, his
favorite subject. (Cayley later gave a similar but easier example, which is in the
next problem, and you might consider doing that one before this one.)
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(i) Show that the two sums on the left side of (7.1.7) are

q

2

∞∑
n=−∞

q4n
2+4n and

∞∑
n=−∞

q2n
2

respectively.

(ii) Show that the sum on the right is
∞∑

n=0

(−1)nq4n+1

1− q8n+2
+

∞∑
n=0

(−1)nq4n+3

1− q8n+6
.

(iii) Although this is a step in the wrong direction, show that the sum in (ii)
can be rewritten as

∞∑
n=0

(−1)nq4n+1(1 + q2)(1− q8n+4)

(1− q8n+2)(1− q8n+6)
.

(iv) For a step in the right direction, show that the sum in (ii) can be
rewritten as

∞∑
n=−∞

(−1)nq4n+1

1− q8n+2
.

(v) Use the Jacobi triple product to evaluate the two sums in (i).

(vi) Use (3.5.3) to evaluate the sum in (iv).

(vii) Complete the proof of (7.1.7) with the help of your answers to (v) and
(vi). (This still requires a bit of work, but nothing extremely difficult. Euler’s
“odd equals distinct” theorem might help.) For an application of (7.1.7) see the
problems in the next section.

15. Cayley read the paper of Dirichlet mentioned in the previous problem and gave
another corollary of Dirichlet’s theorem, which is very similar to (7.1.7) but
easier:

(7.1.8)
(
q + q9 + q25 + . . .

) (
1 + 2q4 + 2q16 + 2q36 + . . .

)
=

q

1− q2
− q3

1− q6
+

q5

1− q10
− q7

1− q14
+ . . . .

(i) Show that the two sums on the left side of (7.1.8) are

q

2

∞∑
n=−∞

q4n
2+4n and

∞∑
n=−∞

q4n
2

respectively.

(ii) The sum on the right is clearly

∞∑
n=0

(−1)nq2n+1

1− q4n+2
.

Show that this is

1

2

∞∑
n=−∞

(−1)nq2n+1

1− q4n+2
=

q

2

∞∑
n=−∞

(−1)nq2n

1− q4n+2
.

(iii) Use the triple product and (i) to show that the left side of (7.1.8) is

q(−q4; q4)2∞(q8; q8)2∞.
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276 7. SUMS OF SQUARES

(iv) Use (ii) and (3.5.3) to show that the right side of (7.1.8) is

q
(q8; q8)2∞
(q4; q8)2∞

,

and complete the proof by explaining why this is the same as the answer to (iii).

16. Show that averaging (7.1.7) and (7.1.8) gives( ∞∑
n=0

q(2n+1)2

)(
1 +

∞∑
n=1

q2n
2
(
1 + q2n

2
))

=
∞∑

n=−∞

q8n+1

1− q16n+2
.

17. Use problem 16 to show that

1 +
∞∑

n=1

q2n
2
(
1 + q2n

2
)
=

(q6; q16)∞(q10; q16)∞(q16; q16)∞
(q2; q16)∞(q8; q16)∞(q14; q16)∞

.

7.2. Sums of two squares

Recall Cauchy’s identity (7.1.5): if |q| < 1 and |z| is between |q| and its recip-
rocal, then

∞∑
n=−∞

2znqn

1 + q2n
=

(
−zq; q2

)
∞
(
− q

z ; q
2
)
∞ (q2; q2)2∞

(zq; q2)∞
(
q
z ; q

2
)
∞ (−q2; q2)2∞

.

Note that z = 1 will always work, and this special case turns out to be very
interesting:

(7.2.1)

∞∑
n=−∞

2qn

1 + q2n
=

((
−q; q2

)
∞ (q2; q2)∞

(q; q2)∞ (−q2; q2)∞

)2

.

Thus the sum in (7.2.1) is a perfect square. Let’s see what we can say about what
it’s a square of. By Euler’s “odd equals distinct” theorem we have(

−q; q2
)
∞ (q2; q2)∞

(q; q2)∞ (−q2; q2)∞
=
(
−q; q2

)
∞ (q2; q2)∞

(−q; q)∞
(−q2; q2)∞

.

Simplifying the fraction we get(
−q; q2

)
∞ (q2; q2)∞

(q; q2)∞ (−q2; q2)∞
= (q2; q2)∞

(
−q; q2

)2
∞ ,

and now Jacobi’s triple product gives(
−q; q2

)
∞ (q2; q2)∞

(q; q2)∞ (−q2; q2)∞
=

∞∑
n=−∞

qn
2

.

Hence (7.2.1) becomes

∞∑
n=−∞

2qn

1 + q2n
=

( ∞∑
n=−∞

qn
2

)2

.

To see what this is trying to tell us we rewrite it as

(7.2.2)
∞∑

n=−∞

2qn

1 + q2n
=

⎛
⎝ ∞∑

j=−∞
qj

2

⎞
⎠( ∞∑

k=−∞
qk

2

)
=

∞∑
j,k=−∞

qj
2+k2

.
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7.2. SUMS OF TWO SQUARES 277

Hence the coefficient of qm on both sides must be the number of ways of writing m
as a sum of two squares, j2 + k2, accounting for both positive and negative values
of j and k and for permutations. For example, if m = 5, then we could have either
j = ±1 and k = ±2 or vice versa, so the coefficient of q5 should be 8. We’re going
to have to expand the other side soon anyway, so let’s do it now to check this.
Because of the symmetry in q and q−1, we have

∞∑
n=−∞

2qn

1 + q2n
= 1 +

∞∑
n=1

4qn

1 + q2n
(7.2.3)

= 1 + 4
∑
n=1

qn
(
1− q2n + q4n − q6n + q8n −+ . . .

)
= 1 + 4

∑
n=1

(
qn − q3n + q5n − q7n + q9n −+ . . .

)
.(7.2.4)

We can get a q5 term from (7.2.3) from qn with n = 5, or from q5n with n = 1, so the
coefficient of q5 is 4(1 + 1) = 8, as hoped. Let’s check a few more low-dimensional
cases before we try to describe what’s happening in general. The only way to get
a q4 term from (7.2.3) is from qn with n = 4, and this coefficient is four, so there
should be 4 ways to write 4 as a sum of squares, and (suitably interpreted) there
are: 22+02, (−2)2+02, 02+22, 02+(−2)2. This also explains the 1 = 1q0 in front
of the series—there is one way to write 0 as the sum of two squares, 02 + 02.

Next let’s try a number like n = 6, where there are (as you can check) no ways
to write it as a sum of two squares. This too is consistent with (7.2.3), because we
can get a q6 term there only from qn with n = 6, or from −q3n with n = 2, and
they cancel.

Now let’s go back to (7.2.2) and try to put it in a nice final form. We’ll denote
the number of ways of writing m as a sum of two squares (interpreted as above) by
�2(m). Using this notation and (7.2.3), (7.2.2) becomes

∞∑
m=0

�2(m) qm = 1 + 4
∑
n=1

(
qn − q3n + q5n − q7n + q9n −+ . . .

)

= 1 + 4

∞∑
n=1

{(
qn + q5n + q9n + . . .

)
−
(
q3n + q7n + . . .

)}

= 1 + 4

∞∑
n=1

∞∑
k=0

(
qn(4k+1) − qn(4k+3)

)
.

We can get a coefficient 4 for qm from the right side whenever there is a positive
integer of the form 4k + 1 that divides m, and a coefficient −4 for qm whenever
there is a positive integer of the form 4k + 3 that divides m. To write this neatly
let’s introduce some more notation: let dr,4(m) denote the number of divisors of m
that are congruent to r mod 4 (i.e., which have remainder r when divided by 4).
Then we have

∞∑
m=0

�2(m) qm = 1 + 4
∞∑

m=1

(d1,4(m)− d3,4(m)) qm,

so the final form of the result is
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278 7. SUMS OF SQUARES

Theorem 64 (Jacobi’s Two Square Theorem). With the above notation,

�2(m) =

{
1 if m = 0,

4 (d1,4(m)− d3,4(m)) if m ≥ 1.

A corollary of this is worth remarking. Clearly the number of ways of writing
m as a sum of two squares is never negative, so we must have d1,4(m) ≥ d3,4(m)
for every positive integer m. We will say a little more about this in the exercises.
Let’s look at a few more instances of the theorem. A relatively small number with
lots of odd factors is 45, whose divisors are 1, 3, 5, 9, 15, 45. Of these, 3 and 15
are congruent to 3 mod 4 and the others are congruent to 1 mod 4, so Jacobi’s
theorem predicts 4(4− 2) = 8 ways to write 45 as a sum of two squares, which are
(±6)2 + (±3)2 and (±3)2 + (±6)2.

To get lots of representations as sums of two squares we need lots of prime
factors congruent to 1 mod 4 (preferably distinct) and none congruent to 3 mod 4,
so let’s try 5×13×17 = 1105. The divisors of 1105 are 1, 5, 13, 17, 65, 85, 221, 1105,
all congruent to 1 mod 4, so Jacobi’s theorem predicts 4 × 8 = 32 ways to write
1105 as a sum of two squares. One of the two, when squared, must be at least half
of 1105, and neither of the two when squared can exceed it, so there aren’t so many
possibilities: we just have to check everything from 242 = 576 to 332 = 1089, and
we find that

242 + 232 = 1105 = 332 + 42 = 322 + 92 = 312 + 122.

Because we can permute each of the four pairs and there are two possible signs for
each, each pair gives eight representations, just as the single pair 6 and 3 led to
eight representations for 45 above.

We do one last example. The smallest number that is the hypotenuse of a
Pythagorean triple in two different ways is 25, where we have 72 + 242 = 252 =
152 + 202, but one could object that (15, 20, 25) is not an interesting Pythagorean
triple (it is not primitive) because all the numbers have a common factor. Jacobi’s
theorem implies that the next smallest number that could work is 4225 = 652 =
52×132. The divisors of 4225 are 1, 5, 13, 25, 65, 169, 325, 845, 4225, all of which are
congruent to 1 mod 4, so the theorem predicts 4× 9 = 36 ways to write 4225 as a
sum of two squares. Obviously (±65)2 + 02 and its permutations are four of them.
The two primitive ones are 332+562 = 652 = 132+642, each pair again giving rise
to eight representations. The others are 392 + 522 = 652 = 252 + 602, which come
from the primitive triples (3, 4, 5) and (5, 12, 13) respectively.

Exercises

1. Show that
∞∑
n=1

qn

1 + q2n
=

∞∑
n=0

(−1)n q2n+1

1− q2n+1
.

2. Show that
∞∑

n=0

(−1)n q2n+1

1− q4n+2
=

∞∑
n=0

q2n+1

1 + q4n+2
.
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3. Define f(q) to be the function expressed by the two series in the previous prob-
lem. Show that f(iq) = i f(q).

4. Check Jacobi’s two square theorem for m = 85 and m = 145.

5. Check Jacobi’s two square theorem for m = 221 and m = 231.

6. Check Jacobi’s two square theorem for m = 1885 = 5× 13× 29.

7. What is the product of two numbers of the form 4k+1 (say 4i+1 and 4j +1)?
What is the product of two numbers of the form 4k + 3? What is the product
of a number of the form 4k + 1 and a number of the form 4k + 3?

8. Which of the forms 4n, 4n+1, 4n+2, 4n+3 can a sum of two even squares have?
A sum of two odd squares? An even square and an odd square?

9. Can an odd prime number be the sum of two squares? If so, how? If not, why
not?

10. Discuss the possibilities for writing a generic odd number as a sum of two squares,
in the light of Jacobi’s two square theorem and your answers to the previous three
problems.

11. Recall that a primitive Pythagorean triple (a, b, c) consists of three relatively
prime positive integers a, b, c (i.e., with no common factor) such that a2+b2 = c2.
It turns out (see problems 14–16) that all the primitive Pythagorean triples have
a = m2 − n2, b = 2mn, c = m2 + n2 for some positive integers m and n that
are relatively prime, with m > n, and with one of m and n even. Write down
all the primitive Pythagorean triples with m < 10.

12. As mentioned in the text, 65 is the smallest number that is the hypotenuse of two
different primitive Pythagorean triples. What is the next smallest such number?
What are the triples?

13. Check Jacobi’s two square theorem for the square of the number from problem
12.

14. It is clear that in a primitive Pythagorean triple (a, b, c), a and b can’t both be
even. Show that they also can’t both be odd.

15. If we have a primitive Pythagorean triple (a, b, c), then, in view of problem 14,
we can assume a is odd, b is even, and c is odd. Show that in fact b is a multiple
of 4. (Hint: Show that (2k + 1)2 − (2j + 1)2 must be divisible by 8.)

16. The object of this problem is to prove the characterization of primitive Pythag-
orean triples given in problem 11. Again we can assume a is odd, b is even, and
c is odd. Fill in the following outline:

(i) We assumed a, b, c have no common factor. Explain why this means no
two of them can have a common factor.

(ii) Explain why we have (c+ a)(c− a) = 4K2 for some positive integer K.

(iii) c+a and c−a are not quite relatively prime, because they are both even.
Explain why they can have no common factor besides 2. (Hint: (c+a)+(c−a) =
2c and (c+ a)− (c− a) = 2a.)

(iv) It follows from (iii) that c+a
2 and c−a

2 are relatively prime, and from (ii)
that their product is a square. Explain why this means that each of them must
be a square.
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280 7. SUMS OF SQUARES

(v) From (iv) we have c + a = 2m2 and c − a = 2n2 for some positive
integers m and n, and clearly m > n. Show that this gives the formulas for
a, b, c in problem 11.

(vi) There’s still a tiny bit of work left. Explain why m and n must be
relatively prime, and use problem 14 to show that one of them must be even.

17. The object of this problem is to find the “sum of two squares” type theorem
that corresponds to Dirichlet’s identity (7.1.7)

(7.2.5)
(
q + q9 + q25 + . . .

) (
1 + 2q2 + 2q8 + 2q18 + . . .

)
=

q

1− q2
+

q3

1− q6
− q5

1− q10
− q7

1− q14
+ . . .

from problem 14 in section 7.1.

(i) Explain why the coefficient of qm on the left side counts the number
of ways of writing m as the sum of a positive odd square plus twice another
square. For example, the coefficient of q33 should be 4 because we can write
33 = 1 + 2(±4)2 or 33 = 25 + 2(±2)2.

(ii) Explain why m must be odd in (i).

(iii) Explain why the coefficient of qm on the right side of (7.1.7) equals the
number of divisors of m that are congruent to 1 or 3 mod 8, minus the number
of divisors of m that are congruent to 5 or 7 mod 8. (It is probably best to start
from part (ii) of problem 14 in section 7.1.)

(iv) Thus the number theory theorem equivalent to (7.1.7) is that for any
positive odd number m, the number of ways to write m as a positive odd square
plus twice another square equals the number of divisors of m that are congruent
to 1 or 3 mod 8 minus the number of divisors of m that are congruent to 5
or 7 mod 8. For example, the divisors of 33 are 1, 3, 11, 33, two of which are
congruent to 1 mod 8 and two to 3 mod 8, so the theorem predicts four ways to
write 33 as a positive odd square plus twice another square, as we found above.

(v) Corollary: Any positive integer m has at least as many divisors con-
gruent to 1 or 3 mod 8 as to 5 or 7 mod 8. First explain why this holds if m is
odd, and then deduce it for any positive integer m.

(vi) Write out the multiplication table for 1, 3, 5, 7 mod 8. In other words,
find every possible product of two of these numbers mod 8. For readers who
know what these words mean, they form a group isomorphic to the so-called
Klein 4-group of symmetries of a rectangle (identity, 180◦ rotation, horizontal
reflection, vertical reflection). Discuss the corollary in (v) in the light of this
multiplication table.

(vii) Check the theorem of (iv) for m = 9, 27, 99.

(viii) Check the theorem of (iv) for m = 297.

18. The “sum of two squares” type theorem that corresponds to Cayley’s identity
(7.1.8)(
q + q9 + q25 + . . .

) (
1 + 2q4 + 2q16 + 2q36 + . . .

)
=

q

1− q2
− q3

1− q6
+

q5

1− q10
− q7

1− q14
+ . . .
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7.3. SUMS OF FOUR SQUARES 281

from problem 15 in section 7.1 is nearly the same as Jacobi’s two square theorem.
Explain why (7.1.8) implies that the number of ways of writing an odd number m
as the sum of an even square and a positive odd square equals d1,4(m)−d3,4(m),
with the same notation as in Jacobi’s two square theorem. Let’s call this Cayley’s
two square theorem, even though he seems not to have noticed it.

19. Suppose m is an odd number, so that both Jacobi’s and Cayley’s two square
theorems apply. What accounts for the extra factor of 4 in Jacobi’s theorem?
(It may help to try some of the examples in problems 3–5.)

7.3. Sums of four squares

Our next goal is Jacobi’s four square theorem. We start with (7.1.1),

∞∑
n=−∞

xn

1− aqn
=

(ax; q)∞
(

q
ax ; q

)
∞ (q; q)2∞

(x; q)∞
(
q
x ; q
)
∞ (a; q)∞

(
q
a ; q
)
∞
,

which holds for |q| < |x| < 1, and we try to make the right side into

(
(q; q)∞
(−q; q)∞

)4

.

Taking x = −1 and a = −1 almost does this, but in the first place it makes the
right side equal to zero, and in the second place we only know for sure that (7.1.1)
converges for |q| < |x| < 1; this means it certainly diverges for |x| > 1 > |q|, and
it might or might not converge for an x with |x| = 1. Then we can take a = −1
right away, but we have to do some work before we can set x = −1. When a = −1,
(7.1.1) reduces to

∞∑
n=−∞

xn

1 + qn
=

(−x; q)∞
(
− q

x ; q
)
∞ (q; q)2∞

(x; q)∞
(
q
x ; q
)
∞ (−1; q)∞ (−q; q)∞

,

and since

(−1; q)∞ = (1 + 1)(1 + q)(1 + q2) · · · = 2(−q; q)∞,

multiplying through by 2 we get

(7.3.1)

∞∑
n=−∞

2xn

1 + qn
=

(−x; q)∞
(
− q

x ; q
)
∞ (q; q)2∞

(x; q)∞
(
q
x ; q
)
∞ (−q; q)2∞

.

The region of convergence is still |q| < |x| < 1, and the right side of (7.3.1) blows
up if x = 1 because of the factor 1 − x in (x; q)∞. The factor 1 + x in (−x; q)∞
causes it to become zero when x = −1, which suggests that the left side of (7.3.1)
does too, so let’s see if we can rewrite it to reveal this. It equals

1 +
∞∑

n=1

2xn

1 + qn
+

∞∑
n=1

2x−n

1 + q−n

(qx)n

(qx)n
,

and we need to manipulate the first sum to get something that combines nicely
with the 1. We can rewrite it further as

1 +

∞∑
n=1

2xn(1 + qn − qn)

1 + qn
+

∞∑
n=1

2
(
q
x

)n
1 + qn

= 1 + 2

∞∑
n=1

xn + 2

∞∑
n=1

(
q
x

)n − qnxn

1 + qn
.
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Since we still have |x| < 1, we can sum the geometric series, which gives

1 +
2x

1− x
+ 2

∞∑
n=1

( q
x

)n 1− x2n

1 + qn

=
1 + x

1− x
+ 2

∞∑
n=1

(
q
x

)n
1 + qn

(1 + x2 + x4 + · · ·+ x2n−2)(1 + x)(1− x).

Using this on the left side of (7.3.1) and multiplying both sides by (1− x)/(1 + x)
we get

1 +

∞∑
n=1

2
(
q
x

)n
1 + qn

(1 + x2 + x4 + · · ·+ x2n−2)(1− x)2 =
(−xq; q)∞

(
− q

x ; q
)
∞ (q; q)2∞

(xq; q)∞
(
q
x ; q
)
∞ (−q; q)2∞

.

The right side of this is now symmetric in x and 1
x , which is encouraging. If we let

x = −1, then the left side is a convergent series (exercise), and we have

(7.3.2) 1 +

∞∑
n=1

8n (−q)n

1 + qn
=

(
(q; q)∞
(−q; q)∞

)4

.

Recall Gauss’s identity (5.2.11),

∞∑
n=−∞

(−1)nqn
2

=
(q; q)∞
(−q; q)∞

,

from problem 8 in section 5.2, a special case of Jacobi’s triple product. Then (7.3.2)
implies

(7.3.3) 1 +
∞∑

n=1

8n (−q)
n

1 + qn
=

( ∞∑
n=−∞

(−1)nqn
2

)4

.

Since n2 is even if and only if n is, replacing q by −q in (7.3.3) gives

(7.3.4) 1 +

∞∑
n=1

8nqn

1 + (−q)n
=

( ∞∑
n=−∞

qn
2

)4

.

If we expand the right side of (7.3.4), the coefficient of qm will be the number
of ways of writing m as a sum of four squares, with the same interpretation as
in Jacobi’s two square theorem, i.e., allowing positive and negative numbers and
accounting for permutations. Let’s denote this coefficient by �4(m). For reasons
that will soon appear, we rewrite the left side of (7.3.4) as

1 +
∞∑

n=1

8nqn

1− qn
−

∞∑
n=1

8nqn
(

1

1− qn
− 1

1 + (−q)n

)
.

Now 1− qn and 1 + (−q)n are the same if n is odd, so all the terms with n odd in
the last sum are zero. Setting n = 2k there we therefore have

∞∑
k=1

16kq2k
(

1

1− q2k
− 1

1 + q2k

)
=

∞∑
k=1

16kq2k
1 + q2k − (1− q2k)

(1 + q2k)(1− q2k)

=

∞∑
k=1

32kq4k

1− q4k
.
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Then (7.3.4) says

(7.3.5)

∞∑
m=0

�4(m) qm = 1 + 8

∞∑
k=1

kqk

1− qk
− 8

∞∑
k=1

4kq4k

1− q4k
.

We now need to recall (4.4.3), which was

(7.3.6)

∞∑
k=1

kqk

1− qk
=

∞∑
m=1

σ(m)qm,

where σ(m) is the sum of the divisors of m. Therefore the coefficient of qm in the
first sum on the right side of (7.3.5) is 8 times the sum of the divisors of m. If we
replace q by q4 in (7.3.6) and multiply by 4, we get

∞∑
k=1

4kq4k

1− q4k
=

∞∑
m=1

4σ(m)q4m.

Now 4σ(m) is the sum of the divisors of 4m that are multiples of 4, as there is
an obvious 1-1 correspondence between these and the divisors of m. For example,
the divisors of 24 that are multiples of 4 are 4, 8, 12, and 24, whose sum is
4(1 + 2 + 3 + 6) = 4σ(6). But only an integer of the form 4m can have a divi-
sor that is a multiple of 4; the forms 4m+1, 4m+2, and 4m+3 cannot. Therefore
the coefficient of qm in the last sum in (7.3.5) is 8 times the sum of the divisors of
m that are multiples of 4, and hence, if m ≥ 1, the coefficient of qm on the right
side of (7.3.5) must be 8 times the sum of the divisors of m that are not multiples
of 4. We have proved

Theorem 65 (Jacobi’s four square theorem). �4(0) = 1, and if m ≥ 1, then
�4(m) is equal to 8 times the sum of the divisors of m that are not multiples of 4.

Let’s look at a few examples to get a feeling for what this theorem says, starting
with m = 4. The divisors of 4 that aren’t multiples of 4 are 1 and 2, whose sum is
3, so the theorem predicts 8× 3 = 24 ways to write 4 as a sum of four squares. We
can use either four 1’s or one 2 and three 0’s, and we just have to determine the
multiplicity of each. With four 1’s we just have to choose their signs; there are two
choices for each sign and the choices are independent, so

4 = (±1)2 + (±1)2 + (±1)2 + (±1)2

entails 16 possibilities. As for a 2 and three 0’s, there are four permutations and
two choices for the sign of 2, so 8 possibilities. This makes 24, as expected.

Next we try m = 30. The divisors are 1, 2, 3, 5, 6, 10, 15, 30, none of which are
multiples of 4, and they add up to 72. Jacobi’s theorem then predicts 8× 72 = 576
ways to write 30 as a sum of four squares. There are basically two possibilities,

52 + 22 + 12 + 02 = 30 = 42 + 32 + 22 + 12,

and we just have to find the multiplicity of each. There are 4! = 24 permutations
of 4, 3, 2, 1, and each can be either positive or negative, so 4, 3, 2, 1 amounts to
24× 24 = 384 possibilities. The only thing different about 5, 2, 1, 0 is that 0 has no
sign, so there are only 24×23 = 192 possibilities, giving 384+192 = 576 possibilities
in all.
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Legendre and Cauchy found another corollary of (7.1.1) that has beautiful
consequences in number theory. Setting a = q in (7.1.4) gives

(7.3.7)

∞∑
n=−∞

xn

1− q2n+1
=

(
qx; q2

)
∞
(
q
x ; q

2
)
∞ (q2; q2)2∞

(x; q2)∞

(
q2

x ; q2
)
∞

(q; q2)2∞

.

We also intend to set x = q, but this would make the right side zero because of
the first factor of

(
q
x ; q

2
)
∞, which would become 1− 1. Therefore, the sum side of

(7.3.7) must also become zero when x = q. Let’s look at it and see why. The terms
n = 0,−1, 1,−2, 2,−3 are

1

1− q
,

x−1

1− q−1
,

x

1− q3
,

x−2

1− q−3
,

x2

1− q5
,

x−3

1− q−5

respectively, and it is natural to combine them in pairs because they almost have
the same denominators. The first two terms are

1

1− q
+

x−1

1− q−1

q

q
=

1− q
x

1− q
,

the next two are

x

1− q3
+

x−2

1− q−3

q3

q3
=

x− q3

x2

1− q3
=

x
(
1− q3

x3

)
1− q3

,

the next two are

x2

1− q5
+

x−3

1− q−5
=

x2
(
1−
(
q
x

)5)
1− q5

,

and in general we have

(7.3.8)
xn

1− q2n+1
+

x−n−1

1− q−2n−1

q2n+1

q2n+1
=

xn

1− q2n+1

(
1−
( q
x

)2n+1
)
.

Using (7.3.8) in (7.3.7) and dividing both sides by 1− q
x we have

∞∑
n=0

xn

1− q2n+1

1−
(
q
x

)2n+1

1− q
x

=

(
qx; q2

)
∞

(
q3

x ; q2
)
∞

(q2; q2)2∞

(x; q2)∞

(
q2

x ; q2
)
∞

(q; q2)2∞

.

Taking the limit of this as x → q we finally get

(7.3.9)

∞∑
n=0

(2n+ 1)qn

1− q2n+1
=

(
(q2; q2)∞
(q; q2)∞

)4

.

Recall Gauss’s identity (5.2.12) from problem 10 in section 5.2:

(7.3.10)
(q2; q2)∞
(q; q2)∞

= 1 + q + q3 + q6 + q10 + · · · =
∞∑

n=0

q(
n+1
2 ).

Therefore (7.3.9) says

∞∑
n=0

(2n+ 1)qn

1− q2n+1
=

( ∞∑
n=0

q(
n+1
2 )

)4

,

or

1

1− q
+

3q

1− q3
+

5q2

1− q5
+

7q3

1− q7
+ · · · =

(
1 + q + q3 + q6 + q10 + q15 + . . .

)4
.
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To see what this is trying to tell us, it helps to change q to q2 and then multiply by

q. Taking this factor of q in the form
(
q

1
4

)4
on the right side of (7.3.9), this gives

∞∑
n=0

(2n+ 1)q2n+1

1− q4n+2
=

( ∞∑
n=0

q(n+
1
2 )

2

)4

.

Expanding the left side using the geometric series

x

1− x2
=

∞∑
k=0

x2k+1 if |x| < 1

with x = q2n+1, we get
∞∑

n=0

(2n+ 1)q2n+1

1− q4n+2
=

∞∑
n=0

(2n+ 1)
∞∑
k=0

q(2k+1)(2n+1).

Now (2k + 1)(2n+ 1) is a product of two odd numbers, so it must be another odd
number, say 2m+ 1, and hence

∞∑
n=0

(2n+ 1)

∞∑
k=0

q(2k+1)(2n+1) =

∞∑
m=0

q2m+1
∑

n:2n+1|2m+1

(2n+ 1),

where the inner sum is of all the odd numbers 2n+ 1 that divide 2m + 1. But an
odd number can’t have an even divisor, so these are all the divisors of 2m+ 1. In
other words, we have proved that

(7.3.11)

( ∞∑
n=0

q(n+
1
2 )

2

)4

=
∞∑

n=0

(2n+ 1)q2n+1

1− q4n+2
=

∞∑
m=0

σ(2m+ 1)q2m+1.

Hence (7.3.9) was trying to say that

(7.3.12)
∞∑

n=0

(2n+ 1)qn

1− q2n+1
=

∞∑
m=0

σ(2m+ 1) qm =

( ∞∑
n=0

q(
n+1
2 )

)4

.

This has a nice number-theoretic interpretation of its own, but Legendre saw how
to make it still more beautiful. Replacing q by q4 in (7.3.11) we get

(7.3.13)
∞∑

m=0

σ(2m+ 1) q8m+4 =

( ∞∑
n=0

q(2n+1)2

)4

.

This implies

Theorem 66 (Legendre’s four square theorem). The number of ways to write
a number of the form 8m+ 4 as a sum of four positive odd squares equals the sum
of the divisors of 2m+ 1.

We still have multiplicity issues with this theorem due to permutations, but it’s
nicer in that we don’t have to worry about signs. Let’s try the example 8m+4 = 148.
Then 2m + 1 = 37, which is prime, so the sum of its divisors is 1 + 37 = 38, and
Legendre’s theorem predicts 38 ways to write 148 as a sum of four positive odd
squares. The largest odd square less than 148 is 121 = 112, and we can make up
the remaining 27 either with 52+12+12 or with 32+32+32. The next largest odd
square is 81 = 92, which leaves 67, which we can realize as 72 + 32 + 32. If we use
no odd square larger than 49 = 72 we can have 72+72+72+12 or 72+72+52+52.
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Now we have to determine the multiplicities of these five combinations. With
112 + 32 + 32 + 32 and 72 + 72 + 72 + 12 we have three like numbers, so the only
choice we have is where the unlike number goes; thus there are four of each of
these. With 72 + 72 + 52 + 52 we have two pairs of like numbers, and we just have
to choose which two of the four numbers are the 7’s, which we can do in

(
4
2

)
= 6

ways. Finally we have 112 + 52 + 12 + 12 and 92 + 72 + 32 + 32. The easiest
argument is that the multinomial coefficient

(
4

2,1,1

)
= 4!

2! 1! 1! = 12 counts each of

these. Alternatively, we can argue that, say for (11, 5, 1, 1), we can choose which
number is the 11 in four ways, and then which number is the 5 in three ways, so
there are 12 possibilities in all with two like numbers and two more unlike numbers.
In total we have 12 + 12 + 6 + 4 + 4 = 38 possibilities, as the theorem predicts.

Exercises

1. Check Jacobi’s four square theorem for m = 48 and m = 50.

2. Check Jacobi’s four square theorem for m = 90. (There are 9 different combi-
nations of varying multiplicities.)

3. Lagrange had proved earlier that every positive integer can be written as a sum
of four squares. Explain how this follows from Jacobi’s four square theorem.

4. Assuming that |q| < 1, show that

∞∑
n=1

8n (−q)n

1 + qn

converges.

5. Show that only a number of the form 8m+ 4 (for a nonnegative integer m) can
be a sum of four odd squares. (Legendre’s theorem implies this, but it is not
difficult to show it directly.)

6. Check Legendre’s theorem for 8m+ 4 = 36 and 8m+ 4 = 52.

7. Check Legendre’s theorem for 8m+ 4 = 180.

8. As mentioned in Chapter 3, a number of the form
(
n+1
2

)
is classically called a

triangular number because(
n+ 1

2

)
= n+ (n− 1) + · · ·+ 2 + 1

and the Ferrers diagram of n+ (n− 1) + · · ·+ 2 + 1 looks like a triangle. Then
(7.3.12) says that the number of ways to write m as a sum of four triangular
numbers is σ(2m+1). Check this for m = 15. (Note that 0 counts as a triangular
number.)

9. Show that there are as many ways to write m as a sum of two triangular numbers
as ways to writem as a square plus twice a triangular number. The order matters
for the two triangular numbers but not for the other pair, but the other pair
counts both positive and negative squares. For example, we can write m = 6 as
6 + 0 or 0 + 6 or 3 + 3, and as either 22 + 2 · 1 or as (−2)2 + 2 · 1 or 02 + 2 · 3.
We can write m = 16 as either 15+1 or 1+15 or 10+6 or 6+10, and as either
42 + 2 · 0 or (−4)2 + 2 · 0 or 22 + 2 · 6 or (−2)2 + 2 · 6.
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10. Are there any positive integers m that cannot be written in either of the ways
described in the previous problem?

11. We can rewrite Gauss’s identity (7.3.10) as

1

(q; q2)∞
=

1

(q2; q2)∞

∞∑
n=0

q(
n+1
2 ).

Explain why this implies that there are as many partitions of a number m into
odd parts as into even parts plus one triangular part (which could be zero).

12. Prove Gauss’s identity(
1 + 2q + 2q4 + 2q9 + . . .

)4
=
(
1− 2q + 2q4 − 2q9 + . . .

)4
+ 16q

(
1 + q2 + q6 + q12 + . . .

)4
from section 5.2 by replacing q by q2 in (7.3.9) and using (7.3.3) and (7.3.4).

13. Using many of the ingredients in this section and one borrowed from Euler,
Cayley proved that

(7.3.14)
(
1− 2q + 2q4 − 2q9 + . . .

)4
+ 16

(
q

1− q2
− 2q2

1− q4
+

3q3

1− q6
−+ . . .

)

=
1 + 9q + 25q3 + 49q6 + 81q10 + . . .

1 + q + q3 + q6 + q10 + . . .
.

(i) Using (7.3.3), show that the left side of (7.3.14) is

(a) 1 + 8
∞∑
n=1

n (−q)
n

1 + qn
− 16

∞∑
n=1

n (−q)
n

1− q2n
.

(ii) Show that the right side of (7.3.14) is

(b)

∞∑
n=0

(2n+ 1)2q(
n+1
2 )

∞∑
n=0

q(
n+1
2 )

.

(iii) We need to do something to (b) to make it look more like (a). Following
Cayley we set X equal to the denominator of (b); that is, X = 1+ q+ q3 + q6 +
q10 + . . . . If X ′ denotes the derivative of X with respect to q, show that the
numerator of (b) is X + 8qX ′.

(iv) To prove (7.3.14) it suffices to show that

(c)
∞∑

n=1

n(−q)n
(

1

1 + qn
− 2

1− q2n

)
= q

X ′

X
,

with X as in part (iii). Explain.

(v) Show that (c) simplifies to

(d)

∞∑
n=1

n (−q)n−1

1− qn
=

X ′

X
,

so we just have to show this.
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288 7. SUMS OF SQUARES

(vi) According to (7.3.10) we have

X =
(q2; q2)∞
(q; q2)∞

.

Prove (d) by calculating the derivative with respect to q of logX.

7.4. Bibliographical Notes

Cauchy’s identity (7.1.1) and its special cases (7.1.5) and (7.1.6) come from
[69], in which (7.3.9) also appears without proof. The two sides of (7.1.1) are
called the Jordan–Kronecker function in the beautiful little book [241], which
has more of its properties.

Dirichlet’s identity (7.1.7) is on p. 468 of the first volume of his collected papers
[87]. Cayley gave (7.1.7) and (7.1.8) in [70].

Jacobi’s two and four square theorems are in [148]; the proofs there use q-series
expansions of elliptic functions. Legendre’s four square theorem is in a footnote on
p. 133 of [163]. It is deduced from his identity (56) on the same page, which is more
or less equivalent to our (7.3.9); (56) in turn is deduced from q-series expansions
of elliptic functions. (Legendre had a great advantage here in that he had been
nice to Jacobi at the beginning of the latter’s career, so Jacobi was sending him his
theorems. Legendre may have been the only one who understood what Jacobi was
doing this early, although Abel was working in the same area from a different point
of view.) Legendre restated his four square theorem in [164]. In concert with the
identity that follows it, (7.3.9) is (12) in Cauchy’s paper [69]. It is also in Gauss’s
Nachlass [117], as is (7.3.4).

The characterization of primitive Pythagorean triples in the exercises for section
13 is ancient. See the beginning of Chapter 4 of [86] for comments on its history,
and Chapter 8 for the history of Lagrange’s four square theorem, which is called
Bachet’s theorem there. Cayley’s theorem in problem 13 of section 7.3 comes from
[72]. Problem 9 in that section comes from [240].
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CHAPTER 8

Ramanujan’s Congruences

8.1. Ramanujan’s congruences

There are five partitions of 4, namely 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
There are 30 partitions of 9 and 135 partitions of 14. If we continue through the
numbers congruent to 4 mod 5, here is what we find:

n p(n) n p(n) n p(n) n p(n)
4 5 29 4565 54 386155 79 13848650
9 30 34 12310 59 831820 84 26543660
14 135 39 31185 64 1741630 89 49995925
19 490 44 75175 69 3554345 94 92669720
24 1575 49 173525 74 7089500 99 169229875

There are at least two patterns here: not only are all the numbers of partitions
divisible by 5, but all the ones on the last line are divisible by 25. Ramanujan
noticed these patterns, and a number of others, and was the first to explain some
of them. He gave a proof of the first fact involving congruences, but he also found
an identity that makes it obvious:

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

.

We will prove this in the next section. In this section we give a version of Ramanu-
jan’s congruence proof. It relies on two lemmas.

From Cauchy’s theorem (3.5.3) we know that

1

(1− x)(1− xq)(1− xq2)(1− xq3)(1− xq4)
=

∞∑
n=0

(
n+ 4

4

)
q

xn.

Setting q = 1, we have

1

(1− x)5
=

∞∑
n=0

(
n+ 4

4

)
xn =

1

24

∞∑
n=0

(n+ 4)(n+ 3)(n+ 2)(n+ 1) xn,

and it follows that

1− x5

(1− x)5
=

1

24

∞∑
m=0

(m+ 4)(m+ 3)(m+ 2)(m+ 1) xm

− 1

24

∞∑
m=0

(m+ 4)(m+ 3)(m+ 2)(m+ 1) xm+5.
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Changing m to n in the first sum and m to n− 5 in the second, we have

1− x5

(1− x)5
=

1

24

∞∑
n=0

(n+ 4)(n+ 3)(n+ 2)(n+ 1) xn

− 1

24

∞∑
n=5

(n− 1)(n− 2)(n− 3)(n− 4) xn.

Note that the last sum could start at n = 1, because the n = 1, 2, 3, 4 terms would
all be zero. Breaking off the n = 0 term of the first sum, we have

1− x5

(1− x)5
= 1 +

1

24

∞∑
n=1

[
(n+ 4)(n+ 3)(n+ 2)(n+ 1)

− (n− 4)(n− 3)(n− 2)(n− 1)

]
xn.

Multiplying this out we get

1− x5

(1− x)5
= 1 +

1

24

∞∑
n=1

(
20n3 + 100n

)
xn = 1 +

5

6

∞∑
n=1

(
n3 + 5n

)
xn.

Finally, we can write

n3 + 5n

6
=

n3 − n

6
+ n =

(
n+ 1

3

)
+ n,

so

(8.1.1)
1− x5

(1− x)5
= 1 + 5

∞∑
n=1

[(
n+ 1

3

)
+ n

]
xn.

Hence every term in this series is divisible by 5 except the first one.
For the second lemma we expand

q(q; q)4∞ = q(q; q)∞(q; q)3∞

using Euler’s pentagonal number theorem (5.1.15) and Jacobi’s cube identity (5.2.8).
This gives

q(q; q)4∞ = q

⎛
⎝ ∞∑

j=−∞
(−1)jq

j(3j+1)
2

⎞
⎠( ∞∑

k=0

(−1)k(2k + 1)q
k(k+1)

2

)

=

∞∑
j=−∞

∞∑
k=0

(−1)j+k(2k + 1)q1+
j(3j+1)

2 + k(k+1)
2 .

In Hardy’s words, we now “consider in what circumstances the [exponent of q] is
divisible by 5”, and he follows Ramanujan’s analysis. The exponent of q is a positive
integer, so it is divisible by 5 if and only if 8 times it is divisible by 5; i.e., we need

8 + 4j(3j + 1) + 4k(k + 1) = 2j2 + 4j + 2 + 4k2 + 4k + 1 + 10j2 + 5

to be divisible by 5, so we need 2(j + 1)2 + (2k + 1)2 to be divisible by 5. Let’s
make a table of these two quantities mod 5:

j 2(j + 1)2 k (2k + 1)2

0 2 0 1
1 3 1 4
2 3 2 0
3 0 3 1
4 2 4 4

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



EXERCISES 291

The sum of a number in the second column and a number in the fourth column is
only zero mod 5 if we take the two zeros, so the exponent of q is divisible by 5 if
and only if j ≡ 3 (mod 5) and k ≡ 2 (mod 5). Because of the factor of 2k + 1, it
follows that every coefficient of q5m+5 in the expansion of q(q; q)4∞ is divisible by
5. This is the second lemma.

Now consider

(8.1.2) q
(q5; q5)∞
(q; q)∞

= q(q; q)4∞
(q5; q5)∞
(q; q)5∞

.

We can write

(q5; q5)∞
(q; q)5∞

=
1− q5

(1− q)5
1− q10

(1− q2)5
1− q15

(1− q3)5
1− q20

(1− q4)5
. . .

and every one of these fractions has the form (1− x5)/(1− x)5, so by (8.1.1) every
term in the expansion of this product in powers of q is divisible by 5 except for
an initial 1. Moreover, we know that every coefficient of q5m+5 in the expansion
of q(q; q)4∞ is divisible by 5, so it follows that every coefficient of q5m+5 in the
expansion of the right side of (8.1.2) is divisible by 5. Because every term in the
expansion of (q5; q5)∞ has the form q5m+5 times an integer, it further follows that
every coefficient of q5m+5 in the expansion of q/(q; q)∞ must be divisible by 5. But

q

(q; q)∞
=

∞∑
n=0

p(n)qn+1,

and the terms with coefficients having the form q5m+5 are
∞∑

m=0

p(5m+ 4)q5m+5,

so finally we have that p(5m+ 4) must be divisible by 5.
Here is another pattern that Ramanujan noticed:

n p(n) n p(n) n p(n)
5 7 33 10143 61 1121505
12 77 40 37338 68 3087735
19 490 47 124754 75 8118264
26 2436 54 386155 82 20506255

This example is less obvious, but all of these partition numbers are divisible by
7, suggesting that p(7n+5) is divisible by 7 for any nonnegative integer n. We will
prove this in the last section.

Exercises

1. Show that we can also write

n3 + 5n

6
=

(
n+ 2

3

)
−
(
n

2

)
.

2. Show that
1− x2

(1− x)2
= 1 + 2

∞∑
n=1

xn.
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3. Show that
1− x3

(1− x)3
= 1 + 3

∞∑
n=1

nxn.

4. Show that
1− x4

(1− x)4
= 1 + 2

∞∑
n=1

(n2 + 1)xn.

Are all of the coefficients divisible by 4?

5. Show that
x(1 + x)

(1− x)3
=

∞∑
n=1

n2xn.

Hint: Look at problems 2 and 4.

8.2. Ramanujan’s “most beautiful” identity

In this section we prove

(8.2.1)
∞∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,

which was called Ramanujan’s “most beautiful” identity in a paper of Hirschhorn.
This refers to Hardy’s obituary notice for Ramanujan, reprinted in the Collected
Papers of both men, which contains the sentence “It would be difficult to find
more beautiful formulæ than the ‘Rogers–Ramanujan’ identities, proved in (19);
but here Ramanujan must take second place to Prof. Rogers; and, if I had to select
one formula from all Ramanujan’s work, I would agree with Major MacMahon in
selecting” (8.2.1). In his review of Ramanujan’s Collected Papers, Littlewood also
singles out (8.2.1) as a formula “of supreme beauty”.

We start with two algebraic lemmas. It is convenient to set

(8.2.2) α =
1 +

√
5

2
and β =

1−
√
5

2
, so that α+ β = 1 and αβ = −1.

The Lucas numbers are defined by

(8.2.3) Ln = αn + βn =

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

,

where n is a nonnegative integer. We have L0 = 2 and L1 = 1, and if n ≥ 1, then

Ln+1 = αn+1 + βn+1 = (αn + βn) (α+ β)− αnβ − αβn

= (αn + βn)− αβ
(
αn−1 + βn−1

)
= Ln + Ln−1,

so they have the same recurrence as the Fibonacci numbers, only with different
starting values: the Fibonacci numbers usually start with F0 = 0 and F1 = 1,
although in the q-Fibonacci case we started with the equivalent of two 1’s. It will
be convenient to have the first several values of each sequence:

n 0 1 2 3 4 5 6 7
Fn 0 1 1 2 3 5 8 13
Ln 2 1 3 4 7 11 18 29
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Since L5 = 11, we have

1− 11x5 − x10 = 1−
(
α5 + β5

)
x5 + α5β5x10 =

(
1− α5x5

) (
1− β5x5

)
.

Since the five solutions of x5 = 1 are

x = 1, e±
2πi
5 , e±

4πi
5 ,

we can further factor(
1− α5x5

)
= (1− αx)

(
1− αxe

2πi
5

)(
1− αxe−

2πi
5

)(
1− αxe

4πi
5

)(
1− αxe−

4πi
5

)
and similarly for

(
1− β5x5

)
. Now(

1− αxe
2kπi

5

)(
1− βxe

2kπi
5

)
= 1− (α+ β)xe

2kπi
5 + αβx2e

4kπi
5

= 1− xe
2kπi

5 − x2e
4kπi

5 ,

so

(8.2.4) 1− 11x5 − x10 =

2∏
k=−2

(
1− xe

2kπi
5 − x2e

4kπi
5

)
.

If we take xe
2kπi

5 out of each factor and divide by x5, we finally have

(8.2.5)
1

x5
− 11− x5 =

2∏
k=−2

(
e−

2kπi
5

x
− 1− xe

2kπi
5

)
.

We will also require a variation of this. We have(
1− x− x2

) (
F1 + F2x+ F3x

2 + F4x
3 + F5x

4 − F4x
5 + F3x

6 − F2x
7 + F1x

8
)

= F1 + (F2 − F1)x+ (F3 − F2 − F1)x
2 + (F4 − F3 − F2)x

3

+ (F5 − F4 − F3) x
4 − (2F4 + F5)x

5 + (F3 + F4 − F5)x
6

+ (F4 − F3 − F2) x
7 + (F1 + F2 − F3)x

8 + (F2 − F1)x
9 − F1x

10

= 1− 11x5 − x10.

Dividing both sides by x5 and plugging in the Fibonacci numbers gives

1
x5 − 11− x5

1
x − 1− x

=
1

x4
+

1

x3
+

2

x2
+

3

x
+ 5− 3x+ 2x2 − x3 + x4,

or, by (8.2.5),
(8.2.6)∏
k=−2,−1,1,2

(
e−

2kπi
5

x
− 1− xe

2kπi
5

)
=

1

x4
+

1

x3
+

2

x2
+

3

x
+ 5− 3x+ 2x2 − x3 + x4.

We are ready to start the proof of (8.2.1) in earnest. The argument begins
with Euler’s pentagonal number theorem in the form (4.1.5) given by Gauss:

(8.2.7) q
(
q24; q24

)
∞ =

∞∑
n=−∞

(−1)nq(6n−1)2 =
∞∑

n=−∞
(−1)nq(6n+1)2 .
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We split the last sum into five sums S−1, S0, S1, S2, S3, according to which of the
forms 5k − 1, 5k, 5k + 1, 5k + 2, 5k + 3 represents n. These sums are

S−1 =
∞∑

k=−∞
(−1)5k−1q(6(5k−1)+1)2 = −

∞∑
k=−∞

(−1)kq(30k−5)2 ,(8.2.8)

S0 =
∞∑

k=−∞
(−1)5kq(6(5k)+1)2 =

∞∑
k=−∞

(−1)kq(30k+1)2 ,(8.2.9)

S1 =

∞∑
k=−∞

(−1)5k+1q(6(5k+1)+1)2 = −
∞∑

k=−∞
(−1)kq(30k+7)2 ,(8.2.10)

S2 =

∞∑
k=−∞

(−1)5k+2q(6(5k+2)+1)2 =

∞∑
k=−∞

(−1)kq(30k+13)2(8.2.11)

S3 =

∞∑
k=−∞

(−1)5k+3q(6(5k+3)+1)2 = −
∞∑

k=−∞
(−1)kq(30k+19)2 .(8.2.12)

We can handle S−1 using (8.2.7):

(8.2.13) S−1 = −
∞∑

k=−∞
(−1)kq25(6k−1)2 = −q25

(
q600; q600

)
∞ .

The other four sums can be combined in pairs that can be handled by the quintuple
product identity from section 5.3, for we can write

(30k + 1)2 = 100 (3k + 1)2 − 180 (3k + 1) + 81,

(30k + 19)2 = 100 (3k + 1)2 + 180 (3k + 1) + 81

and

(30k + 7)2 = 100 (3k + 1)2 − 60 (3k + 1) + 9,

(30k + 13)
2
= 100 (3k + 1)

2
+ 60 (3k + 1) + 9.

Then

S0 + S3 = q81
∞∑

k=−∞
(−1)kq100(3k+1)2

(
q−180(3k+1) − q180(3k+1)

)
and

S1 + S2 = −q9
∞∑

k=−∞
(−1)kq100(3k+1)2

(
q−60(3k+1) − q60(3k+1)

)
.

Now we need (5.3.10), which was

∞∑
k=−∞

q(3k+1)2
(
z3k+1 − z−3k−1

)
= zq(q6; q6)∞(zq3; q6)∞

(
q3

z
; q6
)

∞
(z2q12; q12)∞

(
1

z2
; q12
)

∞
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



8.2. RAMANUJAN’S “MOST BEAUTIFUL” IDENTITY 295

If we replace z by −z here, then (−1)3k+1 = −(−1)k. Multiplying both sides by
−1 and replacing q by q100 gives

(8.2.14)
∞∑

k=−∞
(−1)kq100(3k+1)2

(
z3k+1 − z−3k−1

)
= zq100(q600; q600)∞

× (−zq300; q600)∞

(
−q300

z
; q600

)
∞

(z2q1200; q1200)∞

(
1

z2
; q1200

)
∞

.

Taking z = q−180 in (8.2.14), we find that S0 + S3 is q81+100−180 times(
−q120; q600

)
∞
(
−q480; q600

)
∞
(
q600; q600

)
∞
(
q360; q1200

)
∞
(
q840; q1200

)
∞ ,

so S0 + S3 is

q
(
q600; q600

)
∞

(
q240; q1200

)
∞
(
q840; q1200

)
∞

(q120; q600)∞

(
q360; q1200

)
∞
(
q960; q1200

)
∞

(q480; q600)∞

= q
(
q600; q600

)
∞

(
q240; q600

)
∞
(
q360; q600

)
∞

(q120; q600)∞ (q480; q600)∞
.

Taking z = q−60 in (8.2.14), we find that S1 + S2 is −q9+100−60 times(
−q240; q600

)
∞
(
−q360; q600

)
∞
(
q600; q600

)
∞
(
q1080; q1200

)
∞
(
q120; q1200

)
∞ ,

so S1 + S2 is

− q49
(
q600; q600

)
∞

(
q480; q1200

)
∞
(
q1080; q1200

)
∞

(q240; q600)∞

(
q120; q1200

)
∞
(
q720; q1200

)
∞

(q360; q600)∞

= −q49
(
q600; q600

)
∞

(
q120; q600

)
∞
(
q480; q600

)
∞

(q240; q360)∞ (q480; q600)∞
.

Putting all this together, we have

q
(
q24; q24

)
∞ = S−1 + S0 + S1 + S2 + S3 =

(
q600; q600

)
∞

×
[
q

(
q240; q600

)
∞
(
q360; q600

)
∞

(q120; q600)∞ (q480; q600)∞
− q25 − q49

(
q120; q600

)
∞
(
q480; q600

)
∞

(q240; q360)∞ (q480; q600)∞

]
.

If we divide this by q25
(
q600; q600

)
∞ and then replace q24 by q, it becomes

1

q

(q; q)∞
(q25; q25)∞

=
1

q

(
q10; q25

)
∞
(
q15; q25

)
∞

(q5; q25)∞ (q20; q25)∞
− 1− q

(
q5; q25

)
∞
(
q20; q25

)
∞

(q10; q25)∞ (q15; q25)∞
.

To write this as neatly as possible, we define

(8.2.15) R(q) = q
1
5

(
q; q5

)
∞
(
q4; q5

)
∞

(q2; q5)∞ (q3; q5)∞
.

Then we have proved that

(8.2.16)
1

q

(q; q)∞
(q25; q25)∞

=
1

R(q5)
− 1−R(q5).

If we replace q by qe
2kπi

5 for an integer k in

R(q5) = q

(
q5; q25

)
∞
(
q20; q25

)
∞

(q10; q25)∞ (q15; q25)∞
,
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this only affects the factor of q in front, and we find that

R

((
qe

2kπi
5

)5)
= e

2kπi
5 R(q5).

Knowing this, we replace q by qe
2kπi

5 in (8.2.16) for k = −2,−1, 0, 1, 2 and multiply

the results together. It is convenient to set ω = e
2πi
5 . Using (8.2.5) for the right

side, we get

(8.2.17)
1

q5

(
ω−2q;ω−2q

)
∞
(
ω−1q;ω−1q

)
∞ (q; q)∞ (ωq;ωq)∞

(
ω2q;ω2q

)
∞

(q25; q25)
5
∞

=
1

(R(q5))
5 − 11−

(
R(q5)

)5
.

Now

(8.2.18) 1− q5 =
(
1− ω−2q

) (
1− ω−1q

)
(1− q)(1− ωq)

(
1− ω2q

)
and ω−2 = ω3 and ω−1 = ω4, so(

ω−2q;ω−2q
)
∞
(
ω−1q;ω−1q

)
∞ (q; q)∞ (ωq;ωq)∞

(
ω2q;ω2q

)
∞

= (1− q) (1− q2) (1− q3) (1− q4) (1− q5) · · ·
× (1− ωq)

(
1− ω2q2

) (
1− ω3q3

) (
1− ω4q4

) (
1− ω5q5

)
· · ·

×
(
1− ω2q

) (
1− ω4q2

) (
1− ω6q3

) (
1− ω8q4

) (
1− ω10q5

)
· · ·

×
(
1− ω3q

) (
1− ω6q2

) (
1− ω9q3

) (
1− ω12q4

) (
1− ω15q5

)
· · ·

×
(
1− ω4q

) (
1− ω8q2

) (
1− ω12q3

) (
1− ω16q4

) (
1− ω20q5

)
· · · .

The fifth column gives us
(
1− q5

)5
, and using (8.2.18) the first four columns are(

1− q5
) (

1− q10
) (

1− q15
) (

1− q20
)
. This pattern persists: in the fifth, tenth,

fifteenth . . . columns the factors are all the same, and in the other columns they
are an instance of (8.2.18). Therefore the product is(

1− q5
) (

1− q10
) (

1− q15
) (

1− q20
) (

1− q30
) (

1− q35
) (

1− q40
) (

1− q45
)
· · ·

×
(
1− q5

)5 (
1− q10

)5 (
1− q15

)5 (
1− q20

)5 (
1− q25

)5 (
1− q30

)5 · · · ,
where the factors

(
1− q25

) (
1− q50

) (
1− q75

)
· · · are missing from the first line. If

we multiply and divide by those factors we will have

(q5; q5)∞
(q5; q5)5∞
(q25; q25)∞

,

and hence
(8.2.19)(

ω−2q;ω−2q
)
∞
(
ω−1q;ω−1q

)
∞ (q; q)∞ (ωq;ωq)∞

(
ω2q;ω2q

)
∞ =

(q5; q5)6∞
(q25; q25)∞

.

Then (8.2.17) becomes

1

q5

(
(q5; q5)∞
(q25; q25)∞

)6

=
1

(R(q5))
5 − 11−

(
R(q5)

)5
,

and replacing q5 by q we have

(8.2.20)
1

q

(
(q; q)∞
(q5; q5)∞

)6

=
1

(R(q))5
− 11− (R(q))

5
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.
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Now write

1

(q; q)∞
=

(
ω−2q;ω−2q

)
∞
(
ω−1q;ω−1q

)
∞ (ωq;ωq)∞

(
ω2q;ω2q

)
∞

(ω−2q;ω−2q)∞ (ω−1q;ω−1q)∞ (q; q)∞ (ωq;ωq)∞ (ω2q;ω2q)∞

=

(
q25; q25

)
∞

(q5; q5)6∞

(
ω−2q;ω−2q

)
∞
(
ω−1q;ω−1q

)
∞ (ωq;ωq)∞

(
ω2q;ω2q

)
∞ .

We can use (8.2.16) in the form

(q; q)∞ = q(q25; q25)∞

(
1

R(q5)
− 1−R(q5)

)
for each of the factors on the right side, and (8.2.6) to multiply them together. This
gives

1

(q; q)∞
=

(
q25; q25

)
∞

(q5; q5)6∞
q4(q25; q25)4∞

×

⎡
⎣ 1

R(q5)4
+

1

R(q5)3
+

2

R(q5)2
+

3

R(q5)
+ 5

− 3R(q5) + 2R(q5)2 − R(q5)3 +R(q5)4

⎤
⎦

= q4
(
q25; q25

)5
∞

(q5; q5)6∞

×

⎡
⎣ 1

R(q5)4
+

1

R(q5)3
+

2

R(q5)2
+

3

R(q5)
+ 5

− 3R(q5) + 2R(q5)2 − R(q5)3 +R(q5)4

⎤
⎦ .

Recall that R(q5) is actually q times a function of q5. This means that in the
expansion of the terms of

q4

⎡
⎣ 1

R(q5)4
+

1

R(q5)3
+

2

R(q5)2
+

3

R(q5)
+ 5

− 3R(q5) + 2R(q5)2 −R(q5)3 +R(q5)4

⎤
⎦

in powers of q, all the exponents from each of these nine terms in turn must be
congruent to 0, 1, 2, 3, 4, 0, 1, 2, 3 respectively mod 5. In particular, only the middle
term 5 has exponents congruent to 4 (mod 5). The terms of

1

(q; q)∞
=

∞∑
n=0

p(n) qn

with exponents congruent to 4 (mod 5) are

∞∑
n=0

p(5n+ 4) q5n+4,

so we must have
∞∑

n=0

p(5n+ 4) q5n+4 = 5q4
(
q25; q25

)5
∞

(q5; q5)6∞
.

Dividing both sides by q4 and then replacing q5 by q, we finally have
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Theorem 67 (Ramanujan’s “most beautiful” identity). If |q| < 1, then

∞∑
n=0

p(5n+ 4) qn =
5
(
q5; q5

)5
∞

(q; q)6∞
.

Exercises

1. Write down the 30 partitions of 9.

2. If Ln denotes the nth Lucas number for n ≥ 1, show that

1− Lnx
n + (−1)nx2n =

n−1∏
k=0

(
1− xe

2kπi
n + x2e

4kπi
n

)
.

3. If instead of combining 1−αxe
2πi
5 with 1−βxe

2πi
5 we combine it with 1−αxe−

2πi
5 ,

and similarly for the other factors, we can factor

1 + x+ 2x2 + 3x3 + 5x4 − 3x5 + 2x6 − x7 + x8

into four real quadratics. Show that this gives

1 + x+ 2x2 + 3x3 + 5x4 − 3x5 + 2x6 − x7 + x8

=

(
1− 2αx cos

2π

5
+ α2x2

)(
1− 2αx cos

4π

5
+ α2x2

)

×
(
1− 2βx cos

2π

5
+ β2x2

)(
1− 2βx cos

4π

5
+ β2x2

)

=
(
1 + 2αx cos

π

5
+ α2x2

)(
1− 2αx cos

2π

5
+ α2x2

)

×
(
1 + 2βx cos

π

5
+ β2x2

)(
1− 2βx cos

2π

5
+ β2x2

)
.

4. It turns out that

cos
π

5
=

1√
5− 1

=

√
5 + 1

4
=

α

2
and cos

2π

5
=

1√
5 + 1

=

√
5− 1

4
= −β

2
.

One way to prove this is to draw a 36-72-72 triangle and label the sides 1, 1, and
x. Then draw the line segment from one vertex to a point P on the opposite
side that bisects one of the 72◦ angles. This creates a triangle with sides x, x,
and 1− x that is similar to the original triangle. (Why?) This should allow you
to solve for x. Now find right triangles with 36◦ and 72◦ angles in this triangle
to verify the above cosines.

5. Use problem 4 to simplify the result of problem 3 to

1 + x+ 2x2 + 3x3 + 5x4 − 3x5 + 2x6 − x7 + x8

=
(
1 + α2x+ α2x2

) (
1− x+ α2x2

) (
1− x+ β2x2

) (
1 + β2x+ β2x2

)
.

6. Show that problem 5 implies

1 + x+ 2x2 + 3x3 + 5x4 − 3x5 + 2x6 − x7 + x8

=
(
1− 2x+ 4x2 − 3x3 + x4

) (
1 + 3x+ 4x2 + 2x3 + x4

)
.
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7. Another evaluation of the two cosines above can be obtained from

x5 − 1 = (x− 1)
(
x− e

2πi
5

)(
x− e−

2πi
5

)(
x− e

4πi
5

)(
x− e−

4πi
5

)
.

(i) Explain why it follows that

x4 + x3 + x2 + x+ 1 =
(
x− e

2πi
5

)(
x− e−

2πi
5

)(
x− e

4πi
5

)(
x− e−

4πi
5

)
=

(
x2 − 2x cos

2π

5
+ 1

)(
x2 − 2x cos

4π

5
+ 1

)

=
(
x2 + 2x cos

π

5
+ 1
)(

x2 − 2x cos
2π

5
+ 1

)
.

(ii) Explain why it further follows that

2

(
cos

π

5
− cos

2π

5

)
= 1 and 2− 4 cos

π

5
cos

2π

5
= 1,

or

(a) cos
π

5
− cos

2π

5
=

1

2
, (b) 4 cos

π

5
cos

2π

5
= 1.

(iii) One way to solve (a) and (b) is to square both sides of (a) and then add
(b). Using this method or otherwise, show that they imply

cos
π

5
=

√
5 + 1

4
and cos

2π

5
=

√
5− 1

4
.

8. For another algebraic derivation of these two cosines, we can construct the poly-
nomial whose roots are 2 cos π

5 , 2 cos
2π
5 , 2 cos 3π

5 , and 2 cos 4π
5 , namely(

x− 2 cos
π

5

)(
x− 2 cos

2π

5

)(
x− 2 cos

3π

5

)(
x− 2 cos

4π

5

)

= x4 − 2x3

(
cos

π

5
+ cos

2π

5
+ cos

3π

5
+ cos

4π

5

)

+ 4x2

⎛
⎜⎝ cos

π

5
cos

2π

5
+ cos

π

5
cos

3π

5
+ cos

π

5
cos

4π

5

+ cos
2π

5
cos

3π

5
+ cos

2π

5
cos

4π

5
+ cos

3π

5
cos

4π

5

⎞
⎟⎠

− 8x

⎛
⎜⎝ cos

π

5
cos

2π

5
cos

3π

5
+ cos

π

5
cos

2π

5
cos

4π

5

+ cos
π

5
cos

3π

5
cos

4π

5
+ cos

2π

5
cos

3π

5
cos

4π

5

⎞
⎟⎠

+ 16 cos
π

5
cos

2π

5
cos

3π

5
cos

4π

5
.

(i) Explain why the coefficients of x3 and x must be zero, and why the

coefficient of x2 simplifies to −4

(
cos2

π

5
+ cos2

2π

5

)
, so the polynomial we are

looking for is

x4 − 4x2

(
cos2

π

5
+ cos2

2π

5

)
+ 16 cos

π

5
cos

2π

5
cos

3π

5
cos

4π

5
.
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(ii) To find the remaining coefficients we solve the equation (x − 1)5 = 1.
Explain why the five roots are

2, 2e
πi
5 cos

π

5
, 2e

2πi
5 cos

2π

5
, 2e

3πi
5 cos

3π

5
, 2e

4πi
5 cos

4π

5
.

(iii) The equation we solved in (ii) is

x5 − 5x4 + 10x3 − 10x2 + 5x− 2 = 0,

and we know that one of the factors of the left side must be x − 2. Show that
dividing out this factor leaves

x4 − 3x3 + 4x2 − 2x+ 1 = 0.

(iv) Explain why (iii) implies that

16 cos
π

5
cos

2π

5
cos

3π

5
cos

4π

5
= 1.

(v) From (iii) we also know (why?) that

2e
πi
5 cos

π

5
+ 2e

2πi
5 cos

2π

5
+ 2e

3πi
5 cos

3π

5
+ 2e

4πi
5 cos

4π

5
= 3.

Show that the left side simplifies to

4

(
cos2

π

5
+ cos2

2π

5

)
.

9. In the previous problem we found that the polynomial equation whose roots are
2 cos π

5 , 2 cos
2π
5 , 2 cos 3π

5 , and 2 cos 4π
5 is x4 − 3x2 + 1 = 0. Show that algebraic

expressions for the roots are

±
√
5 + 1

2
and ±

√
5− 1

2
.

(Hint: Rewrite the equation as
(
x2 + 1

)2
= 5x2.) Then explain how to match

these up with the trigonometric expressions.
10. Show that

(q; q)∞ (ωq; q)∞
(
ω2q; q

)
∞
(
ω3q; q

)
∞
(
ω4q; q

)
∞ = (q5; q5)∞.

8.3. Ramanujan’s congruences again

It might be asked, especially by someone who does not think that (8.2.1) is all
that beautiful, why prove it when we can use the argument of section 8.1 to see
that p(5n+ 4) is divisible by 5? We can rewrite (8.2.1) as

(8.3.1)
∞∑

n=0

p(5n+ 4)qn+1 = 5
q

(q; q)∞

(q5; q5)∞
(q; q)5∞

(q5; q5)4∞.

We know from section 8.1 that every coefficient of (q5; q5)∞/(q; q)5∞ is divisible by 5
except for an initial 1. We know that the coefficient of q5j+5 in q/(q; q)∞ is divisible
by 5 for any nonnegative integer j, and we know that every term of the expansion of

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



8.3. RAMANUJAN’S CONGRUENCES AGAIN 301

(q5; q5)4∞ is an integer times q5k for some nonnegative integer k. Therefore (8.3.1)
has the form

∞∑
n=0

p(5n+ 4)qn+1 = 5

( ∞∑
i=0

p(i)qi+1

)⎛⎝1 + 5
∞∑
j=1

ajq
j

⎞
⎠( ∞∑

k=0

bkq
5k

)

for some integers aj and bk. Now consider the coefficient of q5m+5 on the right side
of this. Every term of the last sum has this form, so we only have to look at the first
two sums. If qi+1 has the form q5m+5, then we know that p(i) will be divisible by 5.
If it doesn’t, then multiplying it by some term 5ajq

j from the second sum will give
it this form, and again there is a factor of 5. Since there is also an overall factor of
5 in front, it follows that every coefficient of q5m+5 on the right side, and hence also
on the left side, must be divisible by 25 for any nonnegative integer m. When n+1
has the form 5m+ 5 we have 5n+ 4 = 5(n+ 1)− 1 = 25(m+ 1)− 1 = 25m+ 24,
so p(25m+ 24) is divisible by 25 for any nonnegative integer m.

We can prove similarly that p(7n+ 5) is divisible by 7. First we need a lemma
about q2(q; q)6∞, which we can expand by Jacobi’s cube identity as

q2(q; q)3∞(q; q)3∞ = q2

⎛
⎝ ∞∑

j=0

(−1)j(2j + 1)q(
j+1
2 )

⎞
⎠( ∞∑

k=0

(−1)k(2k + 1)q(
k+1
2 )

)

=

∞∑
j=0

∞∑
k=0

(−1)j+k(2j + 1)(2k + 1)q2+
j(j+1)

2 + k(k+1)
2 .

The exponent 2 + j(j+1)
2 + k(k+1)

2 is a positive integer, so it is divisible by 7 if and
only if 8 times it is, and we have

16 + 4j(j + 1) + 4k(k + 1) = (2j + 1)2 + (2k + 1)2 + 14,

so we need (2j + 1)2 + (2k + 1)2 to be divisible by 7. We have

(2j + 1)2 ≡ 1 (mod 7) if j ≡ 0 or 6 (mod 7),

(2j + 1)2 ≡ 2 (mod 7) if j ≡ 1 or 5 (mod 7),

(2j + 1)2 ≡ 4 (mod 7) if j ≡ 2 or 4 (mod 7),

(2j + 1)2 ≡ 0 (mod 7) if j ≡ 3 (mod 7).

Therefore the only way for (2j + 1)2 + (2k + 1)2 to be divisible by 7 is for both j
and k to be congruent to 3 mod 7, which makes 2j + 1 and 2k + 1 both divisible
by 7. Hence the coefficient of q7i+7 in q2(q; q)6∞ is actually divisible by 49.

We also need a result similar to (8.1.1). From Cauchy’s theorem in section 3.5
with q = 1 we know that

1

(1− x)7
=

∞∑
n=0

(
n+ 6

6

)
xn =

1

720

∞∑
n=0

(n+6)(n+5)(n+4)(n+3)(n+2)(n+1) xn,

and it follows that

1− x7

(1− x)7
=

1

720

∞∑
m=0

(m+ 6)(m+ 5)(m+ 4)(m+ 3)(m+ 2)(m+ 1) xm

− 1

720

∞∑
m=0

(m+ 6)(m+ 5)(m+ 4)(m+ 3)(m+ 2)(m+ 1) xm+7.
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Changing m to n in the first sum and m to n− 7 in the second, we have

1− x7

(1− x)7
=

1

720

∞∑
n=0

(n+ 6)(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1) xn

− 1

720

∞∑
n=7

(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6) xn.

Note that the last sum could start at n = 1, because the n = 1, 2, 3, 4, 5, 6 terms
would all be zero. Breaking off the n = 0 term of the first sum, we have

1− x7

(1− x)7
= 1 +

1

720

∞∑
n=1

[
(n+ 6)(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)

− (n− 6)(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)

]
xn.

Multiplying this out we get

1− x7

(1− x)7
= 1 +

42

720

∞∑
n=1

(
n5 + 35n3 + 84n

)
xn

= 1 +
7

120

∞∑
n=1

(
n5 + 35n3 + 84n

)
xn.

Finally, we can write

n5 + 35n3 + 84n

120
=

n5 − 5n3 + 4n+ 40n3 + 80n

120

=
(n− 2)(n− 1)n(n+ 1)(n+ 2)

120
+

2n3 + 4n

6

=

(
n+ 2

5

)
+

n3 + 3n2 + 2n+ n3 − 3n2 + 2n

6

=

(
n+ 2

5

)
+

(
n+ 2

3

)
+

(
n− 2

3

)
,

so

(8.3.2)
1− x7

(1− x)7
= 1 + 7

∞∑
n=1

[(
n+ 2

5

)
+

(
n+ 2

3

)
+

(
n− 2

3

)]
xn.

Hence every term in this series is divisible by 7 except the first one.
With these two facts in hand we look at

(8.3.3)

∞∑
n=0

p(n)qn+2 =
q2

(q; q)∞
= q2(q; q)6∞

(q7; q7)∞
(q; q)7∞

1

(q7; q7)∞
.

Note that every factor of

(q7; q7)∞
(q; q)7∞

=
1− q7

(1− q)7
1− q14

(1− q2)7
1− q21

(1− q3)7
. . .

has the form (1−x7)/(1−x)7, so every term in its expansion is divisible by 7 except
for an initial 1. From the above lemmas, (8.3.3) has the form

∞∑
n=0

p(n)qn+2 =

( ∞∑
i=2

aiq
i

)⎛⎝1 + 7
∞∑
j=1

bjq
j

⎞
⎠( ∞∑

k=0

p(k)q7k

)
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for some integers ai and bj . Now consider the coefficient of q7m+7 on the right side
of this. Every term of the last sum has this form, so we only have to look at the
first two sums. If qi has the form q7m+7, then we know that ai will be divisible
by 49. If it doesn’t, then multiplying it by some term 7bjq

j from the second sum
will give it this form with a factor of 7. It follows that every coefficient of q7m+7

on the right side, and hence also on the left side, must be divisible by 7 for any
nonnegative integer m. When n + 2 has the form 7m+ 7 we have n = 7m+ 5, so
p(7m+ 5) is divisible by 7 for any nonnegative integer m.

8.4. Bibliographical Notes

Ramanujan’s “most beautiful” identity is the subject of Hirschhorn’s paper
[139], which does not require the quintuple product but makes virtuoso use of the
triple product. His book [140] has much more on the identity and on Ramanujan’s
congruences. Our proof of the identity more or less follows section 5.2 of [81].
Another good source for Ramanujan’s identity and congruences is Chapter 2 of
[52]. Ramanujan’s “most beautiful” identity comes up again in section 13.2.
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CHAPTER 9

Some Combinatorial Results

9.1. Revisiting the q-factorial

We began Chapter 1 by looking at permutations of {1, 2, . . . , n} and counting
inversions, but there are other statistics that we can associate with permutations.
We say that a permutation has a fall in the kth position if its kth number is larger
than its (k + 1)th number. Thus, for example, 3642175 has falls in the second,
third, fourth, and sixth positions, since 6 > 4, 4 > 2, 2 > 1, and 7 > 5, respectively.
Interesting things happen when we count permutations by falls, but we will reserve
this subject for the exercises. We will come back to familiar ground if we record the
positions of the falls (rather than the falls themselves), and we add the positions
together. We call the sum of the positions of the falls of a permutation its major
index. For example, 3642175 has major index 2 + 3 + 4 + 6 = 15. The major
index was first studied by MacMahon, who called it the greater index, and also
looked at various other indices (lesser, equal, superior, inferior, major, minor). It
is appropriate to call the most successful of MacMahon’s indices the major index,
since MacMahon was actually a Major in the British Army.

Let’s look at the permutations of {1, 2, 3}:

permutation falls at qmaj permutation falls at qmaj

123 q0 231 2 q2

132 2 q2 312 1 q1

213 1 q1 321 1, 2 q1+2

As with inversions, we make the major index of each permutation an exponent
of q and add all the terms together to get

1 + q2 + q + q2 + q + q3 = (1 + q2 + q) + q(1 + q2 + q) = (1 + q)(1 + q + q2) = 3!q.

Coincidence? Let’s insert 4 into these permutations, as we did in Chapter 1. If 4
is at the beginning, this creates a new fall at the first position and moves the other
falls over one spot:

permutation qmaj permutation qmaj

4123 q1+0 4231 q1+3

4132 q1+3 4312 q1+2

4213 q1+2 4321 q1+2+3

Unlike the inversion case, the effect is not consistent—the major index usually
increased by 2, but once by 1 and once by 3.

If 4 is in the second position, things are still more complicated. There is
perforce a fall in the second spot. What else happens varies according to whether

305
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4 was inserted in a fall, or in a rise:

permutation qmaj permutation qmaj

1423 q2+0 2431 q2+3

1432 q2+3 3412 q2+0

2413 q2+0 3421 q2+3

There can’t be a fall in the first position, and there must be one in the second
position, so the major index for these permutations is either 5 or 2, according to
whether there is or is not a fall in the third position (in other words, according to
whether there was or was not a fall in the second position before 4 was inserted).

Similarly, if 4 is inserted in the third position, the major index becomes either
4 or 3, according to whether there was or was not a fall in the first position before
insertion:

permutation qmaj permutation qmaj

1243 q3+0 2341 q3+0

1342 q3+0 3142 q3+1

2143 q3+1 3241 q3+1

Finally, if 4 is put at the end, this has no effect on the major index.
If we add together all these powers of q we do indeed get 4!q, but why should

we expect this to happen? Things become clearer if we look at these insertions
from another angle. Rather than looking at each possible position for 4 one at a
time, let’s look at each permutation one at a time. For 123 we have

permutation qmaj permutation qmaj

1234 q0+0 1423 q0+2

1243 q0+3 4123 q0+1

where 0 was the old major index, and inserting 4 added either 0, 1, 2, or 3 to it.
Thus 123 contributes 1 + q + q2 + q3. This is the simplest case, because 123 itself
has no falls. For 132 we have:

permutation qmaj permutation qmaj

1324 q2+0 1432 q2+3

1342 q2+1 4132 q2+2

Adding 4 at the end did nothing to the major index. When we put it in the
third position we put it in the middle of a fall, and this pushed the fall out one
unit. Putting it in the first or second position creates a new fall there and pushes
an existing fall out one unit, so this adds 2 or 3 respectively to the major index.
Adding this all up we get q2(1 + q + q2 + q3). Similarly, for 213 we have

permutation qmaj permutation qmaj

2134 q1+0 2413 q1+1

2143 q1+3 4213 q1+2

and adding these we get q(1 + q + q2 + q3). For 231 we have

permutation qmaj permutation qmaj

2314 q2+0 2431 q2+3

2341 q2+1 4231 q2+2
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9.1. REVISITING THE q-FACTORIAL 307

and adding these we get q2(1 + q + q2 + q3). For 312 we have

permutation qmaj permutation qmaj

3124 q1+0 3412 q1+1

3142 q1+3 4312 q1+2

and adding these we get q(1 + q + q2 + q3). Finally, for 321 we have

permutation qmaj permutation qmaj

3214 q3+0 3421 q3+2

3241 q3+1 4321 q3+3

and adding these we get q3(1 + q + q2 + q3). The total contribution from all the
permutations is therefore

(1 + 2q + 2q2 + q3)(1 + q + q2 + q3) = (1 + q)(1 + q + q2)(1 + q + q2 + q3) = 4!q,

and now we can see some reason why this might happen in general. Let’s do
one more example before we try to prove the theorem. Consider the permutation
3642175, which has major index 15, and look at the effect of inserting 8 in all
possible ways:

permutation qmaj comment
36421758 q15+0 no effect
36421785 q15+1 moves last fall out 1
36421875 q15+7 new fall and moves last fall
36428175 q15+2 moves last two falls
36482175 q15+3 moves last three falls
36842175 q15+4 moves all four falls
38642175 q15+6 new fall and moves all falls
83642175 q15+5 new fall and moves all falls

When the largest element (here 8) is inserted in a fall, it moves that fall and any
subsequent falls out 1 place. When it is inserted in a rise or put at the beginning, it
creates a new fall in that spot and moves any subsequent falls out 1 place. When it
is put at the end it has no effect on the major index. Now let’s prove the theorem
that these examples suggest:

Theorem 68. If Π(n) is the set of all permutations of {1, 2, . . . , n}, then

(9.1.1) n!q =
∑

π∈Π(n)

qmajπ.

We prove this by induction on n. We have done the cases n = 3 and n = 4
already, and we leave it to the reader to check it for smaller n. Assume it holds for
n, and consider the effect of inserting n + 1 into a permutation of {1, 2, . . . , n} in
all possible ways. Such a permutation has n− 1 successions, so let’s suppose k − 1
of them are falls and n − k are rises. If we put n + 1 at the end, it has no effect.
If we put it in the middle of the last fall, it just pushes that fall out 1 place; if we
put it in the penultimate (next-to-last) fall it moves that and the ultimate fall out
1 place, and so forth. If we put it in the jth fall from the end, it moves the last j
falls out 1 place. Therefore the insertions in falls contribute q + q2 + · · ·+ qk−1 to
the sum in (9.1.1). Putting n + 1 at the end contributes 1. Putting n + 1 at the
beginning creates a new fall in the first spot and moves each of the k − 1 falls out
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1 place, so it contributes qk. We have 1 + q + q2 + · · ·+ qk−1 + qk so far, and now
we have to look at the rises, which are a little trickier.

Suppose the first rise is in the ith position. Then it is preceded by i − 1 falls
and succeeded by k − i falls. If we insert n + 1 in this rise (i.e., in the (i + 1)th

position), then we create a fall there, and we move the last k− i falls over 1 place;
so we add (i+1)+ (k− i) = k+1 to the major index. More generally, suppose the
jth rise is in the mth position. Then it is preceded by j − 1 rises and m − j falls,
and succeeded by k−1− (m− j) falls. If we insert n+1 in this rise, then we create
a new fall in the (m+ 1)th position, and we move the last k − 1−m+ j falls over
1 place; so we add (m+ 1) + (k − 1 −m+ j) = k + j to the major index. All the
falls therefore contribute qk+1 + qk+2 + · · ·+ qk+(n−k) to the sum in (9.1.1).

We have just finished considering the effect on the major index of inserting
n + 1 in the permutations of {1, 2, . . . , n} in all possible ways, and we found that
this contributes a factor 1 + q + q2 + · · ·+ qk + qk+1 + · · ·+ qn. It follows that∑

π∈Π(n+1)

qinvπ = (1 + q + q2 + · · ·+ qk + qk+1 + · · ·+ qn)
∑

π∈Π(n)

qmajπ,

and since, by induction, (9.1.1) is true for n, we have∑
π∈Π(n+1)

qinvπ = (1 + q + q2 + · · ·+ qn)n!q = (n+ 1)!q,

and (9.1.1) is also true for n+ 1. This proves the theorem.

There is an interesting alternative proof that foreshadows sections 9.4 and 9.5.
It is essentially MacMahon’s argument of section 9.4, but we follow the formulation
of Chen and Xu. Let σ = a1a2 . . . an be a sequence of nonnegative integers, let
S(n) be the set of all such sequences of length n, and define the weight of σ to be
qa1+a2+···+an . Then the generating function of all the weighted sequences of length
n is ∑

σ∈S(n)

qa1+···+an =

( ∞∑
a1=0

qa1

)
· · ·
( ∞∑

an=0

qan

)
=

1

(1− q)n
.

A typical sequence of length 9 is 613684247, and we consider the array(
6 1 3 6 8 4 2 4 7
1 2 3 4 5 6 7 8 9

)
.

We want to rearrange these columns so that the first row is a partition. The only
decisions to be made are the order of the two 6’s and the two 4’s, and we place
them so that the numbers on the second line are in increasing order whenever the
ones on the first line are tied. This gives(

8 7 6 6 4 4 3 2 1
5 9 1 4 6 8 3 7 2

)
,

where we underlined the falls on the second line. By arranging the columns this
way we ensure that the first line has a fall whenever the second line has one. An
array of this kind, where the first line is a partition with at most n parts (padded
to n parts with zeros if necessary), the second line is a permutation of {1, 2, . . . , n},
and the first line has a fall whenever the second line has one, is called a standard
labeled partition, and we will see them again in section 9.5.
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We now put in a third line that has the running totals of the falls from each
column to the end: ⎛

⎝8 7 6 6 4 4 3 2 1
5 9 1 4 6 8 3 7 2
3 3 2 2 2 2 1 1 0

⎞
⎠

The second line has three falls, but only two falls if we start in the third through
sixth positions, and only one if we start in the seventh or eighth positions. Since
the third line only falls one unit at a time and has exactly the same falls as the
second line, if we subtract it from the first line we will still have a partition there.
Doing so and writing the third line as a partition we get(

5 4 4 4 4 2 2 1 1
5 9 1 4 6 8 3 7 2

)
and 3 + 3 + 2 + 2 + 2 + 2 + 1 + 1 + 0.

The new array is just a labeled partition. The partition line has been decoupled
from the permutation in that the latter can fall when the former does not. Thus this
procedure has converted the sequence 613684247 of length 9 into the permutation
591468372 of {1, 2, . . . , 9} and the unrelated partition 5+4+4+4+2+2+1+1 with
at most 9 parts. The conjugate of the Ferrers diagram of 3+3+2+2+2+2+1+1+0
is

• ∗ � �� ⊕ � � �
• ∗ � �� ⊕ �
• ∗

which is the partition 8 + 6 + 2, and the point is that this is the major index of
591468372. This always happens, because the position of the last fall is where the
number of falls drops from 1 to 0, and more generally the position of the ith-to-last
fall is where the number of falls drops from i to i − 1. Therefore the major index
of the second line is exactly what we subtract from the original sequence to get the
reduced partition on the first line of the labeled partition. Hence this procedure
breaks the weight of the original sequence of length n into a partition with at most
n parts and the major index of a permutation of length n. Considering all possible
sequences of length n we get

1

(1− q)n
=
∑

σ∈S(n)

qa1+···+an =
1

(q; q)n

∑
π∈Π(n)

qmaj π.

It follows that ∑
π∈Π(n)

qmajπ =
(q; q)n
(1− q)n

= n!q,

which is (9.1.1).

Exercises

1. Check that (9.1.1) holds in the cases n = 0, 1, 2.

2. Explain why the largest major index that a permutation of {1, 2, . . . , n} can have
is
(
n
2

)
. Which permutation (or permutations) has (or have) this major index?

3. We can pose the analogue of Stern’s problem in this setting: what is the total
amount of major index in all the permutations of {1, 2, . . . , n}?
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4. Perhaps a more interesting question than the one in problem 3 is: what is
the total number of falls in all the permutations of {1, 2, . . . , n}? Hint: Try
Rodrigues’s “couples” argument.

5. A class of infinite series, which one sometimes sees examples of as “converges or
diverges” questions in calculus, can be summed by the following device. Start
with

∞∑
n=0

xn =
1

1− x
if |x| < 1,

take the derivative on both sides, and then multiply by x. This gives
∞∑

n=0

nxn =
x

(1− x)2
if |x| < 1,

and we could throw away the n = 0 term if we want, but it does no harm to
leave it in. Take the derivative again and then multiply by x again to get

(9.1.2)

∞∑
n=0

n2xn =
x(1 + x)

(1− x)3
if |x| < 1,

and again to get

(9.1.3)
∞∑

n=0

n3xn =
x(1 + 4x+ x2)

(1− x)4
if |x| < 1.

Check these calculations. We will use (9.1.3) in Chapter 13, and (9.1.2) was
needed in a problem in Chapter 5.

6. Performing the steps of the previous problem k times we’ll get

(9.1.4)

∞∑
n=0

nkxn =
Ek(x)

(1− x)k+1
if |x| < 1

for some polynomial of degree k in x, which is called an Eulerian polynomial.
The cases worked out above are E0(x) = 1, E1(x) = x, E2(x) = x2 + x, and
E3(x) = x3+4x2+x. By taking the derivative of both sides of (9.1.4) and then
multiplying by x, show that

(9.1.5) Ek+1(x) = x {(1− x)E′
k(x) + (k + 1)Ek(x)} .

7. Use (9.1.5) to show that

E4(x) = x
(
x3 + 11x2 + 11x+ 1

)
.

Use this and (9.1.4) to show that
∞∑

n=0

n4

3n
= 15.

8. Use (9.1.5) and the previous problem to show that

E5(x) = x
(
x4 + 26x3 + 66x2 + 26x+ 1

)
.

Use this and (9.1.4) to show that
∞∑

n=0

n5

2n
= 1082.
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9. Use (9.1.5) and the previous problem to show that

E6(x) = x
(
x5 + 57x4 + 302x3 + 302x2 + 57x+ 1

)
.

10. Besides being useful for summing certain series, as in problems 7 and 8, the
Eulerian polynomials are interesting because their coefficients count falls in per-
mutations. Write down all the permutations of {1, 2, 3, 4} and count the number
of falls in each. You should find that there are 11 with 1 fall, 11 with 2 falls,
and 1 each with 0 and 3 falls. Hence, except for the factor of x, this matches up
with E4(x).

11. Problem 10 suggests the following theorem: if we define the coefficients of Ek(x)
by

(9.1.6) Ek(x) = x
k−1∑
j=0

εk,j x
j

for k ≥ 1, then εk,j is the number of permutations of {1, 2, . . . , k} with exactly j
falls. (The εk,j ’s are called Eulerian numbers.) To prove this, first plug (9.1.6)
into (9.1.5) to show that

(9.1.7) εk+1,j = (j + 1) εk,j + (k − j + 1) εk,j−1.

If we define ε0,0 = 1, this holds for all nonnegative integers k and j. Now try to
explain (9.1.7) combinatorially.

9.2. Revisiting the q-binomial coefficients

Since the major index on permutations of {1, 2, . . . , n} was so nice, let’s try
it with sequences of 1’s and 2’s, where a fall is any instance of a 2 immediately
followed by a 1. For example, the sequence 1212211212 has falls in the second,
fifth, and eighth positions. Adding these together, we find that the major index of
1212211212 is 2 + 5 + 8 = 15. Given what we know from the previous section and
from Chapter 1, when we look at all the sequences of a 1’s and b 2’s from this point
of view, it is reasonable to expect the q-binomial coefficient

(
a+b
a

)
q
to show up.

Let’s look at all the sequences of two 1’s and two 2’s:

sequence qmaj sequence qmaj

1122 q0 2112 q
1212 q2 2121 q4

1221 q3 2211 q2

When we add all this up we get 1 + q + 2q2 + q3 + q4, which is
(
4
2

)
q
, so it looks

like this is going to work. Let’s do one more example before we state the theorem.
This time we look at all the sequences of four 1’s and two 2’s:

sequence qmaj sequence qmaj sequence qmaj

111122 q0 112121 q8 211121 q6

111212 q4 112211 q4 122111 q3

112112 q3 121121 q7 211211 q5

111221 q5 211112 q1 212111 q4

121112 q2 121211 q6 221111 q2
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When we add all this up we get

1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8, which equals

(
6

2

)
q

.

The general result is

Theorem 69. Let S(a, b) denote the set of all sequences of a 1’s and b 2’s. If
σ is such a sequence, let maj σ denote the major index of σ. Then

(9.2.1)
∑

σ∈S(a,b)

qmajσ =

(
a+ b

a

)
q

.

But there is an even better theorem. If we also keep track of the number of
falls, we have

Theorem 70. Let S(a, b) denote the set of all sequences of a 1’s and b 2’s. If
σ is such a sequence, let fallσ and maj σ denote the number of falls and the major
index of σ, respectively. Then

(9.2.2)
∑

σ∈S(a,b)

xfallσqmajσ =
∑
j≥0

xjqj
2

(
a

j

)
q

(
b

j

)
q

.

The sum on the right side of (9.2.2) stops at the smaller of a and b, but it is
convenient to write it unrestrictedly and let the q-binomial coefficients do the work.

Let’s try to prove (9.2.2) by induction on b, the number of 2’s. There is only
one sequence with a 1’s and no 2’s. It has no falls and no major index, so (9.2.2)
reduces to

1 = x0q0 = x0q0
2

(
a

0

)
q

(
0

0

)
q

= 1,

which is a true statement. If there are a 1’s and one 2, then there are no falls (and
hence no major index) if the 2 is last, and otherwise there is one fall. If the 2 is in
the jth (but not the last) position, then the major index is j. In this case the left
side of (9.2.2) becomes

x0q0 + x1
(
q + q2 + · · ·+ qa

)
= 1 + xq[a]q,

and so does the right side since the sum has only the terms j = 0, 1. So we assume
(9.2.2) holds for a 1’s and less than b 2’s, and we consider sequences of a 1’s and
b 2’s. Suppose the last 2 is in the (b + k)th position. Then it is preceded by k 1’s
and b− 1 2’s, and followed by a− k 1’s. If k = a, so that the last 2 is at the end of
the sequence, then it contributes no falls and nothing to the major index, and, by
induction, the rest of the sequence contributes∑

j≥0

xjqj
2

(
a

j

)
q

(
b− 1

j

)
q

when we sum over all the sequences with a 2 at the end, because otherwise they
have a 1’s and b− 1 2’s.

If k < a, then the last fall is in the (b+ k)th position. It therefore contributes
xqb+k to the sum in (9.2.2), and the 1’s that come after it contribute nothing.
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The rest of the sequence (before the last fall) consists of k 1’s and b− 1 2’s, so by
induction all such sequences contribute

xqb+k
∑
j≥0

xjqj
2

(
k

j

)
q

(
b− 1

j

)
q

for each k, 0 ≤ k ≤ a − 1. Summing over all these values of k and putting in the
case k = a, we have the left side of (9.2.2) equal to

∑
j≥0

xjqj
2

(
a

j

)
q

(
b− 1

j

)
q

+
a−1∑
k=0

xqb+k
∑
j≥0

xjqj
2

(
k

j

)
q

(
b− 1

j

)
q

,

and we have to argue that this expression equals the right side of (9.2.2). Using(
b

j

)
q

=

(
b− 1

j

)
q

+ qb−j

(
b− 1

j − 1

)
q

takes care of one term, and leaves us having to show that∑
j≥1

xjqj
2+b−j

(
a

j

)
q

(
b− 1

j − 1

)
q

=

a−1∑
k=0

xqb+k
∑
j≥0

xjqj
2

(
k

j

)
q

(
b− 1

j

)
q

=
∑
j≥0

xj+1qj
2+b

(
b− 1

j

)
q

a−1∑
k=0

qk
(
k

j

)
q

.

Changing j to j + 1 on the left side, we have to show that∑
j≥0

xj+1qj
2+b+j

(
a

j + 1

)
q

(
b− 1

j

)
q

=
∑
j≥0

xj+1qj
2+b

(
b− 1

j

)
q

a−1∑
k=0

qk
(
k

j

)
q

.

This would follow if we knew that(
a

j + 1

)
q

qj =

a−1∑
k=0

qk
(
k

j

)
q

,

or equivalently

(9.2.3)

(
a

j + 1

)
q

=

a−1∑
k=0

qk−j

(
k

j

)
q

,

and we can observe that the sum here actually has to start at k = j. But this is
essentially (1.4.3). It follows either by using(

a

j + 1

)
q

= qa−j−1

(
a− 1

j

)
q

+

(
a− 1

j + 1

)
q

= qa−j−1

(
a− 1

j

)
q

+ qa−j−2

(
a− 2

j

)
q

+

(
a− 2

j + 1

)
q

= qa−j−1

(
a− 1

j

)
q

+ qa−j−2

(
a− 2

j

)
q

+ qa−j−3

(
a− 3

j

)
q

+

(
a− 3

j + 1

)
q

repeatedly, or by considering sequences of j+1 1’s and a−j−1 2’s according to the
position of the last 1 and counting inversions. The last 1 is preceded by j 1’s and
some number k − j of 2’s, and followed by a− k − 1 2’s; the factor

(
k
j

)
q
takes care

of the inversions within the first k elements, qk−j accounts for the inversions with
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the last 1, and there are no other inversions, so (9.2.3) holds, and this completes
the proof of (9.2.2).

Setting x = 1 in (9.2.2) gives∑
σ∈S(a,b)

qmajσ =
∑
j≥0

qj
2

(
a

j

)
q

(
b

j

)
q

,

and to prove (9.2.1) we have to argue that the right side equals
(
a+b
a

)
q
. Consider

sequences of a 1’s and b 2’s and count inversions. If j is the number of 2’s among
the first a elements of a sequence, then there are a − j 1’s among these elements,
and hence j 1’s among the last b elements, and hence b − j 2’s among the last b
elements. The factor

(
a
j

)
q
takes care of the inversions among the first a elements,(

b
j

)
q
takes care of the inversions among the last b elements, and qj

2

takes care of

the inversions between the two sets. Since we know that
(
a+b
a

)
q
is the generating

function for all sequences of a 1’s and b 2’s by inversions, summing over the possible
values of j we get (

a+ b

a

)
q

=
∑
j≥0

qj
2

(
a

j

)
q

(
b

j

)
q

,

which proves (9.2.1).

Exercises

1. Check (9.2.1) and (9.2.2) in the case a = 2, b = 3.

2. Explain why considering the major index in sequences of a 1’s and b + 1 2’s by
the position of the last 2 gives(

a+ b+ 1

a

)
q

=

(
a+ b

a

)
q

+

a∑
j=1

(
a+ b− j

a− j

)
q

qa+b−j+1,

and verify this identity by using the q-Pascal recurrences or inversions or both.
This gives a direct proof of (9.2.1).

3. Is it obvious to you that the left sides of (9.2.1) and (9.2.2) are symmetric in a
and b? They must be, because the right sides are. The symmetry of (9.2.2) in
a and b suggests that there might be a 1-1 correspondence between sequences of
a 1’s and b 2’s and sequences of b 1’s and a 2’s that preserves the positions of
all the falls. For example, such a correspondence (if it exists) would associate
1121221 with something like 2221121 or 1221221, where the numbers of 1’s and
2’s have been switched but the falls are still the same. The goal of this problem
is to find such a correspondence.

(a) It is pretty clear that we should just leave all the falls alone. If we change
all the 1’s that are not involved in falls to 2’s and all the 2’s not in falls to 1’s
(for example, 1121221 would become 2221121 and vice versa), explain why we
have at least managed to switch the total numbers of 1’s and 2’s.

(b) Therefore, the procedure in (a) does what we want provided that it does
not introduce any new falls. In the case 1121221 ↔ 2221121 it doesn’t, but does
this happen in general? If so, how do you know? If not, how could you fix the
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problem? Hint: What does a sequence of 1’s and 2’s look like in between two
falls (or before the first fall and after the last one)?

4. Try the correspondence you constructed in problem 3 on all the sequences of two
1’s and two 2’s. How many sequences map to themselves, and what happens to
the others?

5. Try the correspondence you constructed in problem 3 on all the sequences of
three 1’s and two 2’s, mapping them to all the sequences of two 1’s and three
2’s.

6. We can also prove (9.2.2) by induction on a, the number of 1’s, but the details
are harder. Here is an outline:

(i) Show that (9.2.2) holds when a = 0 and a = 1.

(ii) Assume (9.2.2) holds for any number of 1’s less than a, and divide the
sequences in S(a, b) into two classes: those that begin with 1, and those where
the first 1 is preceded by some 2’s. Explain why∑
σ∈S(a,b)

σ starts with 1

xfallσqmaj σ =
∑

σ∈S(a−1,b)

(xq)fallσqmaj σ =
∑
j≥0

xjqj
2+j

(
a− 1

j

)
q

(
b

j

)
q

.

(iii) In the other case, suppose the first 1 is preceded by b − k 2’s, where
0 ≤ k ≤ b− 1. For a given k, explain why this case contributes

xqb−k
∑

σ∈S(a−1,k)

(
xqb−k+1

)fall σ
qmajσ = xqb−k

∑
j≥0

(
xqb−k+1

)j
qj

2

(
a− 1

j

)
q

(
k

j

)
q

.

(iv) Combining (ii) with all the possible values of k in (iii) we get

∑
j≥0

xjqj
2+j

(
a− 1

j

)
q

(
b

j

)
q

+
b−1∑
k=0

xqb−k
∑
j≥0

(
xqb−k+1

)j
qj

2

(
a− 1

j

)
q

(
k

j

)
q

,

and we have to show that this equals∑
j≥0

xjqj
2

(
a

j

)
q

(
b

j

)
q

.

Explain why this reduces to showing that

∑
j≥1

xjqj
2

(
a− 1

j − 1

)
q

(
b

j

)
q

=
∑
j≥0

b−1∑
k=0

xj+1qj
2+jq(j+1)(b−k)

(
a− 1

j

)
q

(
k

j

)
q

.

(v) Explain why this further reduces to showing that(
b

j + 1

)
q

=

b−1∑
k=j

(
k

j

)
q

q(j+1)(b−k−1).

(vi) Prove the result of (v), either by using one of the fundamental recur-
rences repeatedly, or by considering sequences of j + 1 1’s and b − j − 1 2’s
according to the position of the first 1, keeping track of inversions.
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316 9. SOME COMBINATORIAL RESULTS

9.3. Foata’s bijection for q-multinomial coefficients

After the first two sections, we may hope to be able to prove a similar result
for q-multinomial coefficients. We use the same notation as in section 1.6: let
Sn(k1, . . . , km) be the set of all sequences of length n made up of k1 1’s, k2 2’s, . . . ,
km m’s. As usual, a fall is an instance of a smaller number coming immediately after
a larger one, and the major index of such a sequence is the sum of the positions of
the (first numbers in the) falls in the sequence; for example, 1431442241 has falls in
the second, third, sixth, and ninth positions, so its major index is 2+3+6+9 = 20.
Then we would like to be able to prove

Theorem 71 (MacMahon’s theorem). With the above notation,

(9.3.1)

(
n

k1, . . . , km

)
q

=
∑

σ∈Sn(k1,...,km)

qmaj σ.

We will give two proofs of MacMahon’s theorem. A third is outlined in the
problems for section 9.4. The first proof is due to Foata, whose strategy was to
find a way to take a given permutation of k1 1’s, k2 2’s, . . . , km m’s with major
index M and convert it into another permutation of k1 1’s, k2 2’s, . . . , km m’s with
M inversions. If we can find a method for doing this which is a bijection (in other
words, we have to be able to undo it), then we can rely on the corresponding result
for inversions. The problem of finding this type of proof of MacMahon’s theorem
was suggested to Foata by Schützenberger.

Foata’s idea is to move through the permutation from left to right, “correcting”
the inversions as needed by rearranging the permutation. Let’s look at 1431442241,
which has major index 20 as we noted above. We don’t have to do anything until
we get to 143, because 1 and 14 have 0 inversions and 0 major index. But 143 has
major index 2 and only one inversion, so we have to do something to create a new
inversion. We have 4 > 3, so we split 143 after everything > 3: 14|3. Then we
move the last element to the front in each component: 41|3. So 143 is replaced by
413, which has the same elements as 143 and has the same number of inversions as
143 has major index. Having dealt with the first three elements of 1431442241, we
move on to the fourth element 1. Again the element we are trying to tack on (1)
is smaller than the last element of the current sequence (3), so we split 4131 after
everything bigger than the new element 1: 4|13|1. In each component we move
the last element to the front: 4|31|1. So the first four numbers in the transformed
sequence are (at the moment; they may change) 4311. This was necessary because
adding 1 to 413 produced a fall at the third position, so it added three to the major
index, but it only caused two new inversions; changing 4131 to 4311 created a third
inversion.

Next we add 4, and no action is necessary, because this creates no new inversions
and no new major index. Technically, when the new number is at least as big as
the old one (here 1 ≤ 4) we split after everything ≤ 4 and move the last element to
the front in each component. In this case, though, all the components have length
one and nothing moves. Adding the next 4 also causes no change. This brings us
to the first 2: 4311442. Here the new last number (2) is smaller than the previous
last number (4); 4 > 2, so we split after everything > 2: 4|3|114|4|2. We move the
last element to the front in each component: 4|3|411|4|2; so now we have 4341142.
The 2 created six more units of major index, but only four new inversions, and

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



9.3. FOATA’S BIJECTION FOR q-MULTINOMIAL COEFFICIENTS 317

moving the second 4 forward two places gave us two more inversions, making up
the difference.

Now we append the next 2: 43411422. This time the new element is not smaller
than the previous last element; 2 ≤ 2, so we split after everything ≤ 2: 4341|1|42|2.
Move the last element to the front in each component to get 14341242. This has
removed four inversions, which was necessary because the new 2 did not create any
more major index, but it did cause four new inversions.

Next add the last 4 in the original sequence; 2 ≤ 4, so we split after ev-
erything ≤ 4. All components have length one, so nothing moves, and we have
143412424. Finally we add the last 1. Now 4 > 1, so we split after everything > 1:
14|3|4|12|4|2|4|1. The last shall be first in each component, and we finally reach
4134214241 as the sequence that corresponds to the original sequence 1431442241
under Foata’s map. 4134214241 has the same numbers as 1431442241, and it has
as many inversions (20) as 1431442241 has major index.

Let’s prove that this works in general, for which it is enough to show that it
works at any one stage. Suppose we are using Foata’s procedure on a sequence,
that the current last element of the sequence is a, and that we want to append b.
We have to consider two cases: a > b and a ≤ b.

a > b: Suppose a and j − 1 numbers before a are > b, and suppose that k
numbers before a are ≤ b. Let the j numbers which exceed b be ω1, ω2, . . . , ωj , in
that order from left to right (so ωj = a). Let k1 be the number of numbers before
ω1 in the current sequence; if there are any such numbers, by construction they are
all ≤ b. Let k2 be the number of numbers strictly between ω1 and ω2 in the current
sequence; k2 could be zero, but again all such numbers are ≤ b. Generally, let ki
be the number of numbers strictly between ωi−1 and ωi in the current sequence; all
such numbers are ≤ b. Then we have k1 + k2 + · · ·+ kj = k.

When a > b we split after everything> b, so in this case we split after each of the
ωi, but nowhere else. In each split component the last shall be first, so ωi is moved
ahead of the other ki elements in the ith component for each i, which creates ki new
inversions for each i. The total number of new inversions is k1 + k2 + · · ·+ kj = k.
This was necessary because, since a > b, appending b to the sequence created a fall
in the (k + j)th position, but the new b was only inverted with the j ωi’s. Thus
Foata’s map works in the case a > b.

a ≤ b: We use the same system of notation as above. Let j be the number of
things before a which are > b, and let there be k−1 things besides a which precede
b and are ≤ b. In this case appending b does not add to the major index, but it
still creates j new inversions. In the previous case we had to create k additional
inversions, but in this case we have to get rid of j inversions. Let the k things
which precede b and are ≤ b be ω1, ω2, . . . , ωk, in that order from left to right (so
ωk = a). Let the number of things which precede ω1 in the current sequence (all of
which are > b) be j1; let the number of things strictly between ω1 and ω2 (all > b)
be j2; and so forth, so that there are ji things (all > b) strictly between ωi−1 and
ωi for each i. Then we have j1 + j2 + · · ·+ jk = j.

When a ≤ b we split after everything ≤ b, so we split after each of the ωi’s and
nowhere else. In each split component the last shall be first, so we move ωi in front
of ji things (all of which are > ωi) for each i. This removes ji inversions for each
i, so it removes j1 + j2 + · · · + jk = j inversions in all, which is exactly what we
wanted to accomplish. Thus Foata’s map also works in the case a ≤ b.
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318 9. SOME COMBINATORIAL RESULTS

Next we describe the inverse map—how to get back from the number of in-
versions to the major index. Let’s consider the example 3141223142, which has
17 inversions. To reverse the above procedure we strip off the permutation one
element at a time, starting at the right, and again there are two cases. There is one
subtlety: it might seem that to undo what we were doing above, we should compare
the sizes of the last two elements (here 4 and 2). This does not work in general, for
the following reason: in case a > b in the above proof, ωj = a was moved in front
of kj things that were ≤ b. After this the last element was at least as big as the
penultimate element, unless kj = 0, in which case the last element is smaller than
the penultimate element. On the other hand, in case a ≤ b, ωk = a was moved in
front of jk things that were > b. After this the last element was smaller than the
penultimate element, unless jk = 0, in which case the last element is at least as big
as the penultimate element. So we can’t tell which of the two moves to undo by
looking at the last two elements.

Fortunately, we can tell by comparing the last element with the first element.
In case a < b, the element ω1, which was the first thing in the sequence > b, was
moved to the beginning of the sequence. If it was not moved (i.e., if k1 = 0), then
it was already at the beginning of the sequence. Thus when Foata’s map is applied
in the case a < b, the result is always a sequence with the first element bigger than
the last. In case a ≤ b, again ω1 was moved to the front of the sequence, if it was
not there already. In this case ω1 was the first element ≤ b, so the result of Foata’s
map in this case is invariably a sequence where the last element is at least as big
as the first.

Now that we know this, let’s do our example 3141223142. We’ll use α as a
generic name for the first element in the sequence, and ω as a generic name for the
last element, so we start with α = 3 and ω = 2. When α > ω, we remove ω and
split before every element > ω: |31|4122|31|4. In each component we move the first
element to the end: |13|1224|13|4. So the new permutation is 131224134, and 2 has
been removed.

Now α = 1 and ω = 4. When α ≤ ω, we remove ω and split before every
element ≤ ω. In this case ω = 4 is at least as big as every other element in
the sequence, so all components have length 1 and nothing moves. Now we have
13122413 and we have removed 42. Then α = 1 and ω = 3, so we remove 3 and
split before every element ≤ 3: |1|3|1|2|24|1. Moving the first element to the end
in each component we get 1312421 and we have removed 342.

Now α = 1 and ω = 1; α ≤ ω, so we remove 1 (on the right) and split before
everything ≤ 1: |13|1242. Moving the first element to the end in each component
we get 312421 and we have removed 1342. Now α = 3 and ω = 1; α > ω, so we
remove 1 and split before everything > 1: |31|2|4|2. The first shall be last in each
component, so we get 13242 and we have removed 11342. Now α = 1 and ω = 2;
α ≤ ω, so we remove 2 and split before everything ≤ 2: |13|24. Make the first last
in each component: we have 3142, and we have removed 211342.

Now α = 3 and ω = 2; α > ω, so we remove 2 and split before everything > 2:
|31|4. Making the first last in each component we get 134 and we have removed
2211342. We have three steps left, but you can check that the remaining elements
come off one at a time in the current (right to left) order, so we finally wind up
with 1342211342. It has falls in the third, fifth, and ninth spots, so its major index
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9.4. MACMAHON’S PROOF 319

is 3+5+9 = 17, which is the same as the inversion number of the original sequence
3141223142.

Exercises

1. Check that if we apply Foata’s map to 1342211342, we undo the above steps one
at a time and the result is 3141223142.

2. Check that if we apply the inverse map to 4134214241, we undo the steps in our
first example one at a time, and the result is 1431442241.

3. Show that 214313431132 has major index 34, and that applying Foata’s map to
it gives 412343311312, with 34 inversions.

4. Show that applying the inverse map to 412343311312 gives 214313431132.

5. Show that 1323224341431 has major index 45, and that applying Foata’s map
to it gives 4433122234311, with 45 inversions.

6. Show that applying the inverse map to 4433122234311 gives 1323224341431.

7. Make up your own examples and solve them.

9.4. MacMahon’s proof

MacMahon’s proof of his theorem is much different, and is also quite interesting.
We saw a special case of it already in the alternative proof of section 9.1. It relies
on a fact we know well: 1/(q; q)k is the generating function for partitions with at
most k parts; or with exactly k parts, some of which might be zero. Then we can
think of

1

(q; q)k1
(q; q)k2

. . . (q; q)km

as the generating function for m-line arrays, where the first line is a partition into
exactly k1 parts, some of which might be zero; the second line is a partition into
exactly k2 parts, some of which might be zero, and so on. (In section 9.1, every ki
was 1.) Let’s write down an example at this point:

1

(q; q)5 (q; q)3 (q; q)6 (q; q)4

generates arrays such as:
8 4 3 1 0
6 6 0
9 8 6 5 5 1
6 5 3 2

We combine this into one big partition, recording which line each part came from
and breaking ties in favor of earlier lines:

Parts 9 8 8 6 6 6 6 5 5 5 4 3 3 2 1 1 0 0
Lines 3 1 3 2 2 3 4 3 3 4 1 1 4 4 1 3 1 2

The first line is a partition with exactly 5+3+6+4 = 18 parts, some of which might
be zero, and the second line is a permutation of five 1’s, three 2’s, six 3’s, and four
4’s. In general, at this stage we would have a partition with exactly k1+k2+· · ·+km
parts, some of which might be zero, on the first line; and a permutation of k1 1’s,
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320 9. SOME COMBINATORIAL RESULTS

k2 2’s, and so forth on the second line. The generating function for the former
is 1/(q; q)k1+···+km

, and we need to figure out what the latter contributes to the
overall generating function.

The problem is that the partition and the permutation are not completely
general; rather, they are related in that the permutation has a fall everywhere that
the partition has one, because of our policy of breaking ties in favor of earlier lines.
The partition may have more falls than the permutation, as happens here in going
from 4 to 3 and from 3 to 2. Let’s put a third line in our array:

Parts 9 8 8 6 6 6 6 5 5 5 4 3 3 2 1 1 0 0
Lines 3 1 3 2 2 3 4 3 3 4 1 1 4 4 1 3 1 2
Falls 6 5 5 4 4 4 4 3 3 3 2 2 2 2 1 1 0 0

We underlined all the falls in the permutation on line 2, and on line 3 we listed the
numbers of falls in the permutation when we start at the corresponding positions
on line 2. (That is, there are 6 falls in total on line 2, but only 5 falls if we start
in the second or third positions on line 2, and only 4 falls if we start in the fourth
through seventh positions, and so on.) Note that the third line has exactly the
same falls as the second one.

We now create another new array, by subtracting the third line from the first
in the old array to get the first line of the new one, and otherwise recopying the
second and third lines:

3 3 3 2 2 2 2 2 2 2 2 1 1 1 0 0 0 0
3 1 3 2 2 3 4 3 3 4 1 1 4 4 1 3 1 2
6 5 5 4 4 4 4 3 3 3 2 2 2 2 1 1 0 0

This decouples the partition from the permutation, in that the new partition on
the first line need not have falls in the same places that the permutation has them.
The first line is still a partition into k1 + k2 + · · ·+ km parts, some of which might
be zero, so the generating function for the first lines of the new arrays is still
1/(q; q)k1+···+km

. What about the second lines?
We have to put in a power of q to compensate for the subtractions we did above,

and that power must be the sum of the numbers on the third line, because that’s
what we subtracted. We claim that this sum is exactly the major index of the
permutation on the second line. We can check that this happens in this example,
but why would we expect it to happen? To see this, we write the third line as the
Ferrers diagram of a partition. To save space (and since we’re going to look at the
conjugate anyway) let’s write the parts as columns:

• ∗ � � � ⊕ � × � � ⊗ �� � � ◦ �
• ∗ � � � ⊕ � × � � ⊗ �� � �
• ∗ � � � ⊕ � × � �
• ∗ � � � ⊕ �
• ∗ �
•

The partition represented by the rows is 16 + 14 + 10 + 7 + 3 + 1, and this is the
major index of the permutation in the array since the underlined numbers are the
first, third, seventh, tenth, fourteenth, and sixteenth ones. That is, the numbers in
the conjugate partition of the third line are the positions of the falls on the second
line. This is because the last fall on the second line occurs at the same place that
the third line drops from 1 to 0, so its position equals the number of things on the
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third line that are at least 1; the next-to-last fall on the second line occurs where
the third line drops from 2 to 1, so its position equals the number of things on the
third line that are at least 2; and so forth.

If n = k1 + k2 + · · ·+ km, then it follows that the second lines in the arrays are
generated by ∑

σ∈Sn(k1,...,km)

qmajσ,

where we use the same notation as the previous section—the sum is over all per-
mutations ω of k1 1’s, k2 2’s, . . . , km m’s. It follows that

1

(q; q)k1
(q; q)k2

. . . (q; q)km

=

⎛
⎝ ∑

σ∈Sn(k1,...,km)

qmajσ

⎞
⎠ 1

(q; q)k1+···+km

,

and this becomes MacMahon’s theorem when we multiply both sides by

(q; q)k1+···+km
.

Exercises

1. Explain why (9.4.2) is obvious if n = 0 or n = 1, and verify it when n = 2.

2. MacMahon’s theorem can also be proved by induction using the the recurrence
relation

(9.4.1)

(
n+ 1

k1, . . . , km

)
q

=

(
n

k1 − 1, k2, . . . , km

)
q

+ qk1

(
n

k1, k2 − 1, k3, . . . , km

)
q

+ qk1+k2

(
n

k1, k2, k3 − 1, . . . , km

)
q

+ . . .

+ qk1+···+km−1

(
n

k1, . . . , km−1, km − 1

)
q

for the q-multinomial coefficients (which was (1.6.3) in section 1.6), where k1 +
· · ·+km = n+1 and each ki is a nonnegative integer, by exploiting the fact that
(9.4.1) is symmetric in k1, . . . , km. After the previous problem, we may assume
(9.4.2) holds for n and try to show

(9.4.2)

(
n+ 1

k1, . . . , km

)
q

=
∑

σ∈Sn+1(k1,...,km)

qmaj σ.

We need to evaluate the last sum, which we break up according to which number
is at the end of the sequence:

(9.4.3)
∑

σ∈Sn+1(k1,...,km)

qmajσ =
m∑
j=1

∑
σ∈Sn+1(k1,...,km)

j at end

qmajσ.

(i) Explain why the sequences where m is last contribute
(

n
k1,...,km−1,km−1

)
q
.
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(ii) Next suppose m− 1 is last. By considering the two cases (a) m is next
to last, (b) m is not next to last, show that these sequences contribute

(qn − 1)

(
n− 1

k1, . . . , km−1 − 1, km − 1

)
q

+

(
n

k1, . . . , km−1 − 1, km

)
q

= qkm

(
n

k1, . . . , km−1 − 1, km

)
q

.

(iii) We claim that the sequences with j at the end contribute a term

(9.4.4) qkm+km−1+···+kj+1

(
n

k1, . . . , kj−1, kj − 1, kj+1, . . . , km

)
q

.

We have seen this already when j is m or m − 1. We prove it by induction on
increasing n and decreasing j; i.e., for n and j−1 by using the fact that it holds
for n and j, j + 1, . . . ,m, and also for n− 1 and 1, 2, . . . , j − 1.

Suppose j − 1 is at the end of a sequence. There is a fall at the nth position
if this position is occupied by one of j, j +1, . . . ,m. Explain why this case gives

(9.4.5) qn
m∑
i=j

qkm+km−1+···+ki+1

(
n− 1

k1, . . . , kj−1 − 1, . . . , ki − 1, . . . , km

)
q

.

(iv) Explain why if the nth position is occupied by one of 1, 2, . . . , j − 1
instead, we get

(9.4.6)

j−2∑
i=1

qkm+km−1+···+kj−1−1+···+ki+1

(
n− 1

k1, . . . , ki − 1, . . . , kj−1 − 1, . . . , km

)
q

+ qkm+km−1+···+kj

(
n− 1

k1, . . . , kj−1 − 2, . . . , km

)
q

.

(v) Show that combining (9.4.5) and (9.4.6) gives
(9.4.7) (

n− 1

k1, . . . , kj−1 − 2, . . . , km

)
q

+

j−2∑
i=1

qkj−1−1+···+ki+1

(
n− 1

k1 . . . , ki − 1, . . . , kj−1 − 1, . . . , km

)
q

+
m∑
i=j

qkm+km−1+···+ki+1+kj−1+···+k1−1

(
n− 1

k1, . . . , kj−1 − 1, . . . , ki − 1, . . . , km

)
q

.
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9.5. q-DERANGEMENT NUMBERS 323

(vi) Use (9.4.1) with parameters in the order kj−1, kj−2, . . . , k1, km, . . . , kj
to get(

n

k1, . . . , kj−1 − 1, . . . , km

)
q

=

(
n− 1

k1, . . . , kj−1 − 2, . . . , km

)
q

+ qkj−1−1

(
n− 1

k1, . . . , kj−2 − 1, kj−1 − 1, . . . , km

)
q

+ qkj−1+kj−2−1

(
n− 1

k1, . . . , kj−3 − 1, kj−2, kj−1 − 1, . . . , km

)
q

+ · · ·+ qk1+···+kj−1−1

(
n− 1

k1, . . . , kj−1 − 1, kj , . . . , km − 1

)
q

+ qk1+···+kj−1−1+km

(
n− 1

k1, . . . , kj−1 − 1, kj , . . . , km−1 − 1, km

)
q

+ · · ·+ qk1+···+kj−1−1+km+···+kj+1

(
n− 1

k1, . . . , kj−1 − 1, kj − 1, kj+1, . . . , km

)
q

= qkm+···+kj

(
n

k1, . . . , kj−1 − 1, . . . , km

)
q

.

This proves (9.4.4).

(vii) Show that using (9.4.4) in (9.4.3) gives

m∑
j=1

∑
σ∈Sn+1(k1,...,km)

j at end

qmajσ

=

m∑
j=1

qkm+km−1+···+kj+1

(
n

k1, . . . , kj−1, kj − 1, kj+1, . . . , km

)
q

,

and explain why (9.4.1) implies this is∑
σ∈Sn+1(k1,...,km)

qmajσ =

(
n+ 1

k1, . . . , km

)
q

.

9.5. q-derangement numbers

In a typical permutation it often happens that at least one number is in its
“proper” place. In 6137524, for example, 3 is in the third position and 5 is in the
fifth position. We call these the fixed points of the permutation, and we call the
five other numbers its deranged points. If a permutation has no fixed points,
such as 6317254, we call it a derangement.

Suppose a professor has n students and has never bothered to learn their names.
When homework is handed back, each student receives a paper at random. What
is the probability that no student gets her own paper back? How different is it
for large classes than for small ones? This is a famous problem in the history
of probability, often called the problème des rencontres, and a moment’s thought
shows that it is intimately bound up with derangements. Suppose for example that
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324 9. SOME COMBINATORIAL RESULTS

there are five students, and number them 1–5. If the professor gives student 1 the
paper of student 3, student 2 the paper of student 4, student 3 the paper of student
1, student 4 the paper of student 5, and student 5 the paper of student 2, then no
student got the correct paper, and we can think of this as the derangement 34152.
If Dn is the number of derangements of {1, 2, 3, . . . , n}, then the problem is asking
for Dn/n!, and we can call it the derangement problem.

For a q-analogue, let Δn be the set of derangements of {1, 2, 3, . . . , n} and set

(9.5.1) Dn(q) =
∑
δ∈Δn

qmaj δ, where D0(q) = 1.

Even the most inept professor couldn’t mess up the case n = 1, so Δ1 is empty and
D1(q) = 0. If n = 2, then 21 is a derangement (with major index 1) and 12 is not,
so D2(q) = q. There are two derangements of {1, 2, 3}, namely 231 and 312, with
major index 2 and 1 respectively, so D3(q) = q + q2. Let’s make a table for n = 4:

derangement qmaj derangement qmaj derangement qmaj

2143 q4 3142 q4 4123 q
2341 q3 3412 q2 4312 q3

2413 q2 3421 q5 4321 q6

Thus D4(q) = q + 2q2 + 2q3 + 2q4 + q5 + q6. The goal of this section is to prove

Theorem 72 (Gessel’s theorem). For all nonnegative integers n,

(9.5.2) Dn(q) = n!q

n∑
k=0

(−1)kq(
k
2)

k!q
.

The reason for defining D0(q) = 1 is to make this hold for n = 0. Note that if
n ≥ 1, then the k = 0 and k = 1 terms always cancel, so the sum can start at k = 2
except in degenerate cases. Let’s check Gessel’s theorem for n = 4. The right side
of (9.5.2) is

4!q

(
q

2!q
− q3

3!q
+

q6

4!q

)
= q[3]q[4]q − q3[4]q + q6 = q[2]q[4]q + q6

= q + 2q2 + 2q3 + 2q4 + q5 + q6,

as desired.
To prove Gessel’s theorem we follow the approach of Chen and Xu. They

use MacMahon’s argument from section 9.4 to simplify the proof of a theorem of
Michelle Wachs, who deduced Gessel’s theorem from hers. We need to go back to
an example like 6137524, which was not a derangement because of the fixed points
3 and 5. The deranged points are 61724, and we can make these into a permutation
by simply relabeling them with {1, 2, 3, 4, 5} preserving the order; so 1 and 2 stay
as they are, 4 is relabeled down to 3, 6 is relabeled down to 4, and 7 is relabeled
down to 5. Thus the reduced derangement of 6137524 is 41523. Note that if
a permutation is a derangement, then its reduced derangement is itself. For the
identity permutation 123 · · ·n where every element is a fixed point, the reduced
derangement is empty.

We need to show that the “reduced derangement” really is a derangement. Let
π be a permutation of {1, 2, . . . , n} and suppose f is a fixed point. (If it hasn’t
got a fixed point, then it is already a derangement.) Suppose we remove f , move
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9.5. q-DERANGEMENT NUMBERS 325

everything that came after it forward one unit, and relabel every number > f down
one unit. Now we have a permutation π′ of {1, 2, . . . , n − 1}, and there are four
types of numbers to consider: (i) numbers < f that appear before the f th position
don’t move and are not relabeled, so they are only fixed after removing f if they
were fixed before; (ii) numbers < f that appear after the f th position are not
relabeled but move forward one unit, leaving them still smaller than the position
they occupy; (iii) numbers > f that appear before the f th position don’t move
but are relabeled down one unit, leaving them still larger than the position they
occupy; (iv) numbers > f that appear after the f th position move forward one unit
and are relabeled down one unit, so they are only fixed after removing f if they
were fixed before. Therefore π′ has exactly one less fixed point than π had. Thus
the fixed points may be removed in any order without creating any new ones, so
once we remove them all, we have a derangement.

It is easy to reconstruct a permutation from its reduced derangement and its
fixed points: just insert each fixed point where it naturally belongs and relabel as
needed. For the example 41523 with fixed points 3 and 5, we first insert 3 in the
third position and relabel all the numbers ≥ 3 up one unit to get 513624. Then
we insert 5 in the fifth position and relabel all the numbers ≥ 5 up one unit to get
6137524. (The insertions must be done in increasing order so that we know what
the fifth position actually is.) We are now ready to state

Theorem 73 (Wachs’s theorem). If Π(n; δ) is the set of all permutations of
{1, 2, . . . , n} whose reduced derangement is δ, then

(9.5.3)
∑

π∈Π(n;δ)

qmajπ = qmaj δ

(
n

k

)
q

,

where δ is a derangement of {1, 2, . . . , k}.
The Chen/Xu proof relies on the idea of a standard labeled partition, which

we saw already in section 9.1. Recall that a labeled partition with n columns is
a 2-line array where the first line (or partition line) is a partition with at most n
parts, padded to n parts by adding zeros at the end if necessary, and the second
line (or permutation line) is a permutation of {1, 2, . . . , n}. For example,(

11 8 4 4 4 3 1 1 0
3 6 1 8 5 4 9 2 7

)
is a labeled partition with 9 columns. In a standard labeled partition, the partition
line has a fall everywhere that the permutation line has one. This fails in the
example above in the fourth and seventh positions, where the permutation falls but
the partition does not. We would have a standard labeled partition if we exchanged
the fourth and fifth columns, and also the seventh and eighth columns, to get(

11 8 4 4 4 3 1 1 0
3 6 1 5 8 4 2 9 7

)
.

Note that the partition may have more falls than the permutation, as in the first
column here. We can convert a labeled partition into a standard labeled one without
changing the permutation line by first putting in a third line with the running totals
of the falls

11 8 4 4 4 3 1 1 0
3 6 1 8 5 4 9 2 7
4 4 3 3 2 1 1 0 0
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and then adding the third line to the first to get(
15 12 7 7 6 4 2 1 0
3 6 1 8 5 4 9 2 7

)
.

Another example of a standard labeled partition with 9 columns is

P =

(
13 11 10 8 8 6 4 4 1
5 9 3 4 8 6 1 7 2

)
.

The fixed points of the permutation line are 3, 4, 6 and the deranged points are
5, 9, 8, 1, 7, 2. The Chen/Xu bijection decomposes the partition into two pieces as
follows: the fixed partition is 10 + 8 + 6, since these are the parts in the columns
corresponding to the fixed points; and the broken partition is 13+11+8+4+4+1,
since these are the parts in the columns corresponding to the deranged points. The
reduced derangement of 598172 is 365142, so we can think of this as a decomposition
of P into the fixed partition F = 10 + 8 + 6 and the labeled partition

p =

(
13 11 8 4 4 1
3 6 5 1 4 2

)
,

where the broken partition is on the first line and the reduced derangement is on
the second. Note that p is in fact a standard labeled partition. This is clear in
the case of the last three numbers 142 on the second line: they came from 172,
which were contiguous in the standard labeled partition P , so the standardness
must carry over. It is less clear for 65, which came from 98, which originally had
the fixed points 3 and 4 between them.

Suppose then that a and b are two contiguous numbers in the reduced derange-
ment of p, that A and B are the corresponding numbers on the second line of P ,
and that at least one fixed point was originally between A and B. If a < b, then
there is nothing to check, so suppose a > b, and hence A > B. If there is no fall
corresponding to ab on the partition line of p, then the two corresponding parts
must be the same number, say N , in which case the parts corresponding to the
fixed points between them must also be N . But this implies that the fixed point
right after A is larger than A, and the fixed point right before B is smaller than B.
Since the fixed points are increasing and A > B, this is impossible. Therefore this
decomposition must give a standard labeled partition p.

It is not hard to reconstruct the original standard labeled partition P from
the fixed partition F and the reduced standard labeled partition p; we may seem
to have lost information about the positions of the fixed points, but it is easily
recovered. In the above example, the part 10 has to go between 11 and 8, so we
add the column

(
10
3

)
to p and relabel everything ≥ 3 on the second line up one unit

to get

p′ =

(
13 11 10 8 4 4 1
4 7 3 6 1 5 2

)
.

The 8 in F is a little trickier, but it has to go before the 8 in p′ and not after.
Otherwise we would have(

13 11 10 8 8 4 4 1
4 8 3 7 5 1 6 2

)
which is not standard since there is a fall in the fourth position on the second line
but not the first. Instead we insert the column

(
8
4

)
and relabel the second line to
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get

p′′ =

(
13 11 10 8 8 4 4 1
5 8 3 4 7 1 6 2

)
.

Finally the 6 must go between the last 8 and the first 4, so we insert the column(
6
6

)
and relabel the second line to get

P =

(
13 11 10 8 8 6 4 4 1
5 9 3 4 8 6 1 7 2

)
.

Suppose then that we start with a partition λ with at most n parts, say λ =
9+7+7+5+5+4+3+3+1, and a permutation π of {1, 2, . . . , n}, say 593486172.
Assemble these into a labeled partition L and write down the running totals of the
falls of π. In this example this gives:

L =
9 7 7 5 5 4 3 3 1
5 9 3 4 8 6 1 7 2
4 4 3 3 3 2 1 1 0

By adding the third line to the first we create a standard labeled partition P , in
this case

P =

(
13 11 10 8 8 6 4 4 1
5 9 3 4 8 6 1 7 2

)
.

Let the partition on the first line be μ, and let |μ| be the number that μ is a partition
of. Using the same notation for λ, we have |μ| = |λ| + majπ by MacMahon’s
argument. Now run the Chen/Xu bijection described above on P . As above, in
this example this produces the fixed partition 10 + 8 + 6 and the standard labeled
partition

p =

(
13 11 8 4 4 1
3 6 5 1 4 2

)
with the broken partition B on the first line and the reduced derangement δ on the
second. Finally, put in the running totals of the falls of the reduced derangement
to get

13 11 8 4 4 1
3 6 5 1 4 2
3 3 2 1 1 0

and subtract the third line from the first to get a labeled partition �, in this case

� =

(
10 8 6 3 3 1
3 6 5 1 4 2

)
with the deranged partition D on the first line and the reduced derangement δ on
the second. Since |μ| = |B|+ |F | and |B| = |D|+maj δ, we have

(9.5.4) |λ|+majπ = |μ| = |F |+ |D|+maj δ,

where λ is a partition with at most n parts, π is a permutation of {1, 2, . . . , n}, |F |
is a partition with at most n−k parts, D is a partition with at most k parts, and δ
is a derangement of {1, 2, . . . , k} for some k with 0 ≤ k ≤ n. Making the beginning
and end of (9.5.4) an exponent of q and summing over all the partitions with at
most n parts and permutations of {1, 2, . . . , n} whose reduced derangement is δ, we
get ∑

π∈Π(n;δ)

qmaj π

(q; q)n
=

qmaj δ

(q; q)k(q; q)n−k
.
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This proves Wachs’s theorem.
The rest of the argument is due to Wachs. If we sum (9.5.3) over all the

derangements of {1, 2, . . . , k} we get∑
δ∈Δk

∑
π∈Π(n;δ)

qmajπ =

(
n

k

)
q

Dk(q).

If we further sum this from k = 0 to n, then every permutation of {1, 2, . . . , n} will
be counted exactly once on the left side, so by (9.1.1) we get

(9.5.5) n!q =
n∑

k=0

(
n

k

)
q

Dk(q).

Now recall (2.3.6) from section 2.3, which says

An =

n∑
k=0

(
n

k

)
q

Bk ⇐⇒ Bn =

n∑
k=0

(
n

k

)
q

(−1)kq(
k
2)An−k

after changing k to n − k in the formula for Bn. Taking Bk = Dk(q) here, (9.5.5)
implies that An−k = (n− k)!q and we have

Dn(q) =

n∑
k=0

(
n

k

)
q

(−1)kq(
k
2)(n− k)!q = n!q

n∑
k=0

(−1)kq(
k
2)

k!q
.

This proves Gessel’s theorem.
Let’s collect some values of Dn(q)/n!q. The first few are

D0(q)

0!q
= 1,

D1(q)

1!q
= 0,

D2(q)

2!q
=

q

1 + q
,

D3(q)

3!q
=

q

1 + q + q2

and the next two are

D4(q)

4!q
=

q + q2 + q4

1 + 2q + 2q2 + 2q3 + q4
,

D5(q)

5!q
=

q + 2q2 + 2q3 + 2q4 + 2q5 + 2q6

1 + 3q + 5q2 + 6q3 + 6q4 + 5q5 + 3q6 + q7
.

It is not too illuminating to write out more values of Dn(q)/n!q, but the values of
Dn/n! are interesting:

n Dn

n! which is

4 3
8 .375

5 11
30 .366666666666666 . . .

6 53
144 .368055555555555 . . .

7 103
280 .367857142857142 . . .

So the answer to the probability question is that the size of the class is almost
irrelevant. As long as there are at least five students, the probability that none gets
their own paper back is converging rapidly to a number slightly below .368. It is a
little bigger for even class sizes than for odd.
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If we recall the q-exponential function

Eq(x) =

∞∑
k=0

q(
k
2)xk

k!q

from section 3.8, we see that Dn(q)
n!q

is a partial sum of the series for Eq(−1) =

(1− q; q)∞. It follows that

Dn

n!
→ 1

e
≈ .3678794411714423215955238 . . . .

Exercises

1. Show that
∞∑

n=0

Dn(q)
xn

n!q
=

Eq(−x)

1− x
.

2. For the partition λ = 12 + 9 + 8 + 8 + 8 + 6 + 5 + 3 and the permutation
π = 73142658, find:

(i) the corresponding standard labeled partition P ;

(ii) the corresponding fixed partition F , and the standard labeled partition
p containing the broken partition B and the reduced derangement δ;

(iii) the corresponding labeled partition � containing δ and the deranged
partition D. Also check (9.5.4) for these objects.

3. In the previous problem you should find F = 10 + 7 + 3, δ = 53124, and
D = 14+ 11+ 10+ 9+ 5. Reconstruct the original partition λ and permutation
π from these.

4. Make up your own examples like the previous two problems and solve them.

5. Explain why the highest degree term of Dn(q) is the same as that of n!q if n is
even, but not if n is odd.

6. The derangement problem is often solved as an application of the inclusion-
exclusion principle. We outline the argument in this problem and the next.

(i) Let |S| denote the size of the set S. Explain why

|A ∪B| = |A|+ |B| − |A ∩B|.

(ii) Explain why

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

(iii) The generalization of (i) and (ii) to n sets is

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An| − all 2-way intersections

+ all 3-way intersections−+ · · ·+ (−1)n−1|A1 ∩ · · · ∩An|.(9.5.6)

To prove this, assume x is in all of these sets. (Otherwise we could drop out any
terms on the right side that x is not in, which gives the same expression with a
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smaller n.) The left side of (9.5.6) counts x once, so we have to show that the
right side does too. Explain why the right side counts x

n∑
k=1

(
n

k

)
(−1)k−1

times, and show that this sum equals 1 if n ≥ 1.

7. To apply (9.5.6) to the derangement problem, let Aj be the set of all permuta-
tions of n papers in which the jth student does get her own paper back.

(i) Explain why |Aj | = (n− 1)!, and more generally why every k-way inter-
section of these sets has size (n− k)!.

(ii) Explain why (i) and (9.5.6) imply that the number of permutations of
the papers in which at least one student gets her own paper back is

n!
n∑

k=1

(−1)k−1

k!
,

and why this implies

Dn = n!
n∑

k=0

(−1)k

k!
.

8. Show that

(9.5.7) Dn+1(q) = [n]q (Dn(q) + qnDn−1(q)) for n ≥ 1.

This factor of [n]q explains the simplification in the expressions for Dn(q)/n!q
given above. Note: I do not know how to derive (9.5.7) directly from (9.5.1).
If one could do that, it would lead to an alternative proof of Gessel’s theorem
that I will outline in the next several problems.

9. Use (9.5.7) to show that

(9.5.8) Dn(q)− [n]qDn−1(q) = −qn−1 (Dn−1(q)− [n− 1]qDn−2(q)) for n ≥ 2.

10. Use (9.5.8) to show that

(9.5.9) Dn(q) = [n]qDn−1(q) + (−1)nq(
n
2) for n ≥ 1.

11. Use (9.5.9) to prove Gessel’s theorem.

12. It is not difficult to prove the q = 1 case of (9.5.7) combinatorially. Consider
all the derangements of {1, 2, . . . , n + 1}, and let k be the number in the last
position (i.e., the paper that the last student gets), where we know k must be
one of {1, 2, . . . , n} since we have a derangement. There are two cases.

(i) In case 1, n+ 1 is not in the kth position. Then erase n+ 1 and move k
where n+ 1 was. Explain why this gives a derangement of {1, 2, . . . , n}.

(ii) In case 2, n + 1 is in the kth position, so the procedure of case 1 does
not give a derangement. In this case, erase both n + 1 and k, move everything
after the kth position forward one unit, and relabel every number > k down one
unit. Explain why this gives a derangement of {1, 2, . . . , n− 1}. (The argument
is similar to the proof that the reduced derangement is a derangement.)

(iii) Explain why (i) and (ii) imply the q = 1 case of (9.5.7). Unfortunately
this argument does not track the major index well.
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9.6. q-Eulerian numbers and polynomials

In sections 2.4 and 3.8 we looked at the q-derivative of a function f(x), which
we defined by

(9.6.1) Dq f(x) =
f(x)− f(qx)

x(1− q)
,

where this means the ordinary derivative if q = 1. In this section we only need its
simplest property:

(9.6.2) Dq x
n =

xn − xnqn

x(1− q)
=

xn(1− qn)

x(1− q)
= [n]qx

n−1.

We’ll be doing the q-analogue of what we were doing in problems 5–11 in section
9.1. If we calculate the q-derivative of both sides of the equation

(9.6.3)
∞∑

n=0

xn =
1

1− x
,

assuming that |x| < 1, we get

∞∑
n=0

[n]qx
n−1 =

1
1−x − 1

1−xq

x(1− q)

=
1− xq − (1− x)

x(1− q)(1− x)(1− xq)

=
x− xq

x(1− q)(1− x)(1− xq)

=
1

(1− x)(1− xq)
.

Multiplying both sides by x this becomes

(9.6.4)
∞∑

n=0

[n]qx
n =

x

(1− x)(1− xq)
.

Next, take the q-derivative of both sides of (9.6.4):

∞∑
n=0

[n]2q x
n−1 =

x
(1−x)(1−xq) −

xq
(1−xq)(1−xq2)

x(1− q)

=
1− xq2 − q(1− x)

(1− q)(1− x)(1− xq)(1− xq2)

=
1− q + xq(1− q)

(1− q)(1− x)(1− xq)(1− xq2)

=
1 + xq

(1− x)(1− xq)(1− xq2)
.

Multiplying both sides by x this becomes

(9.6.5)

∞∑
n=0

[n]2q x
n =

x(1 + xq)

(1− x)(1− xq)(1− xq2)
.
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We play this game one more time. Take the q-derivative of both sides of (9.6.5):

∞∑
n=0

[n]3q x
n−1 =

x(1+xq)
(1−x)(1−xq)(1−xq2) −

xq(1+xq2)
(1−xq)(1−xq2)(1−xq3)

x(1− q)

=
(1 + xq)(1− xq3)− q(1 + xq2)(1− x)

(1− q)(1− x)(1− xq)(1− xq2)(1− xq3)

=
1− q + 2xq(1− q2) + x2q3(1− q)

(1− q)(1− x)(1− xq)(1− xq2)(1− xq3)

=
1 + 2[2]qxq + x2q3

(1− x)(1− xq)(1− xq2)(1− xq3)
,

and multiplying through by x gives

(9.6.6)
∞∑

n=0

[n]3q x
n =

x(1 + 2[2]qxq + x2q3)

(1− x)(1− xq)(1− xq2)(1− xq3)
.

Let’s look again at the permutations of {1, 2, 3} and count falls and major index:

permutation falls maj permutation falls maj
123 0 0 231 1 2
132 1 2 312 1 1
213 1 1 321 2 3

If we write down xfalls qmaj for each of these and add the results, we get

x0q0 + x1q2 + x1q1 + x1q2 + x1q1 + x2q3 = 1 + 2xq + 2xq2 + x2q3

= 1 + 2[2]qxq + x2q3,

the same polynomial that occurs in the numerator of (9.6.6). This is the result we
would like to prove in general. For nonnegative integer values of k, define functions
Ek(x, q) by

(9.6.7)
Ek(x, q)

(x; q)k+1
=

∞∑
n=0

[n]kq x
n.

Then (9.6.3)–(9.6.6) say that E0(x, q) = 1, E1(x, q) = x, E2(x, q) = x(1 + xq), and
E3(x, q) = x(1 + 2[2]qxq + x2q3). Ek(x, q) is called a q-Eulerian polynomial. In

general it will have degree k in x and leading coefficient q(
k
2), and it will have x as

a factor if k ≥ 1. The latter follows from the fact that [0]kq = 0 if k > 0, so that the
n = 0 term in the sum in (9.6.7) is zero unless k = 0.

We will prove the former by obtaining a recurrence relation for the functions
Ek(x, q), and this comes via the same type of calculation that we were doing above,
namely taking the q-derivative of both sides of (9.6.7) and then multiplying through
by x. Applying Dq to (9.6.7) gives

∞∑
n=0

[n]k+1
q xn−1 =

Ek(x,q)
(x;q)k+1

− Ek(xq,q)
(xq;q)k+1

x(1− q)

=

(
1− xqk+1

)
Ek(x, q)− (1− x)Ek(xq, q)

x(1− q)(x; q)k+2
,
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and multiplying through by x we get
∞∑

n=0

[n]k+1
q xn =

(
1− xqk+1

)
Ek(x, q)− (1− x)Ek(xq, q)

(1− q)(x; q)k+2
.

But according to (9.6.7)

∞∑
n=0

[n]k+1
q xn =

Ek+1(x, q)

(x; q)k+2
,

so we must have

Ek+1(x, q)

(x; q)k+2
=

(
1− xqk+1

)
Ek(x, q)− (1− x)Ek(xq, q)

(1− q)(x; q)k+2
,

which implies that

(9.6.8) Ek+1(x, q) =

(
1− xqk+1

)
Ek(x, q)− (1− x)Ek(xq, q)

1− q
.

This allows us to prove by induction that

Ek(x, q) = xk q(
k
2) + terms of lower degree in x.

We have seen this already when k ≤ 3. Assuming it is true for k, (9.6.8) implies
that

Ek+1(x, q) =
1

1− q

{
−xqk+1 · xk q(

k
2) + x · (xq)k q(

k
2)
}
+ lower terms

=
1

1− q

{
xk+1 qk q(

k
2) (1− q)

}
+ terms of lower degree in x

= xk+1 q(
k+1
2 ) + terms of lower degree in x.

Let’s use (9.6.8) to work out E4(x, q). Taking k = 3 there, we have

E4(x, q) =

(
1− xq4

)
E3(x, q)− (1− x)E3(xq, q)

1− q

=

(
1− xq4

)
x
(
1 + 2[2]qxq + x2q3

)
− (1− x)xq

(
1 + 2[2]qxq

2 + x2q5
)

1− q

=
x

1− q

{
1− q + xq(1− q3) + 2[2]qxq(1− q2)

+ x2q3(1− q3) + 2[2]qx
2q3(1− q2) + x3q6(1− q)

}

= x
{
1 + [3]qxq + 2[2]2qxq + [3]qx

2q3 + 2[2]2qx
2q3 + x3q6

}
= x

{
1 + xq

(
[3]q + 2[2]2q

)
+ x2q3

(
[3]q + 2[2]2q

)
+ x3q6

}
.

Let’s look at the permutations of {1, 2, 3, 4} with one fall. There are 11 such
permutations, and we look at the major index of each:

permutation qmaj permutation qmaj

1243 q3 2134 q1

1324 q2 2314 q2

1342 q3 2341 q3

1423 q2 2413 q2

3124 q1 3412 q2

4123 q1
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When we add all this up we get

3q + 5q2 + 3q3, which equals q
(
[3]q + 2[2]2q

)
,

which was the coefficient of x2 in E4(x, q).
If we look at the permutations of {1, 2, 3, 4} with two falls, and compute the

major index of each, we get the following table:

permutation qmaj permutation qmaj

4123 q3 3421 q5

4231 q4 3241 q4

4213 q3 3214 q3

4132 q4 3142 q4

2431 q5 2143 q4

1432 q5

Adding all this up we get

3q3 + 5q4 + 3q5, which equals q3
(
[3]q + 2[2]2q

)
,

which was the coefficient of x3 in E4(x, q). There is also a certain symmetry in
the results of these two calculations, but we hold off on discussing it until we’ve
stated the theorem we’re after, which was found by Carlitz. For k ≥ 1, define the
coefficients of Ek(x, q) as follows:

(9.6.9) Ek(x, q) = x

k−1∑
j=0

εk,j(q) x
j .

In addition, define εk,j(q) = 0 whenever k and j are not integers such that 0 ≤ j ≤
k − 1, with the single exception that ε0,0(q) is defined to be 1. The εk,j(q)’s are
called q-Eulerian numbers, although they are actually polynomials in q. Our main
goal in this section is to prove

Theorem 74 (Carlitz’s theorem). If k ≥ 1 and F (k, j) is the set of all permu-
tations of {1, 2, . . . , k} with exactly j falls, then

εk,j(q) =
∑

π∈F (k,j)

qmajπ.

We verified this above for ε4,1(q) = 3q+5q2+3q3 and ε4,2(q) = 3q3+5q4+3q5.
Note that ε4,1(q) and ε4,2(q) are practically the same polynomial, except that ε4,2(q)
has a larger power of q as a common factor. We will return to this point after we
prove Carlitz’s theorem. There is another symmetry property of the εk,j ’s: like the
q-factorials and the q-binomial coefficients, they are reciprocal polynomials—recall
that this means that the coefficients of each one come in the same order (3-5-3 in
the above examples) when read backwards as when read forwards. Before we try
to prove this, let’s do a calculation which will allow us to generate more examples
of it. Substituting (9.6.9) into (9.6.8) we get

x

k∑
j=0

εk+1,j(q) x
j

=
1

1− q

⎧⎨
⎩(1− xqk+1

)
x

k−1∑
j=0

εk,j(q) x
j − (1− x)xq

k−1∑
j=0

εk,j(q) x
j qj

⎫⎬
⎭ .
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We cancel the factors of x and distribute the sums:

k∑
j=0

εk+1,j(q) x
j =

1

1− q

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k−1∑
j=0

εk,j(q) x
j − qk+1

k−1∑
j=0

εk,j(q) x
j+1

−
k−1∑
j=0

εk,j(q) x
j qj+1 +

k−1∑
j=0

εk,j(q) x
j+1 qj+1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Rearrange this to

k∑
j=0

εk+1,j(q) x
j =

k−1∑
j=0

εk,j(q) x
j 1− qj+1

1− q
+

k−1∑
j=0

εk,j(q) x
j+1 qj+1 − qk+1

1− q
.

Now replace j + 1 by j in the last sum, leaving the others alone:

k∑
j=0

εk+1,j(q) x
j =

k−1∑
j=0

εk,j(q) x
j 1− qj+1

1− q
+

k∑
j=1

εk,j−1(q) x
j qj

1− qk−j+1

1− q
.

Both sums on the right can go over the range 0 ≤ j ≤ k, since this just adds a zero
term to each of them. Thus we have

k∑
j=0

εk+1,j(q) x
j =

k∑
j=0

εk,j(q) x
j [j + 1]q +

k∑
j=0

εk,j−1(q) x
j qj [k − j + 1]q,

and equating coefficients of xj gives us the recurrence

(9.6.10) εk+1,j(q) = [j + 1]q εk,j(q) + [k − j + 1]q q
j εk,j−1(q),

which holds for all nonnegative integers k and j.
If we take k = 4 and j = 2 in (9.6.10), it says

ε5,2(q) = [3]q ε4,2(q) + [3]q q
2 ε4,1(q),

and using the expressions for ε4,2(q) and ε4,1(q) that we worked out above, this
becomes

ε5,2(q) = [3]q
{
3q5 + 5q4 + 3q3 + q2(3q3 + 5q2 + 3q)

}
= 2[3]qq

3
(
3q2 + 5q + 3

)
= 6q7 + 16q6 + 22q5 + 16q4 + 6q3

and again the coefficients are the same forwards as backwards. To prove that this
happens in general, we start by replacing q by 1

q in (9.6.7).

[n]q =
1− qn

1− q
becomes

1− 1
qn

1− 1
q

qn

qn
=

qn − 1

q − 1
q1−n = q1−n[n]q,

and (
x;

1

q

)
k+1

= (1− x)

(
1− x

q

)(
1− x

q2

)
· · ·
(
1− x

qk

)
=

(
x

qk
; q

)
k+1

so (9.6.7) becomes

(9.6.11)
Ek

(
x, 1

q

)
(

x
qk
; q
)
k+1

=

∞∑
n=0

[n]kq q
k−kn xn = qk

∞∑
n=0

[n]kq

(
x

qk

)n

.
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On the other hand, if we replace x by x
qk

in (9.6.7) then we get

Ek

(
x
qk
, q
)

(
x
qk
; q
)
k+1

=
∞∑

n=0

[n]kq

(
x

qk

)n

,

and comparing this with (9.6.11) there results

Ek

(
x,

1

q

)
= qk Ek

(
x

qk
, q

)
.

Now plug (9.6.9) into this to get

x

k−1∑
j=0

εk,j(
1
q ) x

j = qk
(

x

qk

) k−1∑
j=0

εk,j(q)

(
x

qk

)j

.

The factors outside the summation signs cancel, and equating coefficients of xj and
rearranging we get

(9.6.12) qkj εk,j(
1
q ) = εk,j(q).

With (9.6.12) in hand we can see that εk,j(q) is a reciprocal polynomial. Chang-
ing q to 1

q in a polynomial in q makes all the exponents negative, and also the highest

power becomes the lowest power and vice versa. To make the result back into a
polynomial in q again we need to multiply by a power of q large enough to make
all the exponents nonnegative. Thus what we have to argue is that kj is the right
power of q to multiply by. If a permutation of {1, 2, . . . , k} has j falls, then the
smallest major index it can have is

1 + 2 + 3 + · · ·+ j =

(
j + 1

2

)
,

and the largest major index it can have is

(k − 1) + (k − 2) + (k − 3) + · · ·+ (k − j) = kj −
(
j + 1

2

)
.

Therefore εk,j(q) has the form

Aqkj−(
j+1
2 ) + · · ·+Ω q(

j+1
2 )

for some coefficients A and Ω. Changing q to 1
q and then multiplying by qkj this

becomes

qkj
(
Aq(

j+1
2 )−kj + · · ·+Ω q−(

j+1
2 )
)
= Aq(

j+1
2 ) + · · ·+ Ω qkj−(

j+1
2 ).

If this equals εk,j(q), then we must have A = Ω, and similarly for all the other
coefficients.

Now we use (9.6.10) to prove Carlitz’s theorem by induction on k. We verified
it above for ε4,1(q) and ε4,2(q), and it is easy to see that it holds generally for k = 4,
since ε4,0(q) = 1 and ε4,3(q) = q6: there is only one permutation of {1, 2, 3, 4} with
0 falls, namely 1234, and it has 0 major index; there is also only one permutation
of {1, 2, 3, 4} with 3 falls, namely 4321, and it has major index 6. Thus Carlitz’s
theorem holds if k = 4. Assuming it holds for k, (9.6.10) will allow us to conclude
that it also holds for k + 1.

The argument is much the same as the one in section 9.1. We can get a
permutation of {1, 2, . . . , k, k + 1} with j falls from a permutation of {1, 2, . . . , k}
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with j falls by putting k+1 at the end, or by inserting k+1 in the middle of a fall.
Putting k + 1 at the end adds nothing to the major index. Inserting it in the last
fall just pushes the last fall out one place, so it adds 1 to the major index. Inserting
it in the next-to-last fall pushes the last two falls out one place, hence adds 2 to
the major index, and so on. Inserting k + 1 in the first fall pushes all j falls out
one place, so adds j to the major index.

Let F (k+ 1, j) denote the set of permutations of {1, 2, . . . , k+ 1} with exactly
j falls, as in Carlitz’s theorem. Divide these permutations into two classes: class j
consists of those that still have j falls when k+1 is erased, and class j − 1 consists
of those that lose one fall when we erase k + 1. Then

(9.6.13)
∑

π∈F (k+1,j)

qmajπ =
∑

π∈class j

qmajπ +
∑

π∈class j − 1

qmajπ,

and the argument above shows that
(9.6.14)∑

π∈class j

qmajπ =
(
1 + q + q2 + · · ·+ qj

) ∑
π∈F (k,j)

qmajπ = [j + 1]q
∑

π∈F (k,j)

qmajπ.

We can also get a permutation of {1, 2, . . . , k, k + 1} with j falls from a per-
mutation of {1, 2, . . . , k} with j − 1 falls by putting k + 1 at the beginning, or by
inserting k + 1 in the middle of a rise. Putting k + 1 at the beginning adds 1 fall
with major index 1, and pushes the other j − 1 falls out one place, so it adds j in
total to the major index.

Suppose the first rise is in the ith position. Then it is preceded by i − 1 falls
and succeeded by j − i falls. If we insert k + 1 in this rise (i.e., in the (i + 1)th

position), then we create a fall there, and we move the last j − i falls out 1 place;
so we add (i+1)+ (j − i) = j +1 to the major index. More generally, suppose the
tth rise is in the mth position. Then it is preceded by t − 1 rises and m − t falls,
and succeeded by j− 1− (m− t) falls. If we insert k+1 in this rise, then we create
a new fall in the (m+ 1)th position, and we move the last j − 1−m+ t falls out 1
place; so we add (m+ 1) + (j − 1−m+ t) = j + t to the major index. Since there
are k − j falls, the largest value of t is k − j, and therefore∑

π∈class j − 1

qmajπ =
(
qj + qj+1 + qj+2 + · · ·+ qk

) ∑
π∈F (k,j−1)

qmajπ

= qj
(
1 + q + q2 + · · ·+ qk−j

) ∑
π∈F (k,j−1)

qmajπ

= qj [k − j + 1]q
∑

π∈F (k,j−1)

qmajπ.

Using this and (9.6.14) in (9.6.13), we have∑
π∈F (k+1,j)

qmajπ =
∑

π∈class j

qmajπ +
∑

π∈class j − 1

qmajπ

= [j + 1]q
∑

π∈F (k,j)

qmajπ + qj [k − j + 1]q
∑

π∈F (k,j−1)

qmajπ.

Therefore∑
π∈F (k+1,j)

qmajπ = [j + 1]q εk,j(q) + [k − j + 1]q q
j εk,j−1(q) = εk+1,j(q),
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where the first equality is by the induction assumption and the second equality is
(9.6.10). This proves Carlitz’s theorem.

We conclude this section by using Carlitz’s theorem to pin down the relationship
between εk,j(q) and εk,k−j−1(q). We have done several examples in which these
came out to be the same polynomial except for some power of q. Suppose we have
a permutation π of {1, 2, . . . , k} with j falls, and suppose the positions of the falls
are f1, f2, . . . , fj . Then the major index of π is f1+f2+· · ·+fj , which we abbreviate
as m. If we read π backwards (i.e., if π was 18356742 we now read it as 24765381),
then it has j rises, which are at k−fj , . . . , k−f2, k−f1, so the sum of the positions
of the rises is kj −m. But if we add up the positions of the rises and the falls in a
permutation of {1, 2, . . . , k} we get

1 + 2 + 3 + · · ·+ (k − 1) =

(
k

2

)
.

Hence π when read backwards has k−j−1 falls and its major index is
(
k
2

)
−kj+m.

This proves that

εk,k−j−1(q) = q(
k
2)−kjεk,j(q).

Exercises

1. The material of this section allows us to find q-analogues of facts like

∞∑
n=1

n2

2n
= 6 and

∞∑
n=1

n2

3n
=

3

2
.

Show that
∞∑

n=1

[n]2

[2]nq
=

(1 + q)(1 + 2q)

q(1 + q − q2)
and

∞∑
n=1

[n]2

[3]nq
=

[3]q
q(1 + q2)

.

9.7. q-trigonometric functions

There are two obvious ways to define q-analogues of the sine and cosine. One
is by power series analogous to those for the ordinary sine and cosine:

sinq x =
∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!q
,(9.7.1)

cosq x =
∞∑

n=0

(−1)n
x2n

(2n)!q
.(9.7.2)

For the other, recall the very important relation between the ordinary exponential
function ex and the sine and cosine,

eix = cosx+ i sin x,
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where i2 = −1 as usual. If we have read section 3.8 on the q-exponential functions
eq(x) and Eq(x), it is logical to define q-sines and cosines by

eq(ix) = cosq x+ i sinq x,(9.7.3)

Eq(ix) = Cosq x+ i Sinq x.(9.7.4)

For a real x, these are perfectly good definitions, because then cosq x is the real
part of eq(ix) and sinq x is the imaginary part, and similarly for the capital letter
functions. Fortunately, it is easy to see that (9.7.1) and (9.7.2) are defining the
same functions as (9.7.3). Since the powers of i are

i = i = i5 = i9 = i13 = · · · = i4k+1,

i2 = −1 = i6 = i10 = i14 = · · · = i4k+2,

i3 = −i = i7 = i11 = i15 = · · · = i4k+3,

i4 = 1 = i0 = i8 = i12 = · · · = i4k,

we have

eq(ix) =
∞∑

n=0

inxn

n!q

=

∞∑
k=0

i4kx4k

(4k)!q
+

∞∑
k=0

i4k+1x4k+1

(4k + 1)!q
+

∞∑
k=0

i4k+2x4k+2

(4k + 2)!q
+

∞∑
k=0

i4k+3x4k+3

(4k + 3)!q

=
∞∑
k=0

x4k

(4k)!q
+ i

∞∑
k=0

x4k+1

(4k + 1)!q
−

∞∑
k=0

x4k+2

(4k + 2)!q
− i

∞∑
k=0

x4k+3

(4k + 3)!q

=
∞∑
k=0

(−1)k
x2k

(2k)!q
+ i

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!q

= cosq x+ i sinq x,

which shows the equivalence. By a similar calculation, the q-trig functions defined
by (9.7.4) have the series expansions

Sinq x =

∞∑
n=0

(−1)n q(
2n+1

2 ) x2n+1

(2n+ 1)!q
,(9.7.5)

Cosq x =

∞∑
n=0

(−1)n q(
2n
2 ) x2n

(2n)!q
.(9.7.6)

We can also see right away that it is worth having both sets of functions. We know
from section 3.8 that

eq(ix)Eq(−ix) = 1,

so it follows that

1 = (cosq x+ i sinq x) (Cosq x− i Sinq x)

= cosq xCosq x+ sinq x Sinq x+ i (sinq xCosq x− cosq x Sinq x) .

Assuming x is real, we can equate real and imaginary parts of this to get

(9.7.7) cosq xCosq x+ sinq x Sinq x = 1

and
sinq xCosq x = cosq x Sinq x,
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which it is more interesting to write as

(9.7.8)
sinq x

cosq x
=

Sinq x

Cosq x
.

(9.7.7) is the best q-analogue of cos2 x+ sin2 x = 1 that we are going to be able to
get (although not the only one), and we will come back to (9.7.8) presently.

It is easy to see from (9.7.1) and (9.7.2) that

Dq sinq x = cosq x,(9.7.9)

Dq cosq x = − sinq x.(9.7.10)

The capital letter functions are only slightly harder. We have

Dq Sinq x =
∞∑

n=0

(−1)n q(
2n+1

2 ) x2n

(2n)!q

=

∞∑
n=0

(−1)n q(
2n
2 )+2n x2n

(2n)!q

=

∞∑
n=0

(−1)n q(
2n
2 ) (qx)

2n

(2n)!q

and it follows that

(9.7.11) Dq Sinq x = Cosq qx.

Similarly

(9.7.12) Dq Cosq x = − Sinq qx.

If we define q-analogues of the secant and tangent in the most obvious way, by

secq x =
1

cosq x
,(9.7.13)

tanq x =
sinq x

cosq x
(9.7.14)

and

Secq x =
1

Cosq x
,(9.7.15)

Tanq x =
Sinq x

Cosq x
,(9.7.16)

then we already have an interesting theorem from (9.7.8):

(9.7.17) tanq x = Tanq x.

The remaining calculations in this section are mostly routine applications of
the q-product or q-quotient or q-reciprocal rules from the problems in section 2.4,
and many of them will be left as exercises. If we apply the q-reciprocal rule (2.4.13)
to (9.7.13) and (9.7.15) we get

Dq secq x = secq qx tanq x,(9.7.18)

Dq Secq x = Secq xTanq qx.(9.7.19)
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Because tanq x = Tanq x and we have two superficially different q-quotient rules,
we can expect as many as four different-looking results for the q-derivative of the
q-tangent. If we apply (2.4.15) to (9.7.14) we get

Dq tanq x = Dq
sinq x

cosq x
=

cosq qx cosq x− sinq qx(− sinq x)

cosq x cosq qx

= 1 + tanq x tanq qx.(9.7.20)

Similarly, if we apply (2.4.14) to (9.7.16) we get

(9.7.21) Dq Tanq x = 1 + Tanq xTanq qx,

which is clearly the same as (9.7.20). If instead we use (2.4.14) with (9.7.14) we
have

(9.7.22) Dq tanq x =
cos2q x+ sin2q x

cosq x cosq qx
,

which is not as nice as (9.7.20) since we don’t have a nice identity for cos2q x+sin2q x,
a point we will return to presently. Actually, this calculation and (9.7.20) imply
the curious fact

(9.7.23) cos2q x+ sin2q x = cosq x cosq qx+ sinq x sinq qx.

Similarly, if we use (2.4.15) with (9.7.16) we get

(9.7.24) Dq Tanq x =
Cos2q qx+ Sin2q qx

Cosq xCosq qx
,

which together with (9.7.21) implies

(9.7.25) Cos2q qx+ Sin2q qx = Cosq xCosq qx+ Sinq x Sinq qx.

Let’s see what, if anything, we can say about cos2q x+ sin2q x. We have

cos2q x+ sin2q x =

∞∑
j=0

(−1)j
x2j

(2j)!q

∞∑
k=0

(−1)k
x2k

(2k)!q

+
∞∑
j=0

(−1)j
x2j+1

(2j + 1)!q

∞∑
k=1

(−1)k−1 x2k−1

(2k − 1)!q

=

∞∑
n=0

∑
j+k=n

(−1)n
x2n

(2n)!q

(
2n

2j

)
q

+

∞∑
n=1

∑
j+k=n

(−1)n−1 x2n

(2n)!q

(
2n

2j + 1

)
q

=
∞∑

n=0

(−1)n
x2n

(2n)!q

n∑
j=0

[(
2n

2j

)
q

−
(

2n

2j + 1

)
q

]

=

∞∑
n=0

(−1)n
x2n

(2n)!q

2n∑
j=0

(−1)j
(
2n

j

)
q

.
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A similar calculation shows that

(9.7.26) cosq x cosq qx+ sinq x sinq qx =
∞∑

n=0

(−1)n
x2n

(2n)!q

2n∑
j=0

(−q)j
(
2n

j

)
q

.

These series do simplify a little, but not all the way to 1. Recall Gauss’s identity
(2.5.2) and its companion (2.5.3) from section 2.5:

2n∑
j=0

(−1)j
(
2n

j

)
q

= (q; q2)n =
2n∑
j=0

(−q)j
(
2n

j

)
q

.

This means that

cos2q x+ sin2q x = cosq x cosq qx+ sinq x sinq qx =
∞∑

n=0

(−1)n(q; q2)n
x2n

(2n)!q
.

This does reduce to cos2 x+sin2 x = 1 when q = 1, since (q; q2)n has the factor 1−q
for all n ≥ 1, but as a q-analogue of cos2 x+ sin2 x = 1 it is a little disappointing.

Exercises

1. Use (3.8.7) and (9.7.4) to derive (9.7.5) and (9.7.6).

2. Prove (9.7.9) and (9.7.10).

3. Prove (9.7.12).

4. Prove (9.7.18) and (9.7.19).

5. Use the q-product rule (2.4.11) with secq x cosq x = 1 and Secq xCosq x = 1 to
give alternate proofs of (9.7.18) and (9.7.19).

6. Use the q-product rule (2.4.12) with secq x cosq x = 1 and Secq xCosq x = 1 to
give alternate proofs of (9.7.18) and (9.7.19).

7. Use the q-product rule (2.4.12) with tanq x cosq x = sinq x to give an alternate
proof of (9.7.20).

8. Verify (9.7.21), (9.7.22), and (9.7.24).

9. Verify (9.7.26).

10. Another possible definition of sinq x and cosq x is (9.7.9) and (9.7.10) together
with sinq 0 = 0 and cosq 0 = 1. Use (2.4.9) to show that this implies (9.7.1) and
(9.7.2).

11. Similarly to problem 10, we could have defined Sinq x and Cosq x by (9.7.11)
and (9.7.12) together with Sinq 0 = 0 and Cosq 0 = 1. Use (2.4.9) and (2.4.5) to
show that this implies (9.7.5) and (9.7.6).

12. Show that 1 + tan2q x = secq x Secq x. (Don’t forget (9.7.17).)

13. Obvious definitions of the q-cotangent and q-cosecant are

cotq x =
1

tanq x
=

cosq x

sinq x
and cscq x =

1

sinq x
,

and similarly for the capital letter functions. Note that cotq x = Cotq x, since
tanq x = Tanq x. Use the q-reciprocal rule (2.4.13) to show that

Dq cscq x = − cotq x cscq qx and Dq Cscq x = −Cotq qxCscq x
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9.8. COMBINATORICS OF q-TANGENTS AND SECANTS 343

and that

Dq cotq x = −1− cotq x cotq qx = −1− Cotq xCotq qx = Dq Cotq x.

14. Show that 1 + cot2q x = cscq xCscq x.

9.8. Combinatorics of q-tangents and secants

In combinatorics the fundamental trigonometric functions are not the sine and
cosine, but the tangent and secant. We begin this section with a brief sketch of this
theory, so the reader will know what we are attempting a q-analogue of. Start by
defining the Euler numbers En by

secx+ tanx =
∞∑

n=0

En
xn

n!
,

where the series converges if |x| < π
2 , because that’s the distance from the origin

to the closest singularity of the function. Since secx is even and tanx is odd, this
decouples into

secx =
∞∑

n=0

E2n
x2n

(2n)!
and tanx =

∞∑
n=0

E2n+1
x2n+1

(2n+ 1)!
.

There are various relations between tangent and secant that one can use to find
recurrences for En. For example, if f(x) = secx + tanx, then f ′(x) = f(x) secx

and 2f ′(x) = 1 + (f(x))
2
and f ′′(x) = f(x)f ′(x), and these respectively imply

En+1 =

�n
2 �∑

k=0

(
n

2k

)
E2k En−2k,

2En+1 =

n∑
k=0

(
n

k

)
Ek En−k if n ≥ 1,

En+2 =

n∑
k=0

(
n

k

)
Ek+1En−k,

where E0 = 1, since sec 0 = 1 and tan 0 = 0. Any of these can be used to calculate
the Euler numbers recursively. The first fourteen of them are:

E0 = 1 = E1 = E2 E3 = 2 E4 = 5 E5 = 16

E6 = 61 E7 = 272 E8 = 1385 E9 = 7936

E10 = 50521 E11 = 353792

E12 = 2702765 E13 = 22368256

Starting with E2, the last digits repeat the pattern 1, 2, 5, 6. The Euler numbers
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count what are called up-down permutations. Let’s look at all the permutations
of {1, 2, 3}:

permutation description
123 up, up
132 up, down
213 down, up
231 up, down
312 down, up
321 down, down

We read the permutations from left to right, and write “up” whenever they increase,
and “down” whenever they decrease. In general, an up-down permutation will be
any permutation that alternately increases and decreases, starting with an increase,
and a down-up permutation will be the same thing only starting with a decrease,
where 1 and the empty permutation are considered both up-down and down-up.
Thus the up-down permutations of {1, 2, 3} are 132 and 231, and the down-up
permutations are 213 and 312. Let’s classify the permutations of {1, 2, 3, 4}:

up-down down-up up down uud udd duu ddu
1324 2143 1234 4321 1243 1432 2134 3214
1423 3142 1342 2431 3124 4213
2314 3241 2341 3421 4123 4312
2413 4132
3412 4231

where uud stands for “up-up-down” and so forth. As expected, since E4 = 5,
we found five up-down permutations of length 4. We also found five down-up
permutations of length 4, which could lead us to suspect that En also counts these.
It is not too hard to see that the number of down-up permutations of a given length
equals the number of up-down ones, and we will come back to this shortly.

Once one has proved these facts about the Euler numbers, one can define cosine
as the reciprocal of secant, and sine as tangent divided by secant, and derive the
power series for sine and cosine by the inclusion-exclusion principle, but this is as
far as we will develop the theory in the q = 1 case.

Since cosq x and Cosq x are even functions, and sinq x and Sinq x are odd func-
tions, secq x and Secq x will be even functions, and tanq x and Tanq x will be odd
functions. Define coefficients En(q) and εn(q) by

secq x+ tanq x =

∞∑
n=0

En(q)
xn

n!q
,(9.8.1)

Secq x+Tanq x =

∞∑
n=0

εn(q)
xn

n!q
.(9.8.2)
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Then, because of the even/oddness, these decouple into

secq x =

∞∑
n=0

E2n(q)
x2n

(2n)!q
,(9.8.3)

tanq x =

∞∑
n=0

E2n+1(q)
x2n+1

(2n+ 1)!q
,(9.8.4)

Secq x =

∞∑
n=0

ε2n(q)
x2n

(2n)!q
,(9.8.5)

Tanq x =

∞∑
n=0

ε2n+1(q)
x2n+1

(2n+ 1)!q
.(9.8.6)

Now (9.7.18) and (9.7.20) imply that

(9.8.7) Dq secq x+ tanq x = 1 + tanq x (secq qx+ tanq qx)

and (9.7.19) and (9.7.21) that

(9.8.8) Dq Secq x+Tanq x = 1 + Tanq qx (Secq x+Tanq x) .

With the above definitions in terms of infinite series, (9.8.7) translates into

∞∑
n=0

En+1(q)
xn

n!q
= 1 +

⎛
⎝ ∞∑

j=0

E2j+1(q)
x2j+1

(2j + 1)!q

⎞
⎠( ∞∑

k=0

Ek(q)
xkqk

k!q

)

= 1 +

∞∑
n=1

xn

n!q

∑
2j+1+k=n

(
n

2j + 1

)
q

E2j+1(q) q
k Ek(q)

which implies that
(9.8.9)

En+1(q) =
∑
j

(
n

2j + 1

)
q

qn−2j−1E2j+1(q)En−2j−1(q) if n ≥ 1; E1(q) = 1.

In a similar way, (9.8.8) implies

(9.8.10) εn+1(q) =
∑
j

(
n

2j + 1

)
q

q2j+1ε2j+1(q)εn−2j−1(q) if n ≥ 1; ε1(q) = 1.

We also have secq 0 = 1 = Secq 0 and tanq 0 = 0 = Tanq 0, since cosq 0 = 1 = Cosq 0
and sinq 0 = 0 = Sinq 0, and therefore E0(q) = 1 = ε0(q). Then we can use
(9.8.9) and (9.8.9) to calculate the first several values of En(q) and εn(q). We
find E2(q) = 1, ε2(q) = q, E3(q) = q + q2 = ε3(q), E4(q) = q + 2q2 + q3 + q4,
ε4(q) = q2 + q3 + 2q4 + q5. As a sample calculation we work out E5(q):

E5(q) =
1∑

j=0

(
4

2j + 1

)
q

q3−2jE2j+1(q)E3−2j(q)

=

(
4

1

)
q

qE1(q)E3(q) +

(
4

3

)
q

q3E3(q)E1(q)

= [4]qq(1 + q2)(1)(q + q2) = [4]qq
2(1 + q)(1 + q2) = ([4]qq)

2

= q2 + 2q3 + 3q4 + 4q5 + 3q6 + 2q7 + q8.
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ε5(q) also equals this.

We know that in the q = 1 case, En(q) and εn(q) would count up-down permuta-
tions, and the presence of q could lead us to look at inversions in these permutations.
Let’s look at the up-down permutations of {1, 2, 3, 4}:

up-down permutation inversions non-inversions
1324 1 5
1423 2 4
2314 2 4
2413 3 3
3412 4 2

In the third column we have counted all the pairs of numbers that are not inverted,
which will be

(
4
2

)
= 6 minus the number of pairs that are inverted. Note that

the 1-2-2-3-4 pattern precisely matches E4(q) and the 2-3-4-4-5 pattern precisely
matches ε4(q). This suggests a theorem, but let’s make another table before we
state it. We know that En also counts down-up permutations, so let’s look at the
down-up permutations of {1, 2, 3, 4}:

down-up permutation inversions non-inversions
2143 2 4
3142 3 3
3241 4 2
4132 4 2
4231 5 1

This time the second column matches ε4(q), and the third column matches E4(q).
Of course, this is no accident, since if we read an up-down permutation of even
length backwards, we get a down-up permutation, and any pair of numbers that is
an inversion in one direction is a non-inversion in the other direction.

However, if we read an up-down permutation of odd length backwards, we don’t
get a down-up permutation but rather a different up-down permutation, unless
the length is 1. (Among other things, this implies that the number of up-down
permutations of odd length greater than 1 is always even.) In this case, when we
have up-down permutations of some odd length 2n + 1, we can convert them into
down-up permutations of the same length by subtracting every element from 2n+2.
For example, subtracting every element of the up-down permutation 25341 from
6 gives the down-up permutation 41325. Moreover, this converts every inversion
in the up-down permutation to a non-inversion in the down-up permutation, and
conversely; because if a < b, then −a > −b, and so anything minus a is bigger than
the same thing minus b.

This subtraction procedure will work in both the even length and odd length
cases, so we can conclude from this that there are just as many up-down permuta-
tions of length n with k non-inversions as there are down-up permutations of length
n with k inversions, and conversely.

The result we have been heading toward is

Theorem 75 (The Stanley–Gessel theorem). Let Un and Dn denote the sets
of up-down permutations and down-up permutations of length n, respectively, and

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.
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let inv π denote the number of inversions in the permutation π. Then

En(q) =
∑
π∈Un

qinvπ,(a)

εn(q) =
∑

π∈Dn

qinvπ.(b)

Let’s make one more table before we try to prove this. We’ll list each up-down
permutation of {1, 2, 3, 4, 5}, its number of inversions, the corresponding down-up
permutation of {1, 2, 3, 4, 5} that comes from the subtraction procedure, and its
number of inversions (which will be the same as the number of non-inversions in
the original up-down permutation):

up-down permutation inversions down-up permutation inversions
13254 2 53412 8
14253 3 52413 7
14352 4 52314 6
15243 4 51423 6
15342 5 51324 5
23154 3 43512 7
24153 4 42513 6
24351 5 42315 5
25143 5 41523 5
25341 6 41325 4
34152 5 32514 5
34251 6 32415 4
35142 6 31524 4
35241 7 31425 3
45132 7 21534 3
45231 8 21435 2

Our proof of the Stanley–Gessel theorem will be by induction on n, using the
recurrence relations (9.8.9) and (9.8.10), which we repeat here for easy reference:

En+1(q) =
∑
j

(
n

2j + 1

)
q

qn−2j−1E2j+1(q)En−2j−1(q) if n ≥ 1; E1(q) = 1,

εn+1(q) =
∑
j

(
n

2j + 1

)
q

q2j+1ε2j+1(q)εn−2j−1(q) if n ≥ 1; ε1(q) = 1.

In the above tables we verified the theorem in the cases n = 4, 5, and it is easily
checked for smaller values of n. Suppose we have an up-down permutation of length
n + 1. Then the element n + 1 will be in an even position, so some odd number
2j + 1 of elements will precede it, and n− 2j − 1 elements will follow it. Note that
none of the elements that precede n+1 will be inverted with it, but that all of the
ones that follow it will be. Therefore there will be four kinds of inversions in the
sequence:

(1) Inversions between two elements that precede n + 1. By the induction
hypothesis, E2j+1(q) counts these.

(2) Inversions between two elements that succeed n+ 1. Again by induction
these are counted by En−2j−1(q).
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(3) Inversions between one element that precedes n+1, and one element that
succeeds it. These are between-set inversions with a first set of size 2j+1
and a second set of size n− 2j − 1, so

(
n

2j+1

)
q
counts these.

(4) Inversions between n + 1 and an element that succeeds it. Every pair of
this type is an inversion, so qn−2j−1 counts these.

Thus all the possible inversions are accounted for by the various terms in the re-
currence (9.8.9), and so (a) is true by induction.

The proof of (b) is very similar. Now we are looking at down-up permutations
of length n+ 1. The element 1 must be in an even position, and it will be inverted
with each of the odd number 2j + 1 of elements that precede it. The other details
of the proof are exactly the same as before, and so (b) is true by induction.

Corollary 2. E2j+1(q) = ε2j+1(q) for all nonnegative integers j, and there-
fore tanq x = Tanq x.

We already knew the second part of the corollary, but the first part affords a
combinatorial proof of it. We have seen that if we read an up-down permutation of
odd length backwards, we get another up-down permutation where all the inversions
have been converted to non-inversions. If we now perform the subtraction procedure
on this, it will become a down-up permutation, and all the non-inversions will
be converted back to inversions. Thus we arrive at a down-up permutation that
has the same length and the same number of inversions as the original up-down
permutation. Since this procedure is easily reversed, we get a bijection between
up-down and down-up permutations of odd length that preserves the number of
inversions. This implies the corollary.

If we try this with up-down permutations of even length, it doesn’t quite work—
rather it brings us to another up-down permutation of even length with the same
number of inversions, which may or may not be the same as the one you started
with. For example, 1324, 2413 and 3412 get mapped to themselves, while 1423 and
2314 are mapped to each other. The fact that the epsilons count non-inversions in
up-down permutations while the E’s count inversions can be translated into

(9.8.11) εn(q) = q(
n
2)En(q

−1)

since the number of non-inversions in a sequence of length n equals
(
n
2

)
minus the

number of inversions. This implies

Theorem 76. The capital letter q-trigonometric functions are obtained from
the small letter ones by replacing q by q−1. In other words,

Sinq−1 x = sinq x,

Cosq−1 x = cosq x,

Secq−1 x = secq x,

Tanq−1 x = tanq x.

In effect, we already knew this from the corresponding fact Eq−1(x) = eq(x)
for the q-exponential functions, but it is more interesting to have a combinatorial
explanation of it. One can also give a direct analytic proof similar to the exponential
function case, using (9.8.11) to do the q-tangent and q-secant.
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9.9. Bibliographical Notes

The major index was introduced by MacMahon in [166]. As noted above, he
actually called it the greater index there and in his book [168]. His argument of
section 9.4 can be found in both, but the version in [166] is clearer. (Andrews’s
version [15] is better than either of them.) Foata’s proof of MacMahon’s theorem
is in [104], [107] and [105]. Our argument in the special case of the q-factorial is
similar to that in [236].

The problème des rencontres dates back to the first edition of [171] in 1708. The
solution via inclusion-exclusion is due to Nicolas Bernoulli and Abraham de Moivre,
independently. The early history has been discussed by Todhunter in sections 160–
162 of [238]. Gessel’s theorem comes from the manuscript [121], which was cited
by Wachs in [242], from whence her eponymous theorem comes. The proof of Chen
and Xu is in [77]. For a q-analogue of the inclusion-exclusion principle see [76].

The first half-dozen Eulerian polynomials are on p. 373 of Euler’s differential
calculus book [98]. The combinatorial interpretation in the text was apparently
not known before a paper of Carlitz and Riordan in 1953 [66], but was well known
after Riordan’s classic book [195] appeared in 1958. Carlitz [65] did the q-case in
1975.

The Stanley–Gessel theorem is one of my favorites. It is due to Ira Gessel
[120] and Richard Stanley [223], and is generalized in section 3.19 of [224]. The
two volumes [224] and [225] are the current state of the art in combinatorics, and,
as Gian-Carlo Rota wrote in the Foreword to [225], “I find it impossible to predict
when [they] may be superseded.” Now that a second edition of [224] has appeared,
this may be even more true today than when Rota said it in 1998. They are an
alternative source for many of the topics presented here, and many other beautiful
results within q-analysis and without.
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CHAPTER 10

The Rogers–Ramanujan Identities I: Schur

10.1. Schur’s extension of Franklin’s argument

We met Georg Frobenius in section 5.2. His name may be familiar in connection
with series solutions of differential equations, but he was also one of the people who
changed “algebra” into “abstract algebra” in the late 1800s and early 1900s. His
best Ph.D. student was Issai Schur, another excellent algebraist who also made
important contributions to several other areas of mathematics before being forced
out of his professorship in Berlin when the Nazis came to power. He was, in
particular, an expert on infinite series, which (without meaning to offend anybody)
would be quite unusual for an algebraist today (as, for that matter, would expertise
on differential equations).

Schur’s greatest contribution to q-analysis was his independent discovery and
combinatorial proof of the so-called Rogers–Ramanujan identities. Schur adapted
Franklin’s proof of the pentagonal number theorem to show the following identities:

(q; q)∞

∞∑
k=0

qk
2

(q; q)k
=

∞∑
m=−∞

(−1)mq
m(5m−1)

2 ,(10.1.1)

(q; q)∞

∞∑
k=0

qk
2+k

(q; q)k
=

∞∑
m=−∞

(−1)mq
m(5m+3)

2 .(10.1.2)

These become more interesting if we use the Jacobi triple product on the right
sides, and we will return to this point after we prove them. For now we will focus
on (10.1.1); only one tiny modification is needed to adapt the argument to (10.1.2).
As in Franklin’s argument, the factor (q; q)∞ generates partitions with distinct
parts, where a partition gets a + sign if it has an even number of parts and a −
sign if it has an odd number. We know that 1/(q; q)k generates partitions with at
most k parts, and that 1+3+5+ · · ·+(2k− 1) = k2. Suppose we have a partition
with at most k parts. First, make it have exactly k “parts” by adding a sufficient
number of zeros. Then add 1 to the smallest part, 3 to the next smallest, 5 to
the next smallest, and so on, finally adding 2k − 1 to the largest. This creates a
partition with k nonzero parts, which are not only distinct but differ by at least
two from one another, and these are the partitions generated by the sum on the left
side of (10.1.1). Thus the whole left side of (10.1.1) generates ordered pairs (S1, S2)
of partitions, where S1 has distinct parts, S2 has parts that differ by at least two,
and a pair counts positively if S1 has an even number of parts and negatively if
it has an odd number of parts. As with Franklin’s proof, we want an argument
that cancels most of these pairs, leaving only a few to be counted by the right side
of (10.1.1). Let |S| denote the number that S is a partition of, so, for example,
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352 10. ROGERS–RAMANUJAN–SCHUR IDENTITIES

|7 + 6 + 3 + 2 + 2| = 20. Schur’s algorithm changes (S1, S2) into a new pair of
partitions (S′

1, S
′
2) such that S′

1 has distinct parts just as S1 does, S′
2 has gaps of

at least 2 between parts as S2 does, |S′
1| + |S′

2| = |S1| + |S2|, S′
1 has either one

more part than S1 or one less, and such that the same algorithm changes (S′
1, S

′
2)

back into (S1, S2). If we could do this for every possible pair (S1, S2), then the
right side of (10.1.1) would be zero. What will happen instead, as with Franklin’s
near-bijection, is that there will be a class of pairs to which the algorithm does not
apply, and these will give the sum on the right side of (10.1.1).

Let the largest parts of S1 and S2 be P1 and P2 respectively. There are two
easy cases and several trickier ones. Case 1(a) is when P1 ≥ P2 + 2. Then we
remove P1 from S1 and make it the new largest part of S2. In other words, S′

1 is
S1 with P1 deleted, and S′

2 is S2 with P1 added, so S′
2 still has gaps ≥ 2 between

its parts. Case 1(b) occurs when P1 < P2, when we make P2 the new largest part
in S1. Clearly these two cases satisfy all the above conditions, and they undo each
other.

In all the remaining cases we have either P1 = P2 or P1 = P2 + 1. For these
pairs (S1, S2) we put in the Durfee square and the Franklin triangle for S1, and
what we’ll call a Schur shape for S2. Let’s write down an example at this point:
let S1 be 9+ 7+ 6+ 3+ 1 (distinct parts) and let S2 be 9+ 7+4+1 (gaps at least
2 between parts). The Ferrers diagrams are

S1 :

∗ ∗ ∗ • • • ◦ ◦ ◦
∗ ∗ ∗ • • ◦ ◦
∗ ∗ ∗ • ◦ ◦
� � �
�

and

S2 :

• • • • • • • ◦ ◦
• • • • • ◦ ◦
• • • ◦
•

respectively, and you can see the Schur shape in S2. Since we know this type of
partition has gaps of at least 2 between parts, we can always take 1 out of the
smallest part, 3 out of the next smallest, 5 out of the next smallest, and so on,
and that’s the Schur shape (in this case; the only change in the proof of (10.1.2)
is a different Schur shape). Taking these three figures out of (S1, S2) leaves three
smaller partitions, which we will call π1, π2, and π3. π1 is the stuff below the Durfee
square in S1, so in this case π1 is 3 + 1, the �’s in S1. π2 is the ◦’s to the right of
the Franklin triangle in S1, but read by columns (or diagonals). In other words, in
this example π2 is the conjugate of 3 + 2 + 2, which is 3 + 3 + 1. Similarly, π3 is
the ◦’s to the right of the Schur shape in S2 but again read by columns, so in this
case π3 is the conjugate of 2 + 2 + 1, which is 3 + 2.

Denote the smallest part in π1, π2, π3 by p1, p2, p3 respectively. It could
happen that one or more of π1, π2, and π3 is empty. In fact, the case where the
bijection fails is when all three are empty. We deal below with the cases in which
at least one of the three is not empty, and if πi is empty, then we set pi = ∞. In
the above example we have p1 = 1 = p2 and p3 = 2.

Case 2(a) has P1 = P2, p1 ≤ p2, and p1 ≤ p3, as in the example above. In
this case we make p1 the new smallest part in π2. Then S′

2 = S2, S
′
1 has one part
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10.1. SCHUR’S EXTENSION OF FRANKLIN’S ARGUMENT 353

less than S1 had, and its largest part is one greater than that of S1, so this will
satisfy all of our conditions once we describe how to reverse it. In our example S′

1

is 10 + 7 + 6 + 2.
Case 2(b) has P1 = P2+1, p2 ≤ p3, and p2 < p1, which is precisely the situation

we find ourselves in if we apply the algorithm to Case 2(a). In this case we make
p2 the new smallest part in π1, which clearly undoes Case 2(a).

Case 3(a) has P1 = P2, p3 < p1, and p3 ≤ p2. An example of this case is
S1 = 8 + 6 + 5 + 3 + 2 and S2 = 8 + 5 + 3. The Ferrers diagrams with the shapes
put in are:

S1 :

∗ ∗ ∗ • • • ◦ ◦
∗ ∗ ∗ • • ◦
∗ ∗ ∗ • ◦
� � �
� �

and

S2 :
• • • • • ◦ ◦ ◦
• • • ◦ ◦
• ◦ ◦

We have π1 = 3+2, so p1 = 2. The ◦’s in S1 are 2+ 1+ 1, and π2 is the conjugate
of this, namely 3+1, so p2 = 1. The ◦’s in S2 are 3+2+2, and π3 is the conjugate
of this, which is 3 + 3 + 1, so p3 = 1. Note that we can’t move p1 in this example,
because it’s too big. We also can’t move p2 to π1 or to π3, because this would put
us in Case 1(b).

In this case we make p3 the new smallest part in π1. Since this cuts one off of
P2, we have P1 = P2+1 in (S′

1, S
′
2), and S′

1 has one more part than S1 had. It still
has distinct parts, and S′

2 still has gaps at least 2 between parts. In the example
π1 changes to 3 + 2 + 1 and π2 doesn’t change, so S′

1 = 8 + 6 + 5 + 3 + 2 + 1; we
took the new 1 in S′

1 off the end of P2, so S′
2 = 7 + 5 + 3. To undo Case 3(a) we

have Case 3(b), when P1 = P2+1, p1 ≤ p2, and p1 ≤ p3. Here we make p1 the new
smallest part in π3, which makes P1 = P2. We couldn’t make p1 the new smallest
part in π2, because this would put us in Case 1(a).

The trickiest cases are the remaining two. In Case 4(a) we have P1 = P2,
p2 < p1, and p2 < p3. An example of this case has S1 = 10 + 6 + 5 + 4 + 2 and
S2 = 10+8+3. Here are the Ferrers diagrams with the appropriate shapes put in:

S1 :

∗ ∗ ∗ ∗ • • • ◦ ◦ ◦
∗ ∗ ∗ ∗ • •
∗ ∗ ∗ ∗ •
∗ ∗ ∗ ∗
� �

and

S2 :
• • • • • ◦ ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦ ◦ ◦
• ◦ ◦

We have π1 = 2 = p1. π2 is the conjugate of 3, which is 1 + 1 + 1, so p2 = 1, and
π3 is the conjugate of 5 + 5 + 2, which is 3 + 3 + 2 + 2 + 2, so p3 = 2. Moving
p2 to either π1 or π3 right away wouldn’t work, because this would put us in Case
1(b). Instead we start to form (S′

1, S
′
2) by putting P2 above P1. Clearly we have

to do something more, because P1 and P2 have the same size and S′
1 must have
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354 10. ROGERS–RAMANUJAN–SCHUR IDENTITIES

distinct parts, so then we make p2 the new smallest part in π3. In our example we
temporarily have S′

1 = 10+ 10 + 6+ 5+ 4+ 2 and S′
2 = 8+ 3, but after moving p2

to π3 we ultimately have S′
1 = 10+9+6+5+4+2 and S′

2 = 9+3. In this example
we have P1 = P2+1 after applying the algorithm, but it is not so obvious that this
always happens. But if p3 > p2, then p3 ≥ 2, so the largest part in π3 is at least 2,
which means that the second largest part in S2 must have been P2 − 2; note that
this is even true if π3 is empty. This part has 1 added to it when p2 comes over,
so it now has size P2 − 1, whereas the new P1 in S′

1 is the old P2, so we do indeed
always have P1 = P2 + 1 after Case 4(a).

To undo Case 4(a) we have Case 4(b), in which P1 = P2 + 1, p3 < p1, and
p3 < p2. Here we first put P1 above P2 and then make p3 the smallest part in the
new π2. This evidently undoes Case 4(a).

We leave it to the reader to check that these 8 cases cover every possible sit-
uation except when either P1 = P2 or P1 = P2 + 1, and in addition π1, π2, π3 are
all empty, meaning that (S1, S2) consist of a Durfee square, a Franklin triangle, a
Schur shape, and nothing else. Note that all the parts in a Schur shape (in the case
of (10.1.1)) are odd.

Suppose the Durfee square has side m. Then the Franklin triangle could have
side lengthm orm−1. If the length ism−1, then P1 = 2m−1, and since P2 must be
odd we have P2 = 2m−1 also. Then the Durfee square contributes m2, the Franklin
triangle 1+2+ · · ·+(m−1) =

(
m
2

)
, and the Schur shape 1+3+ · · ·+(2m−1) = m2,

so in total we have m2 +
(
m
2

)
+m2 = m(5m−1)

2 , and this counts positively if m is
even and negatively if m is odd.

The other possibility is that the Franklin triangle also has side m. Then P1 =
m+m = 2m, but since P2 must be odd we must have P2 = 2m− 1, which means
that the Schur shape is the same as before. The only difference in this case is
that the Franklin triangle is now 1 + 2 + · · · + m =

(
m+1
2

)
, so in total we have

m2 +
(
m+1
2

)
+m2 = m(5m+1)

2 , counted positively if m is even and negatively if m
is odd. Thus Schur’s argument proves that

(q; q)∞

∞∑
k=0

qk
2

(q; q)k
= 1 +

∞∑
m=1

(−1)m
(
q

m(5m−1)
2 + q

m(5m+1)
2

)
,

where the 1 counts the case where S1 and S2 are both empty. But

m(5m+ 1)

2
=

−m (5(−m)− 1)

2
,

so this is equivalent to

(q; q)∞

∞∑
k=0

qk
2

(q; q)k
=

∞∑
m=−∞

(−1)mq
m(5m−1)

2 ,

which is (10.1.1).

As we mentioned earlier, this theorem becomes much more interesting if we
apply the Jacobi triple product

(10.1.3) (z; q)∞( qz ; q)∞(q; q)∞ =
∞∑

m=−∞
(−1)mq

m(m−1)
2 zm
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10.1. SCHUR’S EXTENSION OF FRANKLIN’S ARGUMENT 355

to it. Replacing q by q5 and then taking z = −q2, (10.1.1) becomes

(q; q)∞

∞∑
k=0

qk
2

(q; q)k
= (q2; q5)∞(q3; q5)∞(q5; q5)∞,

or

(10.1.4)

∞∑
k=0

qk
2

(q; q)k
=

(q2; q5)∞(q3; q5)∞(q5; q5)∞
(q; q)∞

.

Finally, this simplifies (exercise) to

Theorem 77 (The first Rogers–Ramanujan identity). If |q| < 1, then

(10.1.5)

∞∑
k=0

qk
2

(q; q)k
=

1

(q; q5)∞ (q4; q5)∞
.

We will say more about Rogers and Ramanujan in Chapter 11. Schur was the
third person to discover the Rogers–Ramanujan identities. He gave two proofs,
which are not only completely unlike the proofs of Rogers and Ramanujan, but
also completely unlike each other. He was the second person to interpret them in
terms of partitions, after MacMahon, and the first person to do both.

We know that the left side of (10.1.5) generates partitions with gaps of at least
2 between parts. The right side is

1

(1− q)(1− q6)(1− q11) · · · (1− q4)(1− q9)(1− q14) · · ·
which generates partitions where the allowed part sizes are 1, 6, 11, 16, . . . and
4, 9, 14, 19, . . . . In other words, the parts are either 1 more or 1 less than a multiple
of 5; i.e., congruent to 1 or 4 mod 5 (or to ±1 mod 5). So the theorem says that
these two types of partitions are equinumerous, a remarkable fact. We explore this
further in Chapter 11.

To prove (10.1.2) by Schur’s method, the only change on the left side is that
the exponent of q in the sum is now k2 + k = 2 + 4 + 6 + · · · + 2k instead of
k2 = 1 + 3 + 5 + · · ·+ (2k − 1), so the new Schur shape looks like

• • • • • • • • • •
• • • • • • • •
• • • • • •
• • • •
• •

Otherwise the proof goes through word for word with all the same cases. The
partitions that don’t cancel again have a Durfee square, a Franklin triangle, a
Schur shape, and nothing else, and either P1 = P2 or P1 = P2 + 1. If the Durfee
square has side m and the Franklin triangle does too, then P1 = 2m, which must
equal P2 since P2 is even. Then the square contributes m2, the triangle

(
m+1
2

)
, and

the Schur shape m2 +m, and this adds up to m(5m+3)
2 , counted positively if m is

even and negatively if m is odd. If the square has side m and the triangle has side
m − 1, then P1 = 2m − 1. This can’t equal P2 since P2 is even, so we must have
P1 = P2 + 1, which implies P2 = 2m − 2. Then the square contributes m2, the
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356 10. ROGERS–RAMANUJAN–SCHUR IDENTITIES

triangle
(
m
2

)
, and the Schur shape 2 + 4 + · · ·+ (2m− 2) = m2 −m, and this adds

up to m(5m−3)
2 . Therefore we have

(q; q)∞

∞∑
k=0

qk
2+k

(q; q)k
= 1 +

∞∑
m=1

(−1)m
(
1 + q

m(5m+3)
2 + q

m(5m−3)
2

)
(10.1.6)

=
∞∑

m=−∞
(−1)mq

m(5m+3)
2 ,(10.1.7)

which is (10.1.1). Again, this gets better if we apply Jacobi’s triple product to the
sum on the right. To match (10.1.3) we replace q by q5 and then set z = −q4. If
we also divide through by (q; q)∞ then we get

(10.1.8)

∞∑
k=0

qk
2+k

(q; q)k
=

(q; q5)∞(q4; q5)∞(q5; q5)∞
(q; q)∞

.

Simplifying this gives

Theorem 78 (The second Rogers–Ramanujan identity). If |q| < 1, then

(10.1.9)

∞∑
k=0

qk
2+k

(q; q)k
=

1

(q2; q5)∞ (q3; q5)∞
.

By the same reasoning as before, the right side of (10.1.9) generates partitions
where the allowable parts are 2, 7, 12, 17, . . . and 3, 8, 13, 18, . . . , i.e., congruent to
2 or 3 mod 5 (or to ±2 mod 5). On the left side of (12.2.7) the partitions look
like the Schur shape 2 + 4 + 6+ . . . with a partition to the right, so again we have
gaps of at least 2 between parts, and now (since we add 2 to the smallest part,
4 to the next smallest, and so on), we also don’t have any 1’s. Thus the second
Rogers–Ramanujan identity says that these types of partitions are equinumerous.

Exercises

1. Check that cases 2(a), 3(a), and 4(a) cover every possibility with P1 = P2, except
p1 = p2 = p3 = ∞ (i.e., π1, π2, π3 all empty), and that no more than one of
them applies at any given time.

2. Check that cases 2(b), 3(b), and 4(b) cover every possibility with P1 = P2 + 1,
except p1 = p2 = p3 = ∞ (i.e., π1, π2, π3 all empty), and that no more than one
of them applies at any given time.

3. Explain why (10.1.4) simplifies to (10.1.5) and (10.1.8) simplifies to (10.1.9).

4. Apply Schur’s algorithm to the case S1 = 9 + 8 + 5 + 4 + 3, S2 = 9 + 7 + 5 + 2.

5. Apply Schur’s algorithm to the case S1 = 9 + 7 + 4 + 3, S2 = 8 + 6 + 3 + 1.

6. Apply Schur’s algorithm to the case S1 = 10+9+6+5+3, S2 = 10+8+5+2.

7. Apply Schur’s algorithm to the case S1 = 10+9+8+7+6+3+2, S2 = 9+5+2.

8. In the example S1 = 9 + 7 + 6 + 3 + 1, S2 = 9 + 7 + 4 + 1 that was used to
illustrate Case 2(a), why can’t we move p2 to π1? Why can’t we move p2 to π3?
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10.2. The Bressoud–Chapman proof

Schur’s second proof of the Rogers–Ramanujan identities is in the same spirit
as some of the arguments in Chapter 2: he proves a finite identity by recurrence
and induction, and then takes a limit. The simplest known proof of this type is
a fairly recent one by Robin Chapman that modifies an earlier argument of David
Bressoud. It relies heavily on the fundamental recurrences(

m+ 1

k

)
q

=

(
m

k − 1

)
q

+ qk
(
m

k

)
q

(10.2.1)

=

(
m

k

)
q

+ qm−k+1

(
m

k − 1

)
q

.(10.2.2)

We define four sets of polynomials:

bn(q) =

n∑
j=0

(
n

j

)
q

qj
2

, Bn(q) =
∑
j

(−1)jq
j(5j+1)

2

(
2n

n+ 2j

)
q

,(10.2.3)

cn(q) =

n∑
j=0

(
n

j

)
q

qj
2+j , Cn(q) =

∑
j

(−1)jq
j(5j−3)

2

(
2n+ 1

n+ 2j

)
q

.(10.2.4)

In the expressions for Bn(q) and Cn(q) the sums are over all integer values of
j; i.e., from j = −∞ to ∞, but there are only finitely many nonzero terms, so
they really are polynomials. For Bn(q), we have

(
2n

n+2j

)
q
= 0 unless n + 2j and

2n− (n+ 2j) = n− 2j are both nonnegative. Thus we must have n ≥ 2j ≥ −n, or
n
2 ≥ j ≥ −n

2 , or finally, since j must be an integer,


n
2 � ≥ j ≥ �−n

2 �,

where 
x� and �x� are respectively the floor and ceiling of x: the former is the
greatest integer less than or equal to x, and the latter is the smallest integer greater
than or equal to x. So really we have

Bn(q) =

�n
2 �∑

j=�−n
2 
(−1)jq

j(5j+1)
2

(
2n

n+ 2j

)
q

,

but it is convenient to write the sums unrestrictedly and let the q-binomial coeffi-
cients do the restriction. Similarly,

Cn(q) =

�n+1
2 �∑

j=�−n
2 
(−1)jq

j(5j−3)
2

(
2n+ 1

n+ 2j

)
q

,

and the same comment applies to the first two lemmas below.
We first observe that when n = 0 we have b0(q) =

(
0
0

)
q
= 1 = c0(q) = B0(q)

and C0(q) =
(
1
0

)
q
= 1. Next we prove a sequence of lemmas.

Lemma 5. For any nonnegative integer n we have∑
j

(−1)jq
5
2 j(j+1)

(
2n

n+ 1 + 2j

)
q

= 0.
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To see this, denote the sum in the lemma by S and change j to −j − 1. Then
j(j + 1) becomes (−j − 1)(−j) = j(j + 1), and(

2n

n+ 1 + 2j

)
q

becomes

(
2n

n+ 1− 2j − 2

)
q

=

(
2n

n− 1− 2j

)
q

=

(
2n

n+ 1 + 2j

)
q

by the symmetry of the q-binomial coefficients. Since (−1)k = (−1)−k, we have

S =
∑
j

(−1)j+1q
5
2 j(j+1)

(
2n

n+ 1 + 2j

)
q

= −S,

so S = 0.

Lemma 6. For any nonnegative integer n we have

Bn(q) =
∑
j

(−1)jq
j(5j+1)

2

(
2n+ 1

n+ 1 + 2j

)
q

.

Applying (10.2.1) to this sum we get

∑
j

(−1)jq
j(5j+1)

2

(
2n+ 1

n+ 1 + 2j

)
q

=
∑
j

(−1)jq
j(5j+1)

2

(
2n

n+ 2j

)
q

+
∑
j

(−1)jq
j(5j+1)

2 +n+1+2j

(
2n

n+ 1 + 2j

)
q

= Bn(q) + qn+1
∑
j

(−1)jq
j(5j+1+4)

2

(
2n

n+ 1 + 2j

)
q

and the last sum is zero by Lemma 5.

Lemma 7. For any nonnegative integer n we have

Bn+1(q) = Bn(q) + qn+1Cn(q).

To see this, start with

Bn+1(q) =
∑
j

(−1)jq
j(5j+1)

2

(
2n+ 2

n+ 1 + 2j

)
q

and apply (10.2.2) to get

Bn+1(q) =
∑
j

(−1)jq
j(5j+1)

2

(
2n+ 1

n+ 1 + 2j

)
q

+
∑
j

(−1)jq
j(5j+1)

2 qn+1−2j

(
2n+ 1

n+ 2j

)
q

.

According to Lemma 6, the first sum on the right is Bn(q). Rewriting the other
one, we have

Bn+1(q) = Bn(q) + qn+1
∑
j

(−1)jq
j(5j+1−4)

2

(
2n+ 1

n+ 2j

)
q

and we see that the remaining sum is Cn(q).

Lemma 8. For any positive integer n we have

Cn(q)− qnBn(q) = (1− qn)Cn−1(q).
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This even holds for n = 0, because both sides are zero, as long as C−1(q) is not
infinite. (The most natural definition, if we need one, is C−1(q) = 0.) For positive
n we have

Cn(q)− qnBn(q) =
∑
j

(−1)j

[(
2n+ 1

n+ 2j

)
q

q
j(5j−3)

2 −
(

2n

n+ 2j

)
q

qn+
j(5j+1)

2

]

=
∑
j

(−1)jq
j(5j−3)

2

[(
2n+ 1

n+ 2j

)
q

− qn+2j

(
2n

n+ 2j

)
q

]
,

and by (10.2.1) this is just

Cn(q)− qnBn(q) =
∑
j

(−1)jq
j(5j−3)

2

(
2n

n+ 2j − 1

)
q

.

Now use (10.2.1) on this:

Cn(q)− qnBn(q) =
∑
j

(−1)jq
j(5j−3)

2

(
2n− 1

n+ 2j − 1

)
q

+
∑
j

(−1)jq
j(5j−3)

2 qn−2j+1

(
2n− 1

n+ 2j − 2

)
q

= Cn−1(q) + qn
∑
j

(−1)jq1+
j(5(j−1)−2)

2

(
2n− 1

n+ 2j − 2

)
q

.

Now change j − 1 to −j in the last sum, so that j becomes 1− j. This gives

Cn(q)− qnBn(q)− Cn−1(q) = qn
∑
j

(−1)−j−1q1+
(1−j)(−5j−2)

2

(
2n− 1

n− 2j

)
q

= −qn
∑
j

(−1)jq
2+(5j+2)(j−1)

2

(
2n− 1

n+ 2j − 1

)
q

= −qn
∑
j

(−1)jq
j(5j−3)

2

(
2n− 1

n+ 2j − 1

)
q

= −qnCn−1(q).

Lemmas 7 and 8 tell us what we need to know about Bn(q) and Cn(q). We also
need two (very) similar lemmas about bn(q) and cn(q), whose proofs we leave as
exercises.

Lemma 9. For any nonnegative integer n we have

bn+1(q) = bn(q) + qn+1cn(q).

Lemma 10. For any positive integer n we have

cn(q)− qnbn(q) = (1− qn)cn−1(q).

The similarity of Lemmas 7 and 9 and of Lemmas 8 and 10 is not a coincidence.
The result we have been leading up to is

Theorem 79. For any nonnegative integer n we have bn(q) = Bn(q) and
cn(q) = Cn(q).
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As we noted above, all four of these equal 1 when n = 0, so the theorem holds
in that case. The short version of the rest of the proof is that since the recurrences
are the same, the theorem must then hold for all n by induction.

Let’s do this a little more slowly (but not much more). Taking n = 0 in Lemmas
7 and 9 we see that B1(q) = 1 + 1 · q = 1 + q = b1(q). Taking n = 1 in Lemmas 8
and 10 we further see that C1(q) = q(1+q)+(1−q)(1) = 1+q2 = c1(q). Assuming
that the theorem holds for n, Lemmas 7 and 9 say

Bn+1(q) = Bn(q) + qn+1Cn(q) = bn(q) + qn+1cn(q) = bn+1(q),

so half of the theorem holds for n + 1. Replacing n by n+ 1 in Lemmas 8 and 10
we also have

Cn+1(q) = qn+1Bn+1(q) + (1− qn+1)Cn(q)

= qn+1bn+1(q) + (1− qn+1)cn(q) = cn+1(q),

so the other half of the theorem holds for n+ 1 too.
The point of this theorem is that it is a finite form of the Rogers–Ramanujan

identities. Assuming |q| < 1 and letting n → ∞ we have(
n

j

)
q

=
(qn+1−j ; q)j

(q; q)j
→ (0; q)j

(q; q)j
=

1

(q; q)j
,

so

b(q) := lim
n→∞

bn(q) = lim
n→∞

n∑
j=0

(
n

j

)
q

qj
2

=
∞∑
j=0

qj
2

(q; q)j

and

c(q) := lim
n→∞

cn(q) = lim
n→∞

n∑
j=0

(
n

j

)
q

qj
2+j =

∞∑
j=0

qj
2+j

(q; q)j
.

As n → ∞ we further have(
2n

n+ 2j

)
q

=
(qn+2j+1; q)n−2j

(q; q)n−2j
→ (0; q)∞

(q; q)∞
=

1

(q; q)∞

and similarly (
2n+ 1

n+ 2j

)
q

→ 1

(q; q)∞
,

so

B(q) := lim
n→∞

Bn(q) = lim
n→∞

�n
2 �∑

j=�−n
2 
(−1)jq

j(5j+1)
2

(
2n

n+ 2j

)
q

=
1

(q; q)∞

∞∑
j=−∞

(−1)jq
j(5j+1)

2

and

C(q) := lim
n→∞

Cn(q) = lim
n→∞

�n+1
2 �∑

j=�−n
2 
(−1)jq

j(5j−3)
2

(
2n+ 1

n+ 2j

)
q

=
1

(q; q)∞

∞∑
j=−∞

(−1)jq
j(5j−3)

2
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and we have b(q) = B(q) and c(q) = C(q); that is,

∞∑
j=0

qj
2

(q; q)j
=

1

(q; q)∞

∞∑
j=−∞

(−1)jq
j(5j+1)

2

and
∞∑
j=0

qj
2+j

(q; q)j
=

1

(q; q)∞

∞∑
j=−∞

(−1)jq
j(5j−3)

2 .

The Rogers–Ramanujan identities follow as in section 10.1 by using the Jacobi
triple product and simplifying. It is not difficult to justify the limiting process
using Tannery’s theorem.

Exercises

1. Use (10.2.2) to prove Lemma 9.

2. Prove Lemma 10. (You should be able to do this without (10.2.1) or (10.2.2).)

3. Justify taking the limit as n → ∞ above via Tannery’s theorem. You may
assume 0 < q < 1 for convenience.

4. Define rth order q-Fibonacci numbers by F
(r)
0 (q) = 1 = F

(r)
1 (q) and

(10.2.5) F
(r)
n+1(q) = F (r)

n (q) + qn+r F
(r)
n−1(q).

Show that

(10.2.6) F (r)
n (q) =

∑
k

(
n− k

k

)
q

qk
2+rk

by showing that this sum satisfies (10.2.5) and the initial conditions. The sum
goes from k = 0 to 
n

2 �, but since the q-binomial coefficient is 0 for other values
of k it is convenient to leave it unrestricted.

5. Schur’s second proof of the Rogers–Ramanujan identities used the polynomials

(10.2.7) Sn(a, q) :=
∑
k

(−1)k q
k(5k+1)

2 −2ak

(
n


n−5k
2 �+ a

)
q

.

As in section 10.2, the sum runs from k = −∞ to ∞, but these are still polyno-
mials since all but finitely many of the q-binomial coefficients will be zero. The
goal of this problem is to show that they too have a q-Fibonacci type recurrence,
namely

(10.2.8) Sn+1(a, q) = Sn(a, q) + qn Sn−1(a, q) if n ≥ 1.

(i) By setting n = 2m in (10.2.7) and considering even and odd k separately
(k = 2j and k = 2j + 1), show that

(10.2.9) S2m(a, q) =
∑
j

qj(10j+1−4a)

(
2m

m− 5j + a

)
q

−
∑
j

q(2j+1)(5j+3−2a)

(
2m

m− 5j − 3 + a

)
q

.
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(ii) Show similarly that

(10.2.10) S2m+1(a, q) =
∑
j

qj(10j+1−4a)

(
2m+ 1

m− 5j + a

)
q

−
∑
j

q(2j+1)(5j+3−2a)

(
2m+ 1

m− 5j − 2 + a

)
q

.

(iii) Use the q-Pascal recurrences(
n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

(10.2.11)

=

(
n

k

)
q

+ qn−k+1

(
n

k − 1

)
q

(10.2.12)

on (10.2.10) to show that

(10.2.13) S2m+1(a, q) = S2m(a, q) + qm−a+1 D2m(a, q),

where
(10.2.14)

D2m(a, q) :=
∑
j

q2j(5j+3−2a)

{(
2m

m− 5j + a− 1

)
q

−
(

2m

m− 5j + a− 2

)
q

}
.

(iv) Use (10.2.11) and (10.2.12) on (10.2.14) to show that

D2m(a, q) = qm+a−1 S2m−1(a, q),

and hence

(10.2.15) S2m+1(a, q) = S2m(a, q) + q2m S2m−1(a, q).

(v) Use (10.2.11) and (10.2.12) on (10.2.9) to show that

(10.2.16) S2m(a, q) = S2m−1(a, q) + qm+a D2m−1(a, q),

where
(10.2.17)

D2m−1(a, q) =
∑
k

q2k(5k−2−2a)

{(
2m− 1

m− 5k + a

)
q

−
(

2m− 1

m− 5k + a+ 1

)
q

}
.

(vi) Use (10.2.11) and (10.2.12) on (10.2.17) to show that

D2m−1(a, q) = qm−a−1 S2m−2(a, q),

and hence

S2m(a, q) = S2m−1(a, q) + q2m−1 S2m−2(a, q).

This completes the proof of (10.2.8).

6. Show that Sn(0, q) = F
(0)
n (q), by showing that they satisfy the same recurrence

and the same initial conditions.

7. Show that Sn(1, q) = F
(1)
n−1(q), where both sides are zero if n = 0, by showing

that they satisfy the same recurrence and the same initial conditions.

8. Show that the Rogers–Ramanujan identities follow by letting n → ∞ in the
previous two problems.
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9. Schur used not the q-Fibonacci numbers but the (n + 1) × (n + 1) tridiagonal
determinant

Dn+1(xq, xq
2, . . . , xqn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xq 0 . . . 0 0
−1 1 xq2 . . . 0 0

0 −1 1
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . 1 xqn

0 0 0 . . . −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where all the entries on the main diagonal are 1, all the ones on the diagonal
below it are −1, the one on the diagonal above it in the kth row is xqk, and
every other entry is zero.

(i) It is convenient to define D0 = 1. Show that D1 = 1 and D2(xq) = 1+xq.

(ii) By expanding on the last row and then the last column, or vice versa,
show that

Dn+1(xq, xq
2, . . . , xqn) = Dn(xq, xq

2, . . . , xqn−1) + xqn Dn−1(xq, xq
2, . . . , xqn−2).

(iii) Show that Sn(0, q) = Dn(q, q
2, . . . , qn−1), by showing that they satisfy

the same recurrence and the same initial conditions.

(iv) Show that Sn(1, q) = Dn−1(q
2, q3, . . . , qn−1), where both sides are zero

if n = 0, by showing that they satisfy the same recurrence and the same initial
conditions.

(v) Define Δ(x, q) = lim
n→∞

Dn+1(xq, xq
2, . . . , xqn). By expanding on the first

row and then the first column, or vice versa, show that

Δ(x, q) = Δ(xq, q) + xqΔ(xq2, q).

(vi) Set Δ(x, q) =
∞∑

n=0
sn(q)x

n. By substituting this in the recurrence in (v),

show that

sn(q) =
qn

2

(q; q)n
s0(q).

(vii) What is Δ(0, q)? Explain why this implies that

Δ(x, q) =

∞∑
n=0

qn
2

xn

(q; q)n
.

(viii) Explain how the Rogers–Ramanujan identities follow by letting n → ∞
in (iii) and (iv) and using (v) and (vii). This was Schur’s second proof.

10.3. The AKP and GIS identities

Recall the rth order q-Fibonacci numbers from problem 4 of the previous sec-
tion. If

(10.3.1) F (r)
n (q) =

∑
k

(
n− k

k

)
q

qk
2+rk,
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then F
(r)
0 (q) = 1 = F

(r)
1 (q) and

(10.3.2) F
(r)
n+1(q) = F (r)

n (q) + qn+r F
(r)
n−1(q),

and we also proved that

(10.3.3) lim
n→∞

F (r)
n (q) =

∞∑
k=0

qk
2+rk

(q; q)k
.

In this section we will establish a relationship between these numbers that is essen-
tially due to Andrews, Knopfmacher, and Paule, namely

Theorem 80 (The AKP identity). If m and k are integers with m ≥ 0 and
k ≥ −1, then

(10.3.4) F
(1)
m+k(q)F

(0)
m (q)− F

(0)
m+k+1(q)F

(1)
m−1(q) = (−1)m q(

m+1
2 ) F

(m+1)
k (q),

where F
(r)
−1 (q) = 0 for any r.

The proof will be an induction on k. If k = −1, then the terms on the left side
of the AKP identity cancel, and the right side is also zero. Let’s set fm,k equal to
the left side of the AKP identity. If k = 0 and m > 0, then we have, using (10.3.2),

fm,0 = F (1)
m (q)F (0)

m (q)− F
(0)
m+1(q)F

(1)
m−1(q)

=
(
F

(1)
m−1(q) + qm F

(1)
m−2(q)

)
F (0)
m (q)−

(
F (0)
m (q) + qm F

(0)
m−1(q)

)
F

(1)
m−1(q)

= −qm
(
F

(1)
m−1(q)F

(0)
m−1(q)− F (0)

m (q)F
(1)
m−2(q)

)
= −qm fm−1,0.

Therefore, by iteration,

fm,0 = −qm fm−1,0 = −qm
(
−qm−1 fm−2,0

)
= . . .

= (−1)j qm+(m−1)+···+(m−j+1) fm−j,0 = . . .

= (−1)m qm+(m−1)+···+1 f0,0

= (−1)m q(
m+1

2 ) (1 · 1− 1 · 0) = (−1)m q(
m+1

2 ),

and this is what the right side of the AKP identity becomes if k = 0.
By a similar argument, again using (10.3.2), we can find a recurrence for fm,k.

If k ≥ 0, then

fm,k+1 = F
(1)
m+k+1(q)F

(0)
m (q)− F

(0)
m+k+2(q)F

(1)
m−1(q)

=
(
F

(1)
m+k(q) + qm+k+1 F

(1)
m+k−1(q)

)
F (0)
m (q)

−
(
F

(0)
m+k+1(q) + qm+k+1 F

(0)
m+k(q)

)
F

(1)
m−1(q)

=
(
F

(1)
m+k(q)F

(0)
m (q)− F

(0)
m+k+1(q)F

(1)
m−1(q)

)
+ qm+k+1

(
F

(1)
m+k−1(q)F

(0)
m (q)− F

(0)
m+k(q)F

(1)
m−1(q)

)
= fm,k + qm+k+1 fm,k−1.

Finally, we use this to prove by induction on k that fm,k equals the right side of
the AKP identity. We have proved already that this is true for k = −1 and for
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k = 0. Assuming that it is true for k, we have

fm,k+1 = fm,k + qm+k+1 fm,k−1

= (−1)m q(
m+1

2 ) F
(m+1)
k (q) + qm+k+1 (−1)m q(

m+1
2 ) F

(m+1)
k−1 (q)

= (−1)m q(
m+1

2 )
(
F

(m+1)
k (q) + qm+k+1 F

(m+1)
k−1 (q)

)
= (−1)m q(

m+1
2 ) F

(m+1)
k+1 (q),

so by induction fm,k equals the right side of the AKP identity for all k ≥ −1. Since
fm,k was defined to be the left side of the AKP identity, this completes the proof.

Next we let k → ∞ in the AKP identity, as Andrews, Knopfmacher, and Paule
did. According to (10.3.3) we get

F (0)
m (q)

∞∑
j=0

qj
2+j

(q; q)j
− F

(1)
m−1(q)

∞∑
j=0

qj
2

(q; q)j
= (−1)m q(

m+1
2 )

∞∑
j=0

qj
2+(m+1)j

(q; q)j
.

Using the Rogers–Ramanujan identities on the left side, this becomes an identity
of Garrett, Ismail, and Stanton.

Theorem 81 (The GIS identity). Assume (as usual) that |q| < 1, and define

the rth order q-Fibonacci numbers as above. In addition, define F
(1)
−2 (q) = 1. Then

if m is an integer ≥ −1, we have

F
(0)
m (q)

(q2; q5)∞ (q3; q5)∞
−

F
(1)
m−1(q)

(q; q5)∞ (q4; q5)∞
= (−1)m q(

m+1
2 )

∞∑
j=0

qj
2+(m+1)j

(q; q)j
.

Note that (10.3.2) would say

F
(r)
0 (q) = F

(r)
−1 (q) + qr−1 F

(r)
−2 (q)

if it held for n = −1, and this reduces to

1 = 0 + qr−1 F
(r)
−2 (q) or F

(r)
−2 (q) = q1−r.

Thus the definition F
(1)
−2 (q) = 1 is in fact consistent with (10.3.2), although not with

(10.3.1). When m = −1 the GIS identity reduces to the first Rogers–Ramanujan
identity, and it becomes the second one if m = 0.

10.4. Schur’s second partition theorem

Schur made a second major contribution to q-analysis. In this section we discuss
this second paper, which contains a surprising partition theorem that has a beautiful
bijective proof, due to David Bressoud. We state Schur’s theorem in the notation
of George Andrews. Let A(n) be the number of partitions of n using only odd
parts not divisible by 3, and let B(n) be the number of partitions of n with distinct
parts not divisible by 3. It is easy to see that A(n) = B(n), either by Glaisher’s
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bijection or by a generating function argument. The generating function for B(n)
is (−q; q3)∞(−q2; q3)∞, and

(−q; q3)∞(−q2; q3)∞ = (1 + q)(1 + q2)(1 + q4)(1 + q5)(1 + q7)(1 + q8) · · ·

=
1− q2

1− q

1− q4

1− q2
1− q8

1− q4
1− q10

1− q5
1− q14

1− q7
1− q16

1− q8
. . .

=
(q2; q6)∞(q4; q6)∞
(q; q3)∞(q2; q3)∞

=
(q2; q6)∞(q4; q6)∞

(q; q6)∞(q4; q6)∞(q2; q6)∞(q5; q6)∞

=
1

(q; q6)∞(q5; q6)∞
,

which is the generating function for A(n), since an odd number not divisible by 3
must be congruent to 1 or 5 mod 6. Schur finds a third class of partitions that is
equinumerous with these two. Let C(n) be the number of partitions of n where all
the parts differ by at least 3 from each other, and in addition any multiples of 3
must differ by at least 6, and let’s call these Schur partitions. Schur proved that
C(n) = B(n) = A(n). For example, when n = 17 we have:

A(17) B(17) C(17)

17 17 17
13 + 1 + 1 + 1 + 1 16 + 1 16 + 1

11 + 5 + 1 14 + 2 + 1 15 + 2
11 + six 1’s 13 + 4 14 + 3

7 + 7 + 1 + 1 + 1 11 + 5 + 1 13 + 4
7 + 5 + 5 11 + 4 + 2 12 + 5

7 + 5 + five 1’s 10 + 7 12 + 4 + 1
7 + ten 1’s 10 + 5 + 2 11 + 6

5 + 5 + 5 + 1 + 1 10 + 4 + 2 + 1 11 + 5 + 1
5 + 5 + seven 1’s 8 + 7 + 2 10 + 7
5 + twelve 1’s 8 + 5 + 4 10 + 6 + 1
seventeen 1’s 7 + 5 + 4 + 1 10 + 5 + 2

Note that several partitions appear in both the B(17) and C(17) columns,
which suggests trying to construct a bijection between B(n) and C(n). A gap of
less than 3 between successive parts in a partition of B(n) type can only occur
when one of the parts is congruent to 1 mod 3, and the other to 2 mod 3. If we
add these two parts together, we always get a multiple of 3. Moreover, if we do this
whenever we have a gap less than 3, we can never get two consecutive multiples
of 3, because each number in the larger pair must be at least 3 more than each
number in the smaller pair.

Take for example 34+23+22+19+16+14+10+8+4+2+1, a partition of
153 into distinct parts that aren’t divisible by 3. Starting with the smallest parts
and working up, add two parts together whenever they differ by less than 3. Thus
we add 1 and 2, leave 4 alone, add 8 and 10, add 14 and 16, leave 19 alone, add
22 and 23, and leave 34 alone, which gives 34 + 45 + 19 + 30 + 18 + 4 + 3. Now
just reordering this doesn’t work because we have 19 and 18, and also 4 and 3. To
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ensure the gaps are at least 3 after reordering, we build them in as in the right
column below:

34 16 18
45 30 15
19 7 12
30 21 9
18 12 6
4 1 3
3 3 0

Because the difference between multiples of 3 in the left column must be at
least 6, the difference between multiples of 3 in the middle column must be at least
3. Therefore, if we reorder the middle column and add it to the right column, not
only will we have gaps of at least 3 between parts, but any multiples of 3 will have
gaps of at least 6. The reordering gives

30 18 48
21 15 36
16 12 28
12 9 21
7 6 13
3 3 6
1 0 1

so the Schur partition of 153 that corresponds to 34+23+22+19+16+14+10+
8 + 4 + 2 + 1 under Bressoud’s bijection is 48 + 36 + 28 + 21 + 13 + 6 + 1.

To prove that this is really a bijection we describe the inverse map, which is
somewhat harder. The first step is clear: split 48+36+28+21+13+6+1 into two
columns as above. Next, write each multiple of 3 in the left column as the number
in the middle column plus two remainders, one congruent to 1 mod 3 and the other
to 2 mod 3, and differing from each other by either 1 or 2. For example, we need
to write 30 as 18 plus 12, and then split up 12. The only way to write 12 as a sum
of two numbers differing by at most 2 without using a multiple of 3 is 7 + 5, so we
write 30 = 18+7+5. Similarly we write 21 as 15+6, and the only way to split up
6 is 4+ 2, so 21 = 15+ 4+2. We have 12 = 9+3 = 9+2+ 1, and for 3 = 3+ 0 we
have to use a negative remainder: 3 = 3+ 1+ (−1). To distinguish the remainders
from the other numbers let’s write all of them in parentheses, so we now have:

18 + (7) + (5) 18
15 + (4) + (2) 15

16 12
9 + (2) + (1) 9

7 6
3 + (1) + (−1) 3

1 0

Working from the bottom up in the left column, we now perform the following
operation repeatedly: if there is a single number on the line below a remainder and
the remainder is smaller, switch the single number with the sum of three numbers,
and also transfer 3 units from the first number to the small remainder, so that
the first number still matches the corresponding number in the right column. In
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this example we have 1 > −1, so we switch 1 with 3 + (1) + (−1) and rewrite
3 + (1) + (−1) = 0 + (2) + (1), which gives:

18 + (7) + (5) 18
15 + (4) + (2) 15

16 12
9 + (2) + (1) 9

7 6
1 3

0 + (2) + (1) 0

The next instance of a single number exceeding a remainder right above it is with
7 and (1) on lines 4 and 5, so we rewrite:

18 + (7) + (5) 18
15 + (4) + (2) 15

16 12
7 9

6 + (4) + (2) 6
1 3

0 + (2) + (1) 0

Next we have 16 > (2) on lines 2 and 3, so we rewrite:

18 + (7) + (5) 18
16 15

12 + (5) + (4) 12
7 9

6 + (4) + (2) 6
1 3

0 + (2) + (1) 0

Now 7 > (4) on lines 3 and 4, so we rewrite:

18 + (7) + (5) 18
16 15
7 12

9 + (7) + (5) 9
6 + (4) + (2) 6

1 3
0 + (2) + (1) 0

Finally 16 > (5) on lines 1 and 2, so we rewrite:

16 18
15 + (8) + (7) 15

7 12
9 + (7) + (5) 9
6 + (4) + (2) 6

1 3
0 + (2) + (1) 0

Once all the single numbers are less than or equal to the remainders on the line
above them, on any line without remainders we just add the two numbers together.
The other lines have two copies of some multiple of 3 and two remainders, and we
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just add one remainder to each multiple of 3, which cannot create any multiples of
3. In this example, this gives 34+23+22+19+16+14+10+8+4+2+1, which
is the partition of type B(n) that we started with.

While it is possible to have negative remainders during this procedure, there
can’t be any at the end of it. If there was one, there must be a lowest line with a
negative remainder. It can’t be the bottom line, because any number of the form
a + (r1) + (r2) is at least 3 initially, and this sum never changes throughout the
algorithm. If it winds up at the bottom, then it has the form 0+ (r3)+ (r4), where
r3 + r4 ≥ 3 and they differ by at most 2, so neither of them can be negative.

The lowest line with negative remainders also can’t be directly above a number
without remainders, because if it was then the algorithm wouldn’t be finished.
Therefore, if it exists, it has to be directly above a line with positive remainders,
so that we have

a+ 3 + (r1) + (r2) a+ 3
a+ (r3) + (r4) a

with r2 negative and r3 > r4 > 0. But a + 3 + r1 + r2 exceeds a + r3 + r4 by at
least 3, because they’re both multiples of 3, so we must have r1+ r2 ≥ r3+ r4. But
this is impossible with r2 negative and r3 and r4 positive because r1 exceeds r2 by
no more than 2.

The algorithm cannot create any multiples of 3, because the remainders are
never multiples of 3 and neither are the single numbers in the left column. Can
we be sure that it creates distinct parts? Whenever two parts come from the same
line, as with 16 and 14 above, they must be distinct, because the two remainders
are never the same. To prove that parts coming from different lines are never the
same, it is enough to show that a part coming from a given line is always larger
than a part coming from the line right below it. This would also be good to know
since it implies no reordering is necessary after the parts are created.

There are several cases. If neither line has remainders, then this is clear, because
the order of the single numbers in the left column never changes and they are
weakly decreasing to begin with. In this case two parts coming from consecutive
lines must differ by at least 3. If both lines have remainders, then as above we must
have r1 + r2 ≥ r3 + r4. We can assume r1 > r2 > 0 and r3 > r4 > 0, and we claim
that a + 3 + r2 > a + r3. If not, then r3 ≥ r2 + 3, so r3 ≥ r1 + 1. This makes
r4 ≥ r1 − 1, so r3 + r4 ≥ 2r1 > r1 + r2, a contradiction.

If the top line has remainders and the bottom line does not, then we have

a+ 3 + (r1) + (r2) a+ 3
b a

with r1 > r2 > 0. We must have b ≤ r2, because otherwise the algorithm wouldn’t
have terminated, so a + 3 + r2 exceeds a + b by at least 3. Finally, if the bottom
line has remainders and the top line does not, say

b a+ 3
a+ (r1) + (r2) a

with r1 > r2 > 0, there are two possibilities. If b was always above a+ (r1) + (r2),
then b > a+ r1 + r2 (the inequality must be strict because a+ r1 + r2 is divisible
by 3 and b is not), so it is clear that a + b + 3 > a + r1 > a + r2. If b was moved
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above a+ (r1) + (r2) by the algorithm, then before this move we had

a+ 3 + (r2) + (r1 − 3) a+ 3
b a

so b > r1 − 3, so again a+ b+ 3 > a+ r1 > a+ r2.

Exercises

1. Explain why Glaisher’s bijection proves that A(n) = B(n).

2. Does Sylvester’s fishhook bijection prove that A(n) = B(n)?

3. Apply the bijections of Glaisher and Bressoud to the partitions counted by A(17),
B(17), and C(17), to see which ones match up with one another.

4. Here is a result from real analysis that is sometimes useful in q-analysis. In
particular, it is needed in one of the parts of the next problem.

Theorem 82 (Abel’s limit theorem). If an → a as n → ∞ and an is not
infinite for n ≥ 0, then

lim
x→1−

(1− x)

∞∑
n=0

anx
n = a.

The intuition is that the series must behave essentially like the geometric
series

∞∑
n=0

axn =
a

1− x
for |x| < 1.

The limit is taken from below because (as Abel proved) the series does not
converge for x > 1. We outline a typical real analysis argument: let ε be a very
small positive number. Since an → a as n → ∞, there must be a positive integer
N such that |an−a| < ε for all n ≥ N , no matter how small an ε we chose. Now
write

∞∑
n=0

anx
n =

N−1∑
n=0

anx
n +

∞∑
n=N

(an − a)xn +

∞∑
n=N

axn = S1 + S2 + S3.

(i) Explain why lim
x→1−

(1− x)S1 = 0.

(ii) Explain why lim
x→1−

(1− x)S3 = a.

(iii) Explain why lim
x→1−

(1 − x)|S2| < ε, and why this together with (i) and

(ii) proves Abel’s limit theorem.

5. In this problem we outline Andrews’s analytic proof of Schur’s theorem, which
is shorter than Schur’s proof. Let sj(n, k) denote the number of Schur partitions
of n with exactly k parts and with all parts larger than j, where we define
sj(0, 0) = 1. Note that sj(n, k) = 0 if either n or k is nonpositive, unless they
are both zero. Then C(n) =

∑
k≥0

s0(n, k).
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(i) Andrews first observes that

s0(n, k)− s1(n, k) = s0(n− 3k + 2, k − 1),

s1(n, k)− s2(n, k) = s1(n− 3k + 1, k − 1),

s2(n, k)− s3(n, k) = s3(n− 3k, k − 1),

s3(n, k) = s0(n− 3k, k).

For the first equality, the left side is the number of Schur partitions of n with
k parts whose smallest part is 1, which means that the next smallest part is at
least 4. If we delete the 1 and subtract 3 from the other k − 1 parts, we get a
Schur partition of n − 3(k − 1) − 1 = n − 3k + 2 that has exactly k − 1 parts.
Give similar proofs of the other three equalities. Be sure to explain why we have
3 and not 2 as the subscript on the right side of the third equality.

(ii) Next Andrews sets

Sj(x) =
∑

n,k≥0

sj(n, k)x
kqn.

Explain why Sj(0) = 1, and use (i) to show the four equalities

S0(x)− S1(x) = xqS0(xq
3),

S1(x)− S2(x) = xq2S1(xq
3),

S2(x)− S3(x) = xq3S3(xq
3),

S3(x) = S0(xq
3).

(iii) Use (ii) to show that

S0(x) =
(
1 + xq + xq2

)
S0(xq

3) + xq3(1− xq3)S0(xq
6).

(iv) To simplify (iii) slightly set g(x) = S0(x)/(x; q
3)∞. Show that g(0) = 1

and that

(1− x)g(x) =
(
1 + xq + xq2

)
g(xq3) + xq3g(xq6).

(v) Andrews now looks for a power series solution of the recurrence in (iv).

If we set g(x) =
∞∑

n=0
an(q)x

n, show that a0(q) = 1 and that

an(q) = an−1(q)
(1 + q3n−2)(1 + q3n−1)

1− q3n
,

and explain why this implies that

an(q) =
(−q; q3)n(−q2; q3)n

(q3; q3)n
.

(vi) Andrews now has

(10.4.1)
∑

n,k≥0

s0(n, k)x
kqn = S0(x) = (x; q3)∞

∞∑
n=0

(−q; q3)n(−q2; q3)n
(q3; q3)n

xn,

and he is trying to say something about C(n) =
∑
k≥0

s0(n, k). Explain why

S0(1) =
∞∑

n=0
C(n)qn.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



372 10. ROGERS–RAMANUJAN–SCHUR IDENTITIES

(vii) It is not quite straightforward to get S0(1) from the right side of (10.4.1)
because (1; q3)∞ = 0. Andrews is able to think of several ways to surmount this
obstacle. One is to apply Abel’s limit theorem from the previous problem, since

S0(1) = lim
x→1−

(xq3; q3)∞(1− x)
∞∑
n=0

(−q; q3)n(−q2; q3)n
(q3; q3)n

xn.

Show that this gives S0(1) = (−q; q3)∞(−q2; q3)∞, and explain why this proves
that C(n) = B(n).

6. In the previous problem we wanted to find S0(1), when direct substitution of
x = 1 gives zero times infinity. Andrews also uses Heine’s intermediate transfor-
mation (5.5.9), which was

(10.4.2) 2φ1

(
a, b

c
; q, z

)
=

( cb ; q)∞ (bz; q)∞

(c; q)∞ (z; q)∞
2φ1

( abz
c , b

bz
; q,

c

b

)
,

to get around this, where q, z, c
b are all less than 1 in absolute value.

(i) Explain why

S0(x) = (x; q3)∞ 2φ1

(
−q,−q2

0
; q3, x

)
.

(ii) Explain why(
abx

c
; q3
)

n

(c
b

)n
=
(c
b
− ax

)(c
b
− axq3

)
· · ·
(c
b
− axq3n−3

)
.

(iii) By changing q to q3 in (10.4.2) and using (ii), show that

S0(x) = (−xq2; q3)∞

∞∑
n=0

(−q2; q3)n x
nq

n(3n−1)
2

(−xq2; q3)n(q3; q3)n
,

and hence

S0(1) = (−q2; q3)∞

∞∑
n=0

q
n(3n−1)

2

(q3; q3)n
.

(iv) We know how to do the remaining sum in (iii) (why?), so

S0(1) = (−q; q3)∞(−q2; q3)∞

as in the previous problem.

7. Schur’s proof of his theorem is quite indirect. It starts with the tridiagonal
determinant

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + aq q3 − q4 0 . . . 0 0
−1 1 + aq2 q4 − q6 . . . 0 0
0 −1 1 + aq3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 + aqn−1 qn+1 − q2n

0 0 0 . . . −1 1 + aqn

∣∣∣∣∣∣∣∣∣∣∣∣∣
where the ii entry is 1 + aqi for 1 ≤ i ≤ n, the i, i− 1 entry is −1 for 2 ≤ i ≤ n,
the i − 1, i entry is qi+1 − q2i for 2 ≤ i ≤ n, all the other entries are zero, and
we define D0 = 1.
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(i) By expanding on the last row, show that

Dn = (1 + aqn)Dn−1 + (qn+1 − q2n)Dn−2 for n ≥ 2.

(ii) Next we have the product

Pn(a, q) =

n∏
j=1

(
1 + aqj + q2j+1

)
, where P0(a, q) = 1,

and the sum

Sn =

n∑
k=0

(−1)k
(
n

k

)
q

qk(n+2)−(k2)Pn−k(a, q).

Show that Sn = Dn for n = 0, 1, 2. For future use, also explain why

Pn−k(a, q) =
(
1 + aqn−k + q2n−2k+1

)
Pn−k−1(a, q).

(iii) Using (
n

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

in the definition of Sn, show that

Sn =
n−1∑
k=0

(−1)k
(
n− 1

k

)
q

qk(n+1)−(k2)Pn−1−k(a, q)
(
qk + aqn

)
for n ≥ 1.

(iv) By writing qk + aqn = 1 + aqn −
(
1− qk

)
, show that (iii) implies

Sn = (1 + aqn)Sn−1 + (qn+1 − q2n)Sn−2 for n ≥ 2,

and explain why this proves that Sn = Dn for n ≥ 0. The proof continues in
the next problem.

8. It is now convenient to use a different letter in Schur’s determinant. Following
Schur we use t, so that

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + at t3 − t4 0 . . . 0 0
−1 1 + at2 t4 − t6 . . . 0 0
0 −1 1 + at3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 + atn−1 tn+1 − t2n

0 0 0 . . . −1 1 + atn

∣∣∣∣∣∣∣∣∣∣∣∣∣
and we have D0 = 1, D1 = 1 + at, and

Dn = (1 + atn)Dn−1 + (tn+1 − t2n)Dn−2 for n ≥ 2.

Schur now sets a = x + y and t = xy for new variables x and y, and then
defines three sets of functions φn, φ

′
n, φ

′′
n by φ0 = 1 + x, φ′

0 = y, φ′′
0 = xy = t,

φ1 = xt(1 + x), φ′
1 = yt(1 + x+ y), φ′′

1 = t2(1 + x+ y), and for n ≥ 2

φn = xtn
(
φ0 + φ′

0 + φ′′
0 + · · ·+ φn−2 + φ′

n−2 + φ′′
n−2 + φn−1

)
,

φ′
n = ytn

(
φ0 + φ′

0 + φ′′
0 + · · ·+ φn−2 + φ′

n−2 + φ′′
n−2 + φn−1 + φ′

n−1

)
,

φ′′
n = tn+1

(
φ0 + φ′

0 + φ′′
0 + · · ·+ φn−2 + φ′

n−2 + φ′′
n−2 + φn−1 + φ′

n−1

)
.
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374 10. ROGERS–RAMANUJAN–SCHUR IDENTITIES

(Note that the last equality does not include φ′′
n−1.) He also sets

Tn =

n∑
k=0

(φk + φ′
k + φ′′

k) .

The goal of this problem is to show that Tn = (1 + x)(1 + y)Dn for n ≥ 0.

(i) Show that T0 = (1 + x)(1 + y) and T1 = (1 + x)(1 + y)(1 + at).

(ii) Next, Schur sets Δn = Tn−(1 + (x+ y)tn)Tn−1 for n ≥ 1. Explain why
our goal will be achieved if we can show that Δn =

(
tn+1 − t2n

)
Tn−2 for n ≥ 2.

(iii) Show that

φn = xtn (Tn−2 + φn−1) ,

φ′
n = ytn

(
Tn−2 + φn−1 + φ′

n−1

)
,

φ′′
n = tn+1

(
Tn−2 + φn−1 + φ′

n−1

)
.

(iv) Show that

φ′
n =

y

x
φn + ytnφ′

n−1,

φ′′
n = xφ′

n = yφn + tn+1φ′
n−1.

(v) Show that

φn = xtn
(
Tn−1 − (1 + x)φ′

n−1

)
φ′
n = ytn

(
Tn−1 − xφ′

n−1

)
.

(vi) On one hand we have φn+φ′
n = Tn−Tn−1−φ′′

n, and on the other hand
we can get an expression for φn +φ′

n from (v). By setting these two expressions
equal, show that

Δn = φ′′
n − xtn(1 + x+ y)φ′

n−1.

(vii) Show that the result of (vi) can be rewritten as

Δn = yφ′
n − x(1 + x)tnφ′

n−1.

(viii) Using (v) with n− 1 in place of n, show that the result of (vii) can be
rewritten as

Δn = tn+1Tn−2 − t2nTn−2.

This proves (ii). The proof of Schur’s theorem continues in the next problem.

9. Schur finally brings in the Schur partitions at this point. He defines ψ1 = 1+ q,
ψ2 = q2, ψ3 = q3, ψ4 = q5+q4 = q4+1+q4, ψ5 = q7+q6+q5 = q5+2+q5+1+q5,
ψ6 = q8 + q7 + q6 = q6+2 + q6+1 + q6, and so on, so that in general ψn is
the generating function for Schur partitions with largest part n (except that ψ1

includes the empty partition of zero).

(i) Explain why

ψ3k+1 = q3k+1 (ψ1 + ψ2 + · · ·+ ψ3k−2) ,

ψ3k+2 = q3k+2 (ψ1 + ψ2 + · · ·+ ψ3k−1) ,

ψ3k+3 = q3k+3 (ψ1 + ψ2 + · · ·+ ψ3k−1)

for k ≥ 1. (Note the similarity to the φ functions of the previous problem.)
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(ii) Explain why taking x = q and y = q2 (so t = q3) makes ψ3k+1 = φk,
ψ3k+2 = φ′

k, and ψ3k+3 = φ′′
k , and hence makes

Tn = ψ1 + ψ2 + ψ3 + · · ·+ ψ3n+1 + ψ3n+2 + ψ3n+3

the generating function for Schur partitions with largest part less than or equal
to 3n+ 3.

(iii) Explain why the previous two problems imply that

Tn = (1 + q)(1 + q2)

n∑
k=0

(−1)kq3k(n+2)−3(k2)
(
n

k

)
q3
Pn−k(1 + q, q3).

(iv) By simplifying (1 + q)(1 + q2)Pn−k(1 + q, q3), show that the generating
function for Schur partitions with largest part at most 3n is

Tn−1 =

n−1∑
k=0

(−1)kq3k(n+1)−3(k2)
(
n− 1

k

)
q3
(−q; q3)n−k(−q2; q3)n−k.

(v) If we let n → ∞ in (iv), assuming as usual that |q| < 1, we must get the

generating function for all Schur partitions, which is
∞∑

n=0
C(n)qn in Andrews’s

notation. But if n → ∞, then all the terms tend rapidly to zero in (iv) because
of the factor q3k(n+1), except for the k = 0 term. This is a bit glib, but explain
why it implies

∞∑
n=0

C(n)qn = (−q; q3)∞(−q2; q3)∞,

and why this implies Schur’s theorem.

10.5. Bibliographical Notes

Schur’s two proofs of the Rogers–Ramanujan identities are in [214], but for his
bijective proof I have followed Pak’s epic paper [178]. Pak’s comments on the issue
of pictures in proofs near the end of [178] are very much worth reading. Problems
4–8 in section 10.2 come from [11]. The GIS identity comes from [112], and is also
discussed in [31], from whence comes the AKP identity.

The sources for the Bressoud–Chapman proof of section 10.2 are [59] and [74].
Before Chapman’s work, a different argument of Bressoud [60] was sometimes said
to be the simplest proof of the Rogers–Ramanujan identities.

Schur’s second partition theorem is in [215]. Andrews’s analytic proof is in [19],
as is Bressoud’s bijection of section 10.5. The latter appears in greater generality in
[57]. Abel’s limit theorem is essentially Theorem 4 in his great paper [1]; the hard
part, which we skipped since we did not need it, is to show that the series does not
converge for x > 1. For further references on the Rogers–Ramanujan identities see
the notes for the next chapter.
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CHAPTER 11

The Rogers–Ramanujan Identities II: Rogers

11.1. Ramanujan’s proof

The Rogers–Ramanujan identities, which we proved by Schur’s methods in
Chapter 10, have one of the most interesting backstories of any mathematical result.
Ramanujan discovered them in India, but could not prove them. When he came
to England he showed them to Hardy, the leading British analyst of the time.
Hardy could not prove them either, nor could any of the other mathematicians he
showed them to. (It is not recorded who these were, except that MacMahon and
Perron were two of them. One would expect Littlewood to be another, but he was
away from Cambridge doing war work for most of the time that Ramanujan was
there.) MacMahon was so impressed with their implications for partitions, which
we mentioned in Chapter 10 and will discuss in more detail in the next section,
that he published them in the second volume of his book Combinatory Analysis
in 1916 even though he had no proof. Ramanujan was often criticized by British
mathematicians for not giving proofs of his theorems, but in this case it was he who
continued to seek the proof. Shortly thereafter, he was browsing through old issues
of the Proceedings of the London Mathematical Society, and to his amazement he
found the identities stated and proved by L. J. Rogers in 1894. Rogers was still
alive and still working in Britain; he had been ignored throughout his career, but
suddenly he was famous.

After looking at Rogers’s work, Ramanujan was able to find a simpler proof of
the identities; and, his interest in them rekindled, Rogers was also able to simplify
his proof in a manner similar to Ramanujan’s. These proofs were published together
in 1917, at just about the same time as Schur’s paper. Since Germany and England
were on opposite sides of the first World War at the time, British mathematicians
got used to the name “Rogers–Ramanujan identities” for several years before they
learned what Schur had done.

Ramanujan’s proof begins with the function G(x) from problem 13 in section
4.2:

G(x) = 1 +

∞∑
n=1

(−1)n x2n q
n(5n−1)

2
(xq; q)n−1

(q; q)n
(1− xq2n)(11.1.1)

=

∞∑
n=0

(−1)n x2n q
n(5n+1)

2
(xq; q)n
(q; q)n

(1− x2q4n+2).(11.1.2)

After he showed that (11.1.1) and (11.1.2) are the same function, Ramanujan de-
fined a new function H(x) by

(11.1.3) H(x) =
G(x)

1− xq
−G(xq).

377
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378 11. ROGERS–RAMANUJAN IDENTITIES

Rewrite (11.1.2) as

(11.1.4) G(x) = 1− x2q2 +

∞∑
n=1

(−1)n x2n q
n(5n+1)

2
(xq; q)n
(q; q)n

(1− x2q4n+2)

and substitute it in for G(x) in its occurrence in (11.1.3), while substituting (11.1.1)
in for the occurrence of G(xq). This gives

H(x) = 1 + xq +
∞∑

n=1

(−1)n x2n q
n(5n+1)

2
(xq2; q)n−1

(q; q)n
(1− x2q4n+2)

− 1−
∞∑

n=1

(−1)n (xq)2n q
n(5n−1)

2
(xq2; q)n−1

(q; q)n
(1− xq2n+1)

= xq +

∞∑
n=1

(−1)n x2n q
n(5n+1)

2
(xq2; q)n−1

(q; q)n

[
1− x2q4n+2 − qn(1− xq2n+1)

]
.

Ramanujan resists the temptation to factor 1−xq2n+1 out of the term in brackets,
and instead rewrites

1− x2q4n+2 − qn(1− xq2n+1) = 1− qn + xq3n+1(1− xqn+1).

Then we have

H(x) = xq +
∞∑

n=1

(−1)n x2n q
n(5n+1)

2
(xq2; q)n−1

(q; q)n

[
(1− qn) + xq3n+1(1− xqn+1)

]

= xq +
∞∑

n=1

(−1)n x2n q
n(5n+1)

2
(xq2; q)n−1

(q; q)n−1

+

∞∑
n=1

(−1)n x2n+1 q3n+1+n(5n+1)
2

(xq2; q)n
(q; q)n

.

Note that xq is the n = 0 term of the latter sum. If we also replace n by n+ 1 in
the first sum, then we have (writing the second sum first)

H(x) =

∞∑
n=0

(−1)n x2n+1 q
(n+1)(5n+2)

2
(xq2; q)n
(q; q)n

−
∞∑

n=0

(−1)n x2n+2 q
(n+1)(5n+6)

2
(xq2; q)n
(q; q)n

=
∞∑

n=0

(−1)n x2n+1 q
(n+1)(5n+2)

2
(xq2; q)n
(q; q)n

(1− xq2n+2).

Since

x2n+1 q
(n+1)(5n+2)

2 = xq · x2n q
5n2+7n

2 = xq ·
(
xq2
)2n

q
5n2−n

2 ,

H(x) has a factor of xq. It also has a factor of 1 − xq2, for the n = 0 term is
xq(1− xq2) and otherwise 1− xq2 is the first factor of (xq2; q)n. Therefore

H(x) = xq(1− xq2)

[
1 +

∞∑
n=1

(−1)n
(
xq2
)2n

q
n(5n−1)

2
(xq3; q)n−1

(q; q)n
(1− xq2n+2)

]
.

Comparing this with (11.1.1) we finally see that

H(x) = xq(1− xq2)G(xq2),
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11.1. RAMANUJAN’S PROOF 379

and using this in (11.1.3) gives

(11.1.5)
G(x)

1− xq
−G(xq) = xq(1− xq2)G(xq2).

The argument gets easier from here. To simplify (11.1.5) Ramanujan set

(11.1.6) G(x) = R(x) (xq; q)∞

for a new function R(x) (which Ramanujan called F (x)). Substituting (11.1.6) in
(11.1.5) gives

(11.1.7) R(x) = R(xq) + xq R(xq2).

We leave this as an exercise. Since 1 = G(0) = R(0) (0; q)∞ = R(0), either of
two previous exercises, problem 11 of section 3.6 or parts (v)–(vii) of problem 9 in
section 10.2, shows that

(11.1.8) R(x) =
∞∑

n=0

qn
2

xn

(q; q)n
.

Putting all of this together, we have proved that

(xq; q)∞

∞∑
n=0

qn
2

xn

(q; q)n
= 1 +

∞∑
n=1

(−1)n x2n q
n(5n−1)

2
(xq; q)n−1

(q; q)n
(1− xq2n)(11.1.9)

=

∞∑
n=0

(−1)n x2n q
n(5n+1)

2
(xq; q)n
(q; q)n

(1− x2q4n+2).(11.1.10)

Now set x = 1 in (11.1.9). This gives

(q; q)∞

∞∑
n=0

qn
2

(q; q)n
= 1 +

∞∑
n=1

(−1)n q
n(5n−1)

2
(q; q)n−1

(q; q)n
(1− q2n)

= 1 +
∞∑
n=1

(−1)n q
n(5n−1)

2
1− q2n

1− qn

= 1 +
∞∑
n=1

(−1)n q
n(5n−1)

2 (1 + qn)

= 1 +
∞∑
n=1

(−1)n
{
q

n(5n−1)
2 + q

n(5n+1)
2

}
.

Since
(−n) (5(−n) + 1)

2
=

n (5n− 1)

2
,

we can rewrite this as

(11.1.11) (q; q)∞

∞∑
n=0

qn
2

(q; q)n
=

∞∑
n=−∞

(−1)n q
n(5n+1)

2 .

Now we need the Jacobi triple product with base q5:

(11.1.12) (x; q5)∞

(
q5

x
; q5
)

∞
(q5; q5)∞ =

∞∑
n=−∞

(−1)n q
5n(n−1)

2 xn.
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Taking x = q3 here gives

(q3; q5)∞ (q2; q5)∞ (q5; q5)∞ =

∞∑
n=−∞

(−1)n q
n(5n+1)

2 ,

and comparing this with (11.1.11) we have

(11.1.13)
∞∑

n=0

qn
2

(q; q)n
=

(q3; q5)∞ (q2; q5)∞ (q5; q5)∞
(q; q)∞

.

Simplifying the right side of (11.1.13) we finally reach

Theorem 83 (The first Rogers–Ramanujan identity). If |q| < 1, then

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞ (q4; q5)∞
.

If instead we set x = q in (11.1.8) we get

(q2; q)∞

∞∑
n=0

qn
2+n

(q; q)n
= 1 +

∞∑
n=1

(−1)n q2n q
n(5n−1)

2
(q2; q)n−1

(q; q)n
(1− q2n+1)

= 1 +

∞∑
n=1

(−1)n q
n(5n+3)

2
1− q2n+1

1− q
,

or, multiplying through by 1− q,

(q; q)∞

∞∑
n=0

qn
2+n

(q; q)n
= 1− q +

∞∑
n=1

(−1)n q
n(5n+3)

2

(
1− q2n+1

)

=
∞∑

n=0

(−1)n q
n(5n+3)

2

(
1− q2n+1

)

=
∞∑

n=0

(−1)n q
n(5n+3)

2 +
∞∑

n=0

(−1)n+1 q
(n+1)(5n+2)

2 .

In the last sum we replace n+ 1 by −m; and for consistency we rename n as m in
the first sum on the right. Since

(n+ 1)(5n+ 2)

2
becomes

(−m)(−5m− 5 + 2)

2
, which equals

m(5m+ 3)

2
,

this gives

(q; q)∞

∞∑
n=0

qn
2+n

(q; q)n
=

∞∑
m=0

(−1)m q
m(5m+3)

2 +

−∞∑
m=−1

(−1)m q
m(5m+3)

2

=

∞∑
m=−∞

(−1)m q
m(5m+3)

2 .(11.1.14)

Taking x = q4 in (11.1.12) gives

(q4; q5)∞ (q; q5)∞ (q5; q5)∞ =
∞∑

n=−∞
(−1)n q

n(5n+3)
2 ,
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and using this in (11.1.14) we get

∞∑
n=0

qn
2+n

(q; q)n
=

(q4; q5)∞ (q; q5)∞ (q5; q5)∞
(q; q)∞

.

Simplifying the right side we finally reach

Theorem 84 (The second Rogers–Ramanujan identity). If |q| < 1, then

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞ (q3; q5)∞
.

Exercises

1. Verify (11.1.7).

2. Explain why

(q3; q5)∞ (q2; q5)∞ (q5; q5)∞
(q; q)∞

=
1

(q; q5)∞ (q4; q5)∞

and why

(q4; q5)∞ (q; q5)∞ (q5; q5)∞
(q; q)∞

=
1

(q2; q5)∞ (q3; q5)∞
.

3. The text of this section has the entire contents of Ramanujan’s paper except for
one thing: the Rogers–Ramanujan continued fraction. Ramanujan considered a
function K(x) defined by

(11.1.15) K(x) =
G(x)

(1− xq)G(xq)
,

with G(x) as above.

(i) Use (11.1.5) to show that

K(x) = 1 +
xq(1− xq2)G(xq2)

G(xq)
.

(ii) Use (11.1.6) to show that K(x) = R(x)/R(xq).

(iii) Show that the result of (i) can be rewritten as

(11.1.16) K(x) = 1 +
xq

K(xq)
.

This leads to a continued fraction for K(x).

(iv) Write down the result of replacing x by xq in (11.1.16).

(v) Substitute the result of (iv) into (11.1.16) for K(xq) to show that

K(x) = 1 +
xq

1 +
xq2

K(xq2)

.
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382 11. ROGERS–RAMANUJAN IDENTITIES

(vi) Write down the result of replacing x by xq2 in (11.1.16), and substitute
it into the result of (v) to show that

K(x) = 1 +
xq

1 +
xq2

1 +
xq3

K(xq3)

.

Continuing in this way we have

K(x) = 1 +
xq

1 +
xq2

1 +
xq3

1 +
xq4

. . .

and
1

K(x)
=

1

1 +
xq

1 +
xq2

1 +
xq3

1 +
xq4

. . .

.

(vii) By setting x = 1 in the last continued fraction in (vi) and comparing
with (ii), show that

R(q)

R(1)
=

1

1 +
q

1 +
q2

1 +
q3

1 +
q4

. . .

.

(viii) Use (vii) and the Rogers–Ramanujan identities to show that

(11.1.17)
1

1 +
q

1 +
q2

1 +
q3

1 +
q4

. . .

=
(q; q5)∞ (q4; q5)∞
(q2; q5)∞ (q3; q5)∞

.

(11.1.17) is the Rogers–Ramanujan continued fraction, which was also found by
Schur.

4. By taking the limit of (11.1.17) as q → 1, show that

1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

=

∞∏
n=1

(5n− 1)(5n− 4)

(5n− 2)(5n− 3)
.
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5. By using gamma functions it is possible to evaluate the infinite product in prob-
lem 4: it equals

Γ
(
2
5

)
Γ
(
3
5

)
Γ
(
1
5

)
Γ
(
4
5

) , which equals

π
sin 2π

5

π
sin π

5

=
1

2 cos π
5

=

√
5− 1

2
,

using a result from the problems in section 8.2. But the continued fraction in
problem 4 can be evaluated much more easily. If

R =
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

evaluate R by explaining why it must be the positive solution of R = 1/(1+R).
As Dick Askey once observed, this together with the previous two problems
constitutes the most complicated proof ever given that

cos
π

5
=

1√
5− 1

=

√
5 + 1

4
.

11.2. The Rogers–Ramanujan identities and partitions

We have proved the Rogers–Ramanujan identities
∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞ (q4; q5)∞
,(11.2.1)

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞ (q3; q5)∞
(11.2.2)

where |q| < 1. As we mentioned in Chapter 10, MacMahon and Schur realized that
the product side of (11.2.1) is the generating function for partitions using only the
parts 1, 4, 6, 9, 11, 14, 16, 19, . . . ; i.e., using only parts which are either one less or
one more than a multiple of 5. In other words, the product side of (11.2.1) is the
generating function for partitions with parts congruent to 1 or 4 mod 5, or to ±1
(mod 5). Similarly, the product side of (11.2.2) is the generating function for parts
congruent to 2 or 3 mod 5, or to ±2 (mod 5). In other words, if ρ1(m) denotes the
number of partitions of m with parts congruent to 1 or 4 mod 5, and �1(m) denotes
the number of partitions of m with parts congruent to 2 or 3 mod 5, then

1

(q; q5)∞ (q4; q5)∞
=

∞∑
m=0

ρ1(m) qm and
1

(q2; q5)∞ (q3; q5)∞
=

∞∑
m=0

�1(m) qm.

MacMahon was fascinated by (11.2.1) and (11.2.2) because the sum sides also have
partition interpretations. Let’s look at (11.2.1) first. We know that 1/(q; q)n gen-
erates partitions into at most n parts, or into exactly n parts where some parts
might be zero. Recall that

n2 = 1 + 3 + 5 + · · ·+ (2n− 1).
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384 11. ROGERS–RAMANUJAN IDENTITIES

If we take a partition with exactly n parts, some of which might be zero, and add
1 to the smallest part, 3 to the next smallest, 5 to the next smallest, and so on,
adding 2n− 1 to the largest part, then we get a partition with exactly n (nonzero)
parts, which are not only distinct but have a difference of at least two between any
two parts. In other words, if ρ2(m) denotes the number of partitions of m into
parts that all differ by at least 2, then the sum side of (11.2.1) is the generating
function for ρ2(m):

∞∑
n=0

qn
2

(q; q)n
=

∞∑
m=0

ρ2(m) qm.

Therefore we have

Theorem 85 (The first Rogers–Ramanujan identity, classical partition ver-
sion). For any nonnegative integer m we have ρ1(m) = ρ2(m). In other words,
there are exactly as many partitions of m using only parts ≡ ±1 (mod 5) as there
are partitions of m using parts that differ by at least 2 (in other words, the gaps
between consecutive parts are ≥ 2).

For example we consider partitions of 12:

±1 (mod 5) gaps ≥ 2
11 + 1 12

9 + 1 + 1 + 1 11 + 1
6 + 6 10 + 2

6 + 4 + 1 + 1 9 + 3
6 + 1 + 1 + 1 + 1 + 1 + 1 8 + 4

4 + 4 + 4 8 + 3 + 1
4 + 4 + 1 + 1 + 1 + 1 7 + 4 + 1

4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 7 + 5
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 6 + 4 + 2

We can play the same game with the sum side of (11.2.2). Here we use

n2 + n = 2 + 4 + 6 + · · ·+ 2n.

Starting with a partition with exactly n parts, some of which might be zero, we
add 2 to the smallest part, 4 to the next smallest, 6 to the next smallest, and so on,
finally adding 2n to the largest part. As before this gives partitions with exactly n
nonzero parts that differ by at least 2, with one extra condition: 1 is not a part. If
�2(m) denotes the number of partitions of m into parts at least 2 that differ by at
least 2, then

∞∑
n=0

qn
2+n

(q; q)n
=

∞∑
m=0

�2(m) qm,

and therefore we have

Theorem 86 (The second Rogers–Ramanujan identity, classical partition ver-
sion). For any nonnegative integer m we have �1(m) = �2(m). In other words,
there are exactly as many partitions of m using only parts ≡ ±2 (mod 5) as there
are partitions of m using parts that are at least 2 and differ by at least 2.
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11.2. THE ROGERS–RAMANUJAN IDENTITIES AND PARTITIONS 385

For example we again consider partitions of 12:

±2 (mod 5) parts ≥ 2, gaps ≥ 2
12 12

8 + 2 + 2 10 + 2
7 + 3 + 2 9 + 3

3 + 3 + 3 + 3 8 + 4
3 + 3 + 2 + 2 + 2 7 + 5

2 + 2 + 2 + 2 + 2 + 2 6 + 4 + 2

A simple bijective proof of the Rogers–Ramanujan identities is still not known, and
is one of the holy grails of mathematics. It may seem that it should be possible to
adapt Schur’s proof to this task, and it is—a very complicated bijective proof along
these lines was found by Garsia and Milne. It was simplified somewhat by Zeilberger
and Bressoud, but their argument still uses the Garsia–Milne “involution principle”,
a powerful idea that was brought into being by this problem. Unfortunately it does
not usually lead to simple bijections. In their paper, Zeilberger and Bressoud
expressed doubt that a simple bijection for the Rogers–Ramanujan identities would
ever be found.

There are, however, simple bijections between the partitions counted by ρ2(m)
and �2(m) and some other classes of partitions. Let’s go back to the sum side of
(11.2.1), and write

n2 = n+ n+ n+ · · ·+ n instead of n2 = 1 + 3 + 5 + · · ·+ (2n− 1).

If we start with a partition with exactly n parts, some of which might be zero, and
we add n to each part, we wind up with a partition with exactly n parts each of
which is at least n. In other words, if we define ρ3(m) to be the number of partitions
of m such that each part is at least as large as the number of parts, then

∞∑
n=0

qn
2

(q; q)n
=

∞∑
m=0

ρ3(m) qm,

and therefore ρ1(m) = ρ2(m) = ρ3(m) for any nonnegative integer m. Let’s add a
column to a previous table:

±1 (mod 5) gaps ≥ 2 parts ≥ # of parts
11 + 1 12 12

9 + 1 + 1 + 1 11 + 1 10 + 2
6 + 6 10 + 2 9 + 3

6 + 4 + 1 + 1 9 + 3 8 + 4
6 and six 1’s 8 + 4 7 + 5
4 + 4 + 4 8 + 3 + 1 6 + 6

4 + 4 + 1 + 1 + 1 + 1 7 + 4 + 1 4 + 4 + 4
4 and eight 1’s 7 + 5 5 + 4 + 3

twelve 1’s 6 + 4 + 2 6 + 3 + 3

Similarly, on the sum side of (11.2.2) we can write

n2 + n = (n+ 1) + (n+ 1) + (n+ 1) + · · ·+ (n+ 1).

If we start with a partition with exactly n parts, some of which might be zero, and
add n + 1 to each part, we wind up with a partition with exactly n parts each of
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which is at least n + 1. In other words, if �3(m) is the number of partitions of m
in which each part is larger than the number of parts, then

∞∑
n=0

qn
2+n

(q; q)n
=

∞∑
m=0

�3(m) qm,

and therefore �1(m) = �2(m) = �3(m) for any nonnegative integer m. Adding this
column to a previous table we have

±2 (mod 5) ≥ 2, gaps ≥ 2 parts > # of parts
12 12 12

8 + 2 + 2 10 + 2 9 + 3
7 + 3 + 2 9 + 3 8 + 4

3 + 3 + 3 + 3 8 + 4 7 + 5
3 + 3 + 2 + 2 + 2 7 + 5 6 + 6

2 + 2 + 2 + 2 + 2 + 2 6 + 4 + 2 4 + 4 + 4

Next, let ρ4(m) denote the number of partitions of m with distinct parts and with
each even part being larger than twice the number of odd parts; and let �4(m)
be those partitions counted by ρ4(m) which also have no 1’s. In the previous two
tables the middle columns (counted by ρ2(12) and �2(12) respectively) correspond
to these almost exactly. In the first one every partition in the second column is
part of ρ4(12) except 7+4+1, which needs to be replaced by 6+5+1. The second
table shows no difference between �2(12) and �4(12).

There is a pretty bijection of Bressoud that shows that ρ2(m) = ρ4(m) and
�2(m) = �4(m) for all nonnegative integers m. Suppose we start with a partition
of the type counted by ρ2(m), i.e., with gaps ≥ 2 between parts, for example
19 + 16 + 13 + 11 + 8 + 5 + 2 (which, since it has no 1’s, is also counted by �2(m)
for m = 74). This has four odd parts and three even ones, and only one of the even
ones exceeds 8, so we have to transform the partition by fixing the parts 8 and 2
somehow. Since the partition has gaps ≥ 2, the parts are guaranteed to be at least
as large as 1, 3, 5, . . . , so let’s write the Ferrers diagram in a form that reflects this:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • •
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • •

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • •
∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • •

∗ ∗ ∗ ∗ ∗ • • •
∗ ∗ ∗ • •

∗ •

Next, rearrange the • rows so that the ones of odd length come first, in descend-
ing order, and then the even-length rows, in descending order. In this example
the • rows are in the order 6, 5, 4, 4, 3, 2, 1, and we rearrange them in the order
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5, 3, 1, 6, 4, 4, 2:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • •
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • •

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ •
∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • •

∗ ∗ ∗ ∗ ∗ • • • •
∗ ∗ ∗ • • • •

∗ • •

This gives the partition 18+14+10+13+9+7+3 (or 18+14+13+10+9+7+3),
and now each even part is greater than twice the number of odd parts, and the
parts are distinct although they no longer always have gaps of 2. Thus this is one
of the partitions counted by ρ4(m) (and also by �4(m), since it has no 1’s) when
m = 74.

The general tendency of Bressoud’s bijection is to make the even parts larger
and the odd parts smaller, because an odd number of •’s is added to the longer
∗ rows (which always have odd length, so this creates relatively large even parts),
and an even number of •’s is added to the shorter ∗ rows (creating relatively small
odd parts). The even parts maintain a gap size of at least 2, and so do the odd
ones, so the parts stay distinct although an odd part may now differ by only one
from an even part. The numbers of odd parts and even parts also stay the same.

Suppose we start (and hence finish) with k parts, and we have j even parts
after (and hence before) Bressoud’s bijection. Then the largest even part (after the
bijection) is at least (2k − 1) + 1 = 2k, and the second largest even part is at least
(2k − 3) + 1 = 2k − 2, and so on; generally the ith largest even part is at least
[2k − (2i− 1)]+1 = 2k−2i+2. Then the smallest even part is at least 2k−2j+2,
and the number of odd parts is k − j, so the bijection does exactly what we want.

Moreover, if we start without a 1 then we always finish without a 1, because
the last • row is no longer than any other • row, but this last • row has length at
least 1 since the smallest part is at least 2.

What about the other direction? Let’s find the partition with gaps ≥ 2 that
corresponds to 20 + 17 + 16 + 15 + 9 + 8, which has distinct parts with each even
part greater than twice the number of odd parts. Start by listing the even parts in
descending order, followed by the odd parts in descending order: 20, 16, 8, 17, 15, 9.
Then make an indented Ferrers diagram out of these with 11, 9, 7, 5, 3, 1 highlighted
(it is not possible that any of these could be larger than the corresponding number
in the partition, since the even and odd parts are distinct and each even part is
larger than twice the number of odd parts):

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • • • • •
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • • •

∗ ∗ ∗ ∗ ∗ ∗ ∗ •
∗ ∗ ∗ ∗ ∗ • • • • • • • • • • • •

∗ ∗ ∗ • • • • • • • • • • • •
∗ • • • • • • • •
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The lengths of the • rows here are 9, 7, 1, 12, 12, 8, and we rearrange them in de-
scending order 12, 12, 9, 8, 7, 1:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • • • • • • • •
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • • • • • • • •

∗ ∗ ∗ ∗ ∗ ∗ ∗ • • • • • • • • •
∗ ∗ ∗ ∗ ∗ • • • • • • • •

∗ ∗ ∗ • • • • • • •
∗ •

This gives the partition 23+21+16+13+10+2, which has gap size ≥ 2 between all
parts. Clearly a partition formed in this way will always have these gaps, because
they are built in by the ∗’s. And again we will not wind up with 1 as a part if we
did not have a 1 initially, because each part has at least one ∗ and at least one •.
This shows that ρ2(m) = ρ4(m) and �2(m) = �4(m) for all nonnegative integers m.

Exercises

1. For each of the partitions of 12 where each part is at least as large as the number
of parts, draw the Ferrers diagram and the Durfee square. What do you notice?
Is it true in general?

2. Write down the conjugate of each partition in problem 1. What property do the
Ferrers diagram of these partitions have?

3. Let ρ5(m) denote the number of partitions of m in which the largest part is
less than or equal to the number of copies of the largest part. Explain why
ρ5(m) = ρ3(m) (and hence all the other ρ’s).

4. True or false: the sum side of (11.2.1) is the generating function for partitions
where each part is less than or equal to the square root of the sum of the parts.
Explain.

5. Does the property you found in problem 1 have an analogue for partitions where
each part is larger than the sum of the parts? In other words (with reference to
problem 3), is there a natural way to define �5(m)? Explain.

6. Find a simple bijective proof of the Rogers–Ramanujan identities. (If you suc-
ceed, you will be famous.)

7. Although problem 6 seems to be very difficult, if not impossible, it is not too
hard to construct a bijection between partitions with gaps ≥ 2 between parts
and partitions where each part is at least as big as the number of parts, in other
words a bijective proof that ρ2(m) = ρ3(m) for all nonnegative integers m, by

recalling how each type is generated by qk
2

/(q; q)k. See if you can do this.

8. Does your bijection in problem 7 also show that �2(m) = �3(m) for all nonneg-
ative integers m? Explain.

11.3. Rogers’s second proof

Rogers published three different proofs of the Rogers–Ramanujan identities.
We will see the third proof in the next chapter. The first two are similar in spirit,
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but the second is much shorter. We will follow it in part and outline the rest of it
in the problems. Problem 12 in section 2.5 showed that

(q; q)2n
(q; q)n

=
∑
k

(−1)kq
k(3k−1)

2

(
2n

n+ k

)
q

,

(q; q)2n+1

(q; q)n
=
∑
k

(−1)kq
k(3k−1)

2

(
2n+ 1

n+ k

)
q

.

If we change k to −k and cancel the denominator with the first n factors of the
numerator, we get

(11.3.1) (qn+1; q)n =
n∑

k=−n

(
2n

n− k

)
q

(−1)kq
k(3k+1)

2

and

(11.3.2) (qn+1; q)n+1 =

n∑
k=−n−1

(
2n+ 1

n− k

)
q

(−1)kq
k(3k+1)

2 ,

respectively. Besides these, we need the identity

(11.3.3)
1

(q; q)∞
=

∞∑
m=0

qm(m+r)

(q; q)m(q; q)m+r
,

which holds for an arbitrary nonnegative integer r. This is a special case of (4.2.2);
it comes from looking at the largest m× (m+r) rectangle that fits in the upper left
corner of the Ferrers diagram of a partition. The rectangle accounts for the factor
of qm(m+r). The region below the rectangle accounts for the factor 1/(q; q)m+r,
since it is a partition whose parts are no larger than m + r, and the region to the
right of the rectangle accounts for the factor 1/(q; q)m since it is a partition with at
most m parts. It is convenient to replace m by n− k for a generic integer k, which
gives

(11.3.4)
1

(q; q)∞
=

∞∑
n=k

q(n−k)(n−k+r)

(q; q)n−k(q; q)n−k+r
.

If we take r = 2k in (11.3.4) and multiply both sides by qk
2

, there results

qk
2

(q; q)∞
=

∞∑
n=k

qn
2

(q; q)n−k(q; q)n+k

=
∞∑

n=k

qn
2

(q; q)2n

(
2n

n− k

)
q

.(11.3.5)

If we take r = 2k+1 in (11.3.4) and multiply both sides by qk
2+k, there results

qk
2+k

(q; q)∞
=

∞∑
n=k

qn
2+n

(q; q)n−k(q; q)n+k+1

=

∞∑
n=k

qn
2

(q; q)2n+1

(
2n+ 1

n− k

)
q

.(11.3.6)

Now we multiply both sides of (11.3.5) by

(−1)kqk
2+(k2)(1 + qk)
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for every k ≥ 1, and we sum the result over all k ≥ 0. This gives

(11.3.7)
1

(q; q)∞

[
1 +

∞∑
k=1

(−1)kq2k
2+(k2)(1 + qk)

]

=

∞∑
n=0

qn
2

(q; q)2n

(
2n

n

)
q

+

∞∑
k=1

∞∑
n=k

qn
2

(q; q)2n

(
2n

n− k

)
q

(−1)kqk
2+(k2)(1 + qk).

The left side of (11.3.7) is

1

(q; q)∞

[
1 +

∞∑
k=1

(−1)k
(
q

k(5k−1)
2 + q

k(5k+1)
2

)]
=

1

(q; q)∞

∞∑
k=−∞

(−1)kq
k(5k+1)

2 .

Changing the order of summation on the right side of (11.3.7) we have

∞∑
n=0

qn
2

(q; q)2n

(
2n

n

)
q

+
∞∑

n=1

qn
2

(q; q)2n

n∑
k=1

(
2n

n− k

)
q

(−1)kqk
2+(k2)(1 + qk).

We can extend the last sum down to n = 0 because the inner sum is empty in that
case, so we have

∞∑
n=0

qn
2

(q; q)2n

[(
2n

n

)
q

+

n∑
k=1

(
2n

n− k

)
q

(−1)kqk
2+(k2)(1 + qk)

]
.

Now

n∑
k=1

(
2n

n− k

)
q

(−1)kqk
2+(k2)(1 + qk) =

n∑
k=1

(
2n

n− k

)
q

(−1)k
(
q

k(3k−1)
2 + q

k(3k+1)
2

)
,

and hence(
2n

n

)
q

+

n∑
k=1

(
2n

n− k

)
q

(−1)kqk
2+(k2)(1 + qk) =

n∑
k=−n

(
2n

n− k

)
q

(−1)kq
k(3k+1)

2

= (qn+1; q)n

by (11.3.1). Therefore (11.3.7) takes the form

1

(q; q)∞

∞∑
k=−∞

(−1)kq
k(5k+1)

2 =
∞∑

n=0

qn
2

(q; q)2n
(qn+1; q)n =

∞∑
n=0

qn
2

(q; q)n
,

which becomes the first Rogers–Ramanujan identity when we apply Jacobi’s triple
product to the left side.

To get the second Rogers–Ramanujan identity we multiply both sides of (11.3.6)
by

(−1)kqk
2+k+(k2)(1− q2k+1)
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for each k ≥ 0 and then sum over all such k. This gives

(11.3.8)
1

(q; q)∞

∞∑
k=0

(−1)kq2k
2+2k+(k2)(1− q2k+1)

=
∞∑
k=0

∞∑
n=k

qn
2+n

(q; q)2n+1

(
2n+ 1

n− k

)
q

(−1)kqk
2+k+(k2)(1− q2k+1)

=
∞∑

n=0

qn
2+n

(q; q)2n+1

n∑
k=0

(
2n+ 1

n− k

)
q

(−1)kqk
2+k+(k2)(1− q2k+1).

The left side of (11.3.8) is

1

(q; q)∞

[ ∞∑
k=0

(−1)kq
k(5k+3)

2 +
∞∑
k=0

(−1)k+1q
(5k+2)(k+1)

2

]
,

which becomes

1

(q; q)∞

∞∑
k=−∞

(−1)kq
k(5k+3)

2

if we replace k + 1 by −k in the latter sum. The inner sum on the right side of
(11.3.8) is

n∑
k=0

(
2n+ 1

n− k

)
q

(−1)kq
k(3k+1)

2 +

n∑
k=0

(
2n+ 1

n− k

)
q

(−1)k+1q
(k+1)(3k+2)

2 ,

which becomes
n∑

k=−n−1

(
2n+ 1

n− k

)
q

(−1)kq
k(3k+1)

2

if we replace k+1 by −k in the latter sum. Using (11.3.2), (11.3.8) takes the form

1

(q; q)∞

∞∑
k=−∞

(−1)kq
k(5k+3)

2 =
∞∑

n=0

qn
2+n

(q; q)2n+1
(qn+1; q)n+1 =

∞∑
n=0

qn
2+n

(q; q)n
,

which becomes the second Rogers–Ramanujan identity when we apply Jacobi’s
triple product to the left side.

Exercises

1. Change q to q2 in (11.3.5), then multiply both sides by
(
xk + x−k

)
qk

2

for k ≥ 1,
and then sum over k ≥ 0. Show that this gives

∞∑
n=0

q2n
2

(q2; q2)n

(
−qx; q2

)
n

(
− q

x ; q
2
)
n
=

(
−q3x; q6

)
∞

(
− q3

x ; q6
)
∞

(q2; q6)∞(q4; q6)∞
.

2. What happens in the previous problem if we take x = −q?
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392 11. ROGERS–RAMANUJAN IDENTITIES

3. Rogers’s second proof uses (11.3.1) and (11.3.2) as above, but (11.3.3) is replaced
in a way that we will now outline.

(i) Show that taking z = xeiθ and z = xe−iθ in Euler’s identity

(−z; q)∞ =
∞∑
k=0

q(
k
2)zk

(q; q)k

and multiplying the results together gives

(
−xeiθ; q

)
∞
(
−xe−iθ; q

)
∞ =

∞∑
n=0

q(
n
2)xn

(q; q)n

n∑
k=0

(
n

k

)
q

q−k(n−k)ei(n−2k)θ.

(ii) Either by changing θ to −θ in (i) and averaging the result with (i), or
by assuming θ and q are real and taking the real part of both sides of (i), show
that

(
−xeiθ; q

)
∞
(
−xe−iθ; q

)
∞ =

∞∑
n=0

q(
n
2)xn

(q; q)n

n∑
k=0

(
n

k

)
q

q−k(n−k) cos (n− 2k)θ.

(iii) Rogers now asks himself whether Jacobi’s triple product can be used on

the product in (ii). Explain why this is only possible for x = q
1
2 .

(iv) By taking x = q
1
2 in (ii) and using Jacobi’s triple product, show that

1

(q; q)∞

∞∑
k=−∞

q
k2

2 eikθ =
∞∑

n=0

q
n2

2

(q; q)n

n∑
k=0

(
n

k

)
q

q−k(n−k) cos (n− 2k)θ.

(v) By using one of the ideas from (ii), show that the result of (iv) can be
rewritten as

1

(q; q)∞

[
1 + 2

∞∑
k=1

q
k2

2 cos kθ

]
=

∞∑
n=0

q
n2

2

(q; q)n

n∑
k=0

(
n

k

)
q

q−k(n−k) cos (n− 2k)θ.

(vi) Rogers’s plan is to exploit the fact that the coefficients of cosmθ on each
side of (v) must be the same for every nonnegative integer m, which is the reason
for grouping the cosnθ and cos(−nθ) terms together in (v). Eventually we will
have to do the same thing on the right side of (v), but first Rogers separates the
even terms from the odd terms there. Show that the even terms give

1

(q; q)∞

[
1 + 2

∞∑
k=1

q2k
2

cos 2kθ

]
=

∞∑
n=0

qn
2

(q; q)2n

2n∑
k=0

(
2n

k

)
q

q(n−k)2 cos 2(n− k)θ

and that the odd terms give

2

(q; q)∞

∞∑
k=0

q2(k+
1
2 )

2

cos (2n+ 1)θ

=

∞∑
n=0

q(n+
1
2 )

2

(q; q)2n+1

2n+1∑
k=0

(
2n+ 1

k

)
q

q(n−k+ 1
2 )

2

cos (2n− 2k + 1)θ.
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(vii) By splitting the inner sum in the even case into 0 ≤ k ≤ n− 1, k = n,
and n + 1 ≤ k ≤ 2n, and changing k to n − k in the first case and to n + k in
the third, show that

2n∑
k=0

(
2n

k

)
q

q(n−k)2 cos 2(n− k)θ =

(
2n

n

)
q

+ 2

n∑
k=1

(
2n

n− k

)
q

qk
2

cos 2kθ.

(viii) By splitting the inner sum in the odd case into 0 ≤ k ≤ n and n+1 ≤
k ≤ 2n + 1, and changing k to n − k in the first case and to n + k + 1 in the
second, show that

2n+1∑
k=0

(
2n+ 1

k

)
q

q(n−k+ 1
2 )

2

cos (2n− 2k + 1)θ

= 2
n∑

k=0

(
2n+ 1

n− k

)
q

q(k+
1
2 )

2

cos (2k + 1)θ.

(ix) Using (vii) and (viii) in (vi), Rogers now has

1

(q; q)∞

[
1 + 2

∞∑
k=1

q2k
2

cos 2kθ

]

=
∞∑

n=0

qn
2

(q; q)2n

[(
2n

n

)
q

+ 2
n∑

k=1

(
2n

n− k

)
q

qk
2

cos 2kθ

]

in the even case and

2

(q; q)∞

∞∑
k=0

q2(k+
1
2 )

2

cos (2k + 1)θ

= 2
∞∑

n=0

q(n+
1
2 )

2

(q; q)2n+1

n∑
k=0

(
2n+ 1

n− k

)
q

q(k+
1
2 )

2

cos (2k + 1)θ

in the odd case. Explain why we can rewrite the odd case as

1

(q; q)∞

∞∑
k=0

q2k
2+2k cos (2k + 1)θ

=
∞∑

n=0

qn
2+n

(q; q)2n+1

n∑
k=0

(
2n+ 1

n− k

)
q

qk
2+k cos (2k + 1)θ.

(x) Each of the identities in (ix) contains two Fourier series for the same
function, so, quoting Rogers, “the coefficients of the several cosines of multiples
of θ are equal. This being so, we may replace the cosines by any quantities we
please consistent with the convergency of the resulting series.”

Show that replacing 2 cos 2kθ by

(−1)kq(
k
2)(1 + qk)

in the even case gives (11.3.7), and that replacing cos (2k + 1)θ by

(−1)kq(
k
2)(1− q2k+1)

in the odd case gives (11.3.8). Rogers’s proof now concludes as in the text.
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394 11. ROGERS–RAMANUJAN IDENTITIES

11.4. More identities of Rogers

In addition to the Rogers–Ramanujan identities, L. J. Rogers proved many
other q-series identities. This, as much as anything else, explains why his discovery
of the Rogers–Ramanujan identities was overlooked; they were buried in a mass of
other material. If he had proved less he might have received more credit, at least
in the short run. It is because of the work of Dick Askey and George Andrews
in the last quarter of the 20th century that we now see Rogers as a nearly great
mathematician unrecognized in his own time. In this section we derive some more
of his identities and recast them as statements about partitions. We first establish
several lemmas.

Consider the expression

(−aq; q2)∞

∞∑
k=0

qk
2+k ak

(q2; q2)k (−aq; q2)k
.

The first k factors of the infinite product outside the sum are cancelled by the
(−aq; q2)k inside it, so we have

(11.4.1) (−aq; q2)∞

∞∑
k=0

qk
2+k ak

(q2; q2)k (−aq; q2)k
=

∞∑
k=0

qk
2+k ak

(q2; q2)k
(−aq2k+1; q2)∞.

Now recall Euler’s identity

(11.4.2) (−x; q)∞ =

∞∑
k=0

q(
k
2) xk

(q; q)k

from section 3.6. Replacing q by q2 in (11.4.2) and then taking x = aq2k+1, we can
expand the factor (−aq2k+1; q2)∞ in (11.4.1):

(−aq2k+1; q2)∞ =
∞∑
j=0

q2(
j
2)

(q2; q2)j

(
aq2k+1

)j

=

∞∑
j=0

aj qj
2+2kj

(q2; q2)j
.

Substituting this in (11.4.1) we get

(−aq; q2)∞

∞∑
k=0

qk
2+k ak

(q2; q2)k (−aq; q2)k
=

∞∑
k=0

qk
2+k ak

(q2; q2)k

∞∑
j=0

aj qj
2+2kj

(q2; q2)j

=

∞∑
j=0

∞∑
k=0

ak+j qk
2+2kj+j2 qk

(q2; q2)k (q2; q2)j
.

If we set j + k = n here, this becomes

(−aq; q2)∞

∞∑
k=0

qk
2+k ak

(q2; q2)k (−aq; q2)k
=

∞∑
n=0

qn
2

an

(q2; q2)n

n∑
k=0

(
n

k

)
q2
qk.

The inner sum equals (−q; q)n by (2.5.8). Also

(11.4.3) (q2; q2)n = (q; q)n (−q; q)n,

so we finally have
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11.4. MORE IDENTITIES OF ROGERS 395

Lemma 11.

(−aq; q2)∞

∞∑
k=0

qk
2+k ak

(q2; q2)k (−aq; q2)k
=

∞∑
n=0

qn
2

an

(q; q)n
.

Let’s prove another identity of this type. Consider

(11.4.4) (aq; q2)∞

∞∑
k=0

qk
2

ak

(q2; q2)k (aq; q2)k
=

∞∑
k=0

qk
2

ak

(q2; q2)k
(aq2k+1; q2)∞,

and expand (aq2k+1; q2)∞ using (11.4.2) as before:

(aq2k+1; q2)∞ =
∞∑
j=0

q2(
j
2)

(q2; q2)j

(
−aq2k+1

)j

=

∞∑
j=0

(−1)j aj qj
2+2kj

(q2; q2)j
.

Substituting this in (11.4.4) we get

(aq; q2)∞

∞∑
k=0

qk
2

ak

(q2; q2)k (aq; q2)k
=

∞∑
k=0

qk
2

ak

(q2; q2)k

∞∑
j=0

(−1)j aj qj
2+2kj

(q2; q2)j

=

∞∑
j=0

∞∑
k=0

ak+j qk
2+2kj+j2 qk

(q2; q2)k (q2; q2)j

=
∞∑
n=0

qn
2

an

(q2; q2)n

n∑
j=0

(
n

j

)
q2
(−1)j ,

where we set j + k = n. We have seen the inner sum before. It equals zero if n is
odd, because the terms cancel in pairs, so we may as well set n = 2m above:

(aq; q2)∞

∞∑
k=0

qk
2

ak

(q2; q2)k (aq; q2)k
=

∞∑
m=0

q4m
2

a2m

(q2; q2)2m

2m∑
j=0

(
2m

j

)
q2
(−1)j .

If we replace q by q2 in Gauss’s identity (2.5.2), we see that the inner sum equals
(q2; q4)m. Since we also have (q2; q2)2m = (q2; q4)m (q4; q4)m (why?), the final result
is

Lemma 12.

(aq; q2)∞

∞∑
k=0

qk
2

ak

(q2; q2)k (aq; q2)k
=

∞∑
m=0

q4m
2

a2m

(q4; q4)m
.

We have established two of the four lemmas we will need for Rogers’s identities.
The other two are

Lemma 13.

(−aq2; q2)∞

∞∑
k=0

qk
2

ak

(q2; q2)k (−aq2; q2)k
=

∞∑
n=0

qn
2

an

(q; q)n
.

Lemma 14.

(aq; q2)∞

∞∑
k=0

q
k(3k−1)

2 ak

(q; q)k (aq; q2)k
=

∞∑
n=0

q2n
2

an

(q2; q2)n
.
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396 11. ROGERS–RAMANUJAN IDENTITIES

We leave these as exercises. See problem 12 in section 3.6 for alternative proofs
of Lemmas 11 and 13.

For convenience we recall the Rogers–Ramanujan identities:

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞ (q4; q5)∞
,(11.4.5)

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞ (q3; q5)∞
.(11.4.6)

Let’s find some other identities of a similar form. We can rewrite (why?)

∞∑
n=0

qn
2

(q4; q4)n
=

∞∑
n=0

qn
2

(q2; q2)n (−q2; q2)n

and then transform the right side by taking a = 1 in Lemma 13. This gives

(11.4.7)
∞∑

n=0

qn
2

(q4; q4)n
=

1

(−q2; q2)∞

∞∑
n=0

qn
2

(q; q)n
,

and hence (11.4.5) gives

∞∑
n=0

qn
2

(q4; q4)n
=

1

(−q2; q2)∞ (q; q5)∞ (q4; q5)∞
.

Similarly,

∞∑
n=0

qn
2+2n

(q4; q4)n
=

∞∑
n=0

qn
2+2n

(q2; q2)n (−q2; q2)n

=
1

(−q2; q2)∞

∞∑
n=0

qn
2+n

(q; q)n
taking a = q in Lemma 11

=
1

(−q2; q2)∞ (q2; q5)∞ (q3; q5)∞
by (11.4.6).

We can also rewrite
∞∑

n=0

qn
2

(q; q)2n
=

∞∑
n=0

qn
2

(q; q2)n (q2; q2)n

and then apply Lemma 12 with a = 1 to get

∞∑
n=0

qn
2

(q; q)2n
=

1

(q; q2)∞

∞∑
n=0

q4n
2

(q4; q4)n
.

If we now apply (11.4.5) with q replaced by q4 there results

(11.4.8)

∞∑
n=0

qn
2

(q; q)2n
=

1

(q; q2)∞ (q4; q20)∞ (q16; q20)∞
.

Similarly we can rewrite

∞∑
n=0

qn
2+2n

(q; q)2n+1
=

∞∑
n=0

qn
2+2n

(q; q2)n+1 (q2; q2)n
=

1

1− q

∞∑
n=0

qn
2+2n

(q2; q2)n (q3; q2)n
.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.
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Using Lemma 12 with a = q2 we get
∞∑

n=0

qn
2+2n

(q; q)2n+1
=

1

1− q

1

(q3; q2)∞

∞∑
n=0

q4n
2+4n

(q4; q4)n
=

1

(q; q2)∞

∞∑
n=0

q4n
2+4n

(q4; q4)n
.

Finally, replacing q by q4 in (11.4.6) this becomes

(11.4.9)

∞∑
n=0

qn
2+2n

(q; q)2n+1
=

1

(q; q2)∞ (q8; q20)∞ (q12; q20)∞
.

An identity less natural in appearance than the above, but easy to prove using
Lemma 14, is

∞∑
n=0

q
n(3n−1)

2

(q; q)n (q; q2)n
=

1

(q; q2)∞

∞∑
n=0

q2n
2

(q2; q2)n
taking a = 1 in Lemma 14

=
1

(q; q2)∞ (q2; q10)∞ (q8; q10)∞
replacing q by q2 in (11.4.5).

This has a companion which is slightly trickier:

∞∑
n=0

q
3n(n+1)

2

(q; q)n (q; q2)n+1

=
1

1− q

∞∑
n=0

q
n(3n−1)

2 +2n

(q; q)n (q3; q2)n

=
1

1− q

1

(q3; q2)∞

∞∑
n=0

q2n
2+2n

(q2; q2)n
taking a = q2 in Lemma 14

=
1

(q; q2)∞ (q4; q10)∞ (q6; q10)∞
replacing q by q2 in (11.4.6).

And here are two more:
∞∑

n=0

qn
2+n

(q2; q2)n (−q; q2)n
=

1

(−q; q2)∞

∞∑
n=0

qn
2

(q; q)n
taking a = 1 in Lemma 11

=
1

(−q; q2)∞ (q; q5)∞ (q4; q5)∞
by (11.4.5),

and
∞∑

n=0

qn
2+n

(q2; q2)n (−q; q2)n+1

=
1

1 + q

∞∑
n=0

qn
2+n

(q2; q2)n (−q3; q2)n

=
1

1 + q

1

(−q3; q2)∞

∞∑
n=0

qn
2+n

(q; q)n
a = q in Lemma 13

=
1

(−q; q2)∞ (q2; q5)∞ (q3; q5)∞
by (11.4.6).

These last two identities look more natural with q replaced by −q. We give the
details for the first one. To do the replacement expeditiously let’s note that(

q; q5
)
∞ = (1− q)

(
1− q6

) (
1− q11

) (
1− q16

) (
1− q21

) (
1− q26

)
· · ·

=
{
(1− q)

(
1− q11

) (
1− q21

)
· · ·
}{(

1− q6
) (

1− q16
) (

1− q26
)
· · ·
}

=
(
q; q10

)
∞
(
q6; q10

)
∞

and similarly (
q4; q5

)
∞ =

(
q4; q10

)
∞
(
q9; q10

)
∞ .
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Hence
∞∑

n=0

qn
2+n

(q2; q2)n (−q; q2)n
=

1

(−q; q2)∞ (q; q10)∞ (q4; q10)∞ (q6; q10)∞ (q9; q10)∞
,

and if we now replace q by −q this becomes
(11.4.10)

∞∑
n=0

qn
2+n

(q2; q2)n (q; q2)n
=

1

(q; q2)∞ (−q; q10)∞ (q4; q10)∞ (q6; q10)∞ (−q9; q10)∞

since (−1)n
2+n = 1 for any integer n. The advantage of this is that the denominator

of the left side simplifies to (q; q)2n, which will help us interpret this as a partition
identity. To make further progress toward that we need to rewrite the

(
−q; q10

)
∞

and
(
−q9; q10

)
∞ terms. We have(
−q; q10

)
∞ = (1 + q)

(
1 + q11

) (
1 + q21

) (
1 + q31

)
· · ·

=
1− q2

1− q

1− q22

1− q11
1− q42

1− q21
1− q62

1− q31
. . .

=

(
q2; q20

)
∞

(q; q10)∞

and similarly (
−q9; q10

)
∞ =

(
q18; q20

)
∞

(q9; q10)∞
.

Then (11.4.10) becomes

∞∑
n=0

qn
2+n

(q; q)2n
=

(
q; q10

)
∞
(
q9; q10

)
∞

(q; q2)∞ (q2; q20)∞ (q4; q10)∞ (q6; q10)∞ (q18; q20)∞
.

One last thing needs to be done to this—we have to cancel the terms in the numer-
ator. We can do this by splitting up

(
q; q2

)
∞. Since any odd number is congruent

to either 1, 3, 5, 7, or 9 mod 10, we have(
q; q10

)
∞
(
q9; q10

)
∞

(q; q2)∞
=

(
q; q10

)
∞
(
q9; q10

)
∞

(q; q10)∞ (q3; q10)∞ (q5; q10)∞ (q7; q10)∞ (q9; q10)∞

=
1

(q3; q10)∞ (q5; q10)∞ (q7; q10)∞
.

This is a good time to introduce a common abbreviation in this subject:

(a1; q)n (a2; q)n · · · (ak; q)n =: (a1, a2, . . . , ak; q)n ,

so that the above becomes(
q; q10

)
∞
(
q9; q10

)
∞

(q; q2)∞
=

1

(q3, q5, q7; q10)∞
.

Then we finally have

(11.4.11)

∞∑
n=0

qn
2+n

(q; q)2n
=

1

(q2, q18; q20)∞ (q3, q4, q5, q6, q7; q10)∞
.
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11.5. ROGERS’S IDENTITIES AND PARTITIONS 399

Similarly, if we replace q by −q in the identity

(11.4.12)

∞∑
n=0

qn
2+n

(q2; q2)n (−q; q2)n+1

=
1

(−q; q2)∞ (q2; q5)∞ (q3; q5)∞

and then try to write the result so that the right side looks like a partition generating
function, we ultimately reach

(11.4.13)

∞∑
n=0

qn
2+n

(q; q)2n+1

=
1

(q6, q14; q20)∞ (q, q2, q5, q8, q9; q10)∞
.

Exercises

1. Verify (11.4.3).

2. Check that (q2; q2)2m = (q2; q4)m (q4; q4)m.

3. Prove Lemma 13 by the same method that we used to prove Lemma 11.

4. Prove Lemma 14 by the same method as Lemmas 11, 12, and 13. You may need
the result of problem 5 in section 2.5.

5. Show that replacing q by −q in (11.4.12) leads to (11.4.13).

11.5. Rogers’s identities and partitions

The right side of (11.4.11) is the generating function for partitions with parts
congruent to 3, 4, 5, 6, or 7 mod 10, or to 2 or 18 mod 20. Since any number
congruent to 3 mod 10 is congruent to either 3 or 13 mod 20, we could also write
(11.4.11) as

∞∑
n=0

qn
2+n

(q; q)2n
=

1

(q2, q3, q4, q5, q6, q7, q13, q14, q15, q16, q17, q18; q20)∞

and think of the right side as generating partitions with parts congruent to ±2,
±3, ±4, ±5, ±6, or ±7 mod 20. What about the left side? We know that the
denominator generates partitions with at most 2n parts. In the numerator we can
say

n2 + n = 2

(
n+ 1

2

)
= 2 (1 + 2 + 3 + · · ·+ n)

= 1 + 1 + 2 + 2 + 3 + 3 + · · ·+ n+ n.

If we start with a partition with at most 2n parts (or exactly 2n parts some of
which might be 0) and add 1 to the two smallest parts, 2 to the next two smallest,
3 to the next two smallest, and so on, finally adding n to the two largest parts,
we get partitions with exactly 2n parts (i.e., with an even number of parts) where
the second largest part is definitely bigger than the third largest, the fourth largest
part is definitely bigger than the fifth largest, and so on. For example, there are
sixteen partitions of 12 of each type. For the partitions of 12 with parts congruent
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400 11. ROGERS–RAMANUJAN IDENTITIES

to 3, 4, 5, 6, or 7 mod 10, or to 2 or 18 mod 20, the possible parts are 2,3,4,5,6,7,
and the partitions are:

7 + 5 7 + 3 + 2 6 + 6 6 + 4 + 2

6 + 3 + 3 6 + 2 + 2 + 2 5 + 5 + 2

5 + 4 + 3 5 + 3 + 2 + 2 4 + 4 + 4

4 + 4 + 2 + 2 4 + 3 + 3 + 2

4 + 2 + 2 + 2 + 2 3 + 3 + 3 + 3

3 + 3 + 2 + 2 + 2 2 + 2 + 2 + 2 + 2 + 2

The partitions of 12 with an even number of parts where the 2kth part is always
bigger than the 2k + 1st part for any k are:

11 + 1 10 + 2 9 + 3 8 + 4 7 + 5 6 + 6

5 + 5 + 1 + 1 6 + 4 + 1 + 1 7 + 3 + 1 + 1

8 + 2 + 1 + 1 6 + 3 + 2 + 1 5 + 4 + 2 + 1

5 + 3 + 2 + 2 4 + 4 + 2 + 2 4 + 4 + 3 + 1

3 + 3 + 2 + 2 + 1 + 1

Similarly, we can rewrite the right side of (11.4.13) as

∞∑
n=0

qn
2+n

(q; q)2n+1

=
1

(q, q2, q5, q6, q8, q9, q11, q12, q14, q15, q18, q19; q20)∞

and the right side generates partitions with parts congruent to ±1, ±2, ±5, ±6,
±8, or ±9 mod 20. On the left side, the denominator generates partitions with at
most 2n− 1 parts, and we can think of n2 + n as

n2 + n = 0 + 1 + 1 + 2 + 2 + 3 + 3 + · · ·+ n+ n

in much the same way as before. Now we add 0 to the smallest part (which might
already have been 0), 1 to the next two smallest, 2 to the next two smallest, and
so on, finally adding n to the two largest parts, and we arrive at the same kind of
partitions as before (with the 2kth part always bigger than the 2k+1st part for any
k) except that now the number of parts could be either even or odd.

The identity (11.4.8)

∞∑
n=0

qn
2

(q; q)2n
=

1

(q; q2)∞ (q4; q20)∞ (q16; q20)∞

has a very similar interpretation. The right side generates partitions where the parts
are either odd or congruent to ±4 mod 20. If desired, we could rewrite (11.4.8) as

∞∑
n=0

qn
2

(q; q)2n
=

1

(q, q3, q4, q5, q7, q9, q11, q13, q14, q15, q17, q19; q20)∞
.
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11.5. ROGERS’S IDENTITIES AND PARTITIONS 401

The denominator on the left side generates partitions with at most 2n parts. We
can rewrite the exponent in the numerator as

n2 =

(
n+ 1

2

)
+

(
n

2

)
= (1 + 2 + · · ·+ (n− 1) + n) + (0 + 1 + · · ·+ (n− 2) + (n− 1))

= 0 + 1 + 1 + 2 + 2 + · · ·+ (n− 1) + (n− 1) + n.

Then start with a partition with exactly 2n parts, some of which might be 0, and
add 0 to the smallest part, 1 to the next two smallest, 2 to the next two smallest,
and so on, finally adding n to the largest and n − 1 to the next two largest. This
creates a partition with

largest part > 2nd largest part ≥ 3rd largest part > 4th largest part ≥ · · · ,

in other words a partition where the 2k − 1st part is larger than the 2kth part for
every k. Thus these partitions are equinumerous with the partitions whose parts
are either odd or congruent to ±4 mod 20. Here are the partitions of 8 generated
by (11.4.8):

left side right side
8 7 + 1

7 + 1 5 + 3
6 + 2 5 + 1 + 1 + 1

6 + 1 + 1 4 + 4
5 + 3 4 + 3 + 1

5 + 2 + 1 4 + 1 + 1 + 1 + 1
4 + 3 + 1 3 + 3 + 1 + 1
4 + 2 + 2 3 + 1 + 1 + 1 + 1 + 1

3 + 2 + 2 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

The identity (11.4.9)

∞∑
n=0

qn
2+2n

(q; q)2n+1
=

1

(q; q2)∞ (q8; q20)∞ (q12; q20)∞

has a similar interpretation. The denominator on the left side generates partitions
with at most 2n + 1 parts. We need to rewrite the exponent in the numerator in
the same sort of way as before. Since we know already that

n2 = 0 + 0 + 1 + 1 + 2 + 2 + · · ·+ (n− 1) + (n− 1) + n,

we can get n2 +2n as a sum of 2n+1 numbers by adding 1 to the first 2n of these:

n2 + 2n = 1 + 1 + 2 + 2 + 3 + 3 + · · ·+ (n− 1) + (n− 1) + n+ n+ n.

Then start with a partition with exactly 2n + 1 parts, some of which might be 0,
and add 1 to the smallest two parts, 2 to the next two smallest, 3 to the next two
smallest, and so on, finally adding n to the three largest parts and n − 1 to the
fourth and fifth largest. This creates a partition with an odd number of parts and
with the 2k−1st part larger than the 2kth part for every k except possibly for k = 1
(the three largest parts could be the same size). The right side of (4.11) generates
partitions whose parts are either odd or congruent to ±8 mod 20; if desired we
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could rewrite it as

∞∑
n=0

qn
2+2n

(q; q)2n+1
=

1

(q, q3, q5, q7, q8, q9, q11, q12, q13, q15, q17, q19; q20)∞
.

Thus these two types of partitions are equinumerous. Here are the partitions of 9
generated by (11.4.9):

left side right side
9 9

7 + 1 + 1 8 + 1
6 + 2 + 1 7 + 1 + 1
5 + 3 + 1 5 + 3 + 1
5 + 2 + 2 5 + 1 + 1 + 1 + 1
4 + 4 + 1 3 + 3 + 3
4 + 3 + 2 3 + 3 + 1 + 1 + 1
3 + 3 + 3 3 + 1 + 1 + 1 + 1 + 1 + 1

3 + 2 + 2 + 2 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

The bijection of Bressoud at the end of section 11.2 is really a combinatorial proof
of Rogers’s identity

(11.5.1)
∞∑

n=0

qn
2

(q4; q4)n
=

1

(−q2; q2)∞

∞∑
n=0

qn
2

(q; q)n
.

To see this, rewrite (11.5.1) as

∞∑
n=0

qn
2

(q; q)n
=
(
−q2; q2

)
∞

∞∑
n=0

qn
2

(q2; q2)n (−q2; q2)n

=

∞∑
n=0

qn
2

(q2; q2)n

(
−q2n+2; q2

)
∞ .(11.5.2)

The denominator on the right side of (11.5.2) generates partitions with at most n
parts, all of which are even. Writing

n2 = 1 + 3 + 5 + · · ·+ (2n− 1)

and adding 1 to the smallest (even) part, 3 to the next smallest, and so on, fi-
nally adding 2n − 1 to the largest, we get a partition with exactly n parts, which

are odd and distinct; these are the parts generated by qn
2

/(q2; q2)n. Moreover,(
−q2n+2; q2

)
∞ is the generating function for partitions whose parts are even, dis-

tinct, and at least 2n + 2; so each of these parts are more than twice the number

of odd parts generated by qn
2

/(q2; q2)n. If as before ρ4(m) denotes the number
of partitions of m with distinct parts and with each even part being larger than
twice the number of odd parts, then this shows that the right side of (11.5.2) is the
generating function for ρ4(m); i.e., we have

(11.5.3)

∞∑
n=0

qn
2

(q2; q2)n

(
−q2n+2; q2

)
∞ =

∞∑
m=0

ρ4(m) qm.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



11.6. THE GÖLLNITZ–GORDON IDENTITIES 403

But we saw in section 11.2 that, if ρ2(m) denotes the number of partitions of m
into parts which all differ by at least 2, then

(11.5.4)

∞∑
n=0

qn
2

(q; q)n
=

∞∑
m=0

ρ2(m) qm.

Thus we may use (11.5.3), (11.5.4), and (11.5.2) to prove that ρ2(m) = ρ4(m)
for all nonnegative integers m. Alternatively, if we combine Bressoud’s proof that
ρ2(m) = ρ4(m) with (11.5.3) and (11.5.4), then we have a partition counting proof
of (11.5.2), and hence of (11.5.1).

11.6. The Göllnitz–Gordon identities

In this section we present Krishnaswami Alladi’s beautiful proof of a pair of
partition identities found almost simultaneously around 1960 by Heinz Göllnitz and
Basil Gordon. Alladi’s idea is to split Gauss’s identity (5.2.12), which was

(11.6.1)
∞∑

n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

,

into its even and odd parts. For a function f(q), these are

f(q) + f(−q)

2
and

f(q)− f(−q)

2

respectively, so on the series side of (11.6.1) we have to consider

∞∑
n=0

q(
n+1
2 ) 1 + (−1)(

n+1
2 )

2
and

∞∑
n=0

q(
n+1
2 ) 1− (−1)(

n+1
2 )

2
.

Starting at n = 0, (−1)(
n+1
2 ) has the pattern 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, . . . ,

which suggests that we should look at residue classes mod 4.

If n = 4k, then(
n+ 1

2

)
=

(4k + 1)4k

2
= 2k(4k + 1), which is even, so (−1)(

n+1
2 ) = 1.

If n = 4k + 1, then(
n+ 1

2

)
=

(4k + 2)(4k + 1)

2
= (2k+1)(4k+1), which is odd, so (−1)(

n+1
2 ) = −1.

If n = 4k + 2, then(
n+ 1

2

)
=

(4k + 3)(4k + 2)

2
= (2k+1)(4k+3), which is odd, so (−1)(

n+1
2 ) = −1.

If n = 4k + 3, then(
n+ 1

2

)
=

(4k + 4)(4k + 3)

2
= (2k+2)(4k+3), which is even, so (−1)(

n+1
2 ) = 1.

It follows that
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(11.6.2)

∞∑
n=0

q(
n+1
2 ) 1 + (−1)(

n+1
2 )

2
=

∞∑
k=0

q2k(4k+1) +
∞∑
k=0

q(2k+2)(4k+3)

=

∞∑
k=0

q8k
2+2k

(
1 + q12k+6

)
and

(11.6.3)

∞∑
n=0

q(
n+1
2 ) 1− (−1)(

n+1
2 )

2
=

∞∑
k=0

q(2k+1)(4k+1) +
∞∑
k=0

q(2k+1)(4k+3)

=
∞∑
k=0

q8k
2+6k+1

(
1 + q4k+2

)
.

But it is better to combine the series together in a different way. Since

∞∑
j=0

q(2j+2)(4j+3) =
−∞∑
k=−1

q(−2k)(−4k−1) =
−1∑

k=−∞
q2k(4k+1)

(by replacing j by −k − 1), (11.6.2) becomes

∞∑
n=0

q(
n+1
2 ) 1 + (−1)(

n+1
2 )

2
=

∞∑
k=0

q2k(4k+1) +

−1∑
k=−∞

q2k(4k+1)

=

∞∑
k=−∞

q2k(4k+1).

Similarly, we have

∞∑
j=0

q(2j+1)(4j+3) =

−∞∑
k=−1

q(−2k−1)(−4k−1) =

−1∑
k=−∞

q(2k+1)(4k+1),

so (11.6.3) becomes

∞∑
n=0

q(
n+1
2 ) 1− (−1)(

n+1
2 )

2
=

∞∑
k=0

q(2k+1)(4k+1) +
−1∑

k=−∞
q(2k+1)(4k+1)

=

∞∑
k=−∞

q(2k+1)(4k+1).

Now we bring in Jacobi’s triple product with base q8:

(11.6.4) (−zq8; q16)∞

(
−q8

z
; q16

)
∞

(q16; q16)∞ =
∞∑

k=−∞
q8k

2

zk.

Taking z = q2 in (11.6.4) we have

(11.6.5)
∞∑

k=−∞
q2k(4k+1) = (−q6; q16)∞(−q10; q16)∞(q16; q16)∞.
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11.6. THE GÖLLNITZ–GORDON IDENTITIES 405

Taking z = q6 in (11.6.4) we have

(11.6.6)

∞∑
k=−∞

q(2k+1)(4k+1) = q(−q2; q16)∞(−q14; q16)∞(q16; q16)∞.

Thus the products (11.6.5) and (11.6.6) are the even and odd parts respectively of
the series side of (11.6.1). The even part of the product side is

(11.6.7)
1

2

[
(q2; q2)∞
(q; q2)∞

+
(q2; q2)∞
(−q; q2)∞

]
,

which is

(11.6.8) (q4; q4)∞
1

2

[
(−q; q2)∞ + (q; q2)∞

]
,

and similarly the odd part is

(11.6.9) (q4; q4)∞
1

2

[
(−q; q2)∞ − (q; q2)∞

]
.

We recall Euler’s identity (3.6.1), in Jacobi’s form with q replaced by q2 and x
replaced by zq:

(11.6.10) (−zq; q2)∞ =
∞∑

n=0

qn
2

zn

(q2; q2)n
.

Taking z = ±1 here we have

1

2

[
(−q; q2)∞ + (q; q2)∞

]
=

∞∑
n=0

qn
2

(q2; q2)n

1 + (−1)n

2

=
∞∑
k=0

q4k
2

(q2; q2)2k
(11.6.11)

and

1

2

[
(−q; q2)∞ − (q; q2)∞

]
=

∞∑
n=0

qn
2

(q2; q2)n

1− (−1)n

2

=

∞∑
k=0

q4k
2+4k+1

(q2; q2)2k+1
.(11.6.12)

Using (11.6.11) and (11.6.12) in (11.6.8) and (11.6.9) respectively, the even and odd
parts of the product side of (11.6.1) are

(q4; q4)∞

∞∑
k=0

q4k
2

(q2; q2)2k

and

q(q4; q4)∞

∞∑
k=0

q4k
2+4k

(q2; q2)2k+1

respectively. Comparing these with (11.6.5) and (11.6.6), we have proved that

∞∑
k=0

q4k
2

(q2; q2)2k
=

(−q6; q16)∞(−q10; q16)∞(q16; q16)∞
(q4; q4)∞

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



406 11. ROGERS–RAMANUJAN IDENTITIES

and
∞∑
k=0

q4k
2+4k

(q2; q2)2k+1
=

(−q2; q16)∞(−q14; q16)∞(q16; q16)∞
(q4; q4)∞

.

In both of these we can cancel (q16; q16)∞ into the denominator. Moreover, since
all the powers of q are even in both of them, it makes sense to replace q2 by q.
Making these changes we get

(11.6.13)

∞∑
k=0

q2k
2

(q; q)2k
=

(−q3; q8)∞(−q5; q8)∞
(q2; q4)∞(q4; q8)∞

and

(11.6.14)

∞∑
k=0

q2k
2+2k

(q; q)2k+1
=

(−q; q8)∞(−q7; q8)∞
(q2; q4)∞(q4; q8)∞

.

These are both quite interesting in their own right, and we will return to this. We
can transform them into the Göllnitz–Gordon identities by using Alladi’s lemma
below. It is convenient to observe first that

(q; q)2k = (q; q2)k(q
2; q2)k and (q; q)2k+1 = (q; q2)k+1(q

2; q2)k,

and hence replacing q by −q in (11.6.13) and (11.6.14) gives

(11.6.15)
∞∑
k=0

q2k
2

(−q; q2)k(q2; q2)k
=

(q3; q8)∞(q5; q8)∞
(q2; q4)∞(q4; q8)∞

and

(11.6.16)
∞∑
k=0

q2k
2+2k

(−q; q2)k+1(q2; q2)k
=

(q; q8)∞(q7; q8)∞
(q2; q4)∞(q4; q8)∞

.

Now we are ready for

Lemma 15 (Alladi’s lemma). If |q| < 1, then

(11.6.17)

∞∑
n=0

qn
2

an(−bq; q2)n
(q2; q2)n

=

∞∑
k=0

q2k
2

(ab)k(−aq2k+1; q2)∞
(q2; q2)k

.

To see this, expand (−aq2k+1; q2)∞ using (11.6.10) with z = aq2k. This makes
the right side of (11.6.17) into

∞∑
k=0

q2k
2

(ab)k

(q2; q2)k

∞∑
j=0

qj
2

q2kjaj

(q2; q2)j
=

∞∑
j=0

∞∑
k=0

qk
2+2kj+j2ak+jqk

2

bk

(q2; q2)k(q2; q2)j

(q2; q2)k+j

(q2; q2)k+j
.

Setting j + k = n, this becomes

∞∑
n=0

qn
2

an

(q2; q2)n

n∑
k=0

(
n

k

)
q2
qk

2

bk,

which, by the form (2.5.10) of Rothe’s q-binomial theorem, equals the left side of
(11.6.17).
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When a = b = 1, Alladi’s lemma says
∞∑

n=0

qn
2

(−q; q2)n
(q2; q2)n

=

∞∑
k=0

q2k
2

(−q2k+1; q2)∞
(q2; q2)k

(−q; q2)k
(−q; q2)k

= (−q; q2)∞

∞∑
k=0

q2k
2

(−q; q2)k(q2; q2)k

=
(−q; q2)∞(q3; q8)∞(q5; q8)∞

(q2; q4)∞(q4; q8)∞
,

where we used (11.6.15) in the last step. Similarly, when b = 1 and a = q2, Alladi’s
lemma says

∞∑
n=0

qn
2+2n(−q; q2)n
(q2; q2)n

=
∞∑
k=0

q2k
2+2k(−q2k+3; q2)∞

(q2; q2)k

(−q; q2)k+1

(−q; q2)k+1

= (−q; q2)∞

∞∑
k=0

q2k
2+2k

(−q; q2)k+1(q2; q2)k

=
(−q; q2)∞(q; q8)∞(q7; q8)∞

(q2; q4)∞(q4; q8)∞
,

where we used (11.6.16) in the last step. Now

(11.6.18)
(−q; q2)∞
(q2; q4)∞

=
1

(q; q2)∞
=

1

(q, q3, q5, q7; q8)∞
,

so we finally have

Theorem 87 (The Göllnitz–Gordon identities). If |q| < 1, then
∞∑

n=0

qn
2

(−q; q2)n
(q2; q2)n

=
1

(q; q8)∞(q4; q8)∞(q7; q8)∞
,(11.6.19)

∞∑
n=0

qn
2+2n(−q; q2)n
(q2; q2)n

=
1

(q3; q8)∞(q4; q8)∞(q5; q8)∞
.(11.6.20)

Exercises

1. Prove (11.6.2).

2. Prove (11.6.3).

3. Prove (11.6.8) and (11.6.9).

4. Explain why Lebesgue’s identity (5.4.3) can be rewritten as
∞∑

n=0

qn
2+n (a; q2)n

(q2; q2)n
=

(aq2; q4)∞
(q2; q4)∞

.

5. Alladi has pointed out that the result of problem 4 can be used to derive two
theorems very similar in appearance to the Göllnitz–Gordon identities, which he
has christened the little Göllnitz identities. Show that

(11.6.21)

∞∑
n=0

qn
2+n (−q; q2)n

(q2; q2)n
=

1

(q2; q8)∞(q3; q8)∞(q7; q8)∞
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and

(11.6.22)
∞∑

n=0

qn
2+n

(− 1
q ; q

2)n

(q2; q2)n
=

1

(q; q8)∞(q5; q8)∞(q6; q8)∞
.

6. Andrews had earlier given a derivation of the Göllnitz–Gordon identities that
uses a similar splitting idea. It is convenient to begin with

(11.6.23)

∞∑
n=0

(−1)nqn
2

(q; q2)n
(q2; q2)n

,

which is the left side of the first Göllnitz–Gordon identity with q replaced by −q
(since n2 is even if and only if n is).

(i) Explain why (11.6.23) can be rewritten as

(q; q2)∞

∞∑
n=0

(−1)nqn
2

(q2; q2)n

∞∑
k=0

(
q2n+1

)k
(q2; q2)k

.

(ii) Explain why the series in (i) can be rewritten as

(q; q2)∞

∞∑
k=0

qk

(q2; q2)k

(
q2k+1; q2

)
∞ .

(iii) Explain why the series in (ii) can be rewritten as

(q; q2)2∞

∞∑
k=0

qk

(q; q)2k
.

The simplification in the denominator is the reason for changing q to −q at the
start. The splitting (or perhaps unsplitting) idea comes next.

(iv) Explain why we can rewrite

∞∑
k=0

qk

(q; q)2k
=

∞∑
m=0

q
m
2

(q; q)m

1 + (−1)m

2
.

(v) Explain why we can evaluate (iv) as

1

2

[
1

(q
1
2 ; q)∞

+
1

(−q
1
2 ; q)∞

]
=

(q
1
2 ; q)∞ + (−q

1
2 ; q)∞

2 (q; q2)∞

=
(q

1
2 ; q2)∞(q

3
2 ; q2)∞ + (−q

1
2 ; q2)∞(−q

3
2 ; q2)∞

2 (q; q2)∞
.

(vi) Combining (v) with (iii), we have that (11.6.23) equals

(q; q2)∞
2

[
(q

1
2 ; q2)∞(q

3
2 ; q2)∞ + (−q

1
2 ; q2)∞(−q

3
2 ; q2)∞

]
=

(q; q2)∞
2(q2; q2)∞

[
(q

1
2 ; q2)∞(q

3
2 ; q2)∞(q2; q2)∞ + (−q

1
2 ; q2)∞(−q

3
2 ; q2)∞(q2; q2)∞

]
.

Use Jacobi’s triple product to show that this is

(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q4n
2+n =

(q; q2)∞
(q2; q2)∞

(−q3; q8)∞(−q5; q8)∞(q8; q8)∞.
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(vii) Changing q to −q again, we have proved that

∞∑
n=0

qn
2

(−q; q2)n
(q2; q2)n

=
(−q; q2)∞
(q2; q2)∞

(q3; q8)∞(q5; q8)∞(q8; q8)∞.

Show that this simplifies to (11.6.19).

7. Give a similar proof of (11.6.20).

8. Göllnitz’s proof of the Göllnitz–Gordon identities is intricate, but of a type that
we have seen before. He considers the function

(11.6.24) G(x) = 1 +
∞∑

n=1

(−1)nx2nqn(4n−1)(1− xq4n)
(−q; q2)n(xq

2; q2)n−1

(−xq; q2)n(q2; q2)n
.

Note that G(0) = 1.

(i) Assuming |q| < 1, show that this series converges for all x.

(ii) Show that

(1− x)G(x) =
∞∑

n=0

(−1)nx2nqn(4n−1)(1− xq4n)
(−q; q2)n(x; q

2)n
(−xq; q2)n(q2; q2)n

.

This will be useful later.

(iii) By writing 1− xq4n = 1− q2n + q2n(1− xq2n) in (11.6.24), show that

G(x) = 1 +
∞∑

n=1

(−1)nx2nqn(4n−1) (−q; q2)n(xq
2; q2)n−1

(−xq; q2)n(q2; q2)n−1

+
∞∑

n=1

(−1)nx2nqn(4n+1) (−q; q2)n(xq
2; q2)n

(−xq; q2)n(q2; q2)n
.

(iv) Note that 1 is the n = 0 term of the last series in (iii). By changing n
to n+ 1 in the first series in (iii) and combining the two series, show that G(x)
equals

∞∑
n=0

(−1)nx2nqn(4n+1)(1− xq4n+2)(1 + xq2n+1 + xq4n+2)
(−q; q2)n(xq

2; q2)n
(−xq; q2)n+1(q2; q2)n

.

(v) Show that

G(x)

1− xq2
−G(xq2) =

xq2

1 + xq

+

∞∑
n=1

(−1)nx2nqn(4n+1)(1− xq4n+2)(1− q2n + xq4n+2)
(−q; q2)n(xq

4; q2)n−1

(−xq; q2)n+1(q2; q2)n
.

Use (iv) (with the n = 0 term broken off) for the first term and (11.6.24) for the
second.

(vi) Show that

(1− xq4n+2)(1− q2n + xq4n+2) = 1− q2n + xq6n+2(1− xq2n+2),
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and hence

G(x)

1− xq2
−G(xq2) =

xq2

1 + xq
+

∞∑
n=1

(−1)nx2nqn(4n+1) (−q; q2)n(xq
4; q2)n−1

(−xq; q2)n+1(q2; q2)n−1

+

∞∑
n=1

(−1)nx2n+1q4n
2+7n+2 (−q; q2)n(xq

4; q2)n
(−xq; q2)n+1(q2; q2)n

.

(vii) Note that xq2/(1 + xq) is the n = 0 term of the last series in (vi). By
changing n to n+1 in the first series in (vi) and combining the two series, show
that

G(x)

1− xq2
−G(xq2) =

∞∑
n=0

(−1)nx2n+1q4n
2+7n+2(1− xq4n+4)

(−q; q2)n(xq
4; q2)n

(−xq; q2)n+2(q2; q2)n
.

(viii) By pulling out factors and comparing with (ii), show that

(11.6.25)
G(x)

1− xq2
−G(xq2) =

xq2(1− xq4)

(1 + xq)(1 + xq3)
G(xq4).

(ix) To simplify (11.6.25), Göllnitz sets

G(x) =
(xq2; q2)∞
(−xq; q2)∞

H(x).

Show that this gives

H(x) = (1 + xq)H(xq2) + xq2H(xq4).

Note that H(0) = 1, since G(0) = 1.

(x) If H(x) =
∞∑

n=0
gn(q)x

n, show that (ix) implies

gn(q) = q2n−1 1 + q2n−1

1− q2n
gn−1(q) for n ≥ 1.

(xi) Explain why (x) implies

gn(q) = qn
2 (−q; q2)n
(q2; q2)n

,

and hence

G(x) =
(xq2; q2)∞
(−xq; q2)∞

∞∑
n=0

(−q; q2)n
(q2; q2)n

qn
2

xn.

(xii) Show that (11.6.24) implies

G(1) = 1 +
∞∑

n=1

(−1)nqn(4n−1)(1 + q2n),

and that this is equivalent to

G(1) =
∞∑

n=−∞
(−1)nqn(4n−1).

(xiii) Use Jacobi’s triple product to show that the sum in (xii) is

(q3; q8)∞(q5; q8)∞(q8; q8)∞.
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(xiv) Comparing with (xi), we therefore have
∞∑

n=0

(−q; q2)n
(q2; q2)n

qn
2

=
(−q; q2)∞
(q2; q2)∞

(q3; q8)∞(q5; q8)∞(q8; q8)∞.

Show that this simplifies to (11.6.19).

(xv) Show that (11.6.24) implies

G(q2) = 1 +

∞∑
n=1

(−1)nqn(4n+3) 1− q2n+1

1− q
,

and this is equivalent to

(1− q)G(q2) =

∞∑
n=0

(−1)nqn(4n+3)(1− q2n+1) =

∞∑
n=−∞

(−1)nqn(4n+3).

(xvi) Use Jacobi’s triple product to show that the sum in (xv) is

(q; q8)∞(q7; q8)∞(q8; q8)∞.

(xiv) On the other hand, (xi) says
∞∑

n=0

(−q; q2)n
(q2; q2)n

qn
2+2n =

(−q3; q2)∞
(q4; q2)∞

G(q2).

Explain why (xv) and (xvi) imply that
∞∑

n=0

(−q; q2)n
(q2; q2)n

qn
2+2n =

(−q; q2)∞
(q2; q2)∞

(q; q8)∞(q7; q8)∞(q8; q8)∞,

and show that this simplifies to (11.6.20).

9. By taking x = q in problem 8 and comparing with (11.6.21), show that
∞∑

n=0

(−1)nqn(4n+1)(1− q4n+1)
(q2; q4)n
(q4; q4)n

= (q; q4)∞(q6; q8)∞.

10. (If you have not done problem 3 in section 11.1, you should at least look at
it before you try this one.) As with the Rogers–Ramanujan identities, there is
also a continued fraction associated with the Göllnitz–Gordon identities; in fact,
Gordon’s paper is primarily concerned with it. Define a function K(x) by

(11.6.26) K(x) =
G(x)(1 + xq)

(1− xq2)G(xq2)
,

with G(x) as in problem 8.

(i) Use (11.6.25) to show that

(11.6.27) K(x) = 1 + xq +
xq2

K(xq2)
.

This leads to a continued fraction for K(x).

(ii) Write down the result of replacing x by xq2 in (11.6.27), and substitute
it into (11.6.27) to show that

K(x) = 1 + xq +
xq2

1 + xq3 +
xq4

K(xq4)

.
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(iii) Write down the result of replacing x by xq4 in (11.6.27), and substitute
it into the result of (v) to show that

K(x) = 1 + xq +
xq2

1 + xq3 +
xq4

1 + xq5 +
xq6

K(xq6)

.

Continuing in this way we have

K(x) = 1 + xq +
xq2

1 + xq3 +
xq4

1 + xq5 +
xq6

1 + xq7 +
xq8

. . .

.

(iv) By setting x = 1 in the last continued fraction in (iii) and using (ii) and
the Göllnitz–Gordon identities, show that

1 + q +
q2

1 + q3 +
q4

1 + q5 +
q6

1 + q7 +
q8

. . .

=
G(1)(1 + q)

G(q2)(1− q2)
=

(q3; q8)∞ (q5; q8)∞
(q; q8)∞ (q7; q8)∞

.

This is the Göllnitz–Gordon continued fraction.

11.7. The Göllnitz–Gordon identities and partitions

What do the identities of section 11.6 tell us about partitions? Let’s go back
to (11.6.13) first. There are two natural interpretations of the product side, one
of which we reserve for the problems. In its present form the numerator generates
partitions into distinct parts congruent to 3 or 5 mod 8 (or to ±3 mod 8), and the
denominator generates even parts that are not multiples of 8. Since there is no
overlap, the product side of (11.6.13) generates partitions into parts congruent to
2, 3, 4, 5, or 6 mod 8, where the odd parts must be distinct. Let’s let G1(n) denote
the set of partitions of n of this type.

On the sum side, the denominator for a generic k generates partitions with at
most 2k parts. We can decompose the 2k2 in the exponent of the numerator as

2k2 = 1 + 1 + 3 + 3 + 5 + 5 + · · ·+ (2k − 1) + (2k − 1),

and then add these 2k numbers to the parts generated by the denominator in
increasing order. This gives us exactly 2k parts (i.e., an even number of parts),
where the second largest part exceeds the third largest by at least 2, the fourth
largest part exceeds the fifth largest by at least 2, and so on. Let’s let G2(n) denote
the set of partitions of n of this type.

Alternatively, we can decompose 2k2 = k+k+k+k+ · · ·+k, and add these 2k
numbers to the parts generated by the denominator. This again gives us an even
number of parts, and now each part is at least half as big as the number of parts.
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11.7. THE GÖLLNITZ–GORDON IDENTITIES AND PARTITIONS 413

Let’s let G3(n) denote the set of partitions of n of this type. Here are all of these
partitions for n = 12:

G1(12) G2(12) G3(12)
12 11 + 1 11 + 1

10 + 2 10 + 2 10 + 2
6 + 6 9 + 3 9 + 3

6 + 4 + 2 8 + 4 8 + 4
6 + 2 + 2 + 2 7 + 5 7 + 5
5 + 4 + 3 6 + 6 6 + 6

5 + 3 + 2 + 2 7 + 3 + 1 + 1 6 + 2 + 2 + 2
4 + 4 + 4 6 + 4 + 1 + 1 5 + 3 + 2 + 2

4 + 4 + 2 + 2 5 + 5 + 1 + 1 4 + 4 + 2 + 2
4 + 2 + 2 + 2 + 2 5 + 4 + 2 + 1 4 + 3 + 3 + 2

2 + 2 + 2 + 2 + 2 + 2 4 + 4 + 2 + 2 3 + 3 + 3 + 3

As for the Göllnitz–Gordon identities (11.6.19) and (11.6.20), let’s define a
GG partition to be a partition with distinct, nonconsecutive parts, and also with
nonconsecutive even parts. Thus 8 + 5 + 3 is a GG partition, but 8 + 6 + 3 is not
because 8 and 6 are consecutive even parts. Let’s also call a GG partition with no
1’s or 2’s a GGG partition. These two classes of partitions are closely related to
the ee partitions of section 3.3, in which the even parts may be repeated but the
odd parts must be distinct. If we start with a GG partition with exactly n parts
and subtract 1 from the smallest part, 3 from the next smallest, and so on, finally
subtracting 2n − 1 from the largest, we will still have a partition because of the
gaps between parts, and it will have at most n parts. It could have a repeated even
part, if the GG partition had two consecutive odd parts, but it could not have a
repeated odd part. Therefore, it is precisely an ee partition with at most n parts.
For a GGG partition with exactly n parts, we simply subtract 3 from the smallest
part, 5 from the next smallest, and so on, finally subtracting 2n+1 from the largest
part, and we again get an ee partition with at most n parts. Since the generating
function for ee partitions with at most n parts is (−q; q2)n/(q

2; q2)n, it follows that
the generating function for GG partitions with exactly n parts is

(11.7.1) q1+3+5+···+2n−1 (−q; q2)∞
(q2; q2)∞

= qn
2 (−q; q2)∞
(q2; q2)∞

,

and that the generating function for GGG partitions with exactly n parts is

(11.7.2) q3+5+7+···+2n+1 (−q; q2)∞
(q2; q2)∞

= qn
2+2n (−q; q2)∞

(q2; q2)∞
.

It follows that the generating function for all GG partitions is
∞∑

n=0

qn
2 (−q; q2)n
(q2; q2)n

,

and that the generating function for all GGG partitions is
∞∑

n=0

qn
2+2n (−q; q2)n

(q2; q2)n
.

These are precisely the left sides of (11.6.19) and (11.6.20). Therefore (11.6.19)
is trying to tell us that there are just as many GG partitions of n as there are
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partitions of n into parts congruent to 1, 4, or 7 mod 8; and (11.6.20) is trying to
tell us that there are just as many GGG partitions of n as there are partitions of n
into parts congruent to 3, 4, or 5 mod 8.

Here are all the partitions of 14 relevant to (11.6.19):

GG partitions 1, 4, 7 (mod 8)
14 12 + 1 + 1

13 + 1 9 + 4 + 1
12 + 2 9 + 1 + 1 + 1 + 1 + 1
11 + 3 7 + 7
10 + 4 7 + 4 + 1 + 1 + 1

10 + 3 + 1 7 + 1 + 1 + 1 + 1 + 1 + 1 + 1
9 + 5 4 + 4 + 4 + 1 + 1

9 + 4 + 1 4 + 4 + 1 + 1 + 1 + 1 + 1 + 1
8 + 5 + 1 4 + ten 1’s
7 + 5 + 2 fourteen 1’s

There are only a few partitions of 14 relevant to (11.6.20):

GGG partitions 3, 4, 5 (mod 8)
14 11 + 3

11 + 3 5 + 5 + 4
10 + 4 5 + 3 + 3 + 3
9 + 5 4 + 4 + 3 + 3

There is also a nice partition theorem associated with (11.6.21). If we have an
ee partition with at most n parts, first add some zeros if necessary to get exactly
n parts, and then add 2 to the smallest part, 4 to the next smallest, and so on,
finally adding 2n to the largest. This again creates gaps at least 2 between parts,
and this time there are no consecutive odd parts because an ee partition can’t have
a repeated odd part. Also, there are no 1’s. If we call these AGG partitions (for
Alladi), then the partitions of 14 relevant to (11.6.21) are:

AGG partitions 2, 3, 7 (mod 8)
14 11 + 3

12 + 2 10 + 2 + 2
11 + 3 7 + 7
10 + 4 7 + 3 + 2 + 2
9 + 5 3 + 3 + 3 + 3 + 2
8 + 6 3 + 3 + 2 + 2 + 2 + 2

8 + 4 + 2 2 + 2 + 2 + 2 + 2 + 2 + 2

Exercises

1. Show that (11.6.13) can be rewritten as

∞∑
k=0

q2k
2

(q; q)2k
=

1

(q2, q3, q4, q5, q11, q12, q13, q14; q16)∞
.

What kind of partitions does the right side generate?
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2. Show that (11.6.14) can be rewritten as
∞∑
k=0

q2k
2+2k

(q; q)2k+1
=

1

(q, q4, q6, q7, q9, q10, q12, q15; q16)∞
.

What kind of partitions does the right side generate?

3. Write down all the GG partitions of 16, and all the partitions of 16 with parts
congruent to 1, 4, or 7 mod 8. Do the same for the GGG partitions of 16, and
the partitions of 16 with parts congruent to 3, 4, or 5 mod 8; and for the AGG
partitions of 16 and those with parts congruent to 2, 3, or 7 mod 8.

4. Suppose we write n2 = n+n+n+ · · ·+n instead of n2 = 1+3+5+ · · ·+(2n−1).
What partition theorem does (11.6.19) imply then?

5. Give alternate partition interpretations of (11.6.20) and (11.6.21), similarly to
the previous problem.

6. This problem outlines a direct proof of (11.7.1), without reducing (explicitly) to
the ee partitions.

(i) Explain why the generating function for GG partitions with exactly one
part is

q + q2 + q3 + q4 + · · · = q

1− q
= q

1 + q

1− q2
.

(ii) Here are the GG partitions with exactly two parts, listed according to
the size of the smallest part:

3 + 1 5 + 2 5 + 3 7 + 4 7 + 5 9 + 6 9 + 7 . . .
4 + 1 6 + 2 6 + 3 8 + 4 8 + 5 10 + 6 10 + 7 . . .
5 + 1 7 + 2 7 + 3 9 + 4 9 + 5 11 + 6 11 + 7 . . .
6 + 1 8 + 2 8 + 3 10 + 4 10 + 5 12 + 6 12 + 7 . . .
...

...
...

...
...

...
... . . .

By constructing the generating function for each column and adding them all
together, or otherwise, show that the generating function for GG partitions with
exactly two parts is

q4

1− q
+

q7(1 + q)

(1− q)(1− q4)
= q4

(1 + q)(1 + q3)

(1− q2)(1− q4)
.

(iii) Explain why every GG partition with three parts and smallest part 2k
or 2k+1 corresponds uniquely to a GG partition with two parts by deleting the
2k or 2k + 1 and subtracting 2k + 2 from the other parts, and why this implies
that the generating function for such GG partitions is

q6k+8 (1 + q)2(1 + q3)

(1− q2)(1− q4)
.

(iv) Use (iii) to show that the generating function for GG partitions with
exactly three parts is

q9
(1 + q)(1 + q3)(1 + q5)

(1− q2)(1− q4)(1− q6)
.

(v) Prove (11.7.1) by induction on n by the same type of argument as in
(iii) and (iv).
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416 11. ROGERS–RAMANUJAN IDENTITIES

11.8. Bibliographical Notes

In Chapter 3 of the second volume of [168], MacMahon wrote that (11.2.1)
“has been verified as far as the coefficient of [q89] by actual expansion so that there
is practically no reason to doubt its truth; but it has not yet been established.” At
that time no one knew about Rogers’s work, but that would all change a year later.

Rogers’s first proof of the Rogers–Ramanujan identities is in [200]. His work
on this subject is vaguely reminiscent of Star Wars, in that there is a trilogy [199],
[200], [201], a prequel [198], and a prequel [197] to the prequel. The sequel, his
second proof of the Rogers–Ramanujan identities [202], came out many years later.
His third proof [203] appeared simultaneously with Ramanujan’s proof of section
11.1. The same proof was given later by Selberg [219], as we shall see in the next
chapter. For a modern treatment of Rogers’s work see Bowman’s paper [55].

The bijective proof of Garsia and Milne is in [113], and the shorter version by
Zeilberger and Bressoud in [62]. Rogers’s identities of section 11.4 are in [200] and
[202]; see also [19]. In that section I have followed some of the exercises in [24].
(For the longest time I could not remember where that section came from, but I
think this is right.) Bressoud’s bijection of section 11.2 is in [58] and [19]. The
latter also has a more readable account of some of Rogers’s best work than the
original.

The Göllnitz–Gordon identities were known for several years before they were
published. They are already in Göllnitz’s undergraduate thesis(!) of 1960 [124],
and again in his Ph.D thesis [125] of 1963. His paper [126], based on the latter,
finally appeared in 1967. Gordon’s paper [127] appeared in 1965, but he knew
the identities at least four years earlier. Gordon spent some time in Göttingen on
sabbatical in the early 1960s, when Göllnitz was a student there, but neither of them
knew that the other knew the identities and they never spoke. We have followed
Alladi’s beautiful paper [4] for this topic. Andrews’s proof from problem 6 is in
[12]. The recent book [220] by Andrew Sills has much more on Rogers–Ramanujan
type identities.
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CHAPTER 12

The Rogers–Selberg Function

12.1. The Rogers–Selberg function

Atle Selberg was one of the greatest mathematicians of the 20th century. He
came from a mathematical family and was reading his father’s copy of Ramanujan’s
collected papers at a young age, before getting his own copy as a present. While he
did most of his work on analytic number theory, his first paper was on q-analysis.
It was a thorough study of a function depending on x, q, and two other parameters
that, following Selberg, we will call k and i, namely

(12.1.1) Sk,i(x) =

∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij(1− xiqi(2j+1))

(xq; q)j
(q; q)j

,

where as usual |q| < 1. We also assume k > − 1
2 for the convergence of the series.

Among other things, as we shall see, Selberg was able to rederive the Rogers–
Ramanujan identities from this function, which reduces to the one Ramanujan used
in his proof when k = 2 = i. In fact, Selberg’s argument is almost identical with
Rogers’s third proof, which used the same function with a different name. Rogers
called the function Vm, though it also depended on n, x, and q. Selberg’s k and i
are Rogers’s n and m respectively, and Selberg had xq in the place of Rogers’s x.
It is not clear whether Selberg knew this. He may have, because this short paper
of Rogers was included in an appendix to Ramanujan’s collected papers.

We start by noting that Sk,i(0) = 1, from the j = 0 term, and that Sk,0(x) = 0,

from the factor 1− xiqi(2j+1). It will save us trouble later to show that Sk,i(1) can
be summed by Jacobi’s triple product. We have

Sk,i(1) =

∞∑
j=0

(−1)jq(2k+1)(j+1
2 )−ij(1− qi(2j+1))

=

∞∑
j=0

(−1)jq
j(j+1)(2k+1)

2 −ij +

∞∑
j=0

(−1)j+1q
j(j+1)(2k+1)

2 +i(j+1).

Changing j to m in the first sum, and j + 1 to −m in the second, this becomes

Sk,i(1) =

∞∑
m=0

(−1)mq
m(m+1)(2k+1)

2 −im +

−∞∑
m=−1

(−1)mq
−m(−m−1)(2k+1)

2 +i(−m)

=

∞∑
m=−∞

(−1)mq
m(m+1)(2k+1)

2 −im.
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418 12. THE ROGERS–SELBERG FUNCTION

Jacobi’s triple product says that

(x; q)∞
(
q
x ; q
)
∞ (q; q)∞ =

∞∑
m=−∞

(−1)mq
m(m−1)

2 xm,

or, if we replace q by q2k+1, that
(12.1.2)

(x; q2k+1)∞
(

q2k+1

x ; q2k+1
)
∞

(q2k+1; q2k+1)∞ =

∞∑
m=−∞

(−1)mq
m(m−1)(2k+1)

2 xm.

If we choose x = q2k−i+1, this becomes

(12.1.3) Sk,i(1) = (q2k−i+1; q2k+1)∞(qi; q2k+1)∞(q2k+1; q2k+1)∞.

Selberg began his study of Sk,i(x) by observing that

Sk,−i(x) =
∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )+ij(1− x−iq−i(2j+1))

(xq; q)j
(q; q)j

=

∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij

(
q2ij − x−iq−i

) (xq; q)j
(q; q)j

= −x−iq−i
∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij

(
1− xiqiq2ij

) (xq; q)j
(q; q)j

,

and consequently

(12.1.4) Sk,−i(x) = −x−iq−iSk,i(x).

Next Selberg derives the fundamental recurrence for his function, which was
also given by Rogers. Observe that Sk,i(x)− Sk,i−1(x) is

∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij (xq; q)j

(q; q)j

[
1− xiqi(2j+1) − qj

(
1− xi−1q(i−1)(2j+1)

)]
and that the quantity in brackets is

1− qj + xi−1q(i−1)(2j+1)+j
(
1− xqj+1

)
.

Therefore

Sk,i(x)− Sk,i−1(x) =

∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij (xq; q)j

(q; q)j
(1− qj)

+

∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij (xq; q)j

(q; q)j
xi−1q(i−1)(2j+1)+j

(
1− xqj+1

)

=
∞∑
j=1

(−1)jxjkq(2k+1)(j+1
2 )−ij (xq; q)j

(q; q)j−1

+

∞∑
j=0

(−1)jxjk+i−1q(2k+1)(j+1
2 )+ij−j+i−1 (xq; q)j+1

(q; q)j
.
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Replacing j by j + 1 in the penultimate sum, we get

Sk,i(x)− Sk,i−1(x) =

∞∑
j=0

(−1)j+1xjk+kq(2k+1)(j+2
2 )−ij−i (xq; q)j+1

(q; q)j

+
∞∑
j=0

(−1)jxjk+i−1q(2k+1)(j+1
2 )+ij−j+i−1 (xq; q)j+1

(q; q)j

=

∞∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−ij (xq; q)j+1

(q; q)j

[
xi−1q(i−1)(2j+1)+j − xkq(2k+1)(j+1)−i

]
.

The quantity in brackets is

(xq)i−1
[
qj(2i−1) − xk−i+1q(2k+1)(j+1)−(2i−1)

]
,

which is

(xq)i−1qj(2i−1)
[
1− (xq)k−i+1q(2j+1)(k−i+1)

]
.

Putting in a factor of qjk−jk we have

Sk,i(x)− Sk,i−1(x) = (xq)i−1

×
∞∑
j=0

(−1)j(xq)jkq(2k+1)(j+1
2 )−j(k−i+1) (xq; q)j+1

(q; q)j

[
1− (xq)k−i+1q(2j+1)(k−i+1)

]
.

Note also that (xq; q)j+1 = (1− xq)(xq2; q)j , which finally implies

Theorem 88 (Fundamental recurrence for the Rogers–Selberg function).

(12.1.5) Sk,i(x) = Sk,i−1(x) + (xq)i−1(1− xq)Sk,k−i+1(xq).

Exercises

1. Show that the series in (12.1.1) converges if k > − 1
2 .

2. What happens if k = − 1
2?

3. Show that Sk,i(q
−m) = 0 for a positive integer m.

4. Show that (12.1.5) implies

Sk,i+1(x) = Sk,i(x) + (xq)i(1− xq)Sk,k−i(xq)

and

Sk,k−i(xq) = Sk,k−i+1(xq)− (xq2)k−i(1− xq2)Sk,i(xq
2).

5. Explain why the previous problem implies that Sk,i+1(x) can be expressed in
terms of Sk,i(x), Sk,i(xq

2), and Sk,i−1(x).

6. Show that

Sk,i(x) = (xq)i−1 [(1− xq)Sk,k−i+1(xq)− Sk,k−i(x)] .
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420 12. THE ROGERS–SELBERG FUNCTION

12.2. Some applications

When k = 1, the fundamental recurrence (12.1.5) becomes

(12.2.1) S1,i(x) = S1,i−1(x) + (xq)i−1(1− xq)S1,2−i(xq).

Taking i = 2 in (12.2.1) we get

S1,2(x) = S1,1(x) + (xq)(1− xq)S1,0(xq) = S1,1(x).

Taking i = 1, (12.2.1) says

S1,1(x) = S1,0(x) + (1− xq)S1,1(xq) = (1− xq)S1,1(xq).

Iterating this and using Sk,i(0) = 1 we have immediately

S1,1(x) = (xq; q)∞ = S1,2(x).

Taking i = 3 in (12.2.1) we get

S1,3(x) = S1,2(x) + (xq)2(1− xq)S1,−1(xq).

But (12.1.4) tells us that

S1,−1(x) = −(xq)−1S1,1(x),

so

S1,3(x) = S1,2(x)− (xq)2(1− xq)(xq2)−1S1,1(xq)

= (xq; q)∞ − x(1− xq)(xq2; q)∞

= (xq; q)∞(1− x) = (x; q)∞.

Comparing with (12.1.1), we have proved that

(xq; q)∞ =
∞∑
j=0

(−1)jxjq
j(3j+1)

2

(
1− xq2j+1

) (xq; q)j
(q; q)j

,(12.2.2)

(xq; q)∞ =

∞∑
j=0

(−1)jxjq
j(3j−1)

2

(
1− x2q4j+2

) (xq; q)j
(q; q)j

,(12.2.3)

(x; q)∞ =

∞∑
j=0

(−1)jxjq3(
j
2)
(
1− x3q6j+3

) (xq; q)j
(q; q)j

.(12.2.4)

Selberg only wrote down the first of these. He seems not to have known Sylvester’s
identity (4.2.5) (to which it is equivalent), but he did point out that (12.2.2) reduces
to Euler’s pentagonal number theorem when x = 1.

When k = 2, the fundamental recurrence (12.1.5) becomes

S2,i(x) = S2,i−1(x) + (xq)i−1(1− xq)S2,3−i(xq).

Taking i = 1, this says

(12.2.5) S2,1(x) = S2,0(x) + (1− xq)S2,2(xq) = (1− xq)S2,2(xq)

since S2,0(x) = 0. Similarly, when i = 3 it says

S2,3(x) = S2,2(x) + (xq)2(1− xq)S2,0(xq) = S2,2(x).

When i = 2 it says

S2,2(x) = S2,1(x) + xq(1− xq)S2,1(xq),
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12.2. SOME APPLICATIONS 421

and using (12.2.5) here we have

S2,2(x) = (1− xq)S2,2(xq) + xq(1− xq)(1− xq2)S2,2(xq
2).

To simplify this Selberg sets

S2,2(x) = (xq; q)∞R(x),

which gives

(12.2.6) R(x) = R(xq) + xq R(xq2)

with R(0) = 1. Rogers also reaches (12.2.6) in his third proof of the Rogers–
Ramanujan identities, with a different order of operations. Hardy said of this proof
that it is “in principle the same [as Ramanujan’s], though the details differ.” This
is clear from section 11.1 of the previous chapter, where Ramanujan also arrived at
(12.2.6). As in that section, the power series solution of (12.2.6) is

R(x) =
∞∑

n=0

qn
2

xn

(q; q)n
.

Hence

S2,2(x) = (xq; q)∞

∞∑
n=0

qn
2

xn

(q; q)n
= S2,3(x),

and it follows from (12.2.5) that

S2,1(x) = (xq; q)∞

∞∑
n=0

qn
2+nxn

(q; q)n
.

Therefore we have
(12.2.7)

(xq; q)∞

∞∑
n=0

qn
2+nxn

(q; q)n
= S2,1(x) =

∞∑
j=0

(−1)jx2jq
j(5j+3)

2

(
1− xq2j+1

) (xq; q)j
(q; q)j

and also
(12.2.8)

(xq; q)∞

∞∑
n=0

qn
2

xn

(q; q)n
= S2,2(x) =

∞∑
j=0

(−1)jx2jq
j(5j+1)

2

(
1− x2q4j+2

) (xq; q)j
(q; q)j

= S2,3(x) =
∞∑
j=0

(−1)jx2jq
j(5j−1)

2

(
1− x3q6j+3

) (xq; q)j
(q; q)j

.

The first half of (12.2.8) is also a key equation in Ramanujan’s proof. Was Selberg
trying to generalize Ramanujan’s argument, or was he trying to see what else could
be got out of Rogers’s function Vm?

The second Rogers–Ramanujan identity follows by taking x = 1 in (12.2.7),
and the first by taking x = 1 in either half of (12.2.8). Because of (12.1.3), this
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422 12. THE ROGERS–SELBERG FUNCTION

gives

(q; q)∞

∞∑
n=0

qn
2+n

(q; q)n
= S2,1(1) = (q; q5)∞(q4; q5)∞(q5; q5)∞,(12.2.9)

(q; q)∞

∞∑
n=0

qn
2

(q; q)n
= S2,2(1) = (q2; q5)∞(q3; q5)∞(q5; q5)∞,(12.2.10)

(q; q)∞

∞∑
n=0

qn
2

(q; q)n
= S2,3(1) = (q2; q5)∞(q3; q5)∞(q5; q5)∞.(12.2.11)

Selberg also attacks

S0, 12
(x) =

∞∑
j=0

(−1)jq
j2

2

(
1− x

1
2 q

2j+1
2

) (xq; q)j
(q; q)j

.

The fundamental recurrence (12.1.5) gives

S0, 12
(x) = S0,− 1

2
(x) + (xq)−

1
2 (1− xq)S0, 12

(xq),

and (12.1.4) tells us that

S0,− 1
2
(x) = −(xq)−

1
2S0, 12

(x),

so

S0, 12
(x)
[
1 + (xq)−

1
2

]
= (xq)−

1
2 (1− xq)S0, 12

(xq)

= (xq)−
1
2

[
1 + (xq)

1
2

] [
1− (xq)

1
2

]
S0, 12

(xq),

and this simplifies to

S0, 12
(x) =

[
1− (xq)

1
2

]
S0, 12

(xq).

Iterating this we get

S0, 12
(x) =

[
1− (xq)

1
2

] [
1− (xq2)

1
2

]
S0, 12

(xq2)

=
[
1− (xq)

1
2

] [
1− (xq2)

1
2

] [
1− (xq3)

1
2

]
S0, 12

(xq3)

= . . .

=
(
(xq)

1
2 ; q

1
2

)
∞

S0, 12
(0)

since |q| < 1. Now

S0, 12
(0) =

∞∑
j=0

(−1)jq
j2

2

(q; q)j
,

so using Euler’s identity (3.5.1)

(−x; q)∞ =

∞∑
j=0

q(
j
2)xj

(q; q)j

we have

S0, 12
(0) =

(
q

1
2 ; q
)
∞

.
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Thus we have proved that

∞∑
j=0

(−1)jq
j2

2

(
1− x

1
2 q

2j+1
2

) (xq; q)j
(q; q)j

= S0, 12
(x) =

(
(xq)

1
2 ; q

1
2

)
∞

(
q

1
2 ; q
)
∞

.

To make this look nicer we replace q by q2 and x by x2, which gives

(12.2.12)
∞∑
j=0

(−1)jqj
2 (

1− xq2j+1
) (x2q2; q2)j

(q2; q2)j
= (xq; q)∞(q; q2)∞ =

(xq; q)∞
(−q; q)∞

,

where the last equality uses Euler’s “odd equals distinct” theorem. We saw (12.2.12)
in problem 11 in section 5.4, with xq replaced by −z. As Selberg points out, it
reduces to Gauss’s theorem (5.2.11), namely

(12.2.13)
∞∑

j=−∞
(−1)jqj

2

=
(q; q)∞
(−q; q)∞

,

if x = 1.

Exercises

1. Is there a nice formula for S1,4(x)? Show that S1,4(q) = −q(q; q)∞.

2. Show that (12.2.10) and (12.2.11) simplify to

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

the first Rogers–Ramanujan identity.

3. Show that (12.2.9) simplifies to

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
,

the second Rogers–Ramanujan identity.

4. Show that (12.2.12) reduces to (12.2.13) when x = 1.

12.3. The Selberg coefficients

For the further development of the theory of the Rogers–Selberg function, it is
convenient to have two more functions

(12.3.1) am,j(x) =

m−j−1∑
i=0

xiqi(j+1)

(
i+ j

i

)
q

(
m− i− 1

j

)
q

and

(12.3.2) bm,j(x) =

m−j∑
i=0

xiqij
(
i+ j

i

)
q

(
m− i− 1

j − 1

)
q

,

where m and j are nonnegative integers, and we define bm,0(x) = xm.
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424 12. THE ROGERS–SELBERG FUNCTION

We require two lemmas about these functions that follow from the q-Pascal
relation

(12.3.3)

(
n+ 1

k

)
q

=

(
n

k − 1

)
q

+ qk
(
n

k

)
q

.

Using (12.3.3), we have

am+1,j(x) =

m−j∑
i=0

xiqi(j+1)

(
i+ j

i

)
q

[(
m− i− 1

j − 1

)
q

+ qj
(
m− i− 1

j

)
q

]

=

m−j∑
i=0

(xq)iqij
(
i+ j

i

)
q

(
m− i− 1

j − 1

)
q

+ qj
m−j∑
i=0

xiqi(j+1)

(
i+ j

i

)
q

(
m− i− 1

j

)
q

.

The first sum on the last line is bm,j(xq), and, since the i = m − j term may be
discarded from the second sum, we have

Lemma 16.
am+1,j(x) = bm,j(xq) + qjam,j(x).

Using (12.3.3) again, we have

bm+1,j(x) =

m+1−j∑
i=0

xiqij
(
m− i

j − 1

)
q

[(
i+ j − 1

i− 1

)
q

+ qi
(
i+ j − 1

i

)
q

]

=

m+1−j∑
i=1

xiqij
(
i+ j − 1

i− 1

)
q

(
m− i

j − 1

)
q

+

m+1−j∑
i=0

(xq)iqij
(
i+ j − 1

i

)
q

(
m− i

j − 1

)
q

(
i+ j − 1

i

)
q

.

The last sum is am+1,j−1(xq). Reindexing the other one (replacing i by i + 1) we
have

m−j∑
i=0

xi+1q(i+1)j

(
i+ j

i

)
q

(
m− i− 1

j − 1

)
q

= xqj
m−j∑
i=0

xiqij
(
i+ j

i

)
q

(
m− i− 1

j − 1

)
q

.

This proves

Lemma 17.
bm+1,j(x) = am+1,j−1(xq) + xqjbm,j(x).

Selberg introduced these functions because he wanted to express Sk,m(x) as a
sum of functions of the form Sk,k(xq

s). It turns out to be convenient to have such
an expression for Sk,k−m(x) as well. From the fundamental recurrence (12.1.5) we
have

Sk,1(x) = Sk,0(x) + (1− xq)Sk,k(xq) = (1− xq)Sk,k(xq),

and then
Sk,k−1(x) = Sk,k(x)− (xq)k−1(1− xq)Sk,1(xq),

which, from the previous line, gives

Sk,k−1(x) = Sk,k(x)− (xq)k−1(1− xq)(1− xq2)Sk,k(xq
2).

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.
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In general we have

(12.3.4) Sk,m(x) =
m−1∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−mj(xq; q)2j+1am,j(x)Sk,k(xq

2j+1)

and

(12.3.5) Sk,k−m(x) =

m∑
j=0

(−1)j(xqj)jk−mq(
j
2)(xq; q)2jbm,j(x)Sk,k(xq

2j).

Assume these both hold up to m. By the fundamental recurrence (12.1.5) we
have

Sk,m+1(x) = Sk,m(x) + (xq)m(1− xq)Sk,k−m(xq),

and plugging in (12.3.4) and (12.3.5) we get

Sk,m+1(x) =
m−1∑
j=0

(−1)jxjkq(2k+1)(j+1
2 )−mj(xq; q)2j+1am,j(x)Sk,k(xq

2j+1)

+
m∑
j=0

(−1)j(xq)m(xqj+1)jk−mq(
j
2)(1− xq)(xq2; q)2jbm,j(xq)Sk,k(xq

2j+1).

We can change m− 1 to m in the first sum since am,m(x) = 0. The second sum is

m∑
j=0

(−1)jxjkqj(j+1)k−jm+(j2)(xq; q)2j+1bm,j(xq)Sk,k(xq
2j+1),

and it is convenient to rewrite the exponent of q as

(2k + 1)

(
j + 1

2

)
− (m+ 1)j.

Making this change and combining the second sum with the first we have

Sk,m+1(x) =
m∑
j=0

(−1)jxjk(xq; q)2j+1Sk,k(xq
2j+1)q(2k+1)(j+1

2 )−(m+1)j
[
qjam,j(x) + bm,j(xq)

]
.

Invoking Lemma 16 we have (12.3.4) with m+ 1 in place of m. We are half done:
we still need (12.3.5) with m+ 1 in place of m. Using the fundamental recurrence
(12.1.5) again we have

Sk,k−m−1(x) = Sk,k−m(x)− (xq)k−m−1Sk,m+1(xq).

Using (12.3.5) and what we just proved, this says

Sk,k−m−1(x) =
m∑
j=0

(−1)j(xqj)jk−mq(
j
2)(xq; q)2jbm,j(x)Sk,k(xq

2j)

+

m+1∑
j=1

(−1)j(xq)jk−m−1(xq; q)2jq
(2k+1)(j2)−(m+1)(j−1)am+1,j−1(xq)Sk,k(xq

2j),
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426 12. THE ROGERS–SELBERG FUNCTION

where we changed j + 1 to j in the last sum. The other piece of Sk,k−m−1(x) is

x−mbm,0(x)Sk,k(x) +
m∑
j=1

(−1)j(xqj)jk−mq(
j
2)(xq; q)2jbm,j(x)Sk,k(xq

2j),

and we can rewrite this as

Sk,k(x) +

m+1∑
j=1

(−1)j(xqj)jk−mq(
j
2)(xq; q)2jbm,j(x)Sk,k(xq

2j)

since bm,0(x) = xm and bm,m+1(x) = 0. Hence

Sk,k−m−1(x) = Sk,k(x) +
m+1∑
j=1

(−1)j(xqj)jk−mq(
j
2)(xq; q)2jbm,j(x)Sk,k(xq

2j)

+

m+1∑
j=1

(−1)j(xq)jk−m−1(xq; q)2jq
(2k+1)(j2)−(m+1)(j−1)am+1,j−1(xq)Sk,k(xq

2j)

and we hope that the two sums combine nicely. We can see some common factors,
so we write

Sk,k−m−1(x) = Sk,k(x)+

m+1∑
j=1

(−1)jxjk−m−1q(
j
2)−mj(xq; q)2jSk,k(xq

2j)

⎡
⎣xqj2kbm,j(x)+

qjk+2k(j2)−jam+1,j−1(xq)

⎤
⎦ .

Now jk + 2k
(
j
2

)
= j2k, so this becomes

Sk,k−m−1(x) = Sk,k(x)+

m+1∑
j=1

(−1)jxjk−m−1q(
j
2)−mj+j2k−j(xq; q)2jSk,k(xq

2j)
[
xqjbm,j(x) + am+1,j−1(xq)

]
which, by Lemma 17, is

Sk,k−m−1(x) = Sk,k(x)

+

m+1∑
j=1

(−1)jxjk−m−1q(
j
2)−(m+1)j+j2k(xq; q)2jbm+1,j(x)Sk,k(xq

2j).

Moreover, Sk,k(x) = x−m−1bm+1,0(x)Sk,k(x) is the j = 0 term of the sum, so

Sk,k−m−1(x) =

m+1∑
j=0

(−1)jxjk−m−1q(
j
2)−(m+1)j+j2k(xq; q)2jbm+1,j(x)Sk,k(xq

2j),

and this is (12.3.5) with m+1 in place of m since j2k− (m+1)j = j(jk−m− 1).
This proves (12.3.4) and (12.3.5) by induction on m.
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Exercises

1. Show directly that

Sk,2(x) = (1 + xq)(1− xq)Sk,k(xq)− xkq2k−1(xq; q)3Sk,k(xq
3).

2. Show directly that

Sk,k−2(x) = Sk,k(x)− (xq)k−2(1 + xq + xq2)(xq; q)2Sk,k(xq
2)

+ x2k−2q4k−3(xq; q)4Sk,k(xq
4).

12.4. The case k = 3

When k = 3, the fundamental recurrence (12.1.5) gives

S3,4(x) = S3,3(x) + (xq)3(1− xq)S3,0(xq) = S3,3(x),(12.4.1)

S3,3(x) = S3,2(x) + (xq)2(1− xq)S3,1(xq),(12.4.2)

S3,2(x) = S3,1(x) + xq(1− xq)S3,2(xq),(12.4.3)

S3,1(x) = S3,0(x) + (1− xq)S3,3(xq) = (1− xq)S3,3(xq).(12.4.4)

These will ultimately be useful, but Selberg starts instead with (12.3.4) and (12.3.5).
Taking k = 3 in both, m = 2 in (12.3.4), and m = 1 in (12.3.5), we have

S3,2(x) = (1− xq)a2,0(x)S3,3(xq)− x3q5(xq; q)3a2,1(x)S3,3(xq
3)

= x−1b1,0(x)S3,3(x)− (xq)2(xq; q)2b1,1(x)S3,3(xq
2).

Using a2,0(x) = 1 + xq, b1,0(x) = x, a2,1(x) = 1 = b1,1(x), and setting the two
expressions for S3,2(x) equal to each other, we get

S3,3(x) = (1 + xq)(1− xq)S3,3(xq) + x2q2(1− xq)(1− xq2)S3,3(xq
2)

− x3q5(1− xq)(1− xq2)(1− xq3)S3,3(xq
3).

To simplify this Selberg sets

(12.4.5) S3,3(x) = (xq; q)∞Q0(x)

for a new function Q0(x). Since S3,3(0) = 1, we have Q0(0) = 1. Plugging in
(12.4.5), the recurrence becomes

(12.4.6) Q0(x) = (1 + xq)Q0(xq) + x2q2Q0(xq
2)− x3q5Q0(xq

3).

Then Selberg defines a sequence of functions Qn(x) by

(12.4.7) Qn(x) = Qn−1(x)− x2q2nQn−1(xq
2) for n ≥ 1.

Note that Qn(0) = Qn−1(0), so Qn(0) = 1 for every n. These functions satisfy an
extension of (12.4.6), namely

(12.4.8) Qn(x) = (1 + xq)Qn(xq) + x2q2n+2Qn(xq
2)− x3q2n+5Qn(xq

3).

When n = 0, (12.4.8) reduces to (12.4.6). To see it in general, we define

(12.4.9) Rn(x) = Qn(x)− (1 + xq)Qn(xq)− x2q2n+2Qn(xq
2) + x3q2n+5Qn(xq

3).

Then R0(x) = 0 because of (12.4.6), and we hope to prove that Rn(x) = 0. This
would follow if we could show that

(12.4.10) Rn+1(x) = Rn(x)− x2q2n+4Rn(xq
2).
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428 12. THE ROGERS–SELBERG FUNCTION

But by definition

Rn+1(x) = Qn+1(x)− (1+xq)Qn+1(xq)−x2q2n+4Qn+1(xq
2)+x3q2n+7Qn+1(xq

3),

and using (12.4.7) this becomes

Rn+1(x) = Qn(x)− x2q2n+2Qn(xq
2)− (1 + xq)

[
Qn(xq)− x2q2n+4Qn(xq

3)
]

−x2q2n+4
[
Qn(xq

2)− x2q2n+6Qn(xq
4)
]
+x3q2n+7

[
Qn(xq

3)− x2q2n+8Qn(xq
5)
]
.

Rearranging this we have

Rn+1(x) = Qn(x)− (1 + xq)Qn(xq)− x2q2n+2Qn(xq
2) + x3q2n+5Qn(xq

3)

−x2q2n+4
[
Qn(xq

2)− (1 + xq3)Qn(xq
3)− x2q2n+6Qn(xq

4) + x3q2n+11Qn(xq
5)
]

which is (12.4.10). This establishes (12.4.8).
Selberg now proves that Qn(x) approaches a function Q(x) as n → ∞. Taking

this for granted and using the fact that |q| < 1, (12.4.8) simplifies to Q(x) =
(1 + xq)Q(xq). Iterating this and using Q(0) = 1 we have

Q(x) = (−xq; q)∞.

For completeness we sketch a proof that the sequence {Qn(x)} converges. We
will follow Selberg for the most part, but for simplicity we assume q is real. Recall
that Q0(x) is a convergent infinite series divided by a convergent infinite product,
and choose a positive number r closer to zero than q−1 to avoid the zeros of the
product. Then there is a positive constant A such that |Q0(x)| ≤ A whenever
|x| ≤ r. By the triangle inequality we have

|Q1(x)| ≤ |Q0(x)|+ |x2q2Q0(xq
2)| ≤ A(1 + r2q2)

and
|Q2(x)| ≤ |Q1(x)|+ |x2q4Q1(xq

2)| ≤ A(1 + r2q2)(1 + r2q4)

and so on. Continuing in this way we get

|Qn(x)| ≤ A(1 + r2q2) · · · (1 + r2q2n) = A(−r2q2; q2)n,

and since every factor of (−r2q2; q2)n is at least 1, we can replace this by the
uniform bound

(12.4.11) |Qn(x)| ≤ A(−r2q2; q2)∞,

a convergent infinite product. Next, observe that

Qn+m(x)−Qn(x) =

m∑
k=1

(Qn+k(x)−Qn+k−1(x)) ,

and hence, by the triangle inequality and the definition of Qn+k(x),

|Qn+m(x)−Qn(x)| ≤
m∑

k=1

|Qn+k(x)−Qn+k−1(x)|

=
m∑

k=1

∣∣x2q2n+2kQn+k−1(xq
2)
∣∣ .

Using (12.4.11) and the fact that q is real, this becomes

|Qn+m(x)−Qn(x)| ≤ Ar2(−r2q2; q2)∞

m∑
k=1

q2n+2k ≤ Ar2q2n+2

1− q2
(−r2q2; q2)∞,
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which approaches zero as n → ∞, independently of m and x. Given this, only a
tiny bit of knowledge of real analysis is necessary to see that {Qn(x)} converges
for |x| ≤ r: if the functions Qn(x) become arbitrarily close to one another, there
should be some function Q(x) that they become close to. The technical term is that
{Qn(x)} is a Cauchy sequence, and therefore a convergent one. This may, or may
not, seem intuitive. A proof is not too hard, but it requires the completeness of the
real number system. One can find it in any undergraduate real analysis book.

12.5. Explicit formulas for the Q functions

Selberg is able to obtain explicit formulas for the functions Qn(x) from the
previous section. The argument starts with (12.4.7), which we rewrite as

Qn(x) = Qn+1(x) + x2q2n+2Qn(xq
2).

It is easy to prove that

(12.5.1) Qn(x) = x2mq2m(m+n)Qn(xq
2m) +

m−1∑
j=0

x2jq2j(j+n)Qn+1(xq
2j)

for any nonnegative integer m, by induction on m. (When m = 0 the sum is empty
and (12.5.1) just says Qn(x) = Qn(x). When m = 1 it is equivalent to (12.4.7).)
Letting m → ∞ we get

(12.5.2) Qn(x) =
∞∑
j=0

x2jq2j(j+n)Qn+1(xq
2j)

since |q| < 1. This too can be iterated: for any nonnegative integer m we have

(12.5.3) Qn(x) =
∞∑
k=0

x2kq2k(k+n)

(
m+ k

k

)
q2
Qn+m+1(xq

2k).

When m = 0 this is (12.5.2). Let’s assume (12.5.3) holds for m− 1; in other words,
that

Qn(x) =

∞∑
i=0

x2iq2i(i+n)

(
m+ i− 1

i

)
q2
Qn+m(xq2i).

Using (12.5.2) with n replaced by n+m and x replaced by xq2i, we get the double
sum

Qn(x) =

∞∑
i=0

x2iq2i(i+n)

(
m+ i− 1

i

)
q2

∞∑
j=0

(xq2i)2jq2j(j+n+m)Qn+m+1(xq
2i+2j)

=
∞∑
i=0

∞∑
j=0

x2i+2jq2i
2+4ij+2j2+2in+2jn+2jm

(
m+ i− 1

i

)
q2
Qn+m+1(xq

2i+2j).

Setting i+ j = k (replacing j), this becomes

Qn(x) =
∞∑
k=0

k∑
i=0

x2kq2k
2+2nk+2m(k−i)

(
m+ i− 1

i

)
q2
Qn+m+1(xq

2k)

=

∞∑
k=0

x2kq2k(k+n)Qn+m+1(xq
2k)

k∑
i=0

q2m(k−i)

(
m+ i− 1

i

)
q2
,
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430 12. THE ROGERS–SELBERG FUNCTION

and all we need to complete the proof is(
m+ k

k

)
q2

=
k∑

i=0

q2m(k−i)

(
m+ i− 1

i

)
q2
.

But we’ve seen this in section 1.4; it’s a q-analogue of the diagonal property of
Pascal’s triangle. Combinatorially, we can look at sequences of m 0’s and k 1’s
and count inversions.

(
m+k
m

)
q
is the generating function for all such sequences, and

qmi
(
m+k−i−1

m−1

)
q
is the generating function for the sequences in which i 1’s precede

the first 0, so (
m+ k

m

)
q

=
k∑

i=0

qmi

(
m+ k − i− 1

m− 1

)
q

.

Changing i to k − i and q to q2 we complete the proof of (12.5.3). Next, letting
m → ∞ there we get

Qn(x) =
∞∑
k=0

x2kq2k(k+n)

(q2; q2)k
Q
(
xq2k

)
.

But Q(x) = (−xq; q)∞, so

Qn(x) =

∞∑
k=0

x2kq2k(k+n)

(q2; q2)k

(
−xq2k+1; q

)
∞ .

Multiplying inside the sum by (−xq; q)2k over itself we finally have

(12.5.4) Qn(x) = (−xq; q)∞

∞∑
k=0

q2k(k+n) x2k

(−xq; q)2k(q2; q2)k
,

and in particular

(12.5.5) Q0(x) = (−xq; q)∞

∞∑
k=0

q2k
2

x2k

(−xq; q)2k(q2; q2)k
.

Exercises

1. If Qn(x) were defined by (12.5.4), would Qn(x) → (−xq; q)∞ as n → ∞? Ex-
plain.

2. Prove (12.5.1) by induction on m.

12.6. Explicit formulas for S3,i(x)

From (12.5.5) and (12.4.5) we have immediately

(12.6.1) S3,3(x) = (xq; q)∞Q0(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2

x2k

(−xq; q)2k(q2; q2)k
,

and because of (12.4.1) we also know that

(12.6.2) S3,4(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2

x2k

(−xq; q)2k(q2; q2)k
.
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Moreover, from (12.4.4) we have S3,1(x) = (1 − xq)S3,3(xq). Combining this
with (12.6.1) we get

S3,1(x) = (1− xq)(x2q4; q2)∞

∞∑
k=0

q2k
2+2k x2k

(−xq2; q)2k(q2; q2)k
.

If we multiply the right side by 1+xq over itself, we get a formula as nice as (12.6.1),
namely

(12.6.3) S3,1(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2+2k x2k

(−xq; q)2k+1(q2; q2)k
.

With a bit more work, we can get a similar expression for S3,2(x). From (12.4.2)
we have

S3,2(x) = S3,3(x)− (xq)2(1− xq)S3,1(xq).

Using (12.6.1) and (12.6.3) here we get

S3,2(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2

x2k

(−xq; q)2k(q2; q2)k

− (xq)2(1− xq)(x2q4; q2)∞

∞∑
k=0

q2k
2+4k x2k

(−xq2; q)2k+1(q2; q2)k
.

It is again helpful to multiply the last sum by 1+xq over itself. If we also multiply
it by 1− q2k+2 over itself, we get

S3,2(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2

x2k

(−xq; q)2k(q2; q2)k

− (x2q2; q2)∞

∞∑
k=0

q2(k+1)2 x2(k+1)

(1− q2k+2)

(−xq2; q)2(k+1)(q2; q2)k+1
,

and changing k + 1 to k in the last sum leaves us with

S3,2(x) = (x2q2; q2)∞

[ ∞∑
k=0

q2k
2

x2k

(−xq; q)2k(q2; q2)k
−

∞∑
k=1

q2k
2

x2k(1− q2k)

(−xq2; q)2k(q2; q2)k

]
.

We can change the initial value for the last sum from k = 1 back to k = 0, since
the factor 1− q2k is zero when k = 0. If we do so, the two sums combine into

(12.6.4) S3,2(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2+2k x2k

(−xq; q)2k(q2; q2)k
,

a formula just as nice as (12.6.1) and (12.6.3).

Exercises

1. Show that (12.6.3) and (12.6.4) satisfy (12.4.3).

2. Show that

S3,5(x) = (x2q2; q2)∞

∞∑
k=0

q2k
2

x2k
[
1− x(1− q2k)

]
(−xq; q)2k(q2; q2)k

.
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432 12. THE ROGERS–SELBERG FUNCTION

12.7. The payoff for k = 3

Following Selberg, we are now in a position to prove several identities similar
to, but more complicated than, the Rogers–Ramanujan identities. By (12.6.1) and
(12.1.3) we have

(q2; q2)∞

∞∑
k=0

q2k
2

(−q; q)2k(q2; q2)k
= S3,3(1) = (q3; q7)∞(q4; q7)∞(q7; q7)∞,

or

(12.7.1)

∞∑
k=0

q2k
2

(−q; q)2k(q2; q2)k
=

(q3; q7)∞(q4; q7)∞(q7; q7)∞
(q2; q2)∞

.

Selberg rewrites both sides of this. He prefers to have the denominator on the
sum side as (−q; q2)k(q

4; q4)k; we leave this as an exercise. On the product side
the manipulation is a bit more complicated. We start by rewriting everything to
the base 14. Using the notation for multiple q-shifted factorials from the previous
chapter, we have

(q3; q7)∞(q4; q7)∞(q7; q7)∞
(q2; q2)∞

=
(q3, q4, q7, q10, q11, q14; q14)∞

(q2, q4, q6, q8, q10, q12, q14; q14)∞

=
(q3, q7, q11; q14)∞

(q2, q6, q8, q12; q14)∞
.

He also uses

(12.7.2) (q7; q14)∞ =
1

(−q7; q7)∞
,

which is just Euler’s “odd equals distinct” theorem. He further writes

(q3; q14)∞
(q6; q14)∞

=
1− q3

1− q6
1

1− q20
1− q17

1− q34
1

1− q48
1− q31

1− q62
. . .

=
1

(1 + q3)(1− q20)(1 + q17)(1− q48)(1 + q31) · · ·

=
1

(−q3; q14)∞(q20; q28)∞
.

and similarly

(q11; q14)∞
(q8; q14)∞

=
1

(−q11; q14)∞(q8; q28)∞

After all these changes, Selberg’s final form of (12.7.1) is
(12.7.3)

∞∑
k=0

q2k
2

(−q; q2)k(q4; q4)k
=

1

(−q7; q7)∞(q2,−q3,−q11, q12; q14)∞(q8, q20; q28)∞
.

You can argue about whether this is an improvement or not.
Next, setting x = 1 in (12.6.3) and recalling (12.1.3), we have

(12.7.4)
∞∑
k=0

q2k
2+2k

(−q; q)2k+1(q2; q2)k
=

(q; q7)∞(q6; q7)∞(q7; q7)∞
(q2; q2)∞

.
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12.7. THE PAYOFF FOR k = 3 433

Again Selberg rewrites both sides. He prefers (−q; q2)k+1(q
4; q4)k as the denomi-

nator on the sum side. On the product side we again rewrite everything to base
14:

(q; q7)∞(q6; q7)∞(q7; q7)∞
(q2; q2)∞

=
(q3, q6, q7, q8, q13, q14; q14)∞

(q2, q4, q6, q8, q10, q12, q14; q14)∞

=
(q3, q7, q13; q14)∞

(q2, q4, q10, q12; q14)∞
.

We use (12.7.2) again, and also write

(q13; q14)∞
(q12; q14)∞

=
1

1− q12
1− q13

1− q26
1

1− q40
1− q27

1− q54
1

1− q68
1− q41

1− q82
. . .

=
1

(1− q12)(1 + q13)(1− q40)(1 + q27)(1− q68)(1 + q41) · · ·

=
1

(−q13; q14)∞(q12; q28)∞

and similarly
(q; q14)∞
(q2; q14)∞

=
1

(−q; q14)∞(q16; q28)∞
.

After all these changes, Selberg’s final form of (12.7.4) is
(12.7.5)

∞∑
k=0

q2k
2+2k

(−q; q2)k+1(q4; q4)k
=

1

(−q7; q7)∞(−q, q4, q10,−q13; q14)∞(q12, q16; q28)∞
.

Finally, setting x = 1 in (12.6.4) and recalling (12.1.3) we have

(12.7.6)
∞∑
k=0

q2k
2+2k

(−q; q)2k(q2; q2)k
=

(q2; q7)∞(q5; q7)∞(q7; q7)∞
(q2; q2)∞

.

As before, Selberg prefers (−q; q2)k(q
4; q4)k as the denominator on the sum side.

On the product side we again rewrite everything to base 14:

(q2; q7)∞(q5; q7)∞(q7; q7)∞
(q2; q2)∞

=
(q2, q5, q7, q9, q12, q14; q14)∞

(q2, q4, q6, q8, q10, q12, q14; q14)∞

=
(q5, q7, q9; q14)∞

(q4, q6, q8, q10; q14)∞
.

We use (12.7.2) again, and also write

(q5; q10)∞
(q10; q14)∞

=
1

(−q5; q14)∞(q24; q28)∞

and
(q9; q14)∞
(q4; q14)∞

=
1

(−q9; q14)∞(q4; q28)∞
.

Making all these changes, Selberg’s final form of (12.7.6) is
(12.7.7)

∞∑
k=0

q2k
2+2k

(−q; q2)k(q4; q4)k
=

1

(−q7; q7)∞(−q5, q6, q8,−q9; q14)∞(q4, q24; q28)∞
.
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434 12. THE ROGERS–SELBERG FUNCTION

Exercises

1. Show that (−q; q)2k(q
2; q2)k = (−q; q2)k(q

4; q4)k.

2. Show that (−q; q)2k+1(q
2; q2)k = (−q; q2)k+1(q

4; q4)k.

3. Show that
(q11; q14)∞
(q8; q14)∞

=
1

(−q11; q14)∞(q8; q28)∞
.

4. Show that
(q; q14)∞
(q2; q14)∞

=
1

(−q; q14)∞(q16; q28)∞
.

5. Show that
(q5; q14)∞
(q10; q14)∞

=
1

(−q5; q14)∞(q24; q28)∞
.

6. Show that
(q9; q14)∞
(q4; q14)∞

=
1

(−q9; q14)∞(q4; q28)∞
.

7. Explain why looking at S3,4(1) gives (12.7.3) again.

8. Do we get anything interesting from S3,5(1)?

12.8. Gordon’s theorem

Mathematicians divide into two types in many different ways. One such di-
chotomy is special versus general. Mathematics consists in large part of gener-
alization, as we have seen many times in these pages, so all mathematicians are
generalizers to a greater or lesser degree. But some of us find the greatest beauty
in generality, and others find it in well-chosen specific cases.

As mathematical subjects go, q-analysis tends to be special rather more than
general, but more general partition theorems than the ones we have seen began to
appear in the second half of the 20th century. We will discuss one such theorem, a
generalization of the Rogers–Ramanujan identities due to Basil Gordon. George An-
drews observed that Gordon’s theorem could be obtained from the Rogers–Selberg
function, and this is the path we shall follow.

If we set

Sk,i(x) = (xq; q)∞Ck,i(x)

and plug this into the fundamental recurrence (12.1.5), we get

(12.8.1) Ck,i(x) = Ck,i−1(x) + (xq)i−1Ck,k−i+1(xq).

Suppose now that k and i are nonnegative integers with i < 2k + 1. Then Sk,i(x)
has no negative powers of x or q, and

1

(xq; q)∞
=

∞∑
n=0

(xq)n

(q; q)n

has none either. It follows that Ck,i(x) has none, so we can write

(12.8.2) Ck,i(x) =

∞∑
m=0

∞∑
N=0

ck,i(m,N)xmqN
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12.8. GORDON’S THEOREM 435

for some coefficients ck,i(m,N). Since Sk,0(x) = 0, we have ck,0(m,N) = 0 for
all k,m,N , and having observed this we now assume i is a positive integer. Since
Sk,i(0) = 1, we have ck,i(0, 0) = 1. Plugging (12.8.1) into (12.8.2) we get

∞∑
m=0

∞∑
N=0

ck,i(m,N)xmqN −
∞∑

m=0

∞∑
N=0

ck,i−1(m,N)xmqN

=

∞∑
r=0

∞∑
S=0

ck,k−i+1(r, S)(xq)
r+i−1qS =

∞∑
r=0

∞∑
S=0

ck,k−i+1(r, S)x
r+i−1qr+S+i−1.

The coefficient of xmqN must be the same on both sides. If we set m = r + i − 1
and N = r + S + i− 1, then S = N −m and r = m− i+ 1, so

(12.8.3) ck,i(m,N)− ck,i−1(m,N) = ck,k−i+1(m− i+ 1, N −m).

We claim that ck,i(m,N) is the number of partitions of N with exactly m parts,
say N = b1 + b2 + · · ·+ bm, where as usual the parts br are weakly decreasing, and
they satisfy two additional conditions:

• For each r, br − br+k−1 ≥ 2.
• There are at most i− 1 1’s.

These conditions will look more natural if we observe that when k = 2 and
i = 1, 2, they are the conditions for one side of the Rogers–Ramanujan identities.
Let’s call these AG partitions.

Clearly there are no AG partitions if i = 0, and the empty partition of zero,
with no parts, gives us ck,i(0, 0) = 1; these are the base cases for an induction
argument. The point is that AG partitions satisfy (12.8.3). Assume the claim is
true for m,N, k, and i− 1, and for all smaller values of m and N . If the claim were
also true for i,m,N, k, then we would be done by induction on i,m,N .

If the claim were also true for i, then ck,i(m,N) − ck,i−1(m,N) would be the
number of AG partitions where 1 is a part exactly i − 1 times. We need to make
an observation in this case. Suppose an AG partition has i− 1 1’s and j 2’s. Since
there are m parts in all, there are m− i−j+1 parts larger than 2. This means that
the first 2 is in the (m− i− j + 2)th position, and the last 1 is in the mth position;
i.e., bm−i−j+2 = 2 and bm = 1, so that bm−i−j+2 − bm = 1. This violates the gap
condition unless i + j − 2 ≤ k − 2, so we must have j ≤ k − i. In other words, an
AG partition with exactly i− 1 1’s can have at most k − i 2’s.

If we now subtract 1 from all the parts, the gap condition remains in place and
we will have an AG partition of N−m with exactlym−i+1 parts, of which at most
k − i are 1’s. By induction, ck,k−i+1(m− i+ 1, N −m) counts these. Reading the
argument backwards, we see that if the claim is true for ck,k−i+1(m− i+1, N −m)
and for ck,i−1(m,N), then it must also be true for ck,i(m,N). This proves the
claim.

If we set x = 1 in (12.8.2) and define Gk,i(n) to be the number of AG partitions
of n with any number of parts, then (12.8.2) becomes

Ck,i(1) =

∞∑
n=0

Gk,i(n)q
n.
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436 12. THE ROGERS–SELBERG FUNCTION

But by (12.1.3) and the definition of Ck,i(x) we also have

Ck,i(1) =
(q2k−i+1; q2k+1)∞(qi; q2k+1)∞(q2k+1; q2k+1)∞

(q; q)∞
.

This implies

Theorem 89 (Gordon’s theorem). Let Gk,i(n) be the number of AG partitions
of n, and let Ak,i(n) be the number of partitions of n with parts not congruent to 0
or i or 2k − i+ 1 modulo 2k + 1. Then

Ak,i(n) = Gk,i(n).

12.9. Bibliographical Notes

In this chapter we have largely followed Selberg’s paper [219], except in the last
section where we largely followed [9]. Gordon’s theorem first appeared in [128].

Selberg attributed (1.4.2) to [148], which was published well before [117] but
probably written later; (12.2.12) appeared earlier in [162] and [149]; see the notes
for Chapter 5. The identities (12.7.3), (12.7.5), and (12.7.7) were found earlier by
Rogers [202], and they also appear in Ramanujan’s lost notebook [25].

Rogers’s version of the proof of the Rogers–Ramanujan identities in section
12.2 is in [203]. In the classic book [135], Hardy chose it instead of Ramanujan’s
proof, which is a bit curious in that Hardy spent much of his career promoting
Ramanujan’s work. He wrote there that “no proof is really easy (and it would
perhaps be unreasonable to expect an easy proof).” As Igor Pak has pointed out
(with Schur’s combinatorial proof from Chapter 10 in mind), Hardy might not have
said this if he had been a better combinatorialist. He was a great analyst and had
many other interests within mathematics and without. Outstanding examples in
each category are number theory and cricket.

Hardy is often regarded as the best English prose stylist among mathematicians,
and the recent book [3] was published largely on this theory. As a writer he is most
famous for A Mathematician’s Apology [134]. I am supposed to say at this point
that every young mathematician should read [134], which I have used in several
courses, but I think it is somewhat overrated, and better advice—unless you see
yourself more as an intellectual who happens to be a mathematician—would be to
read [130] and [135]. If you do read [134], make sure you get the edition with
C. P. Snow’s Foreword and read that too. In my opinion, Hardy’s best writing is
about Ramanujan, in his obituary [131] and in [132]. The latter has been reprinted
as the first chapter of [133] and in [3], and the former in the Collected Papers of
both men. The very best paragraph Hardy wrote was the last one in [131]. He
returns to it in [132] and partially contradicts it, but he was right the first time.
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CHAPTER 13

Bailey’s 6ψ6 Sum

13.1. Bailey’s formula

We begin this chapter with a beautiful identity of Bailey, though it is only a
special case of the one that the chapter title refers to.

Theorem 90 (Bailey’s formula). If |q| < 1 and xy �= 0, then

(13.1.1)

∞∑
n=−∞

(
xqn

(1− xqn)2
− yqn

(1− yqn)2

)

=
(x− y)(xy; q)∞

(
q
xy ; q

)
∞

(
qx
y ; q
)
∞

(
qy
x ; q
)
∞ (q; q)4∞

(x; q)2∞
(
q
x ; q
)2
∞ (y; q)2∞

(
q
y ; q
)2
∞

.

We follow the proof of Dobbie, who denotes the right side of (13.1.1) by F (x, y)
and begins by trying to determine its behavior near x = 1. This is a double root
of the denominator because of the factor (x; q)2∞, so we define

φ(x) = (1− x)2F (x, y) =
(x− y)(xy; q)∞

(
q
xy ; q

)
∞

(
qx
y ; q
)
∞

(
qy
x ; q
)
∞ (q; q)4∞

(xq; q)2∞
(
q
x ; q
)2
∞ (y; q)2∞

(
q
y ; q
)2
∞

(evidently φ(x) also depends on y, but we focus on the x dependence). Then

φ(1) =
(1− y)(y; q)∞

(
q
y ; q
)
∞

(
q
y ; q
)
∞

(qy; q)∞ (q; q)4∞

(q; q)2∞ (q; q)
2
∞ (y; q)2∞

(
q
y ; q
)2
∞

= 1

since (1 − y)(qy; q)∞ = (y; q)∞. Therefore F (x, y) behaves like 1
(1−x)2 near x = 1,

but we might need to add a 1
1−x term to capture the behavior precisely. To find

the right one, we determine the constant A that makes

lim
x→1

(
F (x, y)− 1

(1− x)2
− A

1− x

)
exist. Note that we can rewrite this as

lim
x→1

φ(x)− 1−A(1− x)

(1− x)2
,

which has the form 0
0 since φ(1) = 1. By L’Hopital’s rule it equals

lim
x→1

φ′(x) +A

2(x− 1)
,

437
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438 13. BAILEY’S 6ψ6 SUM

so we need A = −φ′(1) for the limit to exist. To get this we first calculate

log φ(x) = log(x− y) +

∞∑
n=0

log(1− xyqn) +

∞∑
n=1

log

(
1− qn

xy

)

+

∞∑
n=1

log

(
1− qnx

y

)
+

∞∑
n=1

log

(
1− qny

x

)
− 2

∞∑
n=1

log(1− xqn)

− 2

∞∑
n=1

log

(
1− qn

x

)
+ 4 log (q; q)∞ − 2 log (y; q)∞ − 2 log

(
q
y ; q
)
∞

and then take the derivative with respect to x to get

φ′(x)

φ(x)
=

1

x− y
−

∞∑
n=0

yqn

1− xyqn
+

∞∑
n=1

qn

x2y

1− qn

xy

−
∞∑

n=1

qn

y

1− qnx
y

+

∞∑
n=1

qny
x2

1− qny
x

+ 2

∞∑
n=1

qn

1− xqn
− 2

∞∑
n=1

qn

x2

1− qn

x

.

Setting x = 1 and using φ(1) = 1, we have

φ′(1) =
1

1− y
−

∞∑
n=0

yqn

1− yqn
+

∞∑
n=1

qn

y

1− qn

y

−
∞∑

n=1

qn

y

1− qn

y

+

∞∑
n=1

qny

1− qny
+ 2

∞∑
n=1

qn

1− qn
− 2

∞∑
n=1

qn

1− qn
.

Almost everything cancels here, and we are left with

φ′(1) =
1

1− y
− y

1− y
= 1.

It follows that the constant A should equal −1, so that F (x, y) behaves like

1

(1− x)2
− 1

1− x
=

x

(1− x)2

near x = 1. Since (exercise) F (x, y) = F (xq, y), F has the same behavior near any
power of q. This suggests constructing the series

∞∑
n=−∞

xqn

(1− xqn)2
,

which, following Dobbie, we call G(x). Since G(x) = G(xq), if we write F (x, y) =
G(x)+H(x, y) for some functionH(x, y), then we will also haveH(x, y) = H(xq, y).
Because G(x) matches the behavior of F (x, y) at every singularity of F (as a func-
tion of x) in the finite plane except possibly the origin, we can write

H(x, y) =

∞∑
n=−∞

an(y)x
n,

where this converges for all finite x except possibly x = 0. But since H(x, y) =
H(xq, y), we have an(y) = qnan(y) for all n and an arbitrary q with absolute value
less than 1. This is impossible unless an(y) = 0 for all n �= 0. In other words,
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H(x, y) reduces to a0(y), so we have F (x, y) = G(x) + a0(y). But F (y, y) = 0, so
a0(y) = −G(y), and therefore

F (x, y) = G(x)−G(y) =

∞∑
n=−∞

(
xqn

(1− xqn)2
− yqn

(1− yqn)2

)

which is the left side of (13.1.1).

Exercises

1. Show that
∞∑

n=−∞

xqn

(1−xqn)2 converges for any x if |q| < 1.

2. Denoting the right side of (13.1.1) by F (x, y) as above, show that F (x, y) =
F (xq, y). Does F (x, y) = F (x, yq)?

3. Show that (13.1.1) can be rewritten as
(13.1.2)

∞∑
n=−∞

qn(1− xyq2n)

[(1− xqn)(1− yqn)]
2 =

(xy; q)∞

(
q
xy ; q

)
∞

(
qx
y ; q
)
∞

(
qy
x ; q
)
∞ (q; q)4∞

(x; q)2∞
(
q
x ; q
)2
∞ (y; q)2∞

(
q
y ; q
)2
∞

.

4. This problem outlines a proof of the Andrews–Warnaar identity

(13.1.3) (q; q)∞(a; q)∞(b; q)∞

∞∑
n=0

(
abqn−1; q

)
n
qn

(q; q)n(a; q)n(b; q)n

=

( ∞∑
r=0

(−1)rq(
r
2)ar

)( ∞∑
s=0

(−1)sq(
s
2)bs

)
.

We have to show that the coefficient of arbs on the left side of (13.1.3) is

(−1)r+sq(
r
2)+(

s
2).

(i) Show that rewriting the left side as

(q; q)∞

∞∑
n=0

(
abqn−1; q

)
n
qn

(q; q)n
(aqn; q)∞(bqn; q)∞

and expanding the three numerator factors gives the quadruple sum

(q; q)∞

∞∑
n=0

n∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j+kai+jbi+kqn(i+j+k+1)−i+(i2)+(
j
2)+(

k
2)

(q; q)i(q; q)j(q; q)k(q; q)n−i
.

(ii) Fortunately, we do not really have to deal with a quadruple sum. For a
given value of i, the only j we want is r − i and the only k is s− i. This means
the coefficient we want is

(q; q)∞(−1)r+s
∞∑

n=0

n∑
i=0

(−1)iqn(r+s−i+1)−i+(i2)+(
r−i
2 )+(s−i

2 )

(q; q)i(q; q)r−i(q; q)s−i(q; q)n−i
.
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440 13. BAILEY’S 6ψ6 SUM

Note that the sum on i actually goes to the smallest of the three numbers r, s, n.
Show that switching the order of summation and then setting m = n− i makes
this into

(q; q)∞(−1)r+s
∞∑
i=0

(−1)iqi(r+s−i)+(i2)+(
r−i
2 )+(s−i

2 )

(q; q)i(q; q)r−i(q; q)s−i

∞∑
m=0

qm(r+s−i+1)

(q; q)m
,

where again the outer sum is actually finite.

(iii) Show that doing the inner sum and simplifying gives

(−1)r+sq(
r
2)+(

s
2)
∑
i

(−1)iq(
i+1
2 )
(

r + s− i

i, r − i, s− i

)
q

.

Then use problem 6 in section 1.6 to complete the proof.

5. Andrews and Warnaar derived (13.1.3) to simplify the proof of

Theorem 91 (Warnaar’s formula). For |q| < 1 and all a and b, we have

(13.1.4) (q; q)∞(a; q)∞(b; q)∞

∞∑
n=0

(
ab
q ; q
)
2n

qn

(q; q)n(a; q)n(b; q)n(ab; q)n

= 1 +

∞∑
r=1

(−1)rq(
r
2)ar +

∞∑
s=1

(−1)sq(
s
2)bs.

It is convenient to denote the left side of (13.1.3) by L(a, b) and that of
(13.1.4) by W (a, b).

(i) Show that W (a, b) equals

(q; q)∞(a; q)∞(b; q)∞

⎡
⎣1 + ∞∑

n=1

[
1− abqn−1 − ab

q (1− qn)
]
(abqn; q)n−1 qn

(q; q)n(a; q)n(b; q)n

⎤
⎦ .

Was it necessary to split off the n = 0 term?

(ii) By splitting the numerator, show that W (a, b) = L(a, b)− abL(aq, bq).

(iii) Show that using the right side of (13.1.3) for L(a, b) in (ii) gives the
right side of (13.1.4). This proves Warnaar’s formula. It has some affinity with
Bailey’s formula in that it splits a complicated bivariate expression into two
pieces that each involve only one of the variables.

6. Show that Warnaar’s formula reduces to Jacobi’s triple product if b = q
a . This

may be its most remarkable feature.

7. Show that taking a =
√
xq and b = −√

xq in Warnaar’s formula gives

(q; q)∞(xq; q2)∞

∞∑
n=0

(−x; q)2n q
n

(q; q)n(xq; q2)n(−xq; q)n
= 1 + 2

∞∑
k=1

q2k
2

xk.

For which values of x can we use Jacobi’s triple product on the right side? What
happens when we do?
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8. An identity similar to (13.1.4) was found by Schilling and Warnaar, and inde-
pendently by Berkovich. If x �= y, then

(13.1.5) (q; q)∞(qx; q)∞(qy; q)∞

∞∑
n=0

(xy; q)2n q
n

(q; q)n(qx; q)n(qy; q)n(xy; q)n

=

∞∑
k=1

(−1)k+1q(
k
2)x

k − yk

x− y
.

(i) Explain why the right side of (13.1.5) can be rewritten as

∞∑
k=1

(−1)k+1q(
k
2)

k−1∑
s=0

xk−1−sys =

∞∑
s=0

∞∑
k=s+1

(−1)k+1q(
k
2)xk−1−sys

=

∞∑
r=0

∞∑
s=0

(−1)r+sq(
r+s+1

2 )xrys.

Therefore we have to show that the coefficient of xrys on the left side of (13.1.5)
is

(−1)r+sq(
r+s+1

2 ).

(ii) Show that rewriting the left side as

(q; q)∞

∞∑
n=0

(xyqn; q)n qn

(q; q)n
(xqn+1; q)∞(yqn+1; q)∞

and expanding the three numerator factors gives the quadruple sum

(q; q)∞

∞∑
n=0

n∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j+kxi+jyi+kqn(i+j+k+1)+(i2)+(
j+1
2 )+(k+1

2 )

(q; q)i(q; q)j(q; q)k(q; q)n−i
.

(iii) Again, we do not really have to deal with a quadruple sum. For a given
value of i, the only j we want is r − i and the only k is s − i. This means the
coefficient we want is

(q; q)∞(−1)r+s
∞∑

n=0

n∑
i=0

(−1)iqn(r+s−i+1)+(i2)+(
r−i+1

2 )+(s−i+1
2 )

(q; q)i(q; q)r−i(q; q)s−i(q; q)n−i
.

Note that the sum on i actually goes to the smallest of the three numbers r, s, n.
Show that switching the order of summation and then setting m = n− i makes
this into

(q; q)∞(−1)r+s
∞∑
i=0

(−1)iqi(r+s−i+1)+(i2)+(
r−i+1

2 )+(s−i+1
2 )

(q; q)i(q; q)r−i(q; q)s−i

∞∑
m=0

qm(r+s−i+1)

(q; q)m
,

where again the outer sum is actually finite.

(iv) Show that doing the inner sum and simplifying gives

(−1)r+sq(
r+1
2 )+(s+1

2 )
∑
i

(−1)iq(
i
2)
(

r + s− i

i, r − i, s− i

)
q

.

Then use problem 6 in section 1.6 to complete the proof.
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442 13. BAILEY’S 6ψ6 SUM

9. Not only are the proofs of (13.1.4) and (13.1.5) quite similar, but Berkovich has
shown how to obtain each identity from the other. In this problem we follow his
method for deducing (13.1.4) from (13.1.5). (As he points out, “it is a bit more
of a challenge” to go the other way.)

(i) Show that xn+1 − yn+1 = (xn + yn) (x− y) + xy
(
xn−1 − yn−1

)
.

(ii) Denote the right side of (13.1.5) by B(x, y) and write the right side of
(13.1.4) as

W (x, y) = 1 +
∞∑

n=1

(−1)nq(
n
2) (xn + yn) .

Use (i) to show that W (x, y) = B

(
x

q
,
y

q

)
− xyq B(xq, yq).

(iii) Show that(
xy
q ; q
)
2n

(xy; q)n
=

(
xy
q2 ; q

)
2n(

xy
q2 ; q

)
n

− xy

q
(1− qn)(1− qn−1)(xyqn; q)n−2,

where the last term is zero if n < 2.

(iv) If S(x, y) denotes the left side of (13.1.5), use (iii) to show that

(q; q)∞(x; q)∞(y; q)∞

∞∑
n=0

(
xy
q ; q
)
2n

qn

(q; q)n(x; q)n(y; q)n(xy; q)n
= S

(
x

q
,
y

q

)
− xyq S(xq, yq).

(v) Explain why (ii), (iv), and (13.1.5) together imply (13.1.4).

13.2. Another proof of Ramanujan’s “most beautiful” identity

If we change q to q5 in Bailey’s formula (13.1.1) and set x = q and y = q2, we
get

∞∑
n=−∞

(
q5n+1

(1− q5n+1)2
− q5n+2

(1− q5n+2)2

)

=
q(1− q)(q3; q5)∞

(
q2; q5

)
∞
(
q4; q5

)
∞
(
q6; q5

)
∞ (q5; q5)4∞

(q; q5)2∞ (q4; q5)2∞ (q2; q5)2∞ (q3; q5)2∞
.

Noting that (1 − q)(q6; q5)∞ = (q; q5)∞, we can make a number of cancellations
here and be left with

∞∑
n=−∞

(
q5n+1

(1− q5n+1)2
− q5n+2

(1− q5n+2)2

)
=

q(q5; q5)4∞
(q; q5)∞ (q2; q5)∞ (q3; q5)∞ (q4; q5)∞

.

Multiplying top and bottom of the right side by (q5; q5)∞ we get

(13.2.1)
∞∑

n=−∞

(
q5n+1

(1− q5n+1)2
− q5n+2

(1− q5n+2)2

)
=

q(q5; q5)5∞
(q; q)∞

.
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Ramanujan states this formula without proof in one of his notebooks. He then asks
himself which terms of the series in (13.2.1) will have exponents that are multiples
of 5. For this we just have to look at

(13.2.2)
x

(1− x)2
= x+ 2x2 + 3x3 + 4x4 + 5x5 + . . . if |x| < 1.

The terms which have exponents divisible by 5 are

5x5 + 10x10 + 15x15 + . . . ,

and by (13.2.2) we have

5x5 + 10x10 + 15x15 + · · · = 5x5

(1− x5)2
.

Therefore the terms on the series side of (13.2.1) with exponents divisible by 5 are

∞∑
n=−∞

(
5q25n+5

(1− q25n+5)2
− 5q25n+10

(1− q25n+10)2

)
.

On the other side of (13.2.1) we have q(q5; q5)5∞, and every term in the expansion
of this will have an exponent congruent to 1 mod 5. It follows that the only terms
of 1/(q; q)∞ that can give us an exponent divisible by 5 are those with exponents
congruent to 4 mod 5, namely

∞∑
n=0

p(5n+ 4)q5n+4,

and so we have

q(q5; q5)5∞

∞∑
n=0

p(5n+ 4)q5n+4 =

∞∑
n=−∞

(
5q25n+5

(1− q25n+5)2
− 5q25n+10

(1− q25n+10)2

)
.

Moving the factor of q inside the sum and changing q5 to q we get

(q; q)5∞

∞∑
n=0

p(5n+ 4)qn+1 =

∞∑
n=−∞

(
5q5n+1

(1− q5n+1)2
− 5q5n+2

(1− q5n+2)2

)
.

We can use (13.2.1) to sum the right side, which gives

(q; q)5∞

∞∑
n=0

p(5n+ 4)qn+1 =
5q(q5; q5)5∞
(q; q)∞

,

and finally
∞∑

n=0

p(5n+ 4)qn =
5(q5; q5)5∞
(q; q)6∞

.

This is Ramanujan’s “most beautiful” identity again.

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



444 13. BAILEY’S 6ψ6 SUM

13.3. Sums of eight squares and of eight triangular numbers

In this section we use Bailey’s formula to derive Jacobi’s theorem on sums of
eight squares. If we set y = x in (13.1.2), we get

(13.3.1)
∞∑

n=−∞

qn(1 + xqn)

(1− xqn)3
=

(x2; q)∞
(

q
x2 ; q

)
∞ (q; q)6∞

(x; q)4∞
(
q
x ; q
)4
∞

.

Multiplying (13.3.1) by

(1− x)3

1 + x
=

(1− x)4

1− x2

we have

(13.3.2)
∞∑

n=−∞

qn(1 + xqn)(1− x)3

(1− xqn)3(1 + x)
=

(x2q; q)∞
(

q
x2 ; q

)
∞ (q; q)6∞

(xq; q)4∞
(
q
x ; q
)4
∞

.

The n = 0 term of the sum in (13.3.2) is 1, and the terms with n negative are

∞∑
n=1

q−n(1 + xq−n)(1− x)3

(1− xq−n)3(1 + x)

q3n

q3n
=

∞∑
n=1

qn(qn + x)(1− x)3

(qn − x)3(1 + x)
,

so (13.3.2) becomes

(13.3.3)
(x2q; q)∞

(
q
x2 ; q

)
∞ (q; q)6∞

(xq; q)4∞
(
q
x ; q
)4
∞

= 1 + (1− x)3
∞∑

n=1

qn
1+xqn

(1−xqn)3 + qn+x
(qn−x)3

1 + x
.

We now let x → −1, using L’Hopital’s rule on the fraction inside the sum. Since
the derivative of the denominator is 1, we have

lim
x→−1

1+xqn

(1−xqn)3 + qn+x
(qn−x)3

1 + x
= lim

x→−1

d

dx

[
1 + xqn

(1− xqn)3
+

qn + x

(qn − x)3

]
.

Calculating the derivatives we get

(1− xqn)qn + (1 + xqn)3qn

(1− xqn)4
=

2qn(2 + xqn)

(1− xqn)4

and
qn − x+ 3(qn + x)

(qn − x)4
=

2(2qn + x)

(qn − x)4

so

lim
x→−1

1+xqn

(1−xqn)3 + qn+x
(qn−x)3

1 + x
= lim

x→−1

[
2qn(2 + xqn)

(1− xqn)4
+

2(2qn + x)

(qn − x)4

]

=
2(2qn − q2n + 2qn − 1)

(1 + qn)4

=
−2(1− 4qn + q2n)

(1 + qn)4
.(13.3.4)

Hence the result of letting x → −1 in (13.3.3) is

(13.3.5)

(
(q; q)∞
(−q; q)∞

)8

= 1− 16

∞∑
n=1

qn(1− 4qn + q2n)

(1 + qn)4
.
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13.3. SUMS OF EIGHT SQUARES AND OF EIGHT TRIANGULAR NUMBERS 445

Equation (9.1.3) was

(13.3.6)
∞∑
k=0

k3xk =
x(1 + 4x+ x2)

(1− x)4
for |x| < 1,

where the k = 0 term can be discarded. Taking x = −qn here we have[
(q; q)∞
(−q; q)∞

]8
= 1 + 16

∞∑
n=1

∞∑
k=1

k3(−1)kqnk.

If we set nk = m here, then k has to be a divisor of m, and we have

(13.3.7)

[
(q; q)∞
(−q; q)∞

]8
= 1 + 16

∞∑
m=1

⎛
⎝∑

k|m
(−1)kk3

⎞
⎠ qm.

On the left side we use Gauss’s identity (5.2.11)

(q; q)∞
(−q; q)∞

=

∞∑
j=−∞

(−1)jqj
2

to get [
(q; q)∞
(−q; q)∞

]8
=

∞∑
j1,...,j8=−∞

(−1)j1+···+j8qj
2
1+···+j28 .

Observe that

(−1)j1+···+j8 = (−1)j
2
1+···+j28

since j21 − j1 + · · · + j28 − j8 = j1(j1 − 1) + · · · + j8(j8 − 1) is a sum of eight even
numbers. Then [

(q; q)∞
(−q; q)∞

]8
=

∞∑
j1,...,j8=−∞

(−q)j
2
1+···+j28 .

The coefficient of (−q)m here is clearly the number of ways that m can arise as a
sum of eight squares j21+ · · ·+j28 . Using the notation �8(m) for it, (13.3.7) becomes

∞∑
m=0

(−1)m�8(m)qm = 1 + 16

∞∑
m=1

⎛
⎝∑

k|m
(−1)kk3

⎞
⎠ qm

and we have proved

Theorem 92 (Jacobi’s eight square theorem). If �8(m) denotes the number of
ways to write the nonnegative integer m as a sum of eight squares (counting signs
and permutations), then

�8(m) =

⎧⎨
⎩
1 if m = 0,

16
∑
k|m

(−1)m−kk3 if m ≥ 1.

A similar argument gives a theorem about sums of eight triangular numbers.
We start by replacing q by q2 in (13.3.1) and then replacing x by xq. This gives

∞∑
n=−∞

q2n(1 + xq2n+1)

(1− xq2n+1)3
=

(x2q2; q2)∞
(

1
x2 ; q

2
)
∞ (q2; q2)6∞

(xq; q2)4∞
(
q
x ; q

2
)4
∞

.
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Note that the right side becomes zero if x = 1 because of the first factor of
(

1
x2 ; q

2
)
∞.

Dividing both sides by this factor we have

(13.3.8)
x2

x2 − 1

∞∑
n=−∞

q2n(1 + xq2n+1)

(1− xq2n+1)3
=

(x2q2; q2)∞
(

q2

x2 ; q
2
)
∞

(q2; q2)6∞

(xq; q2)4∞
(
q
x ; q

2
)4
∞

.

If we let x → 1, then the right side becomes(
(q2; q2)∞
(q; q2)∞

)8

=

( ∞∑
n=0

q(
n+1
2 )

)8

by Gauss’s identity (5.2.12). To be able to take this limit on the left side, we rewrite

∞∑
n=−∞

q2n(1 + xq2n+1)

(1− xq2n+1)3
=

∞∑
m=0

q2m(1 + xq2m+1)

(1− xq2m+1)3
+

−∞∑
m=−1

q2m(1 + xq2m+1)

(1− xq2m+1)3
.

Setting m = −n− 1 in the last sum and m = n in the one before it, we get

∞∑
n=−∞

q2n(1 + xq2n+1)

(1− xq2n+1)3
=

∞∑
n=0

q2n(1 + xq2n+1)

(1− xq2n+1)3
+

∞∑
n=0

q−2n−2(1 + xq−2n−1)

(1− xq−2n−1)3
q6n+3

q6n+3

=

∞∑
n=0

q2n(1 + xq2n+1)

(1− xq2n+1)3
+

∞∑
n=0

q2n(q2n+1 + x)

(q2n+1 − x)3
,

so (13.3.8) becomes

(13.3.9)
x2

x2 − 1

∞∑
n=0

q2n
[

1 + xq2n+1

(1− xq2n+1)3
− x+ q2n+1

(x− q2n+1)3

]

=
(x2q2; q2)∞

(
q2

x2 ; q
2
)
∞

(q2; q2)6∞

(xq; q2)4∞
(
q
x ; q

2
)4
∞

.

We now need to calculate

lim
x→1

x2

x2 − 1

[
1 + xq2n+1

(1− xq2n+1)3
− x+ q2n+1

(x− q2n+1)3

]
,

and by L’Hopital’s rule this is

1

2
lim
x→1

d

dx

[
1 + xq2n+1

(1− xq2n+1)3
− x+ q2n+1

(x− q2n+1)3

]

=
1

2
lim
x→1

[
2q2n+1(2 + xq2n+1)

(1− xq2n+1)4
+

2(x+ 2q2n+1)

(x− q2n+1)4

]

=
q2n+1(2 + q2n+1) + 1 + q2n+1

(1− q2n+1)4
=

1 + 4q2n+1 + q4n+2

(1− q2n+1)4
.

Therefore the result of letting x → 1 in (13.3.9) is

(13.3.10)

∞∑
n=0

q2n
(
1 + 4q2n+1 + q4n+2

)
(1− q2n+1)4

=

(
(q2; q2)∞
(q; q2)∞

)8

=

( ∞∑
n=0

q(
n+1
2 )

)8

.
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If we multiply the left side by q
q , then (13.3.6) applies to it with x = q2n+1.

Denoting by �8(m) the number of ways to write the nonnegative integer m as a
sum of eight triangular numbers

(
n+1
2

)
, we have

∞∑
n=0

∞∑
k=1

k3q(2n+1)k−1 =
∞∑

m=0

�8(m) qm.

If we now set (2n+1)k = m+1, then we get a contribution of k3 to the coefficient
of qm on the left side exactly when k(2n+ 1) = m+ 1 for some n ≥ 0, i.e., exactly
when m+1

k is a positive odd number. We have proved the following remarkable
theorem.

Theorem 93. If �8(m) denotes the number of ways to write the nonnegative
integer m as a sum of eight triangular numbers, then

(13.3.11) �8(m) =
∑
k

k3,

where the sum is over all positive integers k such that m+1
k is odd.

We give one illustration of this theorem. If m = 14, we have to look at the
divisors of m+1 = 15, namely 1, 3, 5, 15. Since they are all odd, 15 divided by any
of them is odd, so the admissible values of k in (13.3.11) are k = 1, 3, 5, 15, and
therefore the right side of (13.3.11) is 13+33+53+153 = 1+27+125+3375 = 3528.
The triangular numbers ≤ m = 14 are 0, 1, 3, 6, 10. If we write 14 = 10 + 3 + 1
plus five 0’s, there are 8 ways to place the 10, then 7 ways to place the 3, then
6 ways to place the 1, so this gives 8 · 7 · 6 = 336 possibilities, and by the same
reasoning 14 = 6 + 3 + 1 + 1 + 1 + 1 + 1 + 0 gives 336 possibilities. If we write
14 = 10 + 1+ 1+ 1+ 1+ 0+ 0+ 0, then there are 8 ways to place the 10 and then(
7
4

)
= 35 ways to place the 1’s, so this gives 8 · 35 = 280 possibilities. If we write

14 = 6 + 6 + 1 + 1 plus four 0’s, there are
(
8
2

)
= 28 ways to place the 6’s and then(

6
2

)
= 15 ways to place the 1’s, so this gives 28 · 15 = 420 possibilities, and by the

same reasoning 14 = 3+3+3+3+1+1+0+0 gives 420 possibilities. The largest
number of options comes from 14 = 6 + 3 + 3 + 1 + 1 + 0 + 0 + 0, where we have
8 ways to place the 6, then

(
7
2

)
= 21 ways to place the 3’s, then

(
5
2

)
= 10 ways to

place the 1’s, so 8 · 21 · 10 = 1680 possibilities. The only other way to write 14 with
eight triangular numbers is as a sum of three 3’s and five 1’s, which gives

(
8
3

)
= 56

possibilities. Since 336 + 336 + 280 + 420 + 420 + 1680 + 56 = 3528, (13.3.11) is
verified. Can you explain why all these numbers are divisible by 7? (In fact, they
are all divisible by 28.)

Exercises

1. Explain why Jacobi’s eight square theorem is particularly nice when m is odd.

2. How many ways are there to write 1 as a sum of eight squares? (In some sense
this explains where the 16 comes from.)

3. How many ways are there to write 2 as a sum of eight squares? Describe them.

4. If p is an odd prime number, how many ways are there to write p as a sum of
eight squares? Explain.
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448 13. BAILEY’S 6ψ6 SUM

5. Check Jacobi’s eight square theorem when m = 8. Both sides should equal
16× 583.

6. Check Jacobi’s eight square theorem when m = 9. Both sides should equal
16× 757.

7. Check Jacobi’s eight square theorem when m = 10. Both sides should equal
16× 882.

8. If m is an odd prime power, say m = pk for an odd prime p and a nonnegative
integer k, show that there are

16
p3k+3 − 1

p3 − 1

ways to write m as a sum of eight squares.

9. If m is a power of 2, say m = 2k for a positive integer k, show that there are

16

7

(
8k+1 − 15

)
ways to write m as a sum of eight squares.

10. With some algebra we can avoid using L’Hopital’s rule in (13.3.3). Show that

1+xqn

(1−xqn)3 + qn+x
(qn−x)3

1 + x
=

(1− x)
[
x(1− 6q2n + q4n) + qn(1 + x2)(1 + q2n)

]
(1− xqn)3(qn − x)3

if x �= −1, and that the right side reduces to (13.3.4) when x = −1. This gives
an alternate derivation of (13.3.5).

11. We can also avoid L’Hopital’s rule in (13.3.9). Show that

1 + xq2n+1

(1− xq2n+1)3
− x+ q2n+1

(x− q2n+1)3

=

(
x2 − 1

) [
q2n+1

(
1 + q4n+2

) (
x2 + 1

)
+ x
(
1− 6q4n+2 + q8n+4

)]
(1− xq2n+1)3 (x− q2n+1)3

and that this implies that (13.3.9) becomes (13.3.10) when x → 1.

12. Check (13.3.11) for m = 0, 1, 2, 3, 4, 5. Both sides should equal 1, 8, 28, 64, 126,
and 224 respectively.

13. Check (13.3.11) for m = 6, 7, 8, 9. Both sides should equal 344, 512, 757, 1008
respectively.

14. Check (13.3.11) for m = 10 and m = 11. Both sides should equal 1332 and 1792
respectively.

15. Check (13.3.11) for m = 12 and m = 13. Both sides should equal 2198 and 2752
respectively.

16. Check (13.3.11) for m = 15 and m = 16. Both sides should equal 4096 and 4914
respectively.
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13.4. BAILEY’S 6ψ6 SUMMATION FORMULA 449

13.4. Bailey’s 6ψ6 summation formula

In 1936, Bailey proved a very general series identity, which we state in the form
given by Askey. It is convenient to use the abbreviation

(a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak; q)∞
introduced in Chapter 11, and similarly for finite products.

Theorem 94 (Bailey’s very well poised 6ψ6 sum). If |q| < |bcde| and |q| < 1,
then

(13.4.1)
∞∑

n=−∞

(aq,−aq, ab, ac, ad, ae; q)n(
a,−a, aq

b ,
aq
c ,

aq
d , aq

e ; q
)
n

( q

bcde

)n

=

(
a2q, q, q

a2 ,
q
bc ,

q
bd ,

q
be ,

q
cd ,

q
ce ,

q
de ; q

)
∞(

q
ab ,

q
ac ,

q
ad ,

q
ae ,

aq
b ,

aq
c , aqd , aq

e , q
bcde ; q

)
∞
.

Note that this means none of b, c, d, e can be zero. As in Chapter 6, “6ψ6”
means the series runs from −∞ to ∞ with 6 q-shifted factorials in the numerator
and 6 in the denominator. Beyond the symmetry in b, c, d, e, “well poised” means
that every denominator parameter can be paired with a numerator parameter to
give a constant product. In this case

a2q = a(aq) = −a(−aq) =
aq

b
(ab) =

aq

c
(ac) =

aq

d
(ad) =

aq

e
(ae).

“Very” well poised means that, in addition, two numerator parameters are q times
the corresponding denominator parameters, meaning that these four parameters
contribute only a factor of

(13.4.2)
(aq; q)n(−aq; q)n
(a; q)n(−a; q)n

=
1− a2q2n

1− a2

to the summands. This means we can rewrite (13.4.1) as

(13.4.3)
∞∑

n=−∞
(1− a2q2n)

(ab, ac, ad, ae; q)n(
aq
b ,

aq
c , aqd , aq

e ; q
)
n

( q

bcde

)n

=

(
a2, q, q

a2 ,
q
bc ,

q
bd ,

q
be ,

q
cd ,

q
ce ,

q
de ; q

)
∞(

q
ab ,

q
ac ,

q
ad ,

q
ae ,

aq
b ,

aq
c , aqd , aq

e , q
bcde ; q

)
∞
.

It is also possible to motivate the power series variable q/bcde, as we shall see in
the next section, but as Askey says “the real reason [for it] is that it is the choice
that allows the series to be summed.”

Before we try to prove this, we derive Bailey’s formula (13.1.1) from it. Restor-
ing the factor x− y to (13.1.2) we have

∞∑
n=−∞

(
xqn

(1− xqn)2
− yqn

(1− yqn)2

)
= (x− y)

∞∑
n=−∞

(1−√
xyqn)(1 +

√
xyqn)

(1− xqn)2(1− yqn)2
qn,

where we also factored the numerator so we can use (13.4.1). Next recall that

(13.4.4)
(z; q)n
(zq; q)n

=
1− z

1− zqn
,
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450 13. BAILEY’S 6ψ6 SUM

and that we observed in Chapter 6 that this holds even if n is negative or zero. It
follows that

1− zqn = (1− z)
(zq; q)n
(z; q)n

.

Using this six times on the sum we get

∞∑
n=−∞

(
xqn

(1− xqn)2
− yqn

(1− yqn)2

)

=
(x− y)(1− xy)

(1− x)2(1− y)2

∞∑
n=−∞

(√
xyq,−√

xyq, x, x, y, y; q
)
n(√

xy,−√
xy, xq, xq, yq, yq; q

)
n

qn.

This fits (13.4.1) if we take

a =
√
xy, b =

√
x

y
= c, d =

√
y

x
= e,

which makes bcde = 1 and
aq

b
= yq =

aq

c
and

aq

d
= xq =

aq

e
.

Using these values in (13.4.1) we get

∞∑
n=−∞

(
xqn

(1− xqn)2
− yqn

(1− yqn)2

)

=
(x− y)(1− xy)

(1− x)2(1− y)2

(
xyq, q, q

xy ,
qy
x , q, q, q, q, qxy ; q

)
∞(

q
x ,

q
x ,

q
y ,

q
y , yq, yq, xq, xq, q; q

)
∞

.

Cancelling one (q; q)∞ from numerator and denominator and gluing a few factors
onto the infinite products, we finally have

∞∑
n=−∞

(
xqn

(1− xqn)2
− yqn

(1− yqn)2

)
=

(x− y)
(
xy, q

xy ,
qy
x , qx

y , q, q, q, q; q
)
∞(

q
x ,

q
x ,

q
y ,

q
y , x, x, y, y; q

)
∞

,

which is Bailey’s formula (13.1.1).

Exercises

1. Explain why we can rewrite (13.4.1) as (13.4.3).

2. Prove (13.4.2). Does your proof work if n is negative?

3. This problem establishes a formula that is useful in the next problem.

(i) Show that

∞∑
n=−∞

aqn

(1− aqn)2
=

a

(1− a)2
+

∞∑
n=1

(
aqn

(1− aqn)2
+

qn

a(
1− qn

a

)2
)
.

(ii) Using (13.2.2), show that the result of (i) can be transformed to
∞∑

n=−∞

aqn

(1− aqn)2
=

a

(1− a)2
+

∞∑
m=1

m (am + a−m) qm

1− qm
.
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4. In this problem we outline Bailey’s proof, based on (13.1.1), of the formula

(13.4.5)
(q; q)5∞
(q5; q5)∞

= 1− 5

∞∑
n=0

⎛
⎜⎜⎝
(5n+ 1)q5n+1

1− q5n+1
− (5n+ 2)q5n+2

1− q5n+2

− (5n+ 3)q5n+3

1− q5n+3
+

(5n+ 4)q5n+4

1− q5n+4

⎞
⎟⎟⎠ ,

which was stated by Ramanujan. Bailey proves this by taking x = ω and y = ω2

in (13.1.1), where ω = e
2πi
5 .

(i) First we deal with the product side of (13.1.1). Show that it becomes

ω(1− ω3)

(1− ω)(1− ω2)2
(q; q)5∞
(q5; q5)∞

.

Hint: The infinite products other than (q; q)4∞ in the numerator should largely
cancel half of the ones in the denominator. After accomplishing this, try to
rewrite the denominator to be able to use problem 10 in section 8.2.

(ii) On the series side of (13.1.1), use the previous problem to show that

∞∑
n=−∞

(
ωqn

(1− ωqn)2
− ω2qn

(1− ω2qn)2

)

=
ω

(1− ω)2
− ω2

(1− ω2)2
+

∞∑
m=1

mqm

1− qm
ωm(1− ωm)(1− ω2m).

(iii) Show that

ωm(1− ωm)(1− ω2m) =

⎧⎪⎨
⎪⎩
0 if m = 0,

ω(1− ω)(1− ω2) if m = 1 or m = 4,

−ω(1− ω)(1− ω2) if m = 2 or m = 3.

Since ω5 = 1, it follows that

ωm(1− ωm)(1− ω2m) =

⎧⎪⎨
⎪⎩
0 if m ≡ 0 (mod 5),

ω(1− ω)(1− ω2) if m ≡ 1 or 4 (mod 5),

−ω(1− ω)(1− ω2) if m ≡ 2 or 3 (mod 5).

(iv) Explain why (ii) and (iii) imply that

∞∑
m=1

mqm

1− qm
ωm(1− ωm)(1− ω2m)

= ω(1− ω)(1− ω2)

∞∑
n=0

⎛
⎜⎜⎝
(5n+ 1)q5n+1

1− q5n+1
− (5n+ 2)q5n+2

1− q5n+2

− (5n+ 3)q5n+3

1− q5n+3
+

(5n+ 4)q5n+4

1− q5n+4

⎞
⎟⎟⎠ .
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452 13. BAILEY’S 6ψ6 SUM

(v) From (i) and (iv) it follows that

(q; q)5∞
(q5; q5)∞

=
(1− ω)(1− ω2)2

ω(1− ω3)

(
ω

(1− ω)2
− ω2

(1− ω2)2

)

+
(1− ω)2(1− ω2)3

1− ω3

∞∑
n=0

⎛
⎜⎜⎝
(5n+ 1)q5n+1

1− q5n+1
− (5n+ 2)q5n+2

1− q5n+2

− (5n+ 3)q5n+3

1− q5n+3
+

(5n+ 4)q5n+4

1− q5n+4

⎞
⎟⎟⎠ .

Show that this simplifies to (13.4.5). Hint: For the factor that multiplies the
series, show that

ω + ω2 + ω3 + ω4 = −1 =
(
ω + ω4

) (
ω2 + ω3

)
and (

ω + ω4
)2

+
(
ω2 + ω3

)2
= 3.

5. Show that setting e = a in (13.4.1) gives Bailey’s very well poised 6φ5 sum

(13.4.6)
∞∑

n=0

(aq,−aq, a2, ab, ac, ad; q)n(
a,−a, aq

b ,
aq
c ,

aq
d , q; q

)
n

( q

abcd

)n
=

(
a2q, q

bc ,
q
bd ,

q
cd ; q

)
∞(

aq
b ,

aq
c , aqd , q

abcd ; q
)
∞

or
∞∑

n=0

(1− a2q2n)
(a2, ab, ac, ad; q)n(
aq
b ,

aq
c ,

aq
d , q; q

)
n

( q

abcd

)n
=

(
a2, q

bc ,
q
bd ,

q
cd ; q

)
∞(

aq
b ,

aq
c , aqd , q

abcd ; q
)
∞
,

where |q/abcd| < 1. It may help to see the comment about (6.1.5).
6. Bailey’s original form of (13.4.6) was

(13.4.7)

∞∑
n=0

(q
√
a,−q

√
a, a, b, c, d; q)n(√

a,−
√
a, aq

b ,
aq
c , aqd , q; q

)
n

( aq

bcd

)n
=

(
aq, aq

bc ,
aq
bd ,

aq
cd ; q

)
∞(

aq
b ,

aq
c ,

aq
d , aq

bcd ; q
)
∞
.

Derive this from (13.4.6) by changing a to
√
a, b to b/

√
a, c to c/

√
a, and d to

d/
√
a.

7. Bailey’s original proof of the identity

(13.4.8)
∞∑

n=1

(
qn

(1− qn)2
− aqn

(1− aqn)2

)⎛⎜⎜⎝
1

1− q
+

1

1− q2
+ · · ·+ 1

1− qn

+
a

1− a
+

aq

1− aq
+ · · ·+ aqn−1

1− aqn−1

⎞
⎟⎟⎠

=
∞∑

n=1

n2qn

1− qn

from problem 19 in section 4.4 (rewritten here with a in place of z) used his 6φ5

sum, which we rewrite as

(13.4.9)
∞∑

n=0

1− aq2n

1− a

(a, b, c, z; q)n(
aq
b ,

aq
c ,

aq
z , q; q

)
n

( aq

bcz

)n
=

(
aq, aqbc ,

aq
bz ,

aq
cz ; q

)
∞(

aq
b ,

aq
c ,

aq
z , aq

bcz ; q
)
∞
.

The argument is long, and he omits all details.
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(i) Show that the derivative with respect to z of the left side of (13.4.9) is

−
∞∑
n=1

1− aq2n

1− a

(a, b, c, z; q)n(
aq
b ,

aq
c ,

aq
z , q; q

)
n

( aq

bcz

)n n∑
k=1

(
qk−1

1− zqk−1
+

1

z − aqk

)
.

Why does the sum start at n = 1?

(ii) Show that the derivative with respect to z of the right side of (13.4.9) is(
aq, aqbc ,

aq
bz ,

aq
cz ; q

)
∞(

aq
b ,

aq
c ,

aq
z , aq

bcz ; q
)
∞

×
∞∑
k=1

[
a
b q

k

z
(
z − a

b q
k
) + a

c q
k

z
(
z − a

c q
k
) − aqk

z (z − aqk)
−

a
bc q

k

z
(
z − a

bc q
k
)] .

(iii) After (i) and (ii) we have

∞∑
n=1

1− aq2n

1− a

(a, b, c, z; q)n(
aq
b ,

aq
c ,

aq
z , q; q

)
n

( aq

bcz

)n n∑
k=1

(
qk−1

1− zqk−1
+

1

z − aqk

)

=

(
aq, aq

bc ,
aq
bz ,

aq
cz ; q

)
∞(

aq
b ,

aq
c ,

aq
z , aq

bcz ; q
)
∞

∞∑
k=1

aqk

z

[
1

z − aqk
+

1

bcz − aqk
− 1

bz − aqk
− 1

cz − aqk

]
.

Show that this can be rewritten as

∞∑
n=1

1− aq2n

1− a

(a, b, c, z; q)n(
aq
b ,

aq
c ,

aq
z , q; q

)
n

( aq

bcz

)n n∑
k=1

(
qk−1

1− zqk−1
+

1

z − aqk

)

=

(
aq, aqbc ,

aq
bz ,

aq
cz ; q

)
∞(

aq
b ,

aq
c , aqz , aq

bcz ; q
)
∞

∞∑
k=1

aqk(1− b)(1− c)(bcz2 − a2q2k)

(z − aqk) (bcz − aqk) (bz − aqk) (cz − aqk)
.

(iv) Show that dividing both sides by (1−b)(1−c) and then setting b = 1 = c
gives

∞∑
n=1

1− aq2n

1− a

(a; q)n(z; q)n(q; q)
2
n−1(

aq, aq, aqz , q; q
)
n

(aq
z

)n n∑
k=1

(
qk−1

1− zqk−1
+

1

z − aqk

)

=
∞∑
k=1

aqk(z + aqk)

(z − aqk)
3 .

(v) Show that taking z = a and multiplying both sides by a gives

∞∑
n=1

(1− a)(1− aq2n)

(1− qn)2(1− aqn)2
qn

n∑
k=1

(
aqk−1

1− zqk−1
+

1

1− qk

)
=

∞∑
k=1

qk(1 + qk)

(1− qk)
3 .

(vi) By using (9.1.2) with x = qk and changing orders of summation, show
that (v) is equivalent to

∞∑
n=1

(1− a)(1− aq2n)

(1− qn)2(1− aqn)2
qn

n∑
k=1

(
aqk−1

1− zqk−1
+

1

1− qk

)
=

∞∑
n=1

n2qn

1− qn

and that this is equivalent to (13.4.8).
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13.5. Askey’s proof: Phase 1

We begin this section by noting a curious symmetry property of (13.4.1) that
in some sense explains the power series variable q/bcde. Note that we could just as
well write the series side of (13.4.1) as

∞∑
n=−∞

(aq,−aq, ab, ac, ad, ae; q)−n(
a,−a, aqb ,

aq
c ,

aq
d , aq

e ; q
)
−n

( q

bcde

)−n

,

and we can use

(13.5.1) (x; q)−n =
(−1)nq(

n+1
2 )

xn
(
q
x ; q
)
n

(which was (6.1.4)) to rewrite this. All of the factors of (−1)nq(
n+1
2 ) will cancel, as

will many factors of an and two more factors of (−1)n, leaving

∞∑
n=−∞

(
q
a ,−

q
a ,

b
a ,

c
a ,

d
a ,

e
a ; q
)
n(

1
a ,−

1
a ,

q
ab ,

q
ac ,

q
ad ,

q
ae ; q

)
n

(
bcde

q

)n ( q
b

q
c

q
d

q
e

)n
q2n (bcde)n

=
∞∑

n=−∞

(
q
a ,−

q
a ,

b
a ,

c
a ,

d
a ,

e
a ; q
)
n(

1
a ,−

1
a ,

q
ab ,

q
ac ,

q
ad ,

q
ae ; q

)
n

( q

bcde

)n
.

In other words, we have

(13.5.2)

∞∑
n=−∞

(aq,−aq, ab, ac, ad, ae; q)n(
a,−a, aq

b ,
aq
c ,

aq
d , aq

e ; q
)
n

( q

bcde

)n

=
∞∑

n=−∞

(
q
a ,−

q
a ,

b
a ,

c
a ,

d
a ,

e
a ; q
)
n(

1
a ,−

1
a ,

q
ab ,

q
ac ,

q
ad ,

q
ae ; q

)
n

( q

bcde

)n
,

and the right side is the same as the left with a replaced by 1
a , so it is also very well

poised. This shows that q/bcde is natural in the sense that any other choice of the
power series variable would have changed when we summed the series in the other
direction. It also explains the symmetry of the right side of (13.4.1) in a and 1

a .
Askey starts to prove (13.4.1) by using (13.4.2) for the first two numerator and

denominator parameters and transforming the others using

(13.5.3) (x; q)n =
(x; q)∞

(xqn; q)∞
.

We will work instead with (13.4.3), the sum side of which becomes

(ab, ac, ad, ae; q)∞(
aq
b ,

aq
c , aqd , aq

e ; q
)
∞

∞∑
n=−∞

(
1− a2q2n

) (aqn+1

b , aqn+1

c , aqn+1

d , aqn+1

e ; q
)
∞

(abqn, acqn, adqn, aeqn; q)∞

( q

bcde

)n
.

Putting the infinite products outside the sum on the other side and introducing the
notation

(13.5.4) hn(b) =

(
aqn+1

b ; q
)
∞

(abqn; q)∞ bn
,
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we see that (13.4.3) is equivalent to

(13.5.5)
∞∑

n=−∞

(
1− a2q2n

)
hn(b)hn(c)hn(d)hn(e) q

n

=

(
a2, q, q

a2 ,
q
bc ,

q
bd ,

q
be ,

q
cd ,

q
ce ,

q
de ; q

)
∞(

q
ab ,

q
ac ,

q
ad ,

q
ae , ab, ac, ad, ae,

q
bcde ; q

)
∞
.

Next, observe that

hn(bq) =

(
aqn

b ; q
)
∞

(abqn+1; q)∞ (bq)n
=

(
1− aqn

b

)(
aqn+1

b ; q
)
∞

(abqn+1; q)∞ bnqn
1− abqn

1− abqn

=

(
1− aqn

b

)
(1− abqn)

qn

(
aqn+1

b ; q
)
∞

(abqn; q)∞ bn
=

1− aqn
(
b+ 1

b

)
+ a2q2n

qn
hn(b)

=

(
q−n − a

(
b+

1

b

)
+ a2qn

)
hn(b).(13.5.6)

Denote the left side of (13.5.5) by f(b, c, d, e) and look at

(13.5.7) f(bq, c, d, e)− f(b, cq, d, e)

=

∞∑
n=−∞

(
1− a2q2n

)
[hn(bq)hn(c)− hn(b)hn(cq)]hn(d)hn(e) q

n.

Using (13.5.6) we have

hn(bq)hn(c)− hn(b)hn(cq) = hn(b)hn(c)

⎡
⎢⎢⎣
q−n − a

(
b+

1

b

)
+ a2qn

−
(
q−n − a

(
c+

1

c

)
+ a2qn

)
⎤
⎥⎥⎦

= ahn(b)hn(c)

(
c+

1

c
− b− 1

b

)

= ahn(b)hn(c)(c− b)

(
1− 1

bc

)
,

and using this in (13.5.7) we get the functional equation

(13.5.8) f(bq, c, d, e)− f(b, cq, d, e) = a(c− b)

(
1− 1

bc

)
f(b, c, d, e).

Of course, we could get a similar equation involving any two of b, c, d, e. We now
show that the right side of (13.5.5) satisfies the same set of functional equations.
Denote it by k(b, c, d, e) and look at

(13.5.9) k(bq, c, d, e)− k(b, cq, d, e) =

(
a2, q, q

a2 ,
q
de ; q

)
∞(

ad, q
ad , ae,

q
ae ; q

)
∞

(
1
bc ; q
)
∞(

1
bcde ; q

)
∞

×
[ (

1
bd ,

1
be ,

q
cd ,

q
ce ; q

)
∞(

abq, 1
ab , ac,

q
ac ; q

)
∞

−
(

q
bd ,

q
be ,

1
cd ,

1
ce ; q

)
∞(

ab, q
ab , acq,

1
ac ; q

)
∞

]
.
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We want to find a factor of k(b, c, d, e) on the right side of (13.5.9), and there are
three things to fix. First note that

(abq; q)∞

(
1

ab
; q

)
∞

=

(
1− 1

ab

)
(abq; q)∞

( q

ab
; q
)
∞

= − 1

ab
(1− ab)(abq; q)∞

( q

ab
; q
)
∞

= − 1

ab
(ab; q)∞

( q

ab
; q
)
∞

,

and hence

(acq; q)∞

(
1

ac
; q

)
∞

= − 1

ac
(ac; q)∞

( q

ac
; q
)
∞

.

We can also pull the factors ( q

bd
,
q

be
,
q

cd
,
q

ce
; q
)
∞

out of the numerators in the brackets, and we can write(
1
bc ; q
)
∞(

1
bcde ; q

)
∞

=
1− 1

bc

1− 1
bcde

(
q
bc ; q
)
∞(

q
bcde ; q

)
∞
.

This makes (13.5.9) into

k(bq, c, d, e)− k(b, cq, d, e) =

(
a2, q, q

a2 ,
q
bc ,

q
bd ,

q
be ,

q
cd ,

q
ce ,

q
de ; q

)
∞(

ab, q
ab , ac,

q
ac , ad,

q
ad , ae,

q
ae ,

q
bcde ; q

)
∞

1− 1
bc

1− 1
bcde

×
[(

1− 1
bd

) (
1− 1

be

)
− 1

ab

−
(
1− 1

cd

) (
1− 1

ce

)
− 1

ac

]
,

which is

(13.5.10) k(bq, c, d, e)− k(b, cq, d, e) = k(b, c, d, e)
1− 1

bc

1− 1
bcde

a

×
[
c

(
1− 1

cd

)(
1− 1

ce

)
− b

(
1− 1

bd

)(
1− 1

be

)]
.

But

c

(
1− 1

cd

)(
1− 1

ce

)
− b

(
1− 1

bd

)(
1− 1

be

)

= c

[
1− 1

c

(
1

d
+

1

e

)
+

1

c2de

]
− b

[
1− 1

b

(
1

d
+

1

e

)
+

1

b2de

]

= c− b+
1

cde
− 1

bde
= c− b+

b− c

bcde
= (c− b)

(
1− 1

bcde

)
,

so (13.5.10) becomes

k(bq, c, d, e)− k(b, cq, d, e) = a(c− b)

(
1− 1

bc

)
k(b, c, d, e),

which has the same form as (13.5.8). Because of the symmetry in b, c, d, e, f(b, c, d, e)
and k(b, c, d, e) satisfy

(
4
2

)
= 6 functional equations of this type.
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Exercises

1. Use the ratio test to show that (13.4.1) converges for |q| < |bcde|. Hint: Since
it is a bilateral series, you have to look at what happens when n → ∞ and also
when n → −∞, but for the latter we can use the symmetry in a and 1

a .

2. Show that

(13.5.11) lim
x→∞

(ax; q)n
xn

= (−1)nanq
n(n−1)

2

for any integer n. Use (13.5.1) for the negative n’s.

3. Show that (13.5.8) is unchanged if we replace b by 1
b and c by 1

c . In other words,

if we set either f( 1b ,
1
c ,

1
d ,

1
e ) or k(

1
b ,

1
c ,

1
d ,

1
e ) equal to g(b, c, d, e), then g satisfies

the same set of functional equations as f and k.

13.6. Askey’s proof: Phase 2

Does the functional equation argument of the previous section convince you
that f and k are the same? So far we don’t know they’re the same for any values
of b, c, d, e, let alone all admissible values. Askey next proves that f and k are the
same in four special cases using Ramanujan’s 1ψ1 sum

∞∑
n=−∞

(u; q)n
(v; q)n

xn =

(
ux, q

ux , q,
v
u ; q
)
∞(

x, v
ux , v,

q
u ; q
)
∞

.

Multiplying this by (v; q)∞/(u; q)∞ and using (13.5.3) we have

∞∑
n=−∞

(vqn; q)∞
(uqn; q)∞

xn =

(
ux, q

ux , q,
v
u ; q
)
∞(

x, v
ux , u,

q
u ; q
)
∞

.

We will need this with the specific values v = aq
b and u = ab, which gives

(13.6.1)
∞∑

n=−∞

(
aqn+1

b ; q
)
∞

(abqn; q)∞
xn =

(
abx, q

abx , q,
q
b2 ; q

)
∞(

x, q
b2x , ab,

q
ab ; q

)
∞

.

We will also need a few specific values of (13.5.4), which we leave as exercises:

(13.6.2)

hn

(
q

1
2

)
= q−

n
2 , hn

(
−q

1
2

)
= (−1)nq−

n
2 ,

hn(1) =
1

1− aqn
, hn(−1) =

(−1)n

1 + aqn
.

Again using the notation f(b, c, d, e) for the left side of (13.5.5), (13.6.2) tells
us that

f
(
b, q

1
2 , 1,−1

)
=

∞∑
n=−∞

(
1− a2q2n

) (aqn+1

b ; q
)
∞

(abqn; q)∞ bn
q−

n
2

1

1− aqn
(−1)n

1 + aqn
qn

=

∞∑
n=−∞

(
aqn+1

b ; q
)
∞

(abqn; q)∞

(
−q

1
2

b

)n

.
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Using (13.6.1) with x = −q
1
2 /b we have

(13.6.3) f
(
b, q

1
2 , 1,−1

)
=

(
−aq

1
2 ,− q

1
2

a , q, q
b2 ; q

)
∞(

− q
1
2

b ,− q
1
2

b , ab, q
ab ; q

)
∞

.

On the other hand, again using the notation k(b, c, d, e) for the right side of
(13.5.5), we have

k
(
b, q

1
2 , 1,−1

)
=

(
a2, q, q

a2 ,
q

1
2

b , q
b ,−

q
b , q

1
2 ,−q

1
2 ,−q; q

)
∞(

ab, q
ab , aq

1
2 , q

1
2

a , a, q
a ,−a,− q

a ,−
q

1
2

b ; q

)
∞

.

Not content to have 9 infinite products divided by 9 others, we multiply top and
bottom of this by (

−q
1
2

b
,−q

1
2

a
,−aq

1
2 ; q

)
∞

.

The point is that in the numerator we now have(
q

1
2

b
,
−q

1
2

b
,
q

b
,−q

b
; q

)
∞

=

(
1− q

1
2

b

)(
1 +

q
1
2

b

)(
1− q

b

)(
1 +

q

b

)

×
(
1− q

3
2

b

)(
1 +

q
3
2

b

)(
1− q2

b

)(
1 +

q2

b

)
· · ·

=
(
1− q

b2

)(
1− q2

b2

)(
1− q3

b2

)(
1− q4

b2

)
· · ·

=
( q

b2
; q
)
∞

.

Similarly (
q

1
2 ,−q

1
2 , q,−q; q

)
∞

= (q; q)∞

and in the denominator(
a,−a, aq

1
2 ,−aq

1
2 ; q
)
∞

= (a2; q)∞ and

(
q

1
2

a
,
−q

1
2

a
,
q

a
,− q

a
; q

)
∞

=
( q

a2
; q
)
∞

.

Hence

k
(
b, q

1
2 , 1,−1

)
=

(
a2, q

a2 , q,
q
b2 ,−aq

1
2 ,− q

1
2

a ; q

)
∞(

ab, q
ab , a

2, q
a2 ,− q

1
2

b ,− q
1
2

b ; q

)
∞

=

(
q, q

b2 ,−aq
1
2 ,− q

1
2

a ; q

)
∞(

ab, q
ab ,−

q
1
2

b ,− q
1
2

b ; q

)
∞

,

in agreement with (13.6.3). Hence (13.5.5) is true in the special case where c = q
1
2 ,

d = 1, and e = −1. By a very similar calculation, which we leave as an exercise,
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we have

(13.6.4) f(b,−q
1
2 , 1,−1) =

(
aq

1
2 , q

1
2

a , q, q
b2 ; q

)
∞(

q
1
2

b , q
1
2

b , ab, q
ab ; q

)
∞

= k(b,−q
1
2 , 1,−1),

so (13.5.5) is also true in the special case where c = −q
1
2 , d = 1, and e = −1.

Askey’s third special case is c = 1, d = q
1
2 , e = −q

1
2 , in which case the left side

of (13.5.5) becomes

f
(
b, 1, q

1
2 ,−q

1
2

)
=

∞∑
n=−∞

(
1− a2q2n

) (aqn+1

b ; q
)
∞

(abqn; q)∞ bn
1

1− aqn
q−

n
2 (−1)nq−

n
2 qn

=

∞∑
n=−∞

(1 + aqn)

(
aqn+1

b ; q
)
∞

(abqn; q)∞

(
−1

b

)n

after using (13.6.2) again. This is a little trickier than the previous cases because
we have to split the sum into

f
(
b, 1, q

1
2 ,−q

1
2

)
=

∞∑
n=−∞

(
aqn+1

b ; q
)
∞

(abqn; q)∞

(
−1

b

)n

+ a
∞∑

n=−∞

(
aqn+1

b ; q
)
∞

(abqn; q)∞

(
−q

b

)n
.

Using (13.6.1) with x = − 1
b and with x = − q

b , we have

f
(
b, 1, q

1
2 ,−q

1
2

)
=

(
−a,− q

a , q,
q
b2 ; q

)
∞(

− 1
b ,−

q
b , ab,

q
ab ; q

)
∞

+ a

(
−aq,− 1

a , q,
q
b2 ; q

)
∞(

− q
b ,−

1
b , ab,

q
ab ; q

)
∞
.

These two products are actually the same. The denominators are visibly the same,
and in the numerator we have

a(−aq; q)∞

(
−1

a
; q

)
∞

= a

(
1 +

1

a

)
(−aq; q)∞

(
− q

a
; q
)
∞

= (−a; q)∞
(
− q

a
; q
)
∞

,

so

(13.6.5) f
(
b, 1, q

1
2 ,−q

1
2

)
= 2

(
−a,− q

a , q,
q
b2 ; q

)
∞(

− 1
b ,−

q
b , ab,

q
ab ; q

)
∞
.

On the other hand, when c = 1, d = q
1
2 , and e = −q

1
2 the right side of (13.5.5)

becomes

k
(
b, 1, q

1
2 ,−q

1
2

)
=

(
a2, q, q

a2 ,
q
b ,

q
1
2

b ,− q
1
2

b , q
1
2 ,−q

1
2 ,−1; q

)
∞(

ab, q
ab , a,

q
a , aq

1
2 , q

1
2

a ,−aq
1
2 ,− q

1
2

a ,− 1
b ; q

)
∞

.

If we multiply top and bottom of this by(
−a,− q

a
,−q

b
; q
)
∞

and use (−1; q)∞ = (1 + 1)(−q; q)∞ = 2(−q; q)∞, then the same calculations as
before reduce this to an expression that matches (13.6.5). Hence (13.5.5) is also
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true when c = 1, d = q
1
2 , and e = −q

1
2 . Askey’s fourth special case is c = −1,

d = q
1
2 , and e = −q

1
2 . By very similar calculations this case gives

(13.6.6) f
(
b,−1, q

1
2 ,−q

1
2

)
= 2

(
a, q

a , q,
q
b2 ; q

)
∞(

1
b ,

q
b , ab,

q
ab ; q

)
∞

= k
(
b,−1, q

1
2 ,−q

1
2

)
.

Exercises

1. Prove (13.6.2).

2. Prove (13.6.4).

3. Verify that k
(
b, 1, q

1
2 ,−q

1
2

)
reduces to the expression in (13.6.5).

4. Prove (13.6.6).

13.7. Askey’s proof: Phase 3

To avoid a technical problem, we begin this section by using the remark from
problem 3 in section 13.5 that (13.5.8) still holds if b, c, d, e are replaced by their
reciprocals. If we set g(b, c, d, e) = f( 1b ,

1
c ,

1
d ,

1
e ) and r(b, c, d, e) = k( 1b ,

1
c ,

1
d ,

1
e ), then

we have

(13.7.1) g (b, cq, d, e) = g (bq, c, d, e)− a(c− b)

(
1− 1

bc

)
g(b, c, d, e)

and similarly for r. The reason for doing this is that we have convergence in (13.4.1)
for |bcde| > |q|, so we do not want to make b, c, d, e smaller there, as using (13.5.8)
would tend to do. When rephrased in terms of g, the convergence condition becomes
|bcde| < 1

|q| , and this is compatible with (13.7.1). In the previous section we showed

results equivalent to

g
(
b, q−

1
2 , 1,−1

)
= r
(
b, q−

1
2 , 1,−1

)
,(13.7.2)

g
(
b,−q−

1
2 , 1,−1

)
= r
(
b,−q−

1
2 , 1,−1

)
,(13.7.3)

g
(
b, 1, q−

1
2 ,−q−

1
2

)
= r
(
b, 1, q−

1
2 ,−q−

1
2

)
,(13.7.4)

g
(
b,−1, q−

1
2 ,−q−

1
2

)
= r
(
b,−1, q−

1
2 ,−q−

1
2

)
(13.7.5)

with convergence when |bcde| < 1
|q| . We will try to establish

(13.7.6) g
(
qi−

1
2 ,−qj−

1
2 , qm,−qn

)
= r
(
qi−

1
2 ,−qj−

1
2 , qm,−qn

)
for as many values of i, j,m, n as possible, where we need i + j + m + n > 0 for
convergence. By (13.7.3), (13.7.6) holds for any positive i as long as j,m, n are all
zero. By (13.7.2) and symmetry we have

g
(
q

1
2 , c, 1,−1

)
= r
(
q

1
2 , c, 1,−1

)
,

so (13.7.6) holds for arbitrary positive j when i,m, n are all zero. By (13.7.5) and
symmetry we have

g
(
q

1
2 ,−q

1
2 , d,−1

)
= r
(
q

1
2 ,−q

1
2 , d,−1

)
,
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so (13.7.6) holds for arbitrary positive m when i, j, n are all zero, and by (13.7.4)
and symmetry we have

g
(
q

1
2 ,−q

1
2 , 1, e

)
= r
(
q

1
2 ,−q

1
2 , 1, e

)
,

so (13.7.6) holds for arbitrary positive n when i, j,m are all zero.
Moreover, (13.7.5) also implies that (13.7.6) holds for arbitrary i > 1

2 when

j = 1
2 and m = − 1

2 = n. By (13.7.4) and symmetry we have

g
(
1, c, q

1
2 ,−q

1
2

)
= r
(
1, c, q

1
2 ,−q

1
2

)
,

so (13.7.6) holds for arbitrary j > 1
2 when i = 1

2 and m = − 1
2 = n. By (13.7.3) and

symmetry we have

g
(
1,−1, d,−q

1
2

)
= r
(
1,−1, d,−q

1
2

)
,

so (13.7.6) holds for arbitrary m > − 1
2 when n = − 1

2 and i = 1
2 = j. By (13.7.2)

and symmetry we have

g
(
1,−1, q

1
2 , e
)
= r
(
1,−1, q

1
2 , e
)
,

so (13.7.6) holds for arbitrary n > − 1
2 when m = − 1

2 and i = 1
2 = j.

Therefore we can go from the cases j = 0 and j = 1
2 of (13.7.6), known for

m = n = 0 and m = n = − 1
2 respectively, to j = 1, 2, 3, . . . and j = 3

2 ,
5
2 ,

7
2 , . . .

for the same values of m and n, and by symmetry we can do the same with m = 0
and m = 1

2 and with n = 0 and n = 1
2 . Therefore we can establish (13.7.6) for

arbitrary nonnegative integers i, j,m, n whose sum is positive, and also for many
sets of half-integers with a positive sum. Askey’s final argument is that this is
enough to prove that g = r, and hence that f = k, for all admissible b, c, d, e since
g and r are analytic functions of b, c, d, e agreeing for infinitely many values with
a limit point, namely (b, c, d, e) → (0, 0, 0, 0). This rests on the identity theorem
for analytic functions, which is in any good complex analysis book, if not always
under that name. Note that because we replaced b, c, d, e by their reciprocals,
(b, c, d, e) → (0, 0, 0, 0) here amounts to b, c, d, e all going to infinity in (13.4.1),
which we could actually calculate using (13.5.11).

This argument generalizes Ismail’s proof of Ramanujan’s 1ψ1 summation, which
we sketched in problem 5 in section 6.1. We had shown that if |q| < 1 and |x| < 1,
then

(13.7.7)
(ax; q)∞

(
q
ax ; q

)
∞ (q; q)∞

(
b
a ; q
)
∞

(x; q)∞
(

b
ax ; q

)
∞ (b; q)∞

(
q
a ; q
)
∞

=

∞∑
n=−∞

(a; q)n
(b; q)n

xn

holds if b = qm+1 for any nonnegative integer m. Both sides are analytic functions
of b if |b| < |ax| (which ensures that

(
b
ax ; q

)
∞ is not zero), and they agree for

infinitely many values of b with a limit point, namely b = qm+1 → 0 as m → ∞.

Exercises

1. This problem outlines a derivation of the quintuple product identity (5.3.2) from
(13.4.3).
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(i) Using (13.5.11), show that if we let b, c, d → ∞ in (13.1.1) and set e = q
1
2 ,

we get (at least formally)

∞∑
n=−∞

(
1− a2q2n

) (
(−1)nanq

n(n−1)
2

)3
q

n
2 =

(a2; q)∞
(

q
a2 ; q

)
∞ (q; q)∞(

aq
1
2 ; q
)
∞

(
q

1
2

a ; q

)
∞

.

(ii) Show that (i) simplifies to

(13.7.8)

∞∑
n=−∞

(
1− a2q2n

)
(−1)na3nq

3n2

2 −n

= (a2; q2)∞

(
q2

a2
; q2
)

∞
(q; q)∞

(
−aq

1
2 ; q
)
∞

(
−q

1
2

a
; q

)
∞

.

(iii) This is already the quintuple product identity, but we have to fiddle

with it to give it the same form as in section 5.3. Show that if we set a = −q
1
2 /z

and split the sum, (13.7.8) becomes

(13.7.9)

∞∑
n=−∞

z−3nq
3n2+n

2 −
∞∑

n=−∞
z−3n−2q

(n+1)(3n+2)
2

= (qz2; q2)∞
( q

z2
; q2
)
∞

(q; q)∞(z; q)∞
(q
z
; q
)
∞

.

(iv) Show that if we replace n by −k in the first sum in (13.7.9) and n by
−k − 1 in the second one, we get

∞∑
k=−∞

z3kq
3k2−k

2 (1− zqk) = (qz2; q2)∞

( q

z2
; q2
)
∞

(q; q)∞(z; q)∞

( q
z
; q
)
∞

,

which is (5.3.2).

2. Show that if we let b, c, d, e all tend to ∞ in (13.4.3) and replace a2 by z, we get

∞∑
n=−∞

z2nq2n
2−n(1− zq2n) = (q; q)∞(z; q)∞

(q
z
; q
)
∞

,

and that this is equivalent to Jacobi’s triple product identity.

3. In the next several problems we outline Andrews’s derivation of Jacobi’s eight
square theorem from Bailey’s 6ψ6 sum. First, show that if we set b, c, d, e all
equal to − 1

a in (13.4.1) and replace a2 by z, we get

(13.7.10)
∞∑

n=−∞

1− zq2n

1− z

[
(−1; q)n
(−q; q)n

]4
(qz2)n =

(q; q)∞
(
q
z ; q
)
∞ (zq; q)7∞

(−q; q)4∞(−zq; q)4∞(qz2; q)∞
.

4. We want to set z = 1 in (13.7.10), but there is an obvious problem in the
denominator on the sum side, which is

∞∑
n=−∞

qnz2n

1− z

[
(−1; q)n
(−zq; q)n

]4
−

∞∑
n=−∞

q3nz2n+1

1− z

[
(−1; q)n
(−zq; q)n

]4
.
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Show that changing n to −n in the second sum and using (13.5.1) makes this

(13.7.11)

∞∑
n=−∞

qnz2n

1− z

[
(−1; q)n
(−zq; q)n

]4
−

∞∑
n=−∞

qnz2n+1

1− z

[(
− 1

z ; q
)
n

(−q; q)n

]4
,

and that combining these two sums makes the left side of (13.7.10) into
(13.7.12)

∞∑
n=−∞

qnz2n

[(−q; q)n(−zq; q)n]
4

z
[(
− 1

z ; q
)
n
(−zq; q)n

]4 − [(−1; q)n(−q; q)n]
4

z − 1
.

5. Using logarithmic differentiation or otherwise, show that

d

dz
(−zq; q)n = (−zq; q)n

(
q

1 + zq
+ · · ·+ qn

1 + zqn

)
and

d

dz

(
−1

z
; q

)
n

= −
(
−1

z
; q

)
n

(
1

z(z + 1)
+

q

z(z + q)
+ · · ·+ qn−1

z(z + qn−1)

)
.

6. Using L’Hopital’s rule and the derivatives from the previous problem, or other-
wise, show that

lim
z→1

z
[(
− 1

z ; q
)
n
(−zq; q)n

]4 − [(−1; q)n(−q; q)n]
4

z − 1
= [(−1; q)n(−q; q)n]

4 3qn − 1

1 + qn
.

7. Using the previous problem and (13.7.12), show that the result of letting z → 1
in (13.7.10) is

∞∑
n=−∞

qn(3qn − 1)

1 + qn

[
(−1; q)n
(−q; q)n

]4
=

[
(q; q)∞
(−q; q)∞

]8
,

and that this can be rewritten as[
(q; q)∞
(−q; q)∞

]8
= 1− 16

∞∑
n=1

qn(q2n − 4qn + 1)

(1 + qn)4
.

This was (13.3.5), the key identity for the eight square theorem in section 13.3.

8. Show that setting d = 1 and e = −1 in (13.4.1) gives

(13.7.13)

∞∑
n=−∞

(ab; q)n (ac; q)n(
aq
b ; q
)
n

(
aq
c ; q
)
n

(
− q

bc

)n
=

(
q2, a2q, q

a2 ,
q2

b2 ,
q2

c2 ; q
2
)
∞(

aq
b ,

aq
c , q

ab ,
q
ac ; q

)
∞

(
q
bc ; q
)
∞(

− q
bc ; q
)
∞
,

where |q/bc| < 1.

9. Show that setting a = 1 and b = −1 in (13.7.13) gives

(13.7.14)
∞∑

n=−∞

2

1 + qn
(c; q)n(
q
c ; q
)
n

(q
c

)n
=

[
(q; q)∞

(
− q

c ; q
)
∞

(−q; q)∞
(
q
c ; q
)
∞

]2
,

where |q/c| < 1.
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10. Use (13.5.11) to take the limit of (13.7.14) as c → ∞, and hence show that

(13.7.15) 1 + 4

∞∑
n=1

(−1)nq(
n+1
2 )

1 + qn
=

[
(q; q)∞
(−q; q)∞

]2
.

11. The result (13.7.15) of the previous problem can be used to derive Jacobi’s two
square theorem from section 7.2.

(i) Explain why we have[
(q; q)∞
(−q; q)∞

]2
=

⎛
⎝ ∞∑

j=−∞
(−1)jqj

2

⎞
⎠( ∞∑

k=−∞
(−1)kqk

2

)
,

and why we can rewrite the right side as
∞∑

n=0

�2(n)(−q)n,

with the same notation as in section 7.2: �2(n) is the number of ways to write
the nonnegative integer n as a sum of two squares, accounting for signs and
permutations.

(ii) By splitting into even and odd n, show that

∞∑
n=1

(−1)nq(
n+1
2 )

1 + qn
=

∞∑
k=1

qk(2k+1)

1 + q2k
−

∞∑
m=0

q(m+1)(2m+1)

1 + q2m+1
.

It is convenient to use two different letters for the summation indices here, for
reasons that will soon appear.

(iii) By expanding the denominator into a geometric series, using j as the
summation index, and then setting j + k = m, show that

∞∑
k=1

qk(2k+1)

1 + q2k
=

∞∑
m=1

m∑
k=1

(−1)m−kqk(2m+1).

Note that we could extend the sum on the right side down to m = 0, because
the inner sum would be empty.

(iv) By expanding the denominator into a geometric series, using j as the
summation index, and then setting j +m+ 1 = k, show that

−
∞∑

m=0

q(m+1)(2m+1)

1 + q2m+1
=

∞∑
m=0

∞∑
k=m+1

(−1)k−mqk(2m+1).

(v) Explain why (ii)–(iv) imply that

∞∑
n=1

(−1)nq(
n+1
2 )

1 + qn
=

∞∑
m=0

∞∑
k=1

(−1)m+kqk(2m+1).

(vi) By splitting into even and odd values of m, show that the right side of
(v) can be rewritten as

∞∑
j=0

∞∑
k=1

(−1)k
[
qk(4j+1) − qk(4j+3)

]
=

∞∑
j=0

∞∑
k=1

[
(−q)k(4j+1) − (−q)k(4j+3)

]
.
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Combining (13.7.15) with (i), (v), and (vi), we have

∞∑
n=0

�2(n)(−q)n = 1 + 4

∞∑
j=0

∞∑
k=1

[
(−q)k(4j+1) − (−q)k(4j+3)

]
.

If we change −q to q here, we have the identity that gave us Jacobi’s two square
theorem in section 7.2.

12. Show that setting b = a and c = d = e = − 1
a in (13.4.1) and then setting a2 = z

gives

(13.7.16) 1 + 8

∞∑
n=1

(1− zq2n)(zq; q)n−1(−q; q)3n−1(−zq)n

(q; q)n(−zq; q)3n
=

[
(zq; q)∞
(−zq; q)∞

]4
.

Again the comment about (6.1.5) in section 6.1 might help.
13. Show that setting z = 1 in (13.7.16) gives

1 + 8
∞∑

n=1

(−q)n

(1 + qn)2
=

[
(q; q)∞
(−q; q)∞

]4
.

Then use (13.2.2) with x = −qn and interchange orders of summation to trans-
form this into

1 + 8

∞∑
k=1

k(−q)k

1 + qk
=

[
(q; q)∞
(−q; q)∞

]4
.

This was the key identity for Jacobi’s four square theorem in section 7.3.

13.8. An integral

Askey used a similar functional equation argument a few years earlier to eval-
uate a beautiful integral depending on 5 parameters a1, a2, a3, a4, a5. We will gen-
erally assume these are less than 1 in absolute value, but it is convenient to allow
one of them to be 1 and one to be −1. For a generic a with |a| ≤ 1, define

(13.8.1) r(x, a) =

∞∏
n=0

(
1− 2axqn + a2q2n

)
= (1− 2ax+ a2)r(x, aq).

Then Askey’s integral is

(13.8.2) I(a1, a2, a3, a4, a5)

=

∫ 1

−1

r(x, 1) r
(
x, q

1
2

)
r(x,−1) r

(
x,−q

1
2

)
r(x, a1a2a3a4a5)

r(x, a1) r(x, a2) r(x, a3) r(x, a4) r(x, a5)

dx√
1− x2

.

The case a5 = 0 is the Askey–Wilson integral, which is of fundamental importance
in the theory of orthogonal polynomials. We will follow Askey’s method of system-
atically trying to guess (and ultimately to prove) what this integral must be equal
to.

We first seek three quantities A,B,C independent of x such that

(13.8.3)
Ar(x, a1a2a3a4a5q)

r(x, a1q) r(x, a2)
− B r(x, a1a2a3a4a5q)

r(x, a1) r(x, a2q)
=

C r(x, a1a2a3a4a5)

r(x, a1) r(x, a2)
.
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Using (13.8.1) and clearing fractions we get

A
(
1− 2xa1 + a21

)
−B

(
1− 2xa2 + a22

)
= C

[
1− 2xa1a2a3a4a5 + (a1a2a3a4a5)

2
]
,

which forces

Aa1 −Ba2 = Ca1a2a3a4a5,(13.8.4)

A(1 + a21)−B(1 + a22) = C
[
1 + (a1a2a3a4a5)

2
]

(13.8.5)

since A,B,C are to be independent of x. Solving (13.8.4) for C and substituting
in (13.8.5) we get

A(1 + a21)−
Aa1

a1a2a3a4a5

[
1 + (a1a2a3a4a5)

2
]

= B(1 + a22)−
Ba2

a1a2a3a4a5

[
1 + (a1a2a3a4a5)

2
]
.

Clearing fractions and temporarily setting u = a2a3a4a5 and v = a1a3a4a5, this is

Aa1
[
u+ a21u− 1− a21u

2
]
= Ba2

[
v + a22v − 1− a22v

2
]
,

or

(13.8.6) Aa1(1− u)(a21u− 1) = Ba2(1− v)(a22v − 1).

Note that if we find values A,B,C satisfying (13.8.4) and (13.8.5), then any con-
stant times the same values will also work. Therefore we can choose one of them
arbitrarily, so we take

A = a2(1− v)(a22v − 1) = a2(1− a1a3a4a5)(a1a
2
2a3a4a5 − 1),

in which case (13.8.6) gives

B = a1(1− u)(a21u− 1) = a1(1− a2a3a4a5)(a
2
1a2a3a4a5 − 1).

Using these values in (13.8.4) gives

C =
a1a2

a1a2a3a4a5

[
a1a3a4a5 − 1 + a1a

2
2a3a4a5 − (a1a2a3a4a5)

2

− a2a3a4a5 + 1− a21a2a3a4a5 + (a1a2a3a4a5)
2

]

=
1

a3a4a5
[a3a4a5(a2 − a1)− a1a2a3a4a5(a2 − a1)] = (a2 − a1)(1− a1a2).

Therefore we have (13.8.3) in the more precise form

Ar(x, a1a2a3a4a5q)

r(x, a1q) r(x, a2)
− B r(x, a1a2a3a4a5q)

r(x, a1) r(x, a2q)
=

(a2 − a1)(1− a1a2) r(x, a1a2a3a4a5)

r(x, a1) r(x, a2)

with

A = a2(1− a1a3a4a5)(a1a
2
2a3a4a5 − 1)

B = a1(1− a2a3a4a5)(a
2
1a2a3a4a5 − 1),

and it follows that

(13.8.7) AI(a1q, a2, a3, a4, a5)−B I(a1, a2q, a3, a4, a5),

= (a2 − a1)(1− a1a2)I(a1, a2, a3, a4, a5).
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The factor 1−a1a2 suggests that I might have a factor of f(a1a2) for some function
f , in which case, by symmetry, it would have to have 9 similar factors, so we try
setting

I(a1, a2, a3, a4, a5)

= f(a1a2)f(a1a3)f(a1a4)f(a1a5)f(a2a3)f(a2a4)f(a2a5)f(a3a4)f(a3a5)f(a4a5).

Plugging this into (13.8.7) and setting a3, a4, a5 = 0, A reduces to a2 and B to a1
and we have

a2f(a1a2q) [f(0)]
9 − a1f(a1a2q) [f(0)]

9
= (a2 − a1)(1− a1a2)f(a1a2) [f(0)]

9
.

Now f(0) cannot be zero, or else I would be zero when any of a1, a2, a3, a4, a5 were
zero. Therefore

(a2−a1)f(a1a2q) = (a2−a1)(1−a1a2)f(a1a2), or f(a1a2q) = (1−a1a2)f(a1a2).

Iterating this we get

f(a1a2) =
f(0)

(a1a2; q)∞
,

so our current guess is

I(a1, a2, a3, a4, a5) =
[f(0)]10

(a1a2, a1a3, a1a4, a1a5, a2a3, a2a4, a2a5, a3a4, a3a5, a4a5; q)∞
.

This does not work in (13.8.7), but (Askey continues) the presence of the factors
1− a1a3a4a5 and 1− a2a3a4a5 there suggests the improved guess

I(a1, a2, a3, a4, a5) =
g(a1a2a3a4)g(a1a2a3a5)g(a1a2a4a5)g(a1a3a4a5)g(a2a3a4a5)

(a1a2, a1a3, a1a4, a1a5, a2a3, a2a4, a2a5, a3a4, a3a5, a4a5; q)∞

for some function g. Putting this in (13.8.7) and setting a5 = 0 gives

a2 g(a1a2a3a4q) [g(0)]
4

(a1a2q, a1a3q, a1a4q, a2a3, a2a4, a3a4; q)∞

− a1 g(a1a2a3a4q) [g(0)]
4

(a1a2q, a1a3, a1a4, a2a3q, a2a4q, a3a4; q)∞

=
(a2 − a1)(1− a1a2)g(a1a2a3a4) [g(0)]

4

(a1a2, a1a3, a1a4, a2a3, a2a4, a3a4; q)∞

=
(a2 − a1)g(a1a2a3a4) [g(0)]

4

(a1a2q, a1a3, a1a4, a2a3, a2a4, a3a4; q)∞
.

Again g(0) cannot be zero, or else I would be zero if any of a1, a2, a3, a4, a5 were
zero. Cancelling [g(0)]4 and clearing fractions we get

g(a1a2a3a4q) [a2(1− a1a3)(1− a1a4)− a1(1− a2a3)(1− a2a4)]

= (a2 − a1)g(a1a2a3a4).

The quantity in brackets is

a2
[
1− a1(a3 + a4) + a21a3a4

]
− a1

[
1− a2(a3 + a4) + a22a3a4

]
= a2 − a1 + a1a2a3a4(a1 − a2) = (a2 − a1)(1− a1a2a3a4),

and it follows that

g(a1a2a3a4) = (1− a1a2a3a4)g(a1a2a3a4q).
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468 13. BAILEY’S 6ψ6 SUM

Iterating this we get

g(a1a2a3a4) = g(0)(a1a2a3a4; q)∞,

so now the simplest thing that I could be is

(13.8.8) I(a1, a2, a3, a4, a5)

?
=

(a1a2a3a4, a1a2a3a5, a1a2a4a5, a1a3a4a5, a2a3a4a5; q)∞
(a1a2, a1a3, a1a4, a1a5, a2a3, a2a4, a2a5, a3a4, a3a5, a4a5; q)∞

.

Substituting this in (13.8.3) and clearing fractions we get

(13.8.9) a2
(
1− a1a

2
2a3a4a5

)
(1− a1a3)(1− a1a4)(1− a1a5)

− a1
(
1− a21a2a3a4a5

)
(1− a2a3)(1− a2a4)(1− a2a5)

on the left side and

(13.8.10) (a2 − a1)(1− a1a2a3a4)(1− a1a2a3a5)(1− a1a2a4a5)

on the right. We will show that (13.8.9) equals (13.8.10). First,

(1− a1a3)(1− a1a4)(1− a1a5)

= 1− a1 (a3 + a4 + a5) + a21 (a3a4 + a3a5 + a4a5)− a31a3a4a5

= 1− a1X + a21Y − a21
a2

Z,

where

X = a3 + a4 + a5, Y = a3a4 + a3a5 + a4a5, Z = a1a
2
2a3a4a5,

and similarly

(1− a2a3)(1− a2a4)(1− a2a5) = 1− a2X + a22Y − a22
a1

Z.

Then (13.8.9) takes the form

(1− a2Z)
(
a2 − a1a2X + a21a2Y − a21Z

)
− (1− a1Z)

(
a1 − a1a2X + a1a

2
2Y − a22Z

)
.

The first product is

a2 − a1a2X + a21a2
(
Y + Z2

)
−
(
a21 + a22

)
Z + a1a

2
2XZ − (a1a2)

2
Y Z

and the second is the same with a1 and a2 switched. Therefore all the terms that
are symmetric in a1 and a2 cancel when we subtract, which leaves

a2 − a1 + a21a2
(
Y −XZ + Z2

)
− a1a

2
2

(
Y −XZ + Z2

)
= (a2 − a1)

[
1− a1a2

(
Y −XZ + Z2

)]
.

We leave the proof that (13.8.10) also equals this as an exercise.

We have more or less completed the analogue of Phase 1 of Askey’s evaluation
of Bailey’s 6ψ6 sum in this context, by finding in (13.8.8) an expression that satisfies
the same functional equation as (13.8.2). While Phase 1 was longer here (and it
isn’t quite over yet), Phases 2 and 3 will be shorter. If we set A(a1, a2, a3, a4, a5)
equal to the right side of (13.8.8), then we need to find values of a1, a2, a3, a4, a5
for which we can actually evaluate I, and then see if A is the same for those values.
We take a1 = 1, a2 = q

1
2 , a3 = −1, a4 = −q

1
2 , and a5 equal to an arbitrary real
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13.8. AN INTEGRAL 469

(for simplicity) number a with |a| < 1, in which case a1a2a3a4a5 = aq. With these
choices, most of the integrand cancels and I reduces to

I
(
1, q

1
2 ,−1,−q

1
2 , a
)
=

∫ 1

−1

r(x, aq)

r(x, a)

dx√
1− x2

=

∫ 1

−1

dx

1− 2ax+ a2
1√

1− x2
,

or

I
(
1, q

1
2 ,−1,−q

1
2 , a
)
=

∫ π
2

−π
2

dθ

1 + a2 − 2a sin θ

after substituting x = sin θ. There is a nonobvious substitution that works beauti-
fully on this type of integral, which is to let

(13.8.11) sinφ =
(1 + a2) sin θ − 2a

1 + a2 − 2a sin θ

for a new angle φ. When θ = −π
2 we have

sinφ =
−1− 2a− a2

1 + 2a+ a2
= −1, so φ = −π

2
,

and when θ = π
2 we have

sinφ =
1 + 2a+ a2

1 + 2a+ a2
= 1, so φ =

π

2
.

To see that this expression is really the sine of something we compute(
1 + a2 − 2a sin θ

)2 − ((1 + a2) sin θ − 2a
)2

=
[
1 + a2 − 2a sin θ + (1 + a2) sin θ − 2a

] [
1 + a2 − 2a sin θ − (1 + a2) sin θ + 2a

]
= (1− 2a+ a2)(1 + sin θ)(1 + 2a+ a2)(1− sin θ)

= (1− a)2(1 + a)2(1− sin2 θ)

= (1− a2)2 cos2 θ.

Since |a| < 1 and −π
2 < θ < π

2 , (1− a2) cos θ is positive, so 1 + a2 − 2a sin θ is the

hypotenuse of a right triangle with legs (1 + a2) sin θ − 2a and (1 − a2) cos θ, and
we have

(13.8.12) cosφ =
(1− a2) cos θ

1 + a2 − 2a sin θ
.

Taking derivatives of (13.8.11) we get

cosφ
dφ

dθ
=

(
1 + a2 − 2a sin θ

)
(1 + a2) cos θ −

(
(1 + a2) sin θ − 2a

)
(−2a cos θ)

(1 + a2 − 2a sin θ)2

=
cos θ

(1 + a2 − 2a sin θ)
2

[
(1 + a2)2 − 2a(1 + a2) sin θ + 2a(1 + a2) sin θ − 4a2

]
,

so

cosφ dφ =
(1− a2)2 cos θ dθ

(1 + a2 − 2a sin θ)
2 =

(1− a2) cos θ

1 + a2 − 2a sin θ

(1− a2) dθ

1 + a2 − 2a sin θ
,

which simplifies to

dφ =
(1− a2) dθ

1 + a2 − 2a sin θ
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470 13. BAILEY’S 6ψ6 SUM

because of (13.8.12). Therefore

I
(
1, q

1
2 ,−1,−q

1
2 , a
)
=

∫ π
2

−π
2

dθ

1 + a2 − 2a sin θ
=

∫ π
2

−π
2

dφ

1− a2
=

π

1− a2
.

On the other hand,

A
(
1, q

1
2 ,−1,−q

1
2 , a
)
=

(
q,−aq

1
2 ,−aq, aq

1
2 , aq; q

)
∞(

q
1
2 ,−1,−q

1
2 , a,−q

1
2 ,−q, aq

1
2 , q

1
2 ,−a,−aq

1
2 ; q
)
∞

=
(q; q)∞(aq; q)∞(−aq; q)∞

2
(
q

1
2 ,−q

1
2 ,−q; q

)2
∞

(a; q)∞(−a; q)∞

.

Using Euler’s “odd equals distinct” theorem we have(
q

1
2 ; q
)
∞

(
−q

1
2 ; q
)
∞

(−q; q)∞ = (q; q2)∞(−q; q)∞ = 1,

so this reduces to

A
(
1, q

1
2 ,−1,−q

1
2 , a
)
=

(q; q)∞
2

(aq; q)∞
(a; q)∞

(−aq; q)∞
(−a; q)∞

=
(q; q)∞
2(1− a2)

.

So in fact (13.8.8) is wrong, but introducing a factor of 2π/(q; q)∞ makes it correct:
actually

(13.8.13) I(a1, a2, a3, a4, a5)

=
2π (a1a2a3a4, a1a2a3a5, a1a2a4a5, a1a3a4a5, a2a3a4a5; q)∞

(q, a1a2, a1a3, a1a4, a1a5, a2a3, a2a4, a2a5, a3a4, a3a5, a4a5; q)∞
,

and we have done Phases 1 and 2 of the proof. By symmetry in a1, a2, a3, a4, a5 we
have proved (13.8.13) for arbitrary a1 with |a1| < 1 and a2 = 1, a3 = q

1
2 , a4 = −1,

a5 = −q
1
2 . The functional equation (13.8.7) then allows us to multiply any value

of a2 for which (13.8.13) is known by q, and hence by any positive integer power of
q. By symmetry in a2, a3, a4, a5, we can do the same for a3, a4, a5, so we can claim

to have proved (13.8.13) for arbitrary a1 with a2 = qj , a3 = qk+
1
2 , a4 = −q�, and

a5 = −qm+ 1
2 for any nonnegative integers j, k, �,m. Both (13.8.2) and (13.8.13) are

analytic in a1, a2, a3, a4, a5 when all their absolute values are less than 1, and they
agree for infinitely many values with limit point (a1, 0, 0, 0, 0), so by the identity
theorem for analytic functions, they must agree on the whole domain of analyticity.

Exercises

1. Show that the product of the last three factors in (13.8.10) is

1− a1a2
(
Y −XZ + Z2

)
with X,Y, Z as above. This completes the proof that (13.8.9) equals (13.8.10).

2. Give an alternative proof that∫ π
2

−π
2

dθ

1 + a2 − 2a sin θ
=

π

1− a2
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13.9. BAILEY’S LEMMA 471

for −1 < a < 1, by multiplying top and bottom by 1 + a2 + 2a sin θ inside the
integral or otherwise.

13.9. Bailey’s lemma

In the next section we will conclude with one of the central results in q-
hypergeometric series, Watson’s transformation. We follow Bailey’s approach as
refined by Andrews. It starts with the following simple result.

Lemma 18 (Bailey’s transform). Let Un, Vn, αn, δn be four sequences, and de-
fine two more sequences by

(13.9.1) βn =

n∑
m=0

αmUn−mVn+m and γm =

∞∑
n=m

δnUn−mVn+m.

Then

(13.9.2)

∞∑
m=0

αmγm =

∞∑
n=0

βnδn

subject to convergence conditions.

To see this we just substitute the definition of γm into the left side of (13.9.2),
which gives

∞∑
m=0

αmγm =

∞∑
m=0

∞∑
n=m

αmδnUn−mVn+m.

The range of the double sum is 0 ≤ m ≤ n < ∞, so we can just as well write it as

∞∑
m=0

αmγm =

∞∑
n=0

δn

n∑
m=0

αmUn−mVn+m =

∞∑
n=0

δnβn

as desired. We will apply Bailey’s transform to a finite sum, so there will be no
convergence issues.

Two sequences αn and βn are called a Bailey pair if they are related by

(13.9.3) βn =

n∑
k=0

αk

(q; q)n−k(aq; q)n+k
,

where a is arbitrary.
If we substitute

(13.9.4) αk =
(−1)kq(

k
2)(a; q)k(1− aq2k)

(1− a)(q; q)k

into (13.9.3), we get

βn =

n∑
k=0

(−1)kq(
k
2)(a; q)k(1− aq2k)

(q; q)k(q; q)n−k(a; q)n+k+1

(q; q)n
(q; q)n

=
1

(q; q)n(a; q)n+1

n∑
k=0

(
n

k

)
q

(−1)kq(
k
2) (1− aq2k)(a; q)k

(aqn+1; q)k
.
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472 13. BAILEY’S 6ψ6 SUM

If n = 0, then the right side is 1. Otherwise we can use Agarwal’s q-binomial
theorem (2.3.15) from problem 19 in section 2.3, which was

m∑
k=0

(
n

k

)
q

(−1)kq(
k
2)(1− aq2k)

(a; q)k
(aqn+1; q)k

=

(
n− 1

m

)
q

(−1)mq(
m+1

2 ) (a; q)m+1

(aqn+1; q)m
.

Taking m = n here we find that

n∑
k=0

(
n

k

)
q

(−1)kq(
k
2) (1− aq2k)(a; q)k

(aqn+1; q)k
= 0 if n ≥ 1.

Therefore one example of a Bailey pair is βn = δn0 (the Kronecker delta) with αk

as above.
To prepare for our next result, we set

(13.9.5) δk =
(ρ1; q)k(ρ2; q)k(q

−N ; q)kq
k(

ρ1ρ2

aqN ; q
)
k

in (13.9.1) for a positive integer N . Note that δk = 0 if k > N because of the factor
(q−N ; q)n. Using (13.9.5) in (13.9.1) we get

γm =

∞∑
r=m

(ρ1; q)r(ρ2; q)r(q
−N ; q)rq

r(
ρ1ρ2

aqN
; q
)
r
(q; q)r−m(aq; q)r+m

=
∞∑

n=0

(ρ1; q)n+m(ρ2; q)n+m(q−N ; q)n+mqn+m(
ρ1ρ2

aqN ; q
)
n+m

(q; q)n(aq; q)n+2m

.

Writing (ρ1; q)n+m = (ρ1; q)m(ρ1q
m; q)n and similarly for most of the other

terms, and taking what we can out of the sum, we get

γm =
(ρ1; q)m(ρ2; q)m(q−N ; q)mqm(

ρ1ρ2

aqN ; q
)
m
(aq; q)2m

∞∑
n=0

(ρ1q
m; q)n(ρ2q

m; q)n(q
−(N−m); q)nq

n(
ρ1ρ2qm

aqN ; q
)
n
(q; q)n(aq2m+1; q)n

,

where the sum is finite since the factor (q−(N−m); q)n becomes zero when n > N−m.
In fact, the sum is a terminating balanced 3φ2 since the product of the numerator
parameters and the power series variable is

ρ1q
mρ2q

mq−N+m+1 = ρ1ρ2q
3m+1−N ,

which is also the product of the denominator parameters. Therefore we can use the
q-Pfaff–Saalschütz identity

(13.9.6) 3φ2

(
q−n, u, v

w, uv
w q1−n

; q, q

)
=

(wu ; q)n (
w
v ; q)n

(w; q)n (
w
uv ; q)n

from section 5.7 to evaluate it. With w = aq2m+1 and n = N −m, this gives

γm =
(ρ1; q)m(ρ2; q)m(q−N ; q)mqm(

ρ1ρ2

aqN
; q
)
m
(aq; q)2m

(
aqm+1

ρ1
; q
)
N−m

(
aqm+1

ρ2
; q
)
N−m

(aq2m+1; q)N−m

(
aq

ρ1ρ2
; q
)
N−m

.

We want to rewrite this so that all the subscripts are either N or m. The denom-
inator factors (aq; q)2m(aq2m+1; q)N−m combine nicely into (aq; q)N+m, which is
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13.9. BAILEY’S LEMMA 473

(aq; q)N(aqN+1; q)m. We can rewrite another denominator factor as(
ρ1ρ2
aqN

; q

)
m

=

(
1− ρ1ρ2

aqN

)(
1− ρ1ρ2q

aqN

)
· · ·
(
1− ρ1ρ2q

m−1

aqN

)

=

(
−ρ1ρ2
aqN

)(
1− aqN

ρ1ρ2

)
· · ·
(
−ρ1ρ2q

m−1

aqN

)(
1− aqN−m+1

ρ1ρ2

)

=

(
−ρ1ρ2
aqN

)m

q(
m
2 )
(
1− aqN−m+1

ρ1ρ2

)
· · ·
(
1− aqN

ρ1ρ2

)
.

This now combines nicely with(
aq

ρ1ρ2
; q

)
N−m

=

(
1− aq

ρ1ρ2

)(
1− aq2

ρ1ρ2

)
· · ·
(
1− aqN−m

ρ1ρ2

)
to produce (

−ρ1ρ2
aqN

)m

q(
m
2 )
(

aq

ρ1ρ2
; q

)
N

.

We also have (
aqm+1

ρ1
; q

)
N−m

=

(
aq
ρ1
; q
)
N(

aq
ρ1
; q
)
m

and similarly for ρ2, so finally
(13.9.7)

γm =

(
aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N

(aq; q)N

(
aq

ρ1ρ2
; q
)
N

(ρ1; q)m(ρ2; q)m(q−N ; q)m(
aq
ρ1
; q
)
m

(
aq
ρ2
; q
)
m
(aqN+1; q)m

(
− aq

ρ1ρ2

)m

qNm−(m2 ).

Note that γm = 0 if m > N because of the factor (q−N ; q)m. It is convenient to
make one more observation before stating the major result of this section. Note
that

1

(q; q)N−k
=

(1− qN−k+1) · · · (1− qN )

(q; q)N
,

and factoring −qm out of each numerator factor 1 − qm, as we have done several
times before, this becomes

1

(q; q)N−k
=
(
−qN

)k
q−(1+2+···+(k−1)) (1− q−N ) · · · (1− qk−N−1)

(q; q)N
,

which is

(13.9.8)
1

(q; q)N−k
= (−1)kqNk−(k2) (q

−N ; q)k
(q; q)N

.

We are now ready for

Theorem 95 (Bailey’s lemma). If αn and βn are a Bailey pair, then so are
α′
n and β′

n, where

(13.9.9) α′
n =

(ρ1; q)n(ρ2; q)n(
aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

(
aq

ρ1ρ2

)n

αn
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and

(13.9.10) β′
n =

n∑
k=0

(ρ1; q)k(ρ2; q)k

(
aq

ρ1ρ2
; q
)
n−k(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n
(q; q)n−k

(
aq

ρ1ρ2

)k

βk.

We need to show that inserting (13.9.9) into (13.9.3) produces (13.9.10). We
have

N∑
m=0

α′
m

(q; q)N−m(aq; q)N+m

=

N∑
m=0

(ρ1; q)m(ρ2; q)m(
aq
ρ1
; q
)
m

(
aq
ρ2
; q
)
m

(
aq

ρ1ρ2

)m
αm

(q; q)N−m(aq; q)N+m

=

N∑
m=0

(ρ1; q)m(ρ2; q)m(q−N ; q)m(
aq
ρ1
; q
)
m

(
aq
ρ2
; q
)
m
(aqN+1; q)m

(
− aq

ρ1ρ2

)m

qNm−(m2 ) αm

(q; q)N (aq; q)N

by (13.9.8). Most of (13.9.7) is present, so we rewrite the last line as(
aq

ρ1ρ2
; q
)
N(

aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N
(q; q)N

(
aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N

(aq; q)N

(
aq

ρ1ρ2
; q
)
N

×
N∑

m=0

(ρ1; q)m(ρ2; q)m(q−N ; q)m(
aq
ρ1
; q
)
m

(
aq
ρ2
; q
)
m
(aqN+1; q)m

(
− aq

ρ1ρ2

)m

qNm−(m2 )αm

=

(
aq

ρ1ρ2
; q
)
N(

aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N
(q; q)N

N∑
m=0

γmαm.

Since γm = 0 if m > N , we can extend this sum out to infinity without change, so
Bailey’s transform (13.9.2) applies to it and we get(

aq
ρ1ρ2

; q
)
N(

aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N
(q; q)N

∞∑
k=0

βkδk

with δk as in (13.9.5). Since δk = 0 for k > N , this too is a finite sum, namely

(13.9.11)

(
aq

ρ1ρ2
; q
)
N(

aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N
(q; q)N

N∑
k=0

(ρ1; q)k(ρ2; q)k(q
−N ; q)kq

k(
ρ1ρ2

aqN ; q
)
k

βk.

By the same manipulations as above we have

(q−N ; q)k
(q; q)N

(
aq

ρ1ρ2
; q
)
N(

ρ1ρ2

aqN ; q
)
k

=

(
aq

ρ1ρ2
; q
)
N−k

(
aqN−k+1

ρ1ρ2
; q
)
k(

ρ1ρ2

a

)k
(−1)kq(

k
2)−Nk

(
aqN−k+1

ρ1ρ2
; q
)
k

(−1)kq(
k
2)−Nk

(q; q)N−k

=

(
a

ρ1ρ2

)k

(
aq

ρ1ρ2
; q
)
N−k

(q; q)N−k
,
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13.10. WATSON’S TRANSFORMATION 475

so (13.9.11) becomes

1(
aq
ρ1
; q
)
N

(
aq
ρ2
; q
)
N

N∑
k=0

(ρ1; q)k(ρ2; q)k

(
aq

ρ1ρ2
; q
)
N−k

(q; q)N−k

(
aq

ρ1ρ2

)k

βk,

which is β′
N as given in (13.9.10). This proves Bailey’s lemma.

13.10. Watson’s transformation

In this concluding section we get the reward for the hard work of the preceding
section. The only example of a Bailey pair we know so far is βn = δn0 and αn as
given by (13.9.4), but we can use these expressions in Bailey’s lemma to get another
example. Using βk = δk0 in (13.9.10) just picks out the k = 0 term, so

β′
n =

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n
(q; q)n

.

Using (13.9.4) in (13.9.9) we get

α′
n =

(ρ1; q)n(ρ2; q)n(a; q)n(1− aq2n)(−1)nq(
n
2)(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n
(q; q)n(1− a)

(
aq

ρ1ρ2

)n

.

Since this is a Bailey pair, (13.9.3) tells us that

n∑
k=0

(ρ1; q)k(ρ2; q)k(a; q)k(1− aq2k)(−1)kq(
k
2)(

aq
ρ1
; q
)
k

(
aq
ρ2
; q
)
k
(q; q)k(q; q)n−k(1− a)(aq; q)n+k

(
aq

ρ1ρ2

)k

=

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n
(q; q)n

.

Writing (aq; q)n+k = (aq; q)n(aq
n+1; q)k again and assembling a q-binomial coeffi-

cient, this becomes

(13.10.1)

n∑
k=0

(
n

k

)
q

(−1)kq(
k
2) 1− aq2k

1− a

(ρ1; q)k(ρ2; q)k(a; q)k(
aq
ρ1
; q
)
k

(
aq
ρ2
; q
)
k
(aqn+1; q)k

(
aq

ρ1ρ2

)k

=
(aq; q)n

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

.

But the factor (1− aq2k)/(1− a) might also remind us of Bailey’s very well poised

6ψ6 sum (13.4.1). As in (13.4.2), we can write

(13.10.2)
1− aq2k

1− a
=

(
√
aq; q)k(−

√
aq; q)k

(
√
a; q)k(−

√
a; q)k

.

Using (13.9.8) we also have

(13.10.3)

(
n

k

)
q

(−1)kq(
k
2) =

(q−n; q)k
(q; q)k

qnk,
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476 13. BAILEY’S 6ψ6 SUM

so (13.10.1) becomes

(13.10.4)
n∑

k=0

(q−n, ρ1, ρ2, a,
√
aq,−

√
aq; q)k(

q, aq
ρ1
, aq
ρ2
, aqn+1,

√
a,−√

a; q
)
k

(
aqn+1

ρ1ρ2

)k

=
(aq; q)n

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

.

In the series, each numerator parameter may be paired with a denominator param-
eter to produce a product of aq, so this is a terminating very well poised 6φ5 series,
which in q-hypergeometric notation reads

(13.10.5) 6φ5

(
q−n, ρ1, ρ2, a,

√
aq,−

√
aq

aq
ρ1
, aq
ρ2
, aqn+1,

√
a,−

√
a

; q,
aqn+1

ρ1ρ2

)
=

(aq; q)n

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

.

We can now use

α′
n =

(ρ3; q)n(ρ4; q)n(a; q)n(1− aq2n)(−1)nq(
n
2)(

aq
ρ3
; q
)
n

(
aq
ρ4
; q
)
n
(q; q)n(1− a)

(
aq

ρ3ρ4

)n

and

β′
k =

(
aq

ρ3ρ4
; q
)
k(

aq
ρ3
; q
)
k

(
aq
ρ4
; q
)
k
(q; q)k

in (13.9.9) and (13.9.10) respectively to get a third example of a Bailey pair. (An-
drews refers to this iteration of Bailey’s lemma as a Bailey chain.) This gives

α′′
n =

(ρ1, ρ2, ρ3, ρ4, a; q)n(
aq
ρ1
, aq
ρ2
, aqρ3

, aq
ρ4
, q; q

)
n

1− aq2n

1− a
q(

n
2)
(
− a2q2

ρ1ρ2ρ3ρ4

)n

and

β′′
n =

1(
aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

n∑
k=0

(ρ1; q)k(ρ2; q)k

(
aq

ρ3ρ4
; q
)
k

(
aq

ρ1ρ2
; q
)
n−k(

aq
ρ3
; q
)
k

(
aq
ρ4
; q
)
k
(q; q)k(q; q)n−k

(
aq

ρ1ρ2

)k

,

and by Bailey’s lemma we also have

β′′
n =

n∑
k=0

α′′
k

(q; q)n−k(aq; q)n+k

=
n∑

k=0

(ρ1, ρ2, ρ3, ρ4, a; q)k(
aq
ρ1
, aq
ρ2
, aq
ρ3
, aqρ4

, q; q
)
k
(q; q)n−k(aq; q)n+k

1− aq2k

1− a
q(

k
2)
(
− a2q2

ρ1ρ2ρ3ρ4

)k

.

Multiplying both expressions for β′′
n by (q; q)n(aq; q)n we get the q-binomial identity

(aq; q)n(
aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

n∑
k=0

(
n

k

)
q

(ρ1; q)k(ρ2; q)k

(
aq

ρ3ρ4
; q
)
k

(
aq

ρ1ρ2
; q
)
n−k(

aq
ρ3
; q
)
k

(
aq
ρ4
; q
)
k

(
aq

ρ1ρ2

)k

=
n∑

k=0

(
n

k

)
q

(ρ1, ρ2, ρ3, ρ4, a; q)k(
aq
ρ1
, aq
ρ2
, aq
ρ3
, aqρ4

, aqn+1; q
)
k

1− aq2k

1− a
q(

k
2)
(
− a2q2

ρ1ρ2ρ3ρ4

)k

.
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13.10. WATSON’S TRANSFORMATION 477

In the last section we showed that(
ρ1ρ2
aqn

; q

)
k

(
aq

ρ1ρ2
; q

)
n−k

=

(
−ρ1ρ2

aqn

)k

q(
k
2)
(

aq

ρ1ρ2
; q

)
n

,

so (
aq

ρ1ρ2
; q

)
n−k

(
aq

ρ1ρ2

)k

= (−1)kq(
k+1
2 )−nk

(
aq

ρ1ρ2
; q
)
n(

ρ1ρ2

aqn ; q
)
k

,

and making this replacement on the left side above we get

(aq; q)n

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

n∑
k=0

(
n

k

)
q

(−1)kq(
k+1
2 )−nk

(ρ1; q)k(ρ2; q)k

(
aq

ρ3ρ4
; q
)
k(

aq
ρ3
; q
)
k

(
aq
ρ4
; q
)
k

(
ρ1ρ2

aqn ; q
)
k

=

n∑
k=0

(
n

k

)
q

(ρ1, ρ2, ρ3, ρ4, a; q)k(
aq
ρ1
, aq
ρ2
, aq
ρ3
, aqρ4

, aqn+1; q
)
k

1− aq2k

1− a
q(

k
2)
(
− a2q2

ρ1ρ2ρ3ρ4

)k

.

This is Watson’s transformation, but it isn’t usually written in q-binomial form.
Using (13.10.3) to replace the q-binomial coefficients on both sides, it becomes

(aq; q)n

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

n∑
k=0

(
q−n, ρ1, ρ2,

aq
ρ3ρ4

; q
)
k(

q, aq
ρ3
, aq
ρ4
, ρ1ρ2

aqn ; q
)
k

qk

=

n∑
k=0

(q−n, ρ1, ρ2, ρ3, ρ4, a; q)k(
q, aq

ρ1
, aq
ρ2
, aq
ρ3
, aqρ4

, aqn+1; q
)
k

1− aq2k

1− a

(
a2qn+2

ρ1ρ2ρ3ρ4

)k

.

On the right side, (1−aq2k)/(1−a) can be rewritten as in (13.10.2), and then each
numerator can be paired with a denominator parameter to give the product aq, so
it is a terminating very well poised 8φ7. On the left side, the product of the four
numerator parameters and the power series variable is the same as the product
of the three denominator parameters, so it is a terminating balanced 4φ3. Thus
Watson’s transformation gives a remarkable connection between these two different
classes of q-hypergeometric series. In q-hypergeometric form it appears as

Theorem 96 (Watson’s transformation). If n is a nonnegative integer, then

(13.10.6)

8φ7

(
q−n, ρ1, ρ2, ρ3, ρ4, a,

√
aq,−√

aq
aq
ρ1
, aq
ρ2
, aq
ρ3
, aqρ4

, aqn+1,
√
a,−

√
a
; q,

a2qn+2

ρ1ρ2ρ3ρ4

)

=
(aq; q)n

(
aq

ρ1ρ2
; q
)
n(

aq
ρ1
; q
)
n

(
aq
ρ2
; q
)
n

4φ3

(
q−n, ρ1, ρ2,

aq
ρ3ρ4

aq
ρ3
, aqρ4

, ρ1ρ2

aqn

; q, q

)

=
(aq; q)n

(
aq

ρ3ρ4
; q
)
n(

aq
ρ3
; q
)
n

(
aq
ρ4
; q
)
n

4φ3

(
q−n, ρ3, ρ4,

aq
ρ1ρ2

aq
ρ1
, aqρ2

, ρ3ρ4

aqn

; q, q

)
.

The left side of (13.10.6) is symmetric in ρ1, ρ2, ρ3, ρ4, so the right side must
be too, and hence we get the last equality in (13.10.6).

If we set ρ1ρ2ρ3ρ4 = a2qn+1, then the power series variable on the 8φ7 side
reduces to q, and one of the numerator parameters on the 4φ3 side equals one of
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478 13. BAILEY’S 6ψ6 SUM

the denominator parameters, leaving a balanced 3φ2 that can be summed by the
q-Pfaff–Saalschütz identity (13.9.6). Taking u = ρ1, v = ρ2, and w = aq

ρ3
there, we

get

Theorem 97 (Jackson’s q-Dougall identity). If a, ρ1, ρ2, ρ3, ρ4 are related by
ρ1ρ2ρ3ρ4 = a2qn+1 and n is a nonnegative integer, then
(13.10.7)

8φ7

(
q−n, ρ1, ρ2, ρ3, ρ4, a,

√
aq,−

√
aq

aq
ρ1
, aqρ2

, aq
ρ3
, aq
ρ4
, aqn+1,

√
a,−√

a
; q, q

)
=

(
aq, aq

ρ1ρ2
, aq
ρ1ρ3

, aq
ρ2ρ3

; q
)
n(

aq
ρ1
, aq
ρ2
, aqρ3

, aq
ρ1ρ2ρ3

; q
)
n

.

If we use ρ1ρ2ρ3ρ4 = a2qn+1 to eliminate ρ4 from the left side, this takes the
somewhat uglier form
(13.10.8)

8φ7

(
q−n, ρ1, ρ2, ρ3, a,

√
aq,−

√
aq, a2qn+1

ρ1ρ2ρ3

aq
ρ1
, aqρ2

, aq
ρ3
, aqn+1,

√
a,−

√
a, ρ1ρ2ρ3

aqn

; q, q

)
=

(
aq, aq

ρ1ρ2
, aq
ρ1ρ3

, aq
ρ2ρ3

; q
)
n(

aq
ρ1
, aq
ρ2
, aq
ρ3
, aq
ρ1ρ2ρ3

; q
)
n

.

Note that

(q−n; q)k(
ρ1ρ2ρ3

aqn ; q
)
k

=
(1− q−n) · · · (1− q−n+k−1)(

1− ρ1ρ2ρ3q−n

a

)
· · ·
(
1− ρ1ρ2ρ3q−n+k−1

a

)
=

(qn − 1) · · · (qn−k+1 − 1)(
qn − ρ1ρ2ρ3

a

)
· · ·
(
qn−k+1 − ρ1ρ2ρ3

a

) .
If we assume |q| < 1 and let n → ∞ in (13.10.8), these two factors will tend to(

a

ρ1ρ2ρ3

)k

and the two factors containing qn+1 will tend to zero, leaving

(13.10.9) 6φ5

(
ρ1, ρ2, ρ3, a,

√
aq,−

√
aq

aq
ρ1
, aqρ2

, aq
ρ3
,
√
a,−√

a
; q,

aq

ρ1ρ2ρ3

)
=

(
aq, aq

ρ1ρ2
, aq
ρ1ρ3

, aq
ρ2ρ3

; q
)
∞(

aq
ρ1
, aq
ρ2
, aq
ρ3
, aq
ρ1ρ2ρ3

; q
)
∞

.

This is Bailey’s very well poised 6φ5 sum (13.4.7) from the problems in section 13.4.

Watson used his transformation to give another proof of the Rogers–Ramanujan
identities, and this is an appropriate place to end. Note that

(x; q)k
xk

=
1− x

x

1− xq

x
. . .

1− xqk−1

x

=

(
1

x
− 1

)(
1

x
− q

)
· · ·
(
1

x
− qk−1

)
→ (−1)kq(

k
2) as x → ∞.

If we let all of ρ1, ρ2, ρ3, ρ4 tend to infinity in (13.10.6), the 8φ7 side becomes

n∑
k=0

(q−n, a,
√
aq,−√

aq; q)k
(q, aqn+1,

√
a,−√

a; q)k

(
(−1)kq(

k
2)
)4

a2kq(n+2)k

=

n∑
k=0

(q−n; q)k(a; q)k
(q; q)k(aqn+1; q)k

1− aq2k

1− a
a2kq2k

2+nk,
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or, using (13.10.3),

(13.10.10)
n∑

k=0

(
n

k

)
q

(a; q)k
(aqn+1; q)k

1− aq2k

1− a
(−1)ka2kq2k

2+(k2).

On the 4φ3 side we need to look at

(ρ1; q)k(ρ2; q)k(
ρ1ρ2

aqn ; q
)
k

.

This consists of k factors having the form

(1− ρ1q
j)(1− ρ2q

j)

1− ρ1ρ2qj

aqn

=

(
1
ρ1

− qj
)(

1
ρ2

− qj
)

1
ρ1ρ2

− qj

aqn

for j = 0, 1, 2, . . . , k − 1. As ρ1 and ρ2 tend to infinity, this quotient tends to

(−qj)(−qj)
−qj

aqn

= −aqn+j ,

so the product of all these factors tends to

(−1)kakqnkq0+1+···+(k−1) = (−1)kakqnkq(
k
2),

and the 4φ3 side of (13.10.6) becomes

(aq; q)n

n∑
k=0

(q−n; q)k
(q; q)k

(−1)k(aq)kqnkq(
k
2) = (aq; q)n

n∑
k=0

(
n

k

)
q

(aq)k
(
(−1)kq(

k
2)
)2

using (13.10.3) again. Equating this to (13.10.10), we have

n∑
k=0

(
n

k

)
q

(a; q)k
(aqn+1; q)k

1− aq2k

1− a
(−1)ka2kq

k(5k−1)
2 = (aq; q)n

n∑
k=0

(
n

k

)
q

akqk
2

.

Letting n → ∞ here (assuming |q| < 1), we get

∞∑
k=0

(a; q)k
(q; q)k

1− aq2k

1− a
(−1)ka2kq

k(5k−1)
2 = (aq; q)∞

∞∑
k=0

qk
2

ak

(q; q)k
,

using Tannery’s theorem and the fact that
(
n
k

)
q
→ 1

(q;q)k
as n → ∞. This is the

result (11.1.9) used by Ramanujan in his proof of the Rogers–Ramanujan identities
in section 11.1, so the argument concludes as it did there.

Exercises

1. Show that (13.10.9) reduces to (13.10.5) if ρ3 = q−n.

2. F. H. Jackson’s original proof of (13.10.7) is quite interesting, and we outline it
in this problem and the next. Instead of using the condition ρ1ρ2ρ3ρ4 = a2qn+1

to eliminate ρ4 from (13.10.7), which gives the less symmetric (13.10.8), we can
use the condition that n must be a nonnegative integer to make (13.10.7) appear
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more symmetric. It is convenient to replace ρi by
1
xi

for 1 ≤ i ≤ 4. If we also

set x5 = qn, then (13.10.7) becomes

(13.10.11) 8φ7

(
1
x1
, 1
x2
, 1
x3
, 1
x4
, 1
x5
, a,

√
aq,−

√
aq

aqx1, aqx2, aqx3, aqx4, aqx5,
√
a,−

√
a
; q, q

)

=
(aq, aqx1x2, aqx1x3, aqx2x3; q)n
(aqx1, aqx2, aqx3, aqx1x2x3; q)n

,

where x5 = qn and a2qx1x2x3x4x5 = 1. This problem checks (13.10.11) in a
specific case, where (assuming n ≥ 1) we multiply both sides by 1− ax3q

n and
then set ax3 = q−n. Since x5 = qn, the condition a2qx1x2x3x4x5 = 1 becomes
aqx1x2x4 = 1.

(i) Show that on the right side of (13.10.11), this gives

(13.10.12)
(aq; q)n(aqx1x2; q)n(x1q

1−n; q)n(x2q
1−n; q)n

(aqx1; q)n(aqx2; q)n(x1x2q1−n; q)n(q1−n; q)n−1
.

(ii) The only thing on the left side of (13.10.11) that contains the factor
1− ax3q

n is (aqx3; q)n in the denominator of the k = n term

(13.10.13)

(
1
x1
, 1
x2
, 1
x3
, 1
x4
, 1
x5
, a; q

)
n

(aqx1, aqx2, aqx3, aqx4, aqx5, q; q)n

1− aq2n

1− a
qn,

so all the other terms become zero when we multiply by this factor and set
ax3 = q−n. Keeping in mind that x5 = qn, show that (13.10.13) becomes

(13.10.14)(
1
x1
; q
)
n

(
1
x2
; q
)
n
(aqx1x2; q)n(a; q)n(aq

n; q)n(q
−n; q)n

(aqx1; q)n(aqx2; q)n

(
1

x1x2
; q
)
n
(q1−n; q)n−1(aqn+1; q)n(q; q)n

1− aq2n

1− a
qn

after using aqx1x2x4 = 1 to eliminate x4.

(iii) We just have to convince ourselves that (13.10.12) equals (13.10.14).
Show that

(zq1−n; q)n = (−1)nq−(
n
2)zn

(
1

z
; q

)
n

.

(iv) Explain why (iii) allows us to rewrite

(q−n; q)n
(q; q)n

qn = (−1)nq−(
n
2)

in (13.10.14), and to rewrite (13.10.12) as

(13.10.15)
(aq; q)n(aqx1x2; q)n

(
1
x1
; q
)
n

(
1
x2
; q
)
n

(aqx1; q)n(aqx2; q)n

(
1

x1x2
; q
)
n
(q1−n; q)n−1

(−1)nq−(
n
2).

(v) Show that (13.10.14) equals (13.10.15).

3. The advantage of rewriting (13.10.7) as (13.10.11) is that, since the left side is
symmetric in x1, . . . , x5, (13.10.11) must still hold if any of x1, . . . , x5 is equal
to qn. Jackson’s proof is by induction on n.

(i) Explain why (13.10.11) holds if x5 = 1. Since x5 = qn, this is the case
n = 0.
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(ii) Next, Jackson assumes (13.10.11) holds if x5 = 1, q, q2, . . . , qn−1, and
tries to prove it for x5 = qn. Explain why the induction hypothesis implies that
at least it holds for x5 = qn if x3 is one of 1, q, q2, . . . , qn−1.

(iii) Explain why the induction hypothesis also implies that (13.10.11) holds
for x5 = qn if

x3 =
1

ax1x2qn+k+1
for k = 0, 1, 2, . . . , n− 1.

(iv) If we multiply (13.10.11) by (aqx3; q)n(aqx1x2x3; q)n and rewrite(
1

x3
; q

)
k

=
(
a2qn+1x1x2x4; q

)
k
,

explain why both sides of (13.10.11) become polynomials in x3 of degree 2n.

(v) The two polynomials in (iv) are equal if x3 has one of the values in
(ii), and also if x3 has one of the values in (iii). The previous problem gives
us one more value where they agree, namely x3 = 1/aqn, so they agree for
2n+1 different values of x3. Explain why this makes them the same polynomial.
Therefore (13.10.11) holds for n if it holds for 0, 1, 2, . . . , n− 1, so it holds for all
nonnegative integers n.

13.11. Bibliographical Notes

Wilfrid Norman Bailey was the leading q-analyst for perhaps 20 years, from
the early 1930s to the early 1950s. His beautiful little book [39] on hypergeometric
series, which has one chapter on q-hypergeometric series, is still worth reading
today. Among his Ph.D. students were two women who did excellent work on q-
hypergeometric series, Lucy Slater and Margaret Jackson. Slater’s book [221] is an
updated and expanded version of [39] and was the best book on q-hypergeometric
series before [114].

Bailey evidently got Ramanujan’s “lost notebook” from Watson sometime in
1950, and found Ramanujan’s sketch of a proof of his “most beautiful” identity
based on (13.2.1) there. In [44] Bailey observed that (13.2.1) is a special case of
(13.1.1), which in turn was a special case of his summation (13.4.1) of a very well
poised 6ψ6 series from [40]. In the subsequent note [45] he derived (13.1.1) out of
elliptic functions instead, on the theory that this would have been more familiar to
Ramanujan. A few years later Dobbie [88] published the relatively simple proof of
(13.1.1) that we presented in section 13.1. For a thorough account of the relevant
part of Ramanujan’s lost notebook see [27].

Bailey’s formula (13.1.1) is equivalent to an identity from the Weierstrass theory
of elliptic functions, a subject I have tried to avoid in spite of its importance. A
penetrating study of Ramanujan’s work on elliptic functions has been made by
Venkatachaliengar, whose manuscript was itself studied intensively and revised by
Shaun Cooper [241]. One can see section 3.3 of [241] for another proof of (13.2.1).
Cooper’s larger work [81] is another natural continuation of this book into elliptic
functions.

The references for the last six problems in section 13.1 are [32], [26], [243],
[212], and [46]. Problem 7 in section 13.4 comes from [41]. The problems in section
13.7 all come from Andrews’s beautiful survey paper [14].
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482 13. BAILEY’S 6ψ6 SUM

As Askey observed in [35], most of the proofs of (13.4.1) prove (13.4.6) first.
He remarked “it is still annoying that a sum that is this important has not been
obtained from a more elementary special case”, and set himself to satisfying the
want. His evaluation of the integral of section 13.8 is in [34]. For the connection
with orthogonal polynomials, the best sources are the original paper [38] and the
more recent book [143]. The latter also has Ismail’s simple proof of Ramanujan’s

1ψ1 sum using the identity theorem for analytic functions. In [37], Askey and Ismail
use (13.4.6) and the identity theorem to derive (13.4.1). There are many sources
for the identity theorem, for example [237], p. 89, or [157], p. 87.

Although it is implicit in Jacobi’s Fundamenta Nova [148], the first really clear
statement of the eight square theorem seems to be in article 127 of Henry John
Stephen Smith’s report on number theory [222] from 1865, a remarkable work of
scholarship that is still worth reading today. The odd m case was stated by Eisen-
stein in [91]. The two, four, and eight square theorems, corresponding theorems
about triangular numbers, and other kindred results are all part of Theorem 3.44
in [81]. They can also be found in [82] and in Berndt’s book [52], an excellent
introduction to the connections between Ramanujan’s work and number theory.

The q-Dougall sum was published by F. H. Jackson in [145]. His proof, and
the ones in [133] and [39], are (as one might guess) q-versions of an argument
given by Dougall for a q = 1 hypergeometric series identity. Our proof more or less
follows [133]. Watson published his eponymous transformation and proof of the
Rogers–Ramanujan identities in [244]. One can also find it in [39], [221], [19], and
[24]. The latter two works also have more on Bailey chains. The name comes from
[17], and anyone with a serious interest in them should look at [22].
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APPENDIX A

A Brief Guide to Notation

If you glanced at a few random pages of this book, you might have been intim-
idated, or repulsed, by the notation. This subject makes extensive use of a system
of notation that is not used in other parts of mathematics. But it isn’t as compli-
cated as it may look at first, because it is just a handful of special symbols that
are used over and over and over again. Moreover, although many years ago George
Andrews could speak of a one-to-one correspondence between authors and systems
of notation, nowadays everyone working on q-analysis uses pretty much the same
system. The notation is always explained wherever it is introduced in the text, but
if you ever need to remind yourself what a symbol means, you can look here.

[n]q denotes the q-analogue of the number n. If n is a positive integer, then

[n]q = 1 + q + q2 + · · ·+ qn−1, and more generally

[n]q =

{
1−qn

1−q , if q �= 1,

n, if q = 1.

This is introduced in section 1.2 and used extensively there, but much less after
that except in sections 9.5 and 9.6. Several of the problems in Chapter 1 involve

[n]q2 = 1 + q2 + q4 + · · ·+ q2n−2 =
1− q2n

1− q2
.

Some older papers use [n] instead of [n]q, and I may have used this a few times,
but I tried to catch them all.

n!q denotes the q-factorial. It is defined in terms of the q-numbers [n]q as

n!q = [1]q[2]q · · · [n]q,

where 0!q is defined to be 1. This is also introduced in section 1.2, and used often
there and in section 1.3. It is used less often after that, but it does occur in the
sections on the q-derivative and in sections 9.1 and 9.5. Some people prefer the
notation [n]!.

(q; q)n is a variation on the q-factorial, and is one of the most frequently used
symbols in the book. It is defined by

(q; q)n = (1− q)(1− q2)(1− q3) · · · (1− qn),

where again (q; q)0 is an empty product and hence is defined to be 1. It is related
to the q-factorial by (q; q)n = n!q(1− q)n.
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484 A. A BRIEF GUIDE TO NOTATION

(x; q)n is a generalization of (q; q)n. It is sometimes called a q-shifted factorial,
and it is also one of the most commonly used symbols in the book. It is defined by

(x; q)n = (1− x)(1− xq)(1− xq2) · · · (1− xqn−1),

where again (x; q)0 = 1, and it is pronounced “x base q sub n”. Sometimes q may
be replaced by a power of q, so that, for example,

(x; q2)n = (1− x)(1− xq2)(1− xq4) · · · (1− xq2n−2)

and

(q; q2)n = (1− q)(1− q3)(1− q5) · · · (1− q2n−1).

For the case when n isn’t a nonnegative integer, see the next definition.

(x; q)∞ is an infinite version of the preceding product. Formally, the definition
is

(x; q)∞ = lim
n→∞

(x; q)n.

This limit exists for any x as long as |q| < 1. These products are all over the page
starting with Chapter 3. They can also be used to define (x; q)n for any n as

(x; q)n =
(x; q)∞

(xqn; q)∞
.

This more general definition reduces to the previous one if n is a nonnegative integer.
It is used in Chapters 6 and 13, and also in section 7.1.(

n

k

)
q

is the q-binomial coefficient. These appear throughout the book, but

especially in the first two chapters. They can be defined either in terms of the
q-factorials by (

n

k

)
q

=

{
n!q

k!q (n−k)!q
, n, k integers, 0 ≤ k ≤ n,

0, otherwise,

or in terms of the q-shifted factorials by(
n

k

)
q

=

{
(q;q)n

(q;q)k (q;q)n−k
, n, k integers, 0 ≤ k ≤ n,

0, otherwise.

I have chosen a different notation than the most standard one: the q-binomial

coefficient is more often denoted by

[
n

k

]
or

[
n

k

]
q

. It does occasionally happen that

one wants to change q to something else, which is usually q2; thus(
n

k

)
q2

=
(q2; q2)n

(q2; q2)k(q2; q2)n−k
.

This is read as “n choose k sub q” or “n choose k base q”.(
n

k1, k2, . . . , km

)
q

is the q-multinomial coefficient, a generalization of the q-

binomial coefficient. It occurs in a few sections in Chapters 1, 2, and 9. As with
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A. A BRIEF GUIDE TO NOTATION 485

the q-binomial coefficient, it can be defined in either of two equivalent ways. If
k1, . . . , km are nonnegative integers that add up to n, then(

n

k1, . . . , km

)
q

=
n!q

k1!q . . . km!q
=

(q; q)n
(q; q)k1

. . . (q; q)km

.

The q-multinomial coefficient equals zero if k1, . . . , km are not all nonnegative in-
tegers, or if they do not add up to n.

Dq f(x) denotes the q-derivative of the function f(x) (with respect to x). It
occurs in sections 2.4 and 3.8, and in a few sections at the end of Chapter 9. It is
defined by

Dq f(x) =
f(x)− f(qx)

x(1− q)

if q �= 1. It becomes the ordinary derivative in the limit as q → 1.

|P | is introduced early in Chapter 3 and used a few times in Chapter 10 to
denote the number that the partition P partitions, so |14+9+6+6+5+3+2+2+1| =
48.

(a1, a2, . . . , ak; q)n is often used to abbreviate (a1; q)n (a2; q)n · · · (ak; q)n in the
last three chapters. Usually this happens with n = ∞, but in Chapter 13 it is
sometimes used with a finite n.

Any other notation in the book—for example, the q-hypergeometric functions
in the latter part of Chapter 5, or the q-trigonometric functions at the end of
Chapter 9—is highly localized.
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APPENDIX B

Infinite Products

For a given sequence {un}, we denote the product of the first n terms as

(B1) pn = u1 u2 · · ·un =

n∏
k=1

uk.

The most obvious definition of an infinite product would be the limit of (B1) as
n → ∞, if it exists, but this would make any expression of this form convergent if
one or more of the uk were zero. We could restrict ourselves to nonzero sequences,
but in q-analysis we consider infinite products containing one or more variables,
and sometimes one of the variables has a value that makes the first factor (and
hence the whole product) zero. Instead we adopt the following definition.

Definition 1. Suppose {un} is a sequence that has only finitely many nonzero
terms, so that all the terms starting with um+1 are nonzero for some nonnegative
integer m, and set

Pn(m) = um+1um+2 · · ·um+n

for each nonnegative integer n. If

lim
n→∞

Pn(m) = Um

exists and is not zero, then the number

P = u1 u2 · · ·um Um,

which is the same for any m subject to the restriction above, is defined to be the
value of

(B2)

∞∏
k=1

uk.

In this case, we say that this infinite product converges to P .

We insist that Um �= 0 so that the only way that an infinite product can
converge to zero is for one of the factors to equal zero. Note however that this
prevents many seemingly natural infinite products from converging, for example

(B3)

∞∏
k=1

k

k + 1
.

None of the factors is zero, so we can take m = 0 in Definition 1, but the product
of the first n factors of (B3) is

1

2

2

3

3

4
· · · n

n+ 1
=

1

n+ 1
,
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488 B. INFINITE PRODUCTS

which tends to zero as n → ∞. Therefore we say that (B3) diverges to zero. This
may seem strange, but it parallels what happens with infinite series. If we take the
natural logarithm of (B3), we get

∞∑
k=1

log

(
k

k + 1

)
=

∞∑
k=1

[log k − log(k + 1)] .

The first n pairs of terms are

log 1−log 2+(log 2− log 3)+(log 3− log 4)+· · ·+(log n− log(n+ 1)) = − log(n+1)

by telescoping, so
∞∑
k=1

log

(
k

k + 1

)
diverges to −∞

even though the terms tend to log 1 = 0.
This example suggests a further parallel between infinite products and infinite

series. Returning to Definition 1, suppose (B2) converges and look at

Pn(m)

Pn−1(m)
=

um+1um+2 · · ·um+n

um+1um+2 · · ·um+n−1
= um+n,

where we know the quotient is defined since uk �= 0 for k > m. If we let n → ∞
here we get

lim
n→∞

um+n =
Um

Um
= 1,

where the limit on the right side certainly exists since Um �= 0. It follows that
if (B2) converges, then un → 1 as n → ∞. This is the nth term test for infinite
products, which parallels the one for infinite series since log 1 = 0.

Knowing this, it becomes natural to write (B2) in the form

(B4)

∞∏
k=1

uk =

∞∏
k=1

(1 + ak) ,

where ak → 0 as k → ∞. This is particularly appropriate in q-analysis, since every
infinite product we want to consider has the form

(x; q)∞ = lim
n→∞

(x; q)n = lim
n→∞

(1− x)(1− xq)(1− xq2) · · · (1− xqn−1)

= lim
n→∞

n∏
k=1

(
1− xqk−1

)
=

∞∏
k=1

(
1− xqk−1

)
=

∞∏
k=0

(
1− xqk

)
for some choice of x and q, or is a product or quotient of products of this form.
From the nth term test we see that unless x = 0, it is necessary to have |q| < 1 for
convergence, so that −xqk → 0 as k → ∞ for every x. We will prefer the right side
of (B4) to the left side from now on.

Suppose ak ≥ 0 for all k ≥ 1 in (B4), so that

(1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + a1 + · · ·+ an,

The tangent line to y = ex at (0, 1) is y = 1+x. Since ex is concave up everywhere,
it lies above its tangent line, so we have ex ≥ 1+x for all real x, with equality only
if x = 0. Combining this with the previous inequality we have

1 + a1 + · · ·+ an ≤ (1 + a1) · · · (1 + an) ≤ ea1+···+an .
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B. INFINITE PRODUCTS 489

Letting n → ∞ we get

1 +
∞∑

n=1

an ≤
∞∏

n=1

(1 + an) ≤ exp

( ∞∑
n=1

an

)
,

which implies that if either of
∞∑

n=1

an and
∞∏

n=1

(1 + an)

converges, then so does the other. The nonnegativity condition only needs to hold
for all sufficiently large n, so we have proved the following theorem.

Theorem 98. If an ≥ 0 for all sufficiently large n, then
∞∏

n=1

(1 + an) converges if and only if

∞∑
n=1

an converges.

While this theorem is not immediately applicable to the convergence of (x; q)∞,
it will be once we develop the notion of absolute convergence of an infinite product.
Recall that the absolute value of the complex number a + bi (where a and b are

real) is
√
a2 + b2. This is just the length of the line segment that connects a + bi

to the origin in the complex plane.

Definition 2. Let {ak} be any sequence of real or complex numbers such that
only finitely many ak equal −1. We say that

∞∏
k=1

(1 + ak) converges absolutely if and only if

∞∏
k=1

(1 + |ak|) converges.

Combining this with the previous theorem, we see that
∞∏
k=1

(1 + ak) converges absolutely if and only if

∞∑
k=1

ak converges absolutely.

Now we just need one more theorem, again parallel to a theorem we know for
infinite series.

Theorem 99. Let {ak} be any sequence of real or complex numbers such that
only finitely many ak equal −1. If

∞∏
k=1

(1 + ak)

converges absolutely, then it converges.

To prove this, it will be convenient to have the following lemma.

Lemma 19. If z is any complex number, then 1 + |z| ≥ |1 + z|, with equality
only if z is real and positive.

If a and b are real, then clearly
√
a2 + b2 ≥ a, with equality only if b = 0 and

a ≥ 0. Multiplying this by 2 and adding some terms to both sides we get

1 + 2
√
a2 + b2 + a2 + b2 ≥ 1 + 2a+ a2 + b2,

which is (
1 +
√
a2 + b2

)2
≥ (a+ 1)2 + b2,
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or
(1 + |z|)2 ≥ |1 + z|2,

where z = a+ bi. Taking the positive square root of both sides we get the lemma.
Suppose that

∞∏
k=1

(1 + ak)

converges absolutely. Set

Pn(m) = (1 + am+1) · · · (1 + am+n) ,

as in Definition 1, where none of the am+k equals −1, and further set

Qn(m) = (1 + |am+1|) · · · (1 + |am+n|) .
Note that

Pn(m)− Pn−1(m) = (1 + am+1) · · · (1 + am+n−1) am+n

and

Qn(m)−Qn−1(m) = (1 + |am+1|) · · · (1 + |am+n−1|) |am+n|.
Using the lemma, we have

|Pn(m)− Pn−1(m)| ≤ (1 + |am+1|) · · · (1 + |am+n−1|) |am+n| = Qn(m)−Qn−1(m).

Now
n∑

k=1

(Qk(m)−Qk−1(m)) = Qn(m)−Q0(m) = Qn(m)− 1

by telescoping (as an empty product, Q0(m) = 1), and Qn(m) has a limit as n → ∞
by the assumption that

∞∏
k=1

(1 + ak)

converges absolutely. It follows that
∞∑
k=1

(Qk(m)−Qk−1(m))

converges, so
∞∑
k=1

|Pk(m)− Pk−1(m)|

converges, so
∞∑
k=1

(Pk(m)− Pk−1(m))

converges. This means that Pn(m) has a limit as n → ∞, which means that
∞∏
k=1

(1 + ak)

has a limit, but in order to be able to say that it converges, we have to be sure that
this limit is not zero.

We know that
∞∑
k=1

|am+k|
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converges, that am+k → 0 as k → ∞, and that no am+k equals −1. It follows from
the limit comparison test that

∞∑
k=1

∣∣∣∣ am+k

1 + am+k

∣∣∣∣
converges, and hence that

∞∑
k=1

∣∣∣∣− am+k

1 + am+k

∣∣∣∣
does. By what we proved above, this means that

n∏
k=1

(
1− am+k

1 + am+k

)
has a limit as n → ∞. But

n∏
k=1

(
1− am+k

1 + am+k

)
=

n∏
k=1

(
1

1 + am+k

)
=

1

Pn(m)

therefore has a limit as n → ∞, which means that Pn(m) must have a nonzero
limit as n → ∞. Therefore

∞∏
k=1

(1 + ak)

converges, which is what we wanted to prove.
It is now easy to prove that

(x; q)∞ =

∞∏
n=0

(1− xqn)

converges for any x if |q| < 1. We have
∞∑

n=0

|−xqn| =
∞∑

n=0

|x||q|n =
|x|

1− |q| ,

so
∞∑

n=0

−xqn

converges absolutely, so

(x; q)∞ =
∞∏

n=0

(1− xqn)

converges absolutely, so it converges.

Exercises

1. (i) Show that
∞∏
k=1

(
1 +

(−1)k−1

k

)
= 1.

(ii) Show that this product does not converge absolutely.

(iii) Explain why (ii) implies the divergence of the harmonic series
∞∑
k=1

1
k .
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492 B. INFINITE PRODUCTS

2. We showed that (B3) diverges to zero. Explain why this implies the divergence
of the harmonic series.

3. Show that
∞∏
k=2

k3 − 1

k3 + 1
=

2

3
.

Hint: Show that
n∏

k=2

k3 − 1

k3 + 1
=

2

3

(
1 +

1

n(n+ 1)

)

for any integer n ≥ 2 (and even for n = 1 since an empty product equals 1).

4. Show that
∞∏
k=1

cos
( x

2k

)
=

sinx

x

for any x �= 0 (and even in the limit as x → 0). Hint: Show that

n∏
k=1

cos
( x

2k

)
=

sinx

2n sin
(

x
2n

) =
sin x

x

x
2n

sin
(

x
2n

)
for any nonnegative integer n.

5. How would an infinite product behave if the general term tended to 0? How
would it behave if the general term tended to a number between −1 and 1? How
would it behave if the general term tended to a number greater than 1? Less
than −1? Equal to −1?

6. If we formally let n → ∞ in the identity of problem 5 in section 3.1, we seem to
get

(
x−1 + 1 + x

) (
x−3 + 1 + x3

) (
x−9 + 1 + x9

) (
x−27 + 1 + x27

)
· · · =

∞∑
j=−∞

xj .

Show that the series on the right does not converge for any x. This is why we
worked with a finite product instead in that problem.

7. Show that the product in problem 6 actually does converge for x = i, because
every factor equals 1. What if x = −i?

8. Explain why the product in problem 6 couldn’t possibly converge unless x was
on the unit circle in the complex plane (as i and −i are).

9. If x is on the unit circle in the complex plane, then x = eiθ for some real angle
θ. Show that for such an x the product in problem 6 is

(1 + 2 cos θ) (1 + 2 cos 3θ) (1 + 2 cos 9θ) (1 + 2 cos 27θ) · · · =
∞∏
k=0

(
1 + 2 cos 3kθ

)
.

10. Show that the product in problem 9 converges to θ = kπ
6 for any integer k. (For

some values of k it converges to zero.) Can you think of any other values of θ
for which it converges?
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EXERCISES 493

Some good references for infinite products are Chapter VI of Bromwich’s book
[63], Chapter VII of Knopp’s book [158], and sections 1.4–1.44 of Titchmarsh’s
book [237]. Our definition of an infinite product is essentially that of Knopp, and
our proof that an absolutely convergent product converges is essentially that of
Titchmarsh. Problem 3 was problem B-1 on the 1977 Putnam exam, and appeared
long before that in [158].
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APPENDIX C

Tannery’s Theorem

In this brief appendix we prove a theorem from real analysis that is often useful
in q-analysis. First I want you to construct a lovely example that you may have
seen in calculus or real analysis.

Exercise 1. For x > 0, draw the graph of y = 1
x , and divide the area under

the curve from x = 1 to x = n (for a generic positive integer n) into n− 1 strips of
width 1.

(i) By approximating each strip by a rectangle drawn from the left endpoint,
show that

1 +
1

2
+ · · ·+ 1

n− 1
> log n for n ≥ 2,

where we use log x for the natural logarithm of x, as elsewhere in this book.

(ii) By approximating each strip by a rectangle drawn from the right endpoint
instead, show that

log n >
1

2
+ · · ·+ 1

n− 1
+

1

n
for n ≥ 2.

(iii) From (i), it follows that

Sn = 1 +
1

2
+ · · ·+ 1

n− 1
− log n

is a positive sequence for n ≥ 2, and it is also increasing because it is the sum of
the first n− 1 “upper corners” by which the rectangles differ from the area under
the curve. From (ii) it similarly follows that

Tn = log n−
(
1

2
+ · · ·+ 1

n− 1
+

1

n

)
is a positive increasing sequence for n ≥ 2, since it is the sum of the first n − 1
“lower corners”. Explain why lim

n→∞
(Sn + Tn) = 1.

(iv) For several reasons, the result in (iii) among them, it is interesting to look
at

Un = 1− Tn = 1 +
1

2
+ · · ·+ 1

n
− log n,

where this makes sense for n ≥ 1. Note that Un − Sn = 1
n for n ≥ 2, or for n ≥ 1

if we make the natural definitions S1 = 0 = T1. Explain why Un is a positive
decreasing sequence.

(v) Explain why Un > Sm for any positive integers m and n. (If m = n this is
obvious. Consider Sn if m < n and Um if m > n.)

(vi) Un is a decreasing sequence bounded below, and Sn is an increasing se-
quence bounded above, so both sequences must converge. (This is intuitively clear
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496 C. TANNERY’S THEOREM

and is a standard result from real analysis called the Monotone Convergence The-
orem.) Explain why they must have the same limit.

(vii) This common limit is called Euler’s constant and denoted by γ, so we
have proved that 1 + 1

2 + · · · + 1
n − log n decreases to γ as n → ∞, and that

1 + 1
2 + · · · + 1

n−1 − log n increases to γ as n → ∞. Explain why this can be
rephrased as the double inequality

log n+ γ < 1 +
1

2
+ · · ·+ 1

n
< log(n+ 1) + γ for n ≥ 1.

This gives incredibly accurate estimates of the partial sums of the harmonic series
for large n, as long as one has a good value of γ.

(viii) Explain how we know that γ > 1
2 . (Hint: Sn + Tn → 1.) In fact

γ = .577215664901 . . . . It is widely believed to be transcendental (not a root of
any polynomial equation with integer coefficients), but this has not been proved.
It is slightly less than 1√

3
. Of course, it could not be equal to 1√

3
, because then it

would be a root of 3x2 = 1, and we would know it was not transcendental.

(ix) We can use (vii) to prove that

(C1)

∞∑
k=1

(−1)k−1

k
= log 2.

Consider the nth even partial sum

Vn = 1− 1

2
+

1

3
− 1

4
+− · · ·+ 1

2n− 1
− 1

2n
.

Explain why we can rewrite

Vn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2n− 1
+

1

2n
− 2

(
1

2
+

1

4
+ · · ·+ 1

2n

)

= 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2n− 1
+

1

2n
−
(
1 +

1

2
+ · · ·+ 1

n

)
.

(x) Resisting the temptation to cancel (a point we will return to), explain why
we can further rewrite

Vn = 1+
1

2
+
1

3
+
1

4
+· · ·+ 1

2n− 1
+

1

2n
−log(2n)−

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
+log 2.

(xi) Explain why (x) implies that Vn → log 2 as n → ∞. This shows that the
even partial sums of (C1) converge to log 2. Explain why this also holds for the
odd partial sums.

Exercise 2. The previous exercise is all that we need for this appendix, but
one can go further. For two positive integers r and s, suppose we rearrange the
sum in (C1) so that the first r positive terms 1+ 1

3 + · · ·+ 1
2r−1 are listed first, then

the first s negative terms − 1
2 − 1

4 − · · · − 1
2s , then the next r positive terms, then

the next s negative terms, and so on. Show that the rearranged series converges to
log 2 + 1

2 log r
s .

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



C. TANNERY’S THEOREM 497

In q-analysis we are often in the following situation. Suppose we have a finite
sum identity of the form

(C2)

p∑
k=0

fk(n) = F (n),

where p = p(n) is some simple function of n that tends steadily to infinity as n
does. Often p(n) will just be n, but we want to be able to handle other cases like
p(n) = n − 1 or p(n) = 
n

2 � or p(n) =
(
n
2

)
. Suppose we know that fk(n) → ak as

n → ∞. We hope that in that case

(C3) F (n) →
∞∑
k=0

ak as n → ∞,

but in general this is false. If we had made an obvious cancellation in part (ix)
above, we would have had

Vn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
=

n∑
k=1

1

n+ k
.

If we let n → ∞ here, every term goes to zero, but we know from part (xi) above that
the sum does not tend to zero, but rather to log 2. Even without this knowledge,
we can see that

Vn >
1

n+ n
+

1

n+ n
+ · · ·+ 1

n+ n
=

n

2n
=

1

2
,

so the sum could not be less than 1
2 . We can further observe that Vn is a Rie-

mann sum for
∫ 2n

n
dx
x , so practically the entire subject of Riemann sums furnishes

counterexamples to (C3).
However, with one mild extra assumption, (C3) does follow from (C2).

Theorem 100 (Tannery’s theorem). If |fk(n)| < Ck for each k, where Ck is

independent of n, and if
∞∑
k=0

Ck converges, then (C3) follows from (C2).

This result has a peculiar status in mathematics: it is an undergraduate real
analysis theorem that rarely appears in undergraduate real analysis books. Readers
who have studied real analysis may be reminded of the Weierstrass M -test. For
those who have not, what follows is a pretty typical real analysis argument. If we
denote the sum on the right side of (C3) by S, then we have to show that F (n) → S
as n → ∞; or that |F (n) − S| becomes arbitrarily small as n → ∞. Cauchy has
taught us to rephrase this as follows: given an arbitrary positive number ε (which
one thinks of as very small), |F (n)−S| < ε if n is sufficiently large. This quantifies
“arbitrarily small”. To quantify “sufficiently large”, we say that there is a number
N (which one thinks of as very large) such that if n > N , then |F (n)− S| < ε. So
this is what we have to argue.

Since
∞∑
k=0

Ck converges, its “tail” must be arbitrarily small in the same sense:

there must be a number M such that

Cm+1 + Cm+2 + · · · < ε

3

Purchased from American Mathematical Society for the exclusive use of Doron Zeilberger (zldrxj)
Copyright 2020 American Mathematical Society. Duplication prohibited. Please report unauthorized use to cust-serv@ams.org.
Thank You! Your purchase supports the AMS' mission, programs, and services for the mathematical community.



498 C. TANNERY’S THEOREM

whenever m > M , for the same ε as above. Since p = p(n) → ∞ as n does, we
will have p > M for a sufficiently large n, say n > N1. Therefore, by the triangle
inequality,

|fm+1(n) + · · ·+ fp(n)| ≤ |fm+1(n)|+ · · ·+ |fp(n)| < Cm+1 + · · ·+ Cp <
ε

3
,

which means that

|F (n)− (f0(n) + f1(n) + · · ·+ fm(n))| < ε

3
.

Moreover ak ≤ Ck for each k, so

am+1 + am+2 + · · · < ε

3

as well. Now

|F (n)− S| = |f0(n) + f1(n) + · · ·+ fp(n)− (a0 + a1 + . . . )|

=

∣∣∣∣∣f0(n) + · · ·+ fm(n)− (a0 + · · ·+ am)

+ (fm+1(n) + · · ·+ fp(n))− (am+1 + am+2 + . . . )

∣∣∣∣∣
≤ |f0(n) + · · ·+ fm(n)− (a0 + · · ·+ am)|+ |fm+1(n) + · · ·+ fp(n)|
+ |am+1 + am+2 + . . . |

by the triangle inequality again. Using our bounds on the last two groups of terms,
we therefore have

|F (n)− S| < |f0(n) + · · ·+ fm(n)− (a0 + · · ·+ am)|+ ε

3
+

ε

3

for m > M and n > N1. Since fk(n) → ak as n → ∞, the first term becomes very
small if n is very large. In other words, if n > N2 for some number N2, then

|f0(n) + · · ·+ fm(n)− (a0 + · · ·+ am)| < ε

3
.

Now let N be the larger of N1 and N2, and we have

|F (n)− S| < ε

3
+

ε

3
+

ε

3
= ε

whenever n > N . This proves Tannery’s theorem.

For an application of Tannery’s theorem in q-analysis we recall the partial
fractions expansion

(C4)
(ax; q)n

(
q
ax ; q

)
n

(x; q)n+1

(
q
x ; q
)
n

=

n∑
k=−n

(a; q)n−k

(
q
a ; q
)
n+k

(q; q)n−k (q; q)n+k

ak

1− xqk

from sections 2.8 and 7.1. It is most convenient to use Tannery’s theorem when
0 < q < a < 1, so that

(a; q)n−k

(
q
a ; q
)
n+k

(q; q)n−k (q; q)n+k

<
1

(q; q)2∞
,

but in the more general case where |q| < |a| < 1 we can use the hideous expression

(−|a|; |q|)∞
(
−
∣∣ q
a

∣∣ ; |q|)∞
(|q|; |q|)2∞
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as an upper bound. For sufficiently large nonnegative k and |q| < 1 we have∣∣∣∣ ak

1− xqk

∣∣∣∣ ≤ |a|k
1− |x||q|k ,

and
∞∑
k=0

|a|k
1− |x||q|k

converges by the ratio test when |a| < 1. For the terms with k negative we can
rewrite

−1∑
k=−∞

ak

1− xqk
=

∞∑
k=1

a−k

1− xq−k

( q
a

)k (a

q

)k

=

∞∑
k=1

(
q
a

)k
qk − x

.

Here we have ∣∣∣∣∣
(
q
a

)k
qk − x

∣∣∣∣∣ ≤
∣∣ q
a

∣∣k
|x| − |q|k

if x �= 0, k is sufficiently large, and |q| < 1, and

∞∑
k=1

∣∣ q
a

∣∣k
|x| − |q|k

converges by the ratio test if | qa | < 1. It follows from Tannery’s theorem that the
limit as n → ∞ of (C4) is

(ax; q)∞
(

q
ax ; q

)
∞

(x; q)∞
(
q
x ; q
)
∞

=
(a; q)∞

(
q
a ; q
)
∞

(q; q)2∞

∞∑
k=−∞

ak

1− xqk

for |q| < |a| < 1, provided that x is neither zero nor an integer power of q. If we
further restrict x to |q| < |x| < 1, then we have proved that

(ax; q)∞
(

q
ax ; q

)
∞ (q; q)2∞

(x; q)∞
(
q
x ; q
)
∞ (a; q)∞

(
q
a ; q
)
∞

=

∞∑
k=−∞

ak

1− xqk
=

∞∑
k=−∞

xk

1− aqk
,

where the last step is by the symmetry in a and x. This is the key identity in
Chapter 7, Cauchy’s special case of Ramanujan’s 1ψ1 sum.

If we have some complex analysis, we could give a less ugly argument by using
the convenient range 0 < q < a < 1 and then appealing to analytic continuation
for other values of q and a for which the sum remains convergent. This example
is more delicate than most. Very often, as for example in the finite forms of the
Rogers–Ramanujan identities in Chapter 10, there is a quadratic exponent of q that
makes the series converge rapidly for |q| < 1.

Tannery’s theorem appears on pp. 292–293 of [233] in 1904. I have not found
it in the first edition of 1886. The second edition also extends to a second vol-
ume [234], which was completed by Tannery’s great student Jacques Hadamard
in 1910, the year of Tannery’s death. It is so much improved from the first edi-
tion that one suspects Hadamard’s influence throughout the revision, but he is
unaccredited in the first volume. The name “Tannery’s theorem” was bestowed by
T. J. I’a. Bromwich in section 49 of [63] in 1908. We have more or less followed
Bromwich’s proof.

Euler’s constant γ makes its debut in [92], published in 1740 but written at
least 5 years earlier. Like so many of Euler’s great papers, it is in volume 14 of his
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500 C. TANNERY’S THEOREM

Opera Omnia, 1st series. (His papers on q-analysis are mostly in volume 2.) The
best reference for Euler’s constant is Julian Havil’s beautiful book [136].
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[187] G. Pólya and G. L. Alexanderson, Gaussian binomial coefficients, Elem. Math. 26 (1971),

102–109. MR299490
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Sitzungsberichte der Preussischen Akademie der Wissenschaften 1917, Physikalisch-
Mathematische Klasse, 302–321; Gesammelte Abhandlungen, vol. 2, Springer-Verlag, Berlin,
1973, 117–136.

[215] Issai Schur, Zur additiven Zahlentheorie, Sitzungsberichte der Preussischen Akademie der
Wissenschaften 1926, Physikalisch-Mathematische Klasse, 488–495; Gesammelte Abhand-
lungen, vol. 3, Springer-Verlag, Berlin, 1973, 43–50.

[216] Marcel Paul Schützenberger, Une interprétation de certaines solutions de l’équation fonc-
tionnelle: F (x + y) = F (x)F (y) (French), C. R. Acad. Sci. Paris 236 (1953), 352–353.

MR53402
[217] H. A. Schwarz, Formeln und Lehrsätze zum Gebrauche der Elliptischen Funktionen nach

Vorlesungen und Aufzeichnungen des Herrn Prof. K. Weierstrass, Springer-Verlag, Berlin,
1893.

[218] Ferd Schweins, Analysis, Mohr und Winter, Heidelberg, 1820.
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For additional information

and updates on this book, visit

www.ams.org/bookpages/mbk-134

MBK/134

Starting from simple generalizations of factorials and binomial 

coeffi cients, this book gives a friendly and accessible introduc-

tion to q-analysis, a subject consisting primarily of identities 

between certain kinds of series and products. Many applications 

of these identities to combinatorics and number theory are devel-

oped in detail. There are numerous exercises to help students 

appreciate the beauty and power of the ideas, and the history of 

the subject is kept consistently in view.

The book has few prerequisites beyond calculus. It is well suited to a capstone course, 

or for self-study in combinatorics or classical analysis. Ph.D. students and research 

mathematicians will also fi nd it useful as a reference.
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