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�4=90 that leads to a second-order Ap�ery-like recursion as well as to a certain permu-
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We also give a new `elementary' proof of the irrationality of �(3) based on Zeilberger's
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1. Introduction

In this work, we deal with the values of Riemann's zeta function

�(s) :=
1X
n=1

1

ns

at integral points s = 2; 3; 4; : : : . Lindemann's proof of the transcendence of � as well

as Euler's formula for even zeta values, summarized by the inclusions �(2n) 2 Q�2n

for n = 1; 2; : : : , yield the irrationality of �(2); �(4); �(6); : : : . The story for odd zeta

values is not so complete, we know only that:

� �(3) is irrational (R. Ap�ery [Ap], 1978);

� in�nitely many of the numbers �(3); �(5); �(7); : : : are irrational (T. Rivoal

[Ri1], [BR], 2000);

� at least one of the four numbers �(5); �(7); �(9); �(11) is irrational (this au-

thor [Zu4], [Zu5], 2001).

1A preliminary version of the paper for Actes des 12�emes rencontres arithm�etiques de Caen.
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After remarkable Ap�ery's proof [Ap] of the irrationality of both �(2) and �(3), there

have appeared several other explanations of why it is so; we are not able to indicate

here the complete list of such publications and mention the most known approaches:

� orthogonal polynomials [Be1] and Pad�e-type approximations [Be2], [So1],

[So2];

� multiple Euler-type integrals [Be1], [Hat], [RV2];

� hypergeometric-type series [Gu], [Ne1];

� modular interpretation [Be3].

In his proof of the irrationality of �(3), Ap�ery consider the sequences un and vn of

rationals satisfying the di�erence equation

(n+ 1)3un+1 � (2n+ 1)(17n2 + 17n+ 5)un + n3un = 0; (1)

u0 = 1; u1 = 5; v0 = 0; v1 = 6:

A priori, the recursion (1) implies the obvious inclusions n!3un; n!
3vn 2 Z, but a

miracle happens and one can deduce (at least experimentally) the inclusions

un 2 Z; D3
nvn 2 Z

for each n = 1; 2; : : : ; here and later, by Dn we denote the least common multiple of

the numbers 1; 2; : : : ; n (and D0 = 1 for completeness), thanks to the prime number

theorem

lim
n!1

logDn

n
= 1: (2)

The sequence

un�(3)� vn; n = 0; 1; 2; : : : ;

is also a solution of the di�erence equation (1), and it exponentially tends to 0 as

n!1 (even after multiplying it by D3
n), since

lim
n!1

vn
un

= �(3):

A similar approach has been put forward for proving the irrationality of �(2) (see [Ap],

[Po]), and several other Ap�ery-like di�erence equations have been discovered later (see,

e.g., [Za]). But no second-order recursion for �(4) and/or further zeta values has been

known.

A part of this work is devoted to di�erence equations satis�ed by (small) linear

forms in zeta values with `almost integral' coeÆcients. For instance, we present the

di�erence equation

(n+ 1)5un+1 � b(n)un � 3n3(3n� 1)(3n+ 1)un�1 = 0; (3)
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where

b(n) = 3(2n+ 1)(3n2 + 3n+ 1)(15n2 + 15n+ 4)

= 270n5 + 675n4 + 702n3 + 378n2 + 105n+ 12; (4)

with the initial data

u0 = 1; u1 = 12; v0 = 0; v1 = 13 (5)

for its two independent solutions un and vn, and prove the following result.

Theorem 1. For each n = 0; 1; 2; : : : , the numbers un and vn are positive rationals

satisfying the inclusions

6Dnun 2 Z; 6D5
nvn 2 Z; (6)

and there holds the limit relation2

lim
n!1

vn
un

=
�4

90
= �(4): (7)

Application of Poincar�e's theorem (see also [Zu6, Proposition 2]) then yields the

asymptotic relations

lim
n!1

logun
n

= lim
n!1

log vn
n

= 3 log(3 + 2
p
3 ) = 5:59879212 : : :

and

lim
n!1

log jun�(4)� vnj
n

= 3 log j3� 2
p
3 j = �2:30295525 : : : ;

since the characteristic polynomial �2 � 270� � 27 of the equation (3) has zeros

135�78
p
3 = (3�2

p
3 )3. Thus, we can consider vn=un as convergents of a continued

fraction for �(4) and making the equivalent transform of the fraction [JT, Theorems

2.2 and 2.6] we obtain

Theorem 2. There holds the following continued-fraction expansion:

�(4) =
13

b(0)
+

17 � 2 � 3 � 4
b(1)

+
27 � 5 � 6 � 7

b(2)
+ � � �+ n7(3n� 1)(3n)(3n+ 1)

b(n)
+ � � � ;

2During the preparation of this article, we have known that the di�erence equation (3), in slightly

di�erent normalization, and the limit relation (7) had been stated independently by V.N. Sorokin

[So3] by means of certain explicit Pad�e-type approximations. We underline that our approach di�ers

from that of [So3].
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where the polynomial b(n) is de�ned in (4).

Unfortunately, the linear forms

6D5
n(un�(4)� vn) 2 Z�(4) + Z

do not tend to 0 as n!1...3

We prove Theorem 1 in Section 3 and devote Section 2 to an `elementary' proof of

Ap�ery's theorem on irrationality of �(3). The idea of such proof is due to T. Rivoal

[Ri2], [Ri3], who mixed the ideas of Yu. Nesterenko [Ne1] and K. Ball, and our

contribution here is to make a use of Zeilberger's algorithm of creative telescoping in

the most elementary manner. Therefore, Section 3 reads a natural generalization of

Section 2 and arguments presented in Section 3 are quite elementary.

Our proof of Theorem 1 is deeply related to a certain general hypergeometric con-

struction of linear forms in 1 and �(4), which we present in Section 4, proposed in

general by Yu. Nesterenko [Ne2], [Ne3] and exploited by us in study of arithmetic

properties of odd zeta values [Zu1]{[Zu5]. Section 5 is devoted to solution of as-

ymptotic problems for linear forms so constructed. Another (nice and important)

ingredient of the hypergeometric construction is the existence of a non-trivial trans-

formation group for �(4) (Section 6), which is based on classical Bailey's integral

transform. G. Rhin and C. Viola have shown [RV1], [RV2], how such groups work in

p-adic study of coeÆcients of linear forms, and have obtained by these means the best

known upper estimates for the irrationality measures of �(2) and �(3) (see also [Zu5]

for a `hypergeometric' interpretation of their results). Unfortunately, an `obvious'

arithmetic of our linear forms in 1 and �(4) does not lead to any qualitative result for

the irrationality measure of �(4), and we present in Section 7 a conjecture supported

by our numerical calculations that would produce the arithmetic result if somebody

proved it. Finally, Section 8 is devoted to a discussion of possible generalizations of

Theorem 1 and the hypergeometric construction to the case of linear forms in higher

zeta values.

2. Elementary proof of Ap�ery's theorem

Our starting point is repetition of [Ne1, Section 1]. For each integer n = 0; 1; 2; : : :

de�ne the rational function

Rn(t) :=

�
(t� 1) � � � (t� n)

t(t+ 1) � � � (t+ n)

�2

: (8)

3For a simple explanation why �(4) is irrational, see [Han].
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Lemma 1 (cf. [Ne1, Lemma 1]). There holds the equality

Fn := �
1X
t=1

R0
n(t) = un�(3)� vn; (9)

where un 2 Z, D3
nvn 2 Z.

Proof. Taking square of the partial-fraction expansion

(t� 1) � � � (t� n)

t(t+ 1) � � � (t+ n)
=

nX
k=0

(�1)n�k�n+k
n

��
n
k

�
t+ k

we arrive at the formula

Rn(t) =
nX

k=0

�
A
(n)
2k

(t+ k)2
+
A
(n)
1k

t+ k

�
;

with Ajk = A
(n)
jk satisfying the inclusions

A2k =

�
n+ k

n

�2�
n

k

�2

2 Z and DnA1k 2 Z; k = 0; 1; : : : ; n: (10)

Furthermore,

nX
k=0

A1k =
nX

k=0

Rest=�k Rn(t) = �Rest=1Rn(t) = 0 (11)

since Rn(t) = O(t�2) as t!1, hence the quantity

Fn =
1X
t=1

nX
k=0

�
2A2k

(t+ k)3
+

A1k

(t+ k)2

�
=

nX
k=0

1X
l=k+1

�
2A2k

l3
+
A1k

l2

�

= 2
nX

k=0

A2k

� 1X
l=1

�
kX
l=1

�
1

l3
+

nX
k=0

A1k

� 1X
l=1

�
kX
l=1

�
1

l2

has the desired form (9), with

un = 2
nX

k=0

A2k; vn = 2
nX

k=0

A2k

kX
l=1

1

l3
+

nX
k=0

A1k

kX
l=1

1

l2
: (12)

Finally, using the inclusions (10) and

Dj
n �

kX
l=1

1

lj
2 Z for k = 0; 1; : : : ; n; j = 2; 3; 4; : : : ; (13)

we deduce that un 2 Z and D3
nvn 2 Z as required.
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Since

R0(t) =
1

t2
; R1(t) =

1

t2
+

4

(t+ 1)2
� 4

t
+

4

t+ 1
;

in accordance with formulae (12) we �nd that

F0 = 2�(3) and F1 = 10�(3)� 12: (14)

Now, with a help of Zeilberger's algorithm of creative telescoping [PWZ, Chapter 6]

we get the rational function Sn(t) := sn(t)Rn(t), where

sn(t) := 4(2n+ 1)(�2t2 + t+ (2n+ 1)2); (15)

satisfying the following property.

Lemma 2. For each n = 1; 2; : : : , there holds the identity

(n+1)3Rn+1(t)�(2n+1)(17n2+17n+5)Rn(t)+n
3Rn�1(t) = Sn(t+1)�Sn(t): (16)

One-line proof. Divide both sides of (16) by Rn(t) and verify numerically the identity

(n+ 1)3
�
t� n� 1

t+ n+ 1

�2

� (2n+ 1)(17n2 + 17n+ 5) + n3
�
t+ n

t� n

�2

= sn(t+ 1)

�
t2

(t� n)(t+ n+ 1)

�2

� sn(t);

where sn(t) is given in (15).

Lemma 3. The quantity (9) satis�es the di�erence equation (1) for n = 1; 2; : : : .

Proof. Since R0
n(t) = O(t�3) and S0n(t) = O(t�2), di�erentiating identity (16) and

summing the result over t = 1; 2; : : : we arrive at the equality

(n+ 1)3Fn+1 � (2n+ 1)(17n2 + 17n+ 5)Fn + n3Fn�1 = S0n(1):

It remains to note that, for n > 1, both functions Rn(t) and Sn(t) = sn(t)Rn(t) have

second-order zero at t = 1. Thus S0n(1) = 0 for n = 1; 2; : : : and we obtain the desired

recurrence (1) for the quantity (9).

Consider another rational function

eRn(t) := n!2(2t+ n)
(t� 1) � � � (t� n) � (t+ n+ 1) � � � (t+ 2n)

(t(t+ 1) � � � (t+ n))4
(17)

and the corresponding hypergeometric series

eFn :=
1X
t=1

eRn(t); (18)

proposed by K. Ball.
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Lemma 4 (cf. [BR, the second proof of Lemma 3]). For each n = 0; 1; 2; : : : , there

holds the inequality

0 < eFn < 20(n+ 1)4(
p
2� 1)4n: (19)

Proof. Since eRn(t) = 0 for t = 1; 2; : : : ; n and eRn(t) > 0 for t > n we deduce thateFn > 0.

With a help of elementary inequality

1

m
� (m+ 1)m

mm�1
=

�
1 +

1

m

�m
< e <

�
1 +

1

m

�m+1

=
1

m
� (m+ 1)m+1

mm

that yields (m + 1)m=mm�1 < em < (m + 1)m+1=mm for m = 1; 2; : : : , we deduce

that

e�n
(m+ n)m+n�1

mm�1
< m(m+ 1) : : : (m+ n� 1) < e�n

(m+ n)m+n

mm
:

Therefore, for integers t > n+ 1,

eRn(t) � (t+ n)5

(2t+ n)(t+ 2n)
= n!2 � (t� 1) � � � (t� n) � (t+ n) � � � (t+ 2n� 1)

(t(t+ 1) � � � (t+ n� 1))4

< (n+ 1)2(n+1) � t5t�4(t+ 2n)t+2n

(t� n)t�n(t+ n)5(t+n)�4

and, as a consequence,

eRn(t) � t4(t+ n)

(2t+ n)(t+ 2n)(n+ 1)2
< (n+ 1)2n � t5t(t+ 2n)t+2n

(t� n)t�n(t+ n)5(t+n)

=

�
1 +

1

n

�2n

� enf(t=n) < e2 �
�
sup
�>1

ef(�)
�n
;

(20)

where

f(�) := log
�5� (� + 2)�+2

(� � 1)��1(� + 1)5(�+1)
:

The unique (real) solution �0 of the equation

f 0(�) = log
�5(� + 2)

(� � 1)(� + 1)5
= 0

in the region � > 1 is the zero of the polynomial

�5(� + 2)� (� � 1)(� + 1)5 = �
�
� +

1

2

��
2

�
� +

1

2

�4

� 5

�
� +

1

2

�2

� 7

8

�
;

hence we can determine it explicitly:

�0 = �1

2
+

r
5

4
+
p
2:
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Thus,

sup
�>1

f(�) = f(�0) = f(�0)� �0f
0(�0) = 2 log(�0 + 2) + log(�0 � 1)� 5 log(�0 + 1)

= 4 log(
p
2� 1)

and we can continue the estimate (20) as follows:

eRn(t) � t4(t+ n)

(2t+ n)(t+ 2n)
< e2(n+ 1)2(

p
2� 1)4n; (21)

Finally, we apply the inequality (21) to deduce the required estimate (19):

eFn =
1X

t=n+1

eRn(t) < e2(n+ 1)2(
p
2� 1)4n

1X
t=n+1

(2t+ n)(t+ 2n)

t4(t+ n)

< e2(n+ 1)2(
p
2� 1)4n

1X
t=n+1

�
2

t5
+

5n

t4
+

2n2

t3

�
6 e2(n+ 1)2

�
2�(5) + 5n�(4) + 2n2�(3)

�
(
p
2� 1)4n < 20(n+ 1)4(

p
2� 1)4n:

This completes the proof.

For the rational function (17) we obtain Zeilberger's certi�cate

eSn(t) := eRn(t)

(2t+ n)(t+ 2n� 1)(t+ 2n)
� ��t6 � (8n� 1)t5 + (4n2 + 27n+ 5)t4

+ 2n(67n2 + 71n+ 15)t3 + (358n4 + 339n3 + 76n2 � 7n� 3)t2

+ (384n5 + 396n4 + 97n3 � 29n2 � 17n� 2)t

+ n(153n5 + 183n4 + 50n3 � 30n2 � 22n� 4)
�
: (22)

Lemma 5. For each n = 1; 2; : : : , there holds the identity

(n+1)3 eRn+1(t)�(2n+1)(17n2+17n+5) eRn(t)+n
3 eRn�1(t) = eSn(t+1)� eSn(t): (23)

One-line proof. Divide both sides of (23) by eRn(t) and verify the reduced identity.

Lemma 6. The quantity (18) satis�es the di�erence equation (1) for n = 1; 2; : : : .

Proof. Since eRn(t) = O(t�5) and eSn(t) = O(t�2) as t!1 for n > 1, summation of

equalities (23) over t = 1; 2; : : : yields the relation

(n+ 1)3 eFn+1 � (2n+ 1)(17n2 + 17n+ 5) eFn + n3 eFn�1 = �eSn(1):
It remains to note that, for n > 1, both functions (17) and (22) have zero at t = 1.

Thus eSn(1) = 0 for n = 1; 2; : : : and we obtain the desired recurrence (1) for the

quantity (18).
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Theorem 3. For each n = 0; 1; 2; : : : , the quantities (9) and (18) coincide.

Proof. Since both Fn and eFn satisfy the same second-order di�erence equation (1),

we have to verify that F0 = eF0 and F1 = eF1. Direct calculations show that

eR0(t) =
2

t3
; eR1(t) = � 2

t4
+

2

(t+ 1)4
+

5

t3
+

5

(t+ 1)3
� 5

t2
+

5

(t+ 1)2
;

hence eF0 = 2�(3) and eF1 = 10�(3)�12, and comparison of this result with (14) yields

the desired coincidence.

Ap�ery's theorem. The number �(3) is irrational.

Proof. Suppose, on the contrary, that �(3) = p=q, where p and q are positive integers.

Then, using a trivial bound Dn < 3n, we deduce that, for each n = 0; 1; 2; : : : , the

integer qD3
nFn = D3

nunp�D3
nvnq satis�es the estimate

0 < qD3
nFn < 20q(n+ 1)433n(

p
2� 1)4n (24)

that is not possible since 33(
p
2�1)4 = 0:7948 : : : < 1 and the right-hand side of (24)

is less than 1 for a suÆciently large integer n.

Remark 1. Inspite of its elementary arguments, our proof of Ap�ery's theorem does not

look simpler than original (also elementary) Ap�ery's proof well-explained in A. van

der Poorten's informal report [Po], or (almost elementary) Beukers's proof [Be1] by

means of Legendre polynomials and multiple integrals. We want to mention that our

way to deduce the recursion (1) for the sequence Fn as well as for the coeÆcients

un; vn
4 slightly di�ers from those considered in [Po, Section 8] and [Ze, Section 13]

although it is based on the same algorithm of creative telescoping.

Remark 2. The fact that eFn = eun�(3) � evn with Dneun; D4
nevn 2 Z was �rst dis-

covered by K. Ball; the proof follows lines of the proof of Lemma 1 and vanishing

the coeÆcients for �(4) and �(2) is due to well-poised origin of the series (18) (cf.

Lemma 12 below). An open question of Ball and Rivoal here is to get the better in-

clusions eun; D3
nevn 2 Z by elementary means without going back to Ap�ery's series (9).

A solution of this question accompanied with Ball's Lemma 4 can bring the `most

elementary' proof of Ap�ery's theorem.

4Hint: multiply both sides of (16) by (t+ k)2, substitute t = �k and sum over all integers k to

show that the sequence un satis�es the di�erence equation (1); then vn = un�(3)� Fn also satis�es

it.
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3. Difference equation for �(4)

Consider the rational function

Rn(t) := (�1)n(2t+ n)

�
(t� 1) � � � (t� n) � (t+ n+ 1) � � � (t+ 2n)

(t(t+ 1) � � � (t+ n))2

�2

(25)

and the corresponding series

Fn := �
1X
t=1

R0
n(t): (26)

In some sence, the function (25) is a mixture of the functions (8) and (17).

Lemma 7. There holds the equality

Fn = Un�(5) + U 0
n�(4) + U 00

n�(3) + U 000
n �(2)� Vn; (27)

where Un; DnU
0
n; D

2
nU

00
n ; D

3
nU

000
n ; D

5
nVn 2 Z.

Proof. The polynomials

P (1)
n (t) :=

(t� 1) � � � (t� n)

n!
and P (2)

n (t) :=
(t+ n+ 1) � � � (t+ 2n)

n!
(28)

are integral-valued and, as it is well known,

Dj
n

j!

djPn(t)

dtj

����
t=�k

2 Z for k 2 Z and j = 0; 1; 2; : : : ; (29)

where Pn(t) is any of the polynomials (28).

The rational function

Qn(t) :=
n!

t(t+ 1) � � � (t+ n)
(30)

has also `nice' arithmetic properties. Namely,

ak := Qn(t)(t+ k)
��
t=�k

=

(
(�1)k�nk� 2 Z if k = 0; 1; : : : ; n;

0 for other k 2 Z;
(31)

that allow to write the following partial-fraction expansion:

Qn(t) =
nX
l=0

al
t+ l

:

Hence, for j = 1; 2; : : : we obtain

Dj
n

j!

dj

dtj
�
Qn(t)(t+ k)

���
t=�k

=
Dj
n

j!

dj

dtj

nX
l=0

al

�
1� l � k

t+ l

�����
t=�k

= (�1)j�1Dj
n

nX
l=0
l6=k

1

(l � k)j
2 Z: (32)
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Therefore the inclusions (29), (31), (32) and the Leibniz rule for di�erentiating a

product imply that the numbers

Ajk = A
(n)
jk :=

1

(4� j)!

d4�j

dt4�j
�
Rn(t)(t+ k)4

���
t=�k

(33)

=
1

(4� j)!

d4�j

dt4�j
�
(�1)n(2t+ n) � P (1)

n (t) � P (2)
n (t) � (Qn(t)(t+ k))4

���
t=�k

satisfy the inclusions

D4�j
n �A(n)

jk 2 Z for k = 0; 1; : : : ; n and j = 1; 2; 3; 4: (34)

Now, writing down the partial-fraction expansion of the rational function (25),

Rn(t) =
4X

j=1

nX
k=0

A
(n)
jk

(t+ k)j
; (35)

and following the proof of Lemma 1, we obtain the desired representation (27) with

Un = 4
nX

k=0

A
(n)
4k ; U 0

n = 3
nX

k=0

A
(n)
3k ; U 00

n = 2
nX

k=0

A
(n)
2k ; U 000

n =
nX

k=0

A
(n)
1k ; (36)

Vn =
4X

j=1

j
nX

k=0

A
(n)
jk

kX
l=1

1

lj+1
: (37)

Finally, using the inclusions (34) and (13) we deduce that Un; DnU
0
n; D

2
nU

00
n ; D

3
nU

000
n ;

D5
nVn 2 Z as required.

For the rational function (25) we obtain Zeilberger's certi�cate Sn(t) := sn(t)Rn(t),

where

sn(t) :=
1

(2t+ n)(t+ 2n� 1)2(t+ 2n)2
� ��(122n2 + 115n+ 29)(t+ 2(5n� 1))t7

� (4796n4 + 2336n3 � 859n2 � 459n+ 16)t6

� 2(4333n5 � 43n4 � 2645n3 � 734n2 + 86n+ 7)t5

� (3965n6 � 13782n5 � 14109n4 � 2207n3 + 878n2 + 142n+ 7)t4

+ 2(5906n7 + 17354n6 + 10901n5 + 329n4 � 1340n3 � 289n2 � 15n+ 2)t3

+ (22774n8 + 42602n7 + 20740n6 � 2935n5 � 4922n4 � 1162n3

+ 13n2 + 44n+ 4)t2

+ 2n(8249n8 + 13764n7 + 5775n6 � 2178n5 � 2468n4 � 568n3

+ 94n2 + 64n+ 8)t

+ n2(4549n8 + 7531n7 + 2923n6 � 1975n5 � 2056n4 � 424n3

+ 196n2 + 112n+ 16)
�

(38)

with the following property.
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Lemma 8. For each n = 1; 2; : : : , there holds the identity

(n+1)5Rn+1(t)� b(n)Rn(t)� 3n3(3n� 1)(3n+1)Rn�1(t) = Sn(t+1)�Sn(t); (39)

where the polynomial b(n) is given in (4).

One-line proof. Divide both sides of (39) by Rn(t) and verify the identity

� (n+ 1)5 � (2t+ n+ 1)(t� n� 1)2(t+ 2n+ 1)2(t+ 2n+ 2)2

(2t+ n)(t+ n+ 1)6

� 3(2n+ 1)(15n2 + 15n+ 4)(3n2 + 3n+ 1)

+ 3n3(3n� 1)(3n+ 1) � (2t+ n� 1)(t+ n)6

(2t+ n)(t� n)2(t+ 2n� 1)2(t+ 2n)2

= sn(t+ 1)
(2t+ n+ 2)t6(t+ 2n+ 1)2

(2t+ n)(t� n)2(t+ n+ 1)6
� sn(t);

where sn(t) is given in (38).

Lemma 9. The quantity (26) satis�es the di�erence equation (3) for n = 1; 2; : : : .

Proof. Since Rn(t) = O(t�3) and S0n(t) = O(t�2) as t!1 for n > 1, summation of

t-derivatives of equalities (39) over t = 1; 2; : : : yields the relation

(n+ 1)5Fn+1 � b(n)Fn � 3n3(3n� 1)(3n+ 1)Fn�1 = S0n(1):

It remains to note that, for n > 1, both functions Rn(t) and Sn(t) = sn(t)Rn(t) have

second-order zero at t = 1. Thus S0n(1) = 0 for n = 1; 2; : : : and we obtain the desired

recurrence (3) for the quantity (26).

Lemma 10. The coeÆcients Un; U
0
n; U

00
n ; U

000
n ; Vn in the representation (27) satisfy

the di�erence equation (3) for n = 1; 2; : : : .

Proof. Write the partial-fraction expansion (35) in the form

Rn(t) =
4X

j=1

+1X
k=�1

A
(n)
jk

(t+ k)j
;

where the formulae (33) remain valid for all k 2 Z and j = 1; 2; 3; 4. Multiply both

sides of (39) by (t+ k)4, take (4� j)th derivative of the result, substitute t = �k and

sum over all k 2 Z; this procedure yields that, for each j = 1; 2; 3; 4, the numbers (36)

written as

Un = 4
+1X

k=�1

A
(n)
4k ; U 0

n = 3
+1X

k=�1

A
(n)
3k ; U 00

n = 2
+1X

k=�1

A
(n)
2k ; U 000

n =
+1X

k=�1

A
(n)
1k
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satisfy the di�erence equation (3). Finally, the sequence

Vn = Un�(5) + U 0
n�(4) + U 00

n�(3) + U 000
n �(2)� Fn

also satis�es the recursion (3).

Since

R0(t) =
2

t3
; R1(t) = � 4

t4
+

4

(t+ 1)4
+

12

t3
+

12

(t+ 1)3
� 13

t2
+

13

(t+ 1)2
;

in accordance with (36), (37) we obtain

U 0
0 = 6; U0 = U 00

0 = U 000
0 = V0 = 0;

U 0
1 = 72; V1 = 78; U1 = U 00

1 = U 000
1 = 0;

hence as a consequence of Lemma 10 we arrive at the following result.

Lemma 11. There holds the equality

Fn = U 0
n�(4)� Vn;

where DnU
0
n 2 Z and D5

nVn 2 Z.

The sequences un := U 0
n=6 and vn := Vn=6 satisfy the di�erence equation (3) and

initial conditions (5); the fact jFnj ! 0 as n!1, which yields the limit relation (7),

will be proved in Section 5. This fact can be also derived from elementary estimates

jFnj 6
1X

t=n+1

jR0
n(t)j <

1X
t=n+1

8(n+ 1)Rn(t)

as in the proof of Lemma 4. This completes our proof of Theorem 1.

Due to (33), (36), and (37), we can write the explicit formulae for the solutions un

and vn of the di�erence equation (3) for n = 0; 1; 2; : : : :

un = (�1)n
nX

k=0

�
n

k

�4�
n+ k

n

�2�
2n� k

n

�2

(1 + (n� 2k)ank);

vn = (�1)n
nX

k=0

�
n

k

�4�
n+ k

n

�2�
2n� k

n

�2�
2

3
(n� 2k)

kX
l=1

1

l5

+ (1 + (n� 2k)ank)
kX
l=1

1

l4
+

1

3

�
4ank + (n� 2k)(2a2nk + bnk)

� kX
l=1

1

l3

+
1

9

�
(6a2nk + 3bnk) + (n� 2k)(2a3nk + 3ankbnk + cnk)

� kX
l=1

1

l2

�
;
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where

ank = �
nX
l=1

1

l + k
+

nX
l=1

1

l + n� k
� 2

nX
l=0
l6=k

1

l � k
;

bnk = �
nX
l=1

1

(l+ k)2
�

nX
l=1

1

(l+ n� k)2
+ 2

nX
l=0
l6=k

1

(l � k)2
;

cnk = �
nX
l=1

1

(l+ k)3
+

nX
l=1

1

(l+ n� k)3
� 2

nX
l=0
l6=k

1

(l � k)3

for k = 0; 1; : : : ; n.

Remark. The conclusion (6) of Theorem 1 is far from being precise; in fact, (experi-

mentally) there hold the inclusions

un 2 Z; D4
nvn 2 Z;

and, moreover, there exists the sequence of positive integers �n, n = 0; 1; 2; : : : , such

that

��1n un 2 Z; ��1n D4
nvn 2 Z:

This sequence can be determined as follows: if �p is the order of prime p in (3n)!=n!3,

then

�n :=
Y
p

pb�p=2c;

here and below bxc and fxg := x�bxc denote respectively the integral and fractional

parts of a real number x. For primes p >
p
3n we obtain the explicit (simple) formula

b�p=2c =
(

1 if fn=pg 2 [ 23 ; 1);

0 otherwise;

hence

lim
n!1

log �n

n
=  (1)�  

�2
3

�
= 0:74101875 : : : ;

where  (x) := �0(x)=�(x). Thus, we obtain that the linear forms

��1n D4
n(un�(4)� vn)

?2 Z�(4) + Z (40)

do not tend to 0 as n!1.
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4. Very-well-poised hypergeometric series

Consider the set of eight positive integral parameters

h = (h0; h�1;h1; h2; h3; h4; h5; h6);

where h�1 = 2 + 3h0 � (h1 + h2 + h3 + h4 + h5 + h6); (41)

satisfying the conditions

h0 � h�1 < hj <
1

2
h0; j = 1; 2; 3; 4; 5; 6; (42)

and assign to h the rational function

R(t) = R(h; t) := (�1)h0
(h) � (h0 + 2t) �
Q6

j=�1 �(hj + t)Q6
j=�1 �(1 + h0 � hj + t)

= (�1)h0 � (h0 + 2t)

� �(1 + h0 � h1 � h2)
�(h1 + t)

�(1 + h0 � h2 + t)

� �(1 + h0 � h1 � h5)
�(h5 + t)

�(1 + h0 � h1 + t)

� �(1 + h0 � h2 � h4)
�(h2 + t)

�(1 + h0 � h4 + t)

� �(1 + h0 � h3 � h6)
�(h6 + t)

�(1 + h0 � h3 + t)

� 1

�(h3)

�(h3 + t)

�(1 + t)

� 1

�(h�1 � h0 + h4)

�(h4 + t)

�(1 + h0 � h�1 + t)

� 1

�(h5)

�(h0 + t)

�(1 + h0 � h5 + t)

� 1

�(h�1 � h0 + h6)

�(h�1 + t)

�(1 + h0 � h6 + t)
: (43)

In the last representation we pick out the rational functions

�(b� a)
�(a+ t)

�(b+ t)
=

(b� a� 1)!

(t+ a)(t+ a+ 1) � � � (t+ b� 1)
if a < b;

1

�(1 + a� b)

�(a+ t)

�(b+ t)
=

(t+ b)(t+ b+ 1) � � � (t+ a� 1)

(a� b)!
if a > b;

of the form (30), (28), having some nice arithmetic properties [Zu5, Section 7].

It is easy to verify that, due to (41), for the rational function (43) the di�erence of

numerator and denominator degrees is equal to 3, hence

R(t) = O(t�3) as t!1: (44)
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The series

F (h) := �
1X
t=t0

d

dt
R(h; t)

with any t0 2 Z; 1� min
16j66

fhjg 6 t0 6 1�maxf0; h0 � h�1g;
(45)

produces a linear form in 1 and �(4).

Lemma 12. The quantity F (h) is a linear form in 1 and �(4) with rational coeÆ-

cients.

Proof. Order the parameters h1; : : : ; h6 as h�1 6 � � � 6 h�6 and consider the partial-

fraction expansion of the rational function (43):

R(t) =
4X

j=1

h0�h
�

j+2X
k=h�j+2

Ajk

(t+ k)j
; (46)

where

Ajk =
1

(4� j)!

d4�j

dt4�j
�
R(t)(t+ k)4

���
t=�k

2 Q

for k = h�j+2; : : : ; h0 � h�j+2 and j = 1; 2; 3; 4:

(47)

Then we obtain

F (h) =
X

t=1�h�
1

4X
j=1

h0�h
�

j+2X
k=h�j+2

jAjk

(t+ k)j+1
=

4X
j=1

h0�h
�

j+2X
k=h�j+2

jAjk

� 1X
l=1

�
k�h�1X
l=1

�
1

lj+1

=
4X

j=1

Aj�(j + 1)� A0;

with

Aj = j

h0�h
�

j+2X
k=h�j+2

Ajk; j = 1; 2; 3; 4; A0 =
4X

j=1

h0�h
�

j+2X
k=h�j+2

jAjk

k�h�1X
l=1

1

lj+1
;

and the well-poised origin of the series (45) (namely, the property R(�t�h0) = �R(t),
hence Ajk = (�1)j�1Aj;h0�k by (47), cf. [Zu5, Section 8] with r = 2 and q = 6) yields

A2 = A4 = 0, while the residue sum theorem implies A1 = 0 (cf. (11)).

Remark. The question of denominators of the rational numbers A3 and A0 that ap-

pear as the coeÆcients in F (h) can be solved by application of Nesterenko's denom-

inator theorem [Ne3] (announced by Yu. Nesterenko in his Caen's talk). Namely,

consider the set

N := fh3 � 1; h�1 � h0 + h4 � 1; h5 � 1; h�1 � h0 + h6 � 1; h0 � 2h1; h0 � h1 � h2;

h0 � h1 � h3; h0 � h1 � h4; h0 � h1 � h6; h0 � 2h2; h0 � h2 � h3;

h0 � h2 � h5; h0 � h2 � h6; h0 � h3 � h5; h0 � h4 � h5; h0 � h4 � h6;

h0 � h�1 � h�3; h0 � h�1 � h�3; h0 � h�1 � h�4; h0 � h�1 � h�5; h0 � h�1 � h�6g;
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then,

Dm1
Dm2

Dm3
Dm4

Dm5
� F (h) 2 Z�(4) + Z; (48)

where m1 > � � � > m5 are the �ve successive maxima of the set N .

Unfortunately, we have not succeeded in using the inclusion (48) for arithmetic

applications; in reality, our experimental calculations show that the stronger inclusion

holds for the linear forms F (h) and we indicate the corresponding conjecture in

Section 7 below.

Using standard arguments, the property (44) and the fact that R(t) has second-

order zeros at integers t = 1� h�1; : : : ;�maxf0; h0 � h�1g, one deduces the following
hypergeometric-integral representation of the series (45).

Lemma 13 (cf. [Ne1, Lemma 2]). There holds the equality

F (h) =
1

2�i

Z t1+i1

t1�i1

R(h; t)

�
�

sin�t

�2

dt

=
(�1)h�1
(h)

�i

Z t1+i1

t1�i1

�(h0 + t) �(1 + 1
2h0 + t) �(h�1 + t)

� �(h1 + t) � � ��(h6 + t) � �(h�1 � h0 � t) �(�t)
�( 12h0 + t) �(1 + h0 � h1 + t) � � ��(1 + h0 � h6 + t)

dt;

(49)

with any t1 2 R, 1� h�1 < t1 < �maxf0; h0 � h�1g.
The series (45) as well as the corresponding hypergeometric integral (49) are known

in the theory of hypergeometric functions and integrals as very-well-poised objects,

i.e., we can split their top and bottom parameters in pairs such that

h0 + 1 = (1 + 1
2h0) +

1
2h0 = h�1 + (1 + h0 � h�1) = � � � = h6 + (1 + h0 � h6)

and the second parameter has the special form 1 + 1
2h0.

Remark. As it is easily seen, the sequence Fn of Section 3 corresponds (after a suitable

shift of the summation parameter t) to the choice

h0 = h�1 = 3n+ 2; h1 = h2 = h3 = h4 = h5 = h6 = n+ 1 (50)

of the parameters h. Hence the equalities Un = U 00
n = U 000

n = 0 in the representa-

tion (27) can be deduced from Lemma 12.

5. Asymptotics

We take the new set of positive parameters

� = (�0; ��1; �1; : : : ; �6) (51)
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satisfying the conditions

4�0 =
6X

j=�1

�j ; �0 � ��1 < �j <
1

2
�0; j = 1; 2; 3; 4; 5; 6; (52)

and for each n = 0; 1; 2; : : : relate them with the old parameters by the formulae

h0 = �0n+ 2; h�1 = ��1n+ 2; hj = �jn+ 1; j = 1; 2; : : : ; 6: (53)

Then Lemma 12 yields that the quantities Fn = Fn;� := F (h) are linear forms in 1

and �(4) with rational coeÆcients, say

Fn = Fn;� = un�(4)� vn; n = 0; 1; 2; : : : ;

and the goal of this section is to determine the asymptotic behaviour of these linear

forms as well as their coeÆcients un and vn as n!1.

To the set (51) assign the polynomial

6Y
j=�1

(� � �j)�
6Y

j=�1

(� � �0 + �j) (54)

and the function

f0(�) :=
6X

j=�1

�j log(�j��)�(�0���1) log(���0+��1)�
6X

j=1

(�0��j) log(�0��j��)

de�ned in the cut � -plane C n (�1;maxf0; �0 � ��1g] [ [��1 ;+1), where ��1 6 ��2 6

� � � 6 ��6 denotes the ordered version of the set �1; �2; : : : ; �6.

The �rst condition in (52) implies that (54) is a �fth-degree polynomial; moreover,

the symmetry under substitution � 7! �0 � � and the second condition in (52) yield

that this polynomial has zeros

�0
2
;
�0
2
�s0; and �0

2
�is1; where

�0
2
�s0 2

�
maxf0; �0���1g; ��1

�
; s1 2 (0;+1):

The last four zeros can be easily determined by solving a certain biquadratic (in terms

of �0=2� �) equation. Set

�0 :=
�0
2
� s0 and �1 :=

�0
2
+ is1: (55)
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Theorem 4. The following limit relations hold:

C0 := � lim
n!1

log jFnj
n

= �f0(�0); (56)

C1 := lim sup
n!1

log junj
n

= lim sup
n!1

log jvnj
n

= Re f0(�1): (57)

Proof. The proof is based on application of the saddle-point method to the integral

representation of Lemma 13 for the quantities Fn and a similar integral representation

(see formula (63) below) for the coeÆcients un; the fact that both limits in (57) are

equal follows immediately from the limit relation

lim
n!1

vn
un

= lim
n!1

un�(4)� Fn
un

= �(4) 6= 0

since �C0 < 0 < C1 under the conditions (52).

Without loss of generality, we will restrict ourselves to the `most symmetric'

case (50), i.e.,

�0 = ��1 = 3 and �1 = � � � = �6 = 1; (58)

that corresponds to the linear forms in 1; �(4) constructed in Section 3.

In the case (58), the zeros (55) of the corresponding polynomial (54) are as follows:

�0 =
3

2
� 31=4 cos

�

12
=

3

2
�
r

3

4
+

p
3

2
;

�1 =
3

2
+ i31=4 sin

�

12
=

3

2
+

r
3

4
�
p
3

2
:

By Lemma 13,

Fn =
(�1)n
2�i

Z t1+i1

t1�i1

(3n+ 2 + 2t)
�(3n+ 2 + t)2�(n+ 1 + t)6�(�t)2

�(2n+ 2 + t)6
dt

=
(�1)n
2�i

Z t1+i1

t1�i1

(3n+ 2 + 2t)(3n+ 1 + t)2(3n+ t)2(n+ t)6

(2n+ 1 + t)6(2n+ t)6

� �(3n+ t)2�(n+ t)6�(�t)2
�(2n+ t)6

dt;

with any t1 2 R, �n < t1 < 0. Using the asymptotic formula

log �(z) =

�
z � 1

2

�
log z � z + log

p
2� +O

�jzj�1�
for z 2 C with Re z = const > 0, taking t1 = �n�0 and changing variables t = �n� ,
after necesary transformations we obtain

Fn =
2�(�1)n
in2

Z �0+i1

�0�i1

(3� 2�)(3� �)3(1� �)3

�(2� �)9
enf(�)

�
1 + O(n�1)

�
d� (59)
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as n!1, where

f(�) := 2(3� �) log(3� �) + 6(1� �) log(1� �) + 2� log � � 6(2� �) log(2� �):

Since

f 0(�) = log
�2(2� �)6

(3� �)2(1� �)6
(60)

and �0 is a zero of the polynomial (54) (which is (� � 3)2(� � 1)6 � �2(� � 2)6 in

the restricted case), we conclude that f 0(�0) = 0 and �0 is the unique maximum of

the function Re f(�) on the contour. Thus the integral (59) is determined by the

contribution of the saddle-point �0 (see [Br, Section 5.7]):

Fn =
(�1)n(2�)3=2

n5=2
� (3� 2�0)(3� �0)

3(1� �0)
3

�0(2� �0)9
� jf 00(�0)j�1=2 � enf(�0)

�
1 + O(n�1)

�
;

hence

lim
n!1

log jFnj
n

= f(�0) = f(�0)� �0f
0(�0) =: f0(�0)

= log
(3� �0)

6(1� �0)
6

(2� �0)12
= 3 log(2

p
3� 3) =: �C0: (61)

This proves the limit relation (56).

In the neighbourhood of t = �k, where k = n + 1; : : : ; 2n + 1, the function R(t)

has the expansion

R(t) =
A4k

(t+ k)4
+

A3k

(t+ k)3
+

A2k

(t+ k)2
+

A1k

t+ k
+ O(1)

by (46). On the other hand,�
sin�t

�

�2

=

�
sin�(t+ k)

�

�2

= (t+ k)2 + O
�
(t+ k)4

�
about t = �k for k 2 Z. Therefore,

Rest=�k

��
sin�t

�

�2

R(t)

�
=

(
A3k if k = n+ 1; : : : ; 2n+ 1;

0 for other k 2 Z;

and if L is a closed clockwise contour surrounding points t = �n � 1; : : : ;�2n � 1,

then

1

3
un =

2n+1X
k=n+1

A3k = � 1

2�i

I
L

�
sin�t

�

�2

R(t) dt

= � (�1)n
2�i

I
L

�
sin�t

�

�4

(3n+ 2 + 2t)
�(3n+ 2 + t)2�(n+ 1 + t)6�(�t)2

�(2n+ 2 + t)6
dt:

(62)
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Taking the rectangle with vertices �it2 � N , for some �xed real t2 > 0 and any

N > 2n+ 1, as the contour L and using the estimates���� sin�tt

���� 6 e�t2

�
; R(t) = O(N�3) as N !1

on the lateral sides of the rectangle, from (62) we deduce that

un = �3(�1)n
2�i

�Z it2+N

it2�N

+

Z �it2�N

�it2+N

��
sin�t

�

�4

� (3n+ 2+ 2t)
�(3n+ 2 + t)2�(n+ 1 + t)6�(�t)2

�(2n+ 2 + t)6
dt+ O(N�2);

where the constant in O(N�2) depends on t2 only. Tending N !1 and making the

substitution t 7! �t� h0 = �t� (3n+ 2) in the �rst integral, we obtain

un = �3(�1)n
�i

Z �it2�1

�it2+1

�
sin�t

�

�4

(3n+2+2t)
�(3n+ 2 + t)2�(n+ 1 + t)6�(�t)2

�(2n+ 2 + t)6
dt

(63)

(cf. [Zu3, Lemma 3.1]). Finally, take t2 = �ns1 = �n Im �1, change the variable

t = �n� and apply the asymptotic formula

log �(z) =

�
z � 1

2

�
log z � z + log

p
2� +O

�jzj�1�+O(e�2�j Im zj)

for z 2 C ; j Im zj > y0 > 0

(see [Br, Section 6.5] and [Zu3, Lemma 3.2]), to get from (63) the expansion

un =
12�(�1)n

in2

Z is1+1

is1�1

(3� 2�)(3� �)3(1� �)3

�(2� �)9
enf(�)

�
�
sin�n�

�

�4�
1 +O(n�1) + O(e�2�ns1)

�
d�:

Since����� sin�n��

�4

� e�4�in�

(2�)4

���� = ����e�4�in�(2�)4

���� � j � 4e2�in� + 6e4�in� � 4e6�in� + e8�in� j

< 15e�2�ns1 �
����e�4�in�(2�)4

����
for � 2 C with Im � = s1 > 0, we obtain

un =
3(�1)n
4�3in2

Z is1+1

is1�1

(3� 2�)(3� �)3(1� �)3

�(2� �)9
en(f(�)�4�i�)

� �1 + O(n�1) +O(e�2�ns1)
�
d�: (64)
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By (60) and the de�nition of the point �1 (that is the zero of the polynomial (54)),

hence f 0(�1) � 4�i�1 = 0, we conclude that � = �1 is the unique maximim of the

function Re(f(�)� 4�i�) on the line Im � = s1. Therefore, the saddle-point method

says that the asymptotics of the integral in (64) is determined by the contribution of

the point � = �1 that yields the desired limit relation

lim sup
n!1

log junj
n

= Re f(�1) = Re(f(�1)� �1f
0(�1)) =: Re f0(�1)

= log
j3� �1j6j1� �1j6

j2� �1j12 = 3 log(2
p
3 + 3) =: C1:

The proof of Theorem 4 is complete.

Remark. The limit relation (61) yields that jFnj ! 0 as n!1, and this is the fact

that we have promised to prove for Theorem 1 (see the paragraph after Lemma 11).

To be honest, the fact, that the asymptotics of the linear forms and their coeÆcients

in the case (50) is determined by the zeros (3�2
p
3 )3 of a quadratic polynomial with

integral coeÆcients, gives us an idea to look for a second-order di�erence equation.

Thus, the recursion (3) has appeared after Theorem 4.

6. Group structure for �(4)

Theorem 3 of Section 2 can be proved by specialization of Bailey's identity [Ba,

Section 6.3, formula (2)]

7F6

�
a; 1 + 1

2a; b; c; d; e; f
1
2a; 1 + a� b; 1 + a� c; 1 + a� d; 1 + a� e; 1 + a� f

���� 1�
=

�(1 + a� b) �(1 + a� c) �(1 + a� d) �(1 + a� e) �(1 + a� f)

�(1 + a) �(b) �(c) �(d) �(1 + a� b� c) �(1 + a� b� d)

��(1 + a� c� d) �(1 + a� e� f)

� 1

2�i

Z i1

�i1

�(b+ t) �(c+ t) �(d+ t) �(1 + a� e� f + t)

��(1 + a� b� c� d� t) �(�t)
�(1 + a� e+ t) �(1 + a� f + t)

dt;

(65)

provided that the series on the left-hand side converges. Namely, taking a = 3n + 2

and b = c = d = e = f = n + 1 and doubling both sides of (65) we obtain Ball's

sequence (18) on the left and Ap�ery's sequence (9) on the right (for the last fact

see [Ne1, Lemma 2]). Identity (65) can be put forward for an explanation how the

permutation group from [RV2] for linear forms in 1 and �(3) appears (see [Zu5,

Sections 4 and 5 for details]).

A story of number-theoretical application of Bailey's identities is not �nished

in [Zu5]. The following identity looks the most cool (in the sense of number of

its parameters) relation among the known ones.
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Lemma 14 (Bailey's integral transform [Ba, Section 6.8, formula (1)]). There holds

the identity

1

2�i

Z i1

�i1

�(a+ t) �(1 + 1
2a+ t) �(b+ t) �(c+ t) �(d+ t) �(e+ t)

�(1
2
a+ t) �(1 + a� c+ t) �(1 + a� d+ t) �(1 + a� e+ t)

� �(f + t) �(g + t) �(h+ t) �(b� a� t) �(�t)
�(1 + a� f + t) �(1 + a� g + t) �(1 + a� h+ t)

dt

=
�(c) �(d) �(e) �(f + b� a) �(g + b� a) �(h+ b� a)

�(k + c� a) �(k + d� a) �(k + e� a) �(1 + a� g � h)

��(1 + a� f � h) �(1 + a� f � g)

� 1

2�i

Z i1

�i1

�(k + t) �(1 + 1
2
k + t) �(b+ t) �(k + c� a+ t) �(k + d� a+ t)

�(12k + t) �(1 + a� c+ t) �(1 + a� d+ t) �(1 + a� e+ t)

� �(k + e� a+ t) �(f + t) �(g + t) �(h+ t) �(b� k � t) �(�t)
�(1 + k � f + t) �(1 + k � g + t) �(1 + k � h+ t)

dt; (66)

where k = 1 + 2a� c� d� e, and the parameters are connected by the relation

2 + 3a = b+ c+ d+ e+ f + g + h:

By Lemma 13 the transform (66) rearranges the parameters h as follows:

b = b123 : h 7! (1 + 2h0 � h1 � h2 � h3; h�1; 1 + h0 � h2 � h3; 1 + h0 � h1 � h3;

1 + h0 � h1 � h2; h4; h5; h6): (67)

Consider the set of 27 complementary parameters e,

ejk = h0 � hj � hk; 1 6 j < k 6 6; e0k = hk � 1; 1 6 k 6 6;

e0k = h�1 � h0 + hk � 1 = 1 + 2h0 � (h1 + � � �+ h6) + hk; 1 6 k 6 6;
(68)

and set

H(e) := F (h):

Then Bailey's transform can be written as follows:

H(e) =
�(e01 + 1) �(e02 + 1) �(e12 + 1) �(e05 + 1)

�(e23 + 1) �(e13 + 1) �(e03 + 1) �(e46 + 1)
H(be); (69)

where b from (67) is the following second-order permutation of the parameters (68):

b = (e01 e23)(e02 e13)(e03 e12)(e04 e56)(e05 e46)(e06 e45): (70)

We can also write the transform (69) in the form

H(e)

�1(e)
=

H(be)

�1(be)
; where �1(e) := e01! e02! e12! e05! : (71)
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Further, the h-trivial group (i.e., the group of permutations of the parameters

h1; h2; : : : ; h6) is generated by second-order permutations of hk, 1 6 k 6 5, and h6.

The action of these �ve permutations on the set (68) is as follows:

h1 = (h1 h6) = (e01 e06)(e01 e06)(e12 e26)(e13 e36)(e14 e46)(e15 e56);

h2 = (h2 h6) = (e02 e06)(e02 e06)(e12 e16)(e23 e36)(e24 e46)(e25 e56);

h3 = (h3 h6) = (e03 e06)(e03 e06)(e13 e16)(e23 e26)(e34 e46)(e35 e56);

h4 = (h4 h6) = (e04 e06)(e04 e06)(e14 e16)(e24 e26)(e34 e36)(e45 e56);

h5 = (h5 h6) = (e05 e06)(e05 e06)(e15 e16)(e25 e26)(e35 e36)(e45 e46);

(72)

and the quantity
e03! e04! e05! e06!

e12! e15! e24! e36!
�H(e) (73)

(due to the de�nition (43)) is stable under the action of (72). Setting

E = E(e) := fe01; e02; e04; e06; e01; e02; e03; e05; e12; e15; e24; e36g (74)

and combining the above stability results we arrive at the following fact.

Lemma 15. The quantity

H(e)

�(e)
; where �(e) :=

Y
ejk2E

ejk!;

is stable under the action of the group

G := hb; h1; h2; h3; h4; h5i:

Moreover, the quantities h�1 and

�(e) :=
X
ejk2E

ejk

are also G-stable.

Proof. Routine calculations show the stability of H(e)=�(e) under the action of

b; h1; h2; h3; h4; h5 with a help of (71) and (73). Hence H(e)=�(e) is stable under

the action of the e-permutation group generated by these six permutations (70), (72).

The stability of h�1 under the action of (72) is obvious, and b does not change the

parameter h�1 by (67). Finally,

�(e) = 12h0 � 4(h1 + h2 + h3 + h4 + h5 + h6) = 4h�1 � 8
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that yields the stability of �(e) under the action of G. The proof is complete.

With the help of a C++ program we have discovered that the group G consists of

51840 elements, hence the left factor G=S6 includes 51840=6! = 72 left cosets; here

S6 is identi�ed with the h-trivial group hh1; h2; h3; h4; h5i. It is interesting to mention

that the group G0 acting trivially on the set (74) consists of just 4 elements: g0 = id,

g1 = (h3 h1 h2 h5 b h1 h4 h5 b h1)
3

= (e01 e02)(e02 e01)(e03 e06)(e04 e05)(e05 e04)(e06 e03)

(e13 e26)(e14 e25)(e15 e24)(e16 e23)(e34 e56)(e35 e46);

g2 = (h1 h2 h4 h2 b h3 h5 h1 h2)
3

= (e01 e24)(e02 e03)(e03 e46)(e04 e05)(e05 e26)(e06 e01)

(e02 e15)(e04e13)(e06 e35)(e12 e36)(e14 e56)(e25 e34);

g3 = h1 h2 b h3 h1 h5 h2 h3 b = g1 g2

= (e01 e15)(e02 e06)(e03 e35)(e05 e13)(e01 e03)(e02 e24)

(e04 e26)(e06 e46)(e12 e36)(e14 e34)(e16 e23)(e25 e56):

Remark. In the most symmetric case (50) all complementary parameters (68) are

equal to n that means that any permutation from G does not change the quan-

tity F (h). This fact explains why do we dub this case as `most symmetric'.

7. Denominators of linear forms

As we have mentioned in Remark to Lemma 12, `trivial' arithmetic (48) of the

linear forms H(e) = F (h) does not lead us to a qualitative result for �(4). We are

able to estimate the irrationality measure of �(4) under the following condition, which

we have checked numerically for several values of h satisfying (41) and (42).

Denominator conjecture. There holds the inclusion5

Dm1
Dm2

Dm3
Dm4

� ��1(e) �H(e) 2 Z�(4) + Z;

where m1 > m2 > m3 > m4 are the four successive maxima of the set e in (68) and

�(e) :=
Y

p>
p
h�1

p�p

with

�p :=

$
1

2

�
1

4

X
ejk2E

ejk
p

�
� 1

8

X
ejk2E

�
ejk
p

�%
=

$
1

2

�
h�1 � 2

p

�
� 1

8

X
ejk2E

�
ejk
p

�%
:

5In the most symmetric case (50) this conjecture reduces to the conjecture (40) of Section 3.
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If this conjecture is true, then taking any element g 2 G and writing conclusion of

Lemma 15 as

Dm1
Dm2

Dm3
Dm4

H(e) = Dm1
Dm2

Dm3
Dm4

��1(ge)H(ge) � �(e)�(ge)
�(ge)

we deduce that, for any prime p >
p
h�1,

ordp
�
Dm1

Dm2
Dm3

Dm4
H(e)

�
> ordp

�(e)�(ge)

�(ge)

=
X
ejk2E

�
ejk
p

�
�
X

e0
jk
2gE

�
e0jk
p

�
+

$
1

2

�
h�1 � 2

p

�
� 1

8

X
e0
jk
2gE

�
e0jk
p

�%
;

(75)

where gE = E(ge) and ordp(u�(4) � v) := minfordp u; ordp vg for rational num-

bers u; v. Finally, setting

�(e) =
Y

p>
p
h�1

p�p

with

�p := max
g2G

 X
ejk2E

�
ejk
p

�
�
X

e0
jk
2gE

�
e0jk
p

�
+

$
1

2

�
h�1 � 2

p

�
� 1

8

X
e0
jk
2gE

�
e0jk
p

�%!
;

from (75) we obtain the inclusion

Dm1
Dm2

Dm3
Dm4

� ��1(e) �H(e) 2 Z�(4) + Z: (76)

Now, to each n = 0; 1; 2; : : : assign the parameters h in accordance with (53) and

set
ejk = �0 � �j � �k; 1 6 j < k 6 6; e0k = �k; 1 6 k 6 6;

e0k = ��1 � �0 + �k = 2�0 � (�1 + � � �+ �6) + �k; 1 6 k 6 6;

so that the set of complementary parameters e � n corresponds to the set h. Then, in

the above notation, we can write the inclusion (76) as

Dm1nDm2nDm3nDm4n � ��1(en) �H(en) 2 Z�(4) + Z:

The asymptotic behaviour of the linear formsH(en) 2 Q�(4)+Q and their coeÆcients

as n!1 is determined by Theorem 4; in addition,

lim
n!1

log(Dm1nDm2nDm3nDm4n)

n
= m1 +m2 +m3 +m4

by the consequence (2) of the prime number theorem, while the Chudnovsky{Rukhad-

ze{Hata arithmetic lemma (see, e.g., [Zu3, Lemma 4.4]) yields

lim
n!1

log�(en)

n
=

Z 1

0

�(x) d (x);
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where

�(x) := max
g2G

� X
ejk2E

bejkxc �
X

e0
jk
2gE

be0jkxc+
�
1

2
b��1xc � 1

8

X
e0
jk
2gE

be0jkxc
��

is the 1-periodic non-negative integral-valued function.

Recalling the notation of Theorem 4 and combining its results with saying above,

as in [RV2, the proof of Theorem 5.1], we arrive at the following statement.

Theorem 5. Under the denominator conjecture, let

C0 = �f0(�0); C1 = Re f0(�1);

C2 = m1 +m2 +m3 +m4 �
Z 1

0

�(x) d (x):

If C0 > C2, then the irrationality exponent of �(4) satis�es the estimate

�(�(4)) 6
C0 + C1

C0 � C2
:

Recall that the irrationality exponent � = �(�) of a real irrational number � is the

least possible exponent such that for any " > 0 the inequality������ p

q

���� 6 1

q�+"

has only �nitely many solutions in integers p; q with q > 0.

With a help of Theorem 5 we are able to state the following conditional result.

Theorem 6. The irrationality exponent of �(4) satis�es the estimate

�(�(4)) 6 25:38983113 : : : (77)

provided that the denominator conjecture holds.

Proof. Taking � = (68; 57; 22; 23; 24; 25; 26; 27) we obtain

�0 = 11:83684636 : : : ; C0 = �f0(�0) = 37:85606933 : : : ;

�1 = 34 + i6:34312459 : : : ; C1 = Re f0(�1) = 104:96178579 : : : ;

and

C2 = m1 +m2 +m3 +m4 �
Z 1

0

�(x) d (x)

= 27 + 26 + 25 + 24� 69:76893283 : : := 32:23106716 : : : :

Thus, application of Theorem 5 yields the desired estimate (77).
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The estimate (77) can be compared with the `best known' estimate

�(�(4)) 6 204:94259587 : : : ;

which follows from the general result of Yu. Aleksentsev [Al] on approximations of �

by algebraic numbers.6

8. Further zeta values

A natural very-well-poised generalization of Ball's sequence (18),

Fk;n := n!k�1
1X
t=1

(2t+ n)
(t� 1) � � � (t� n) � (t+ n+ 1) � � � (t+ 2n)

tk+1(t+ 1)k+1 � � � (t+ n)k+1
(�1)(k�1)(t+n+1)

2
(
Q�(k) + Q�(k � 2) + � � �+ Q�(2) + Q for k > 2 even;

Q�(k) + Q�(k � 2) + � � �+ Q�(3) + Q for k > 2 odd;
n = 1; 2; : : : ;

gives rise for searching di�erence equations satis�ed by both linear forms Fk;n and

their rational coeÆcients. Applying Zeilberger's algorithm of creative telescoping in

the manner of Sections 2 and 3 we deduce the following result for the linear forms

F5;n = un�(5) + wn�(3)� vn: (78)

Theorem 7. The numbers un; wn; vn in the representation (78) are positive rationals

satisfying the third-order di�erence equation

(n+ 1)(n+ 2)5b0(n)un+2 � b1(n)un+1 � b2(n)un + 2(2n+ 1)n5b0(n+ 1)un�1 = 0;

(79)

u0 = 2; w0 = 0; v0 = 0; u1 = 18; w1 = 66; v1 = 98;

u2 = 938; w2 =
6125

2
; v2 =

74463

16
;

where

b0(n) = 41218n3 + 48459n2 + 20010n+ 2871;

b1(n) = 2(n+ 1)(3874492n8 + 33613836n7 + 123666762n6 + 250134420n5

+ 301587620n4 + 220011738n3 + 94372815n2 + 21917736n+ 2131500);

b2(n) = 2(48802112n9 + 350188128n8 + 1080631646n7 + 1882848690n6

+ 2045758212n5 + 1442754107n4 + 663248761n3 + 192486369n2

+ 32136756n+ 2360484):

6In fact, the result of [Al] is proved for approximations of � by algebraic numbers of suÆciently

large degree. Yu. Nesterenko has noticed to us in private communication that this hard restriction

can be omitted if one makes an accurate analytic calculation for the construction considered in [Al].
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The characteristic polynomial �3�188�2�2368�+4 of the di�erence equation (79)

determines the asymptotic behaviour of the linear forms (78) and their coeÆcients as

n!1.

A similar (but quite cumbersome) fourth-order recursion with characteristic poly-

nomial �4�828�3�132246�2+260604��27 has been discovered by us for the linear

forms F7;n and their coeÆcients. These recursions allow us to verify the inclusions

D5
nF5;n 2 Z�(5) + Z�(3) + Z; D7

nF7;n 2 Z�(7) + Z�(5) + Z�(3) + Z

up to n = 1000, although we are able to prove them with just D6
n andD

8
n, respectively.

In [Zu5, Section 9] we conjecture the equality Fk;n = Jk;n for integral k > 2, where

Jk;n :=

Z
� � �
Z

[0;1]k

xn1 (1� x1)
nxn2 (1� x2)

n � � �xnk (1� xk)
n dx1 dx2 � � �dxk

(1� (1� (� � � (1� (1� x1)x2) � � � )xk�1)xk)n+1
(80)

are multiple integrals introduced by O. Vasilenko [VaO]. The integrals J2;n and J3;n

has been studied by F. Beukers [Be1] in the connection with Ap�ery's proof of the

irrationality of �(2) and �(3). In [Zu5], we prove the coincidence of F3;n and J3;n with

the help of Bailey's identity (65) and Nesterenko's integral theorem [Ne2, Theorem 2],

and use similar arguments for showing that F2;n = J2;n. The cases k = 4 and k = 5

in (80) has been developed by D. Vasilyev [VaD]; he conjectures the inclusions

Dk
nJk;n 2 Z�(k) + Z�(k� 2) + � � �+ Z�(3) + Z for k odd;

and proves them if k = 5.

There is a regular way for obtaining di�erence equations for the quantities (80);

it is a part of general WZ-theory developed by H. Wilf and D. Zeilberger [WZ].

The fundamental theorem of this WZ-theory [WZ, Section 2] says that there exist

e�ectively computable order l, polynomials a0(n); a1(n); : : : ; al(n) in n, and rational

functions (certi�cates) s1;n(x); : : : ; sk;n(x) in n and x = (x1; : : : ; xk) such that

al(n)Qn+l�1(x) + al�1(n)Qn+l�2(x) + � � �+ a1(n)Qn(x) + a0(n)Qn�1(x)

=
kX

j=1

@

@xj

�
sj;n(x)Qn(x)

�
; (81)

where

Qn(x) :=
xn1 (1� x1)

nxn2 (1� x2)
n � � �xnk�1(1� xk�1)

nxnk (1� xk)
n

(1� (1� (� � � (1� (1� x1)x2) � � � )xk�1)xk)n+1

is the integrand in (80). For each �xed k = 2; 3; : : : , discovering the polynomials

a0(n); a1(n); : : : ; al(n) and the certi�cates is a `routine matter'; then division of both
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sides of identity (81) by Qn(x) reduces to a `one-line' veri�cation as in Lemmas 2, 5,

and 8. Such division also shows that the certi�cate sj;n(x) has no poles at xj = 0

and xj = 1, henceZ
� � �
Z

[0;1]k

@

@xj

�
sj;n(x)Qn(x)

�
dx1 � � �dxk

=

Z
� � �
Z

[0;1]k�1

�
sj;n(x)x

n
j (1� xj)

n

(1� (� � � (1� x1) � � � )xk)n+1

�����xj=1

xj=0

�
kY

m=1
m6=j

xnm(1� xm)
n dxm

= 0; j = 1; : : : ; k;

for n > 1, and after integration of equality (81) over the cube [0; 1]k with respect to x

we arrive at the desired di�erence equation

al(n)Jk;n+l�1 + al�1(n)Jk;n+l�2 + � � �+ a1(n)Jk;n + a0(n)Jk;n�1 = 0 (82)

for n = 1; 2; : : : . In these terms we can extend our previous conjecture as follows:

Recurrence conjecture. For each k = 2; 3; 4; : : : , the quantities Fk;n and Jk;n

satisfy the same di�erence equation of order l = bk=2c+1 with polynomial coeÆcients

in n and the same initial data Fk;n = Jk;n for n = 0; 1; : : : ; bk=2c.
The validity of this conjecture will prove (or disprove) our conjecture Fk;n = Jk;n,

at least for small values of k > 4.

Another story deals with the quantities

eFn :=
1

2

1X
t=1

d2

dt2

�
(2t+ n)

�
(t� 1) � � � (t� n) � (t+ n+ 1) � � � (t+ 2n)

(t(t+ 1) � � � (t+ n))2

�3�
= eun�(7) + ewn�(5)� evn;

where eun; ewn; evn are positive rationals. We have discovered a (quite cumbersome)

fourth-order di�erence equation satis�ed by eun; ewn; evn; its characteristic polynomial

is

�4 + 9264�3 � 12116166�2 � 752300�� 19683 (19683 = 39):

As we have proved in [Zu3, Proposition 4.1], the following inclusions hold:

D8
n � e��3n � eFn 2 Z�(7) + Z�(5) + Z; where e�n :=

Y
p<n

fn=pg2[ 2
3
;1)

p;

while our calculations up to n = 1000 with a help of the recursion mentioned above

show that

D7
n � e��2n � eFn 2 Z�(7) + Z�(5) + Z:

What is a trick that makes arithmetic as it is?
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