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INTRODUCTION
1. The present paper is concerned with the following question:

n players 3,, Se’ ceey Sn are playing a given game of
strategy, ®. How must one of the participants, Sm’
play in order to achieve a most advantageous result?

The problem is well known, and there is hardly a situation in
daily 1ife into which this problem does not enter. Yet, the meaning of
this question is not unambiguous. For, as soon as n > 1 (i.e., ® 1s a
game of strategy in the proper sense), the fate of each player depends not
only on his own actions but also on those of the others, and their be-
havior is motivated by the same selfish interests as the behavior of the
first player. We feel that the situation is inherently circular.

Hence we must first endeavor to find a clear formulation of the
question. What, exactly, is a game of strategy? A great many different
things come under this heading, anything from roulette to chess, from
baccarat to bridge. And after all, any event - given the external con-
ditions and the participants in the situation (provided the latter are
acting of their own free will) - may be regarded as a game of strategy if
one looks at the effect it has on the participants.2 What element do all
these things have in common?

L A shortened version of this paper has been presented to the Goettingen
Mathematical Society on December T, 1926.
2 This is the principal problem of classical economics: how is the abso-
lutely selfish "homo economicus" going to act under given external cir-
cumstances?
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We may assume that it is the following:

A game of strategy consists of a certain series of events
each of which may have a finite number of distinct results.
In some cases, the outcome depends on chance, i.e., the
probabilities with which each of the possible results will
occur are known, but nobody can influence them. All other
events depend on the free decision of the players S
Se’ aeitery Sn‘ In other words, for each of these events
it is known which player, Sm, determines its outcome
and what is his state of information with respect to the
results of other ("earlier") events at the time when he
makes his decision. Eventually, after the outcome of
all events is known, one can calculate according to a
fixed rule what payments the players S1, 82, Salr O
must make to each other.

1’

n

It is easy to bring this somewhat qualitative explanation into a
precise form. The definition of a game of strategy would then be the
following:

For a complete description of a game &, the following
data are necessary, which in their entirety are the '"rules
of the game."

@) The number of events or "draws" depending on chance,
and the number of events or "steps" depending on the free
decision of the individual players must be specified. Let
these numbers be z and s respectively, and let us de-
note the "draws" by E,, E,, ..., E,, the "steps" by
F], FE’ vy FS.

B) The number of possible results of each "draw", E“,
and of each "step", F,, must be specified. Let these

numbers be M“ and Nv respectively. (p =1, 2, ..., Z,
v=1,2, ..., 8.) We shall denote the results, for short,
by their numbers 1, 2, ..., Mu angd 1y 25 ees, Nv
respectively.

y) For e?ch)"draw" E, the probabilities a£1),
M
aﬁe), R ' of the different results 1, 2, ..., M,

must be given. Obviously, we have
(M“)

a£1) > 0, aée) D> 05 ecee, au >0

a(1)+a(2)+...+a = 1 .
n u
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) For every "step" F,, the player S who deter-
mines the outcome of this "step" ("whose step" F, 1is)
must be specified. In addition, the numbers of all
"draws and steps" must be specified of whose outcome the
player is informed at the time he makes his decision
concerning F,. (These "draws" and "steps" we shall
call "earlier" than F .)

In order that this whole scheme be consistent and per-
mit of a temporal-causal interpretation, there must be

no cycles Fv], Fve’ oy va, F‘vp+1 = Fv1, and qu
must always be "earlier" than F, (d = 1, 2, seay Do
. q+1
€) Finally, n functions £, f2, o fn must be

given. Each of them depends on 2z + s variables which
take on the values

T3 125 ofe iy M1; 1y 23 esey M2; alein} 1y 25 eoey Mz;

15 2y Saey N]; Ty "2 o oo NE; o3 ry: 25 reve oy Ns
respectively. These functions are real-valued and

f1 + f2 + cee + fn =0
holds identically. If in the course of a play which has
been completed the results of the 2z 'draws" and s
"steps" were Xys Xps eees X5 Y15 Vs +e+s Yg TesSDec-
tively, (xu = Wi 2, sy Mu’ Vo= 15 2, sioy Nv;
B =1, 2, ¢ae, 2, v=1, 2, «es, 8), the players .S

-ll
S xshery Sn obtain from each other3 the amounts

2’

£L(Xys eees Xy Fys wees Tg)s Fo(x, oeey Xys Yys vevs Tg)

ity fn(x], cees Xy Yys o eees ys) .

(On closer inspection it can be seen that in spite of this some-

Actually, in several respects our definition might have been somewhat more

3

expresses that the players make payments to each other only, but collec-

The identity

P: o+ f2 e fn £ 0

1

tively they neither gain nor lose.
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general. We could, e.g., have included the case that the Mu’ Nv and

af“), aé“), Bk a&“) depend on the results of the "earlier" "draws"

7
and "steps", and the like. It 1s easy to see, however, that such generali-
’—s_/—’—
zations would be inessential.)
‘/

—

2. With this definition the concept of a game of strategy is
precisely defined. But 1t also becomes clear that, as we Indicated at the
beginning of 1., the expression "S; tries to achleve a result as ad-
vantageous as possible" is rather obscure. What constitutes the most ad-
vantageous result for the player Sm is obviously the largest possible
value of f,, but how can any value of f, be "achieved" by S ? By
himself, Sm is in no position to fix the value of fml The value of fm
depends on the variables Xys coes Xps Tys 2v0s Tg» only part of which are
determined by S 's decision (viz. those y, for which S has the "step"

F, 1.e., those for which S = 8 ). All other variables y_  depend
v (Fv) m v

on the decisions of the participants and all variables X, depend on
chance.

In our case, the "unforeseeable" chance event is actually the
factor which it is easiest to deal with. 1In fact, assume that a particular

fm depends only on those i which are decided on by Sm (S(Fv) = Sm),

and in addition on the X, (wvhich are determined by chance). In that case,
S can at least anticipate this much: If I make certain moves, I can ex-

m
pect such and such results (i.e., values of fm) with such and such prob-

abilities (since the probabilities a(“), aé“), ey a&“) are given) -

1
regardless of how the other players act! If we now assgme that "a most
advantageous result" is the highest possible value of the expectation (and
this assumption or a similar one has to be made in order to apply the
methods of the theory of probza,b:l.lj.ty))+ we have, in principle, 8olved our
problem. For, we have here a simple maximum problem: The values of those
variables y,6 which S has to determine must be so chosen by him that
the expected value of fm (which depends only on these variables yv) be-
comes as large as possible.

It is this type of game which in the theory of probability is
treated in the so-called "theory of games of chance." A typical example
is roulette: Let the number of players be k + 1 (S], Bty Sk are the
"pointers", Sy.; 1s the "banker"), Sy.,; has no influence whatsoever on
the game,5 and the result achieved by S,, f,, (B = 1 Bhpaeny X ) only

* We shall not enter on the well-known objections to the use of the ex-
pected value (and the ensuing attempts to replace the latter by the so-
called moral expectation or similar conceptsg. The difficulties that form
the subject of our considerations are of a different nature.

’ Anyway, he has no need to, since according to the rules of the game his
gain after each play is 2.70% of the turn-over.
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depends on chance and his own actions.6

The name alone, '"game of chance", indicates that the main empha-
sis is put on the variables X, which are dependent on chance, and not on
the variables 7y, which are subject to the decisions of the players. But
this 1s exactly what we are interested in. We shall try to investigate the
effects which the players have on each other, the consequences of the fact
(so typical of all social happenings!) that each player influences the re-
sults of all other players, even though he is only interested in his own.

§1. GENERAL SIMPLIFICATIONS

1. The definition of a game of strategy given in the Introduc-
tion is rather complicated, which may appear justified in view of the fact
that games of strategy may be arbitrarily complex. Nevertheless it 1s
possible to bring all games falling under this definition into a much
simpler normal form, in a way, into the simplest form that is at all con-
ceivable. We contend that it is sufficient to consider games of the
following kind:

1 (i.e., only one "draw" takes place).
n, the v-th "step" being that of the player S, (S(F = S,)-
14

s

The relation "earlier" is never realized (i.e., each player must
make his dispositions without knowing anything about the other participants
or about the "draw').

The play thus takes the following course: Each player Sm
(m=1,2, ..., n) chooses a number 1, 2, ..., N, without knowing the
choices of the others. Now a "draw" takes place in which the numbers
1, 2, «+e, M will appear with the probabilities Qpy Qpy woey Oy The
results achleved by the players are (if the "draw" and the n '"steps" have
resulted In X, ¥,5 Yps s yn)

(X, Fyo vves Tp)s £o(X5 Fys eees Fp)s vees £(X §ps eees Ty)

This apparently far-reaching restriction is actually not essential,
for the following reason:
Let the "steps" of the players Sy (S(F 3 S,) Dbe those with
v

the numbers v$m), vém), ceey vgm)- Obviously, it is inadmissible to make
m
the assumption that Sm might be able to tell, before the start of the

6 s may be guessed, on the basis of the preceding footnote, the unam-
biguous result in this case for the behavior of the pointers is rather
trivial: 1if possible they should have the turn-over zero; the closer they
approximate it, so much the better!



18 von NEUMANN

game, what his choices for all these steps are going to be. It would mean

a restriction of his free will and change his chances (for the worse).

For, S, 's decision in each of these "steps" will generally be significantly
influenced by the results of the "draws" and "steps" known to him at the
moment of his decision.

On the other hand, it may well be assumed that before the play
has started he knows how to answer the following question: What will be
the outcome of the vﬁm)-th Sateped Glomitl; 12 ms ony om) provided the re-
sults of all "draws" and "steps" "earlier" than vﬁm) are available? In
other words, the player knows beforehand how he is going to act in a pre-
cisely defined situation: he enters the play with a theory worked out in
detall. Even if this may not be the case for a particular player, it 1is

clear that such an assumption will certainly not spoil his chances.

Accordingly, we define the "strategy" of a player S as
follows:

In order to describe completely the "strategy" of a
player S, (m=1, 2, ..., n) the following specifica-
tions are necessary:

As pefore, let S~ have the "steps" with the numbers
vgm), vém), ""Vam) and assume that at the moment when he
m
decides on the vﬁm)-th "sEep!'s (I =M1, 25 iy cm) the
results of the "draws" and "steps" with the numbers

S0, ), @) g @), @)
m,k
;ém,k) respectively are available to him, that is, they
m,k (m)

are "earlier" than v For each possible combination
of results of the "draws" and "steps" mentioned above
(obviously, there is only a finite number of such com-
binations) it must be specified what Sm's decision
with respect to the v}((‘“ -th "step" 1s going to be (i.e.,
what will be the outcome of this step).

One sees immediately that only a finite number of strategies is
available to S, which we shall call Ssm), Sém), ".r Sém).

It can now easily be shown (using the assumption gn the absence
of cycles in the Introduction, 1., definition of a game of strategy, (5))
that the course of a play is described in a permissible and unambiguous
manner if we specify
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1. which strategles 5(1), 52), ., 5(n) gpe being

used by the players 81’ SQ, ceey Sn respectively,

2. what are the results of the "draws" E,, B, ---, E,.

Two points should be noted here. In the first place, it is in-
herent in the concept of "strategy" that all the information about the
actions of the participants and the outcome of "draws" a player is able to
obtain or to infer is already incorporated in the "strategy." Consequently,
each player must choose his strategy in complete ignorance of the choices
of the rest of the players and of the results of the "draws."

Secondly, it has become entirely immaterial that the "draws"
E,» E;, ..., E are separate events (where for E“, R R S Nz,
the numbers 1, 2, ..., M“ will occur with the respective probabilities

M)

a£1), aia), .e., @ ") since the players must act, i.e., choose their
"strategies" without knowing the outcome of the "draws." But if this is
the case nothing prevents us from combining all 2z '"draws" into a single
"draw", H, the outcome of which will be the aggregates of numbers

Xy Xps eeey X, (xu =BT, iy Mu’ L O TR )
(x,)  (x,) (x,)
with their respective probabilities @, cQa, SRR , or, what
amounts to the same thing, the numbers 1, 2, ..., M (M = M1-M2-...-Mz)

with their respective probabilities, which we shall call Bis Bos ees By-
Thus we can modify 2. in the following way:

2'. The result of the "draw" H must be specified.
(H may have the results 1, 2, ..., M with the
respective probabilities B, B,, «-+; By.)

The choices (interpreted as "steps") of the players S, Sps +ees
S, 1in 1. together with the "draw" in 2'. are fully equivalent to the
original game ® (if one takes the fact into account that each "step" is
taken in complete ignorance of all other circumstances), and they evidently
constitute a game @' which, indeed, is of the simple form mentioned at

the beginning of this secton.

2. The last element to be eliminated from the game, since from
our point of view it is inessential, is the "draw". This is done by re-
placing the actual results for the individual players by their expected
values. To be exact:

If the players S,, S,, ..., S, have chosen the "strategies"
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1
S$1), Sﬁé), e oy Sé;) (uy ="15 25 ses S M= 1, IO S o)
and if the outcome of the "qpaw" H has been the number Vv (=015 25 aety

M), then let the results for the players S, SE, e Sn be
f](v, Uy eoes un), f2(v, LOPRERRY un), Sogr fn(v, Uy vees un) v

(We may disregard the fact that we are dealing with "strategies" and not
with actual "steps" and simply speak of the choices u,, Uy, «-» w, - )

If only the choices of U, Ugs == u, are known, but not yet the
"qraw" v, the expected values of £ys Lapuee e £ will be

gm(ul, or gl 1L un) = E: vim(v, Upy ooy un) (m = 1,2, «oes n)

(f‘1 + f2 + eee + I = 0 implies g, *+ 8, * --° +ig s 0). It is entirely
in the spirit of the probabilistic method to discount the "raw" alto-
gether and to deal exclusively with the expected values g, 8ys ***s 8p°
In doing so we obtain the following basic type of a game of strategy which
is even more schematized and simplified.

Each of the players S1, Se’ s 5 Sn chooses a number,
Sm choosing one of the numbers 1, 2, e«s+; zm7 (m =
Tige Digy asiohe n). Each player must make his decision without
being informed about the choices of the other participants.

After having made their choices X,, X5, -+ X,
(xm =1, 2, coey pm=1, 2, ..., n) the players re-

ceive the following amounts respectively:
g1(x], ey xn), gg(x1, ey xn), &5 gn(x1, I xn)
(where identically g, *+ 8 * -+ * 8 = 0).

The rules of the game have thus been obtained in a form which
retains only those characteristics of a game of strategy which are essential
to our consideration - and as we have just shown, essentially without loss

747In addition, we could also make all Zj equal to each other by assuming
a £ which is not smaller than any I and subdividing each zm-th case

in = - Z  + 1 subcases, each of which would have the same effect as the

original. But this simplification is inessential.
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of generality. Nothing is left of a "game of chance". The actions of the
players determine the result completely (since everything takes place as
if each of the players has his eye on the expected value only). As a re-
sult, the feature which was emphasized at the end of the Introduction
emerges 1n a particularly clear form: each &n depends on all X, X,
cees Xpe

The standard case of probability theory that &n depends on :
only (which, of course, cannot hold for all m) now appears to be entirely
trivial.

§2. THE CASE n = 2

1. Since we cannot proceed any further with the same generality,
it is now appropriate to consider the simplest case for n. The case
n = 0 1s meaningless, and so is the case n = 1 (since g, + By + eee +
g, = 0); neither involves an actual game of strategy. So we shall now
investigate the case n = 2.

Since g, + 8 = 0, we can put 8, = 8 8, = - g- The descrip-
tion of a general two-person game is then as follows:

The players S1, 52 choose arbitrary numbers among
the numbers 1, 2, ..., z, and 1, 25 wesy Z,
respectively, each one without knowing the choice of
the other. After having chosen the numbers x and Yy
respectlvely, they receive the sums g(x, y) and
- g(x, y) respectively.

g(x, y) may be any function (defined for x = 1, 2, ..., Z,,
e o 22!).

It is easy to picture the forces struggling with each other in
such a two-person game. The value of g(x, y) 1is being tugged at from two
sides, by S1 who wants to maximize it, and by Se who wants to minimize

it. S1 controls the variable x, S, the variable y. What will happen?

2
2. After 35, has chosen the number x (x =1, 2, ..., z]),

his result g(x, y) still depends on the choice y of 82, but in any

event g(x, y) > Miny g(x, y). And by an appropriate choice of x this

lower 1limit can be made equal to Max_ Miny g(x, y) (and not any larger!).

I.e., 1f 8, so wishes, he certainly can make g(x, y)

> MaxxMi.nyg(x, y)

(irrespective of what S, does!). The same argument holds for SQ. Ir
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S. so wishes, he certainly can make g(x, ¥y)

2
< MinYMaxxg(x, y)

(irrespective of what 3, does!).

If now

MaxxMinyg(x, y) = MinyMaxxg(x, y) =M

i1t follows from the above, as well as from the fact that S1 wants to maxi-
mize g(x, y) and S, wants to minimize 1t, that g(x, y) will have the
value M. For, 5, 1is interested in making it large and can keep it from
becoming smaller than M. 82, on the other hand, is interested in making
it small and can keep it from becoming larger than M. Hence it will have

the value M.

Though, in general,

MaxxMinyg(x, v) < MinyMaxxg(x, y)

it is not at all true that the = sign always holds. Actually, it is
easy to exhibit such g(x, y) for which the < sign holds, that is, for
which the above consideration breaks down. The simplest example of this
kind is the following:

z] =22=2’ 8(11 1)= 1 ’ 8(1) 2)=-1;
g2, 1) =-1, gl2,2)=1 .
(Evidently, Max Min = - 1 and Min Max = 1.)
Another example is the so-called game of "Morra":8
£, =%,=3 g(,1)= o, gh,2)= 1, g, 3)=-1,
8(2) 1) =Nl 8(2} 2) = 0, 8(2: 3) - 1,
8(31 1) L 1, 8(3; 2) = -1, 8(3: 3) - 0 .
(Here, too, Max Min = - 1 and Min Max = 1.)

The fact that this difficulty comes up can also be realized in
the following way:

Max, Miny g(x, y) 1is the best result that S, can achleve if

Also called "%angster baccarat." In the usual formulation, 1, 2, 3 are
called "Paper", "Stone", "Scissors" ("Paper covers the stone, scissors cut
the paper, stone grinds the scissors").
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he is "found out" by S,; if whenever S, plays x, S, plays a y
such that g(x, y) = Miny g(x, y). (According to the rules of the game
52 was not supposed to know how S] was going to play, he would have to
infer it in some other way. This is what we mean to indicate by the ex-
pression "finding out". In the same way, the best result that S, can
achieve if’ S] has found him out is Miny Maxx g(x, y). 1If the two
numbers are equal this means: it makes no difference which of the two
players 1s the better psychologist, the game is so insensitive that the
result is always the same. It is obvious that this is not the case for
the two games just mentioned: here, everything depends on finding the ad-
versary out, on guessing whether he is going to choose 1 or 2 (or 1
@rs 2 or 3).

The fact that the two quantities Max Min and Min Max are
different means that it is impossible for each of the two players, Sl and
Sa’ to be cleverer than the other.

3. Still, it is possible, by use of an artifice, to force the
equality of the two above-mentioned expressions.

To this purpose, the possibilities of action for the two players
S, and S, are extended as follows: At the beginning of the game, S1
1s not asked to choose one of the numbers 1, 2, ..., Z,e He only has to
specify Z, probabllities

g]} 52: sy §Z1 (51 2 0, §2 > 0, <o, gZ > 0, §-| % §2 t oeee + §Z =1)
— 1 1
and then draw the numbers 1, 2, ..., z, from an urn containing these
numbers with the probabilities € §2, oo oly gz . He then chooses the
1

number drawn. This may look like a restriction of his free will: it is not
he who determines x. But this is not so. Because if he really wants to
get a particular x, he can specify s L, S O (for u # x). On the
other hand, he is protected against his adversary "finding him out"; for,
if, e.g., &, = t = 1/2, nobody (not even he himself!) can predict whether

he is going to choose 1 or 2!

82 1s supposed to act in the same way. He also chooses =

probabilities M12 Np» -+, ny and proceeds accordingly.
2

2

Let us denote the sequence E15 Epy eees £y by ¢ and the
1
Sequence nq., MNys sees nzz by~ GLE S, chooses ¢ and 32 chooses

1, S, has the expected value

z z

h(g, 9) = z z g(p, q) EpNg
p=1 Q=1
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and 32 has the expected value - h(g¢, n). The new function h(e, n)
includes the old one, g(x, y), 1in the following sense: if = Ny = 1
and &, =1, =0 (for uséx, v #y), then h(g, n) = g(x, ¥y)-

We can now apply the same consideration to h(e, 1) we applied
to g(x, y). If S, has made the choice &, his expected value 1s at
least Min_h(t, ). Hence, he is in a position to obtain the minimal ex-
pected value Max, Min h(t, n) (irrespective of what S, does!). In
the same way, 82 can keep the expected value of S1 from exceeding

the maximal value MinnMaxg h(g, n). Again we have

Ma.nginnh(g, 1) < MinnMaxgh(E, 1)

and the question is whether the equality sign always holds.

Evidently, in this case our chances are better than they were for
g(x, y); for, g(x, y) could be any function, whereas h(¢, n) 1s a bl-
linear form! Even though h(g, n) 1is essentially a generalization of
g(x, y), yet it is a function of a much simpler type than g(x, y).- In
fact, we shall prove in Sectilon 3 that the relation

Ma.nginnh(g, n) = MinnMa.xgh(g, n)
holds for all bilinear forms h(&, n) (where Maxg is taken for all ¢ fo
which &, > 0, .-, £, 2 0, &, + coe tx, = 1, and Minn is taken for

1 1

all n for which n, > 0, «--, q22 2 0, Mg+ oeee nza = q.)

4. Anticipating the result we put
Manginnh(g, 1) = MinnMaxgh(§, n) =M

Let ¥ be the set of all & for which Min_h(g, n) assumes its maximal
value M, and let ® be the set of all g for which Ma.xg h(e, 1)
assumes its minimal value M. From these definitions the relations below
follow immediately.

(1) If ¢ belongs to ¥, then always h(e, q) >M
(2) If n belongs to B, then always h(g, n) < M
(3) If & does not belong to %, there exists an
n for which h(g, n) < M
(4) If 1 does not belong to ®, there exlstsa
¢ for which h(g, n) > M
(5) If t belongs to u and n belongs to %,
then h(g, n) = M.
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On the basis of the relations (1) to (5) the following statement
seems justified:

Clearly, S1 must choose a complex ¢ belonging to
A, and 82 must choose a complex n belonging to 9.

For any such choice, a play has the value M or - M for

S1 and S, vrespectively.

Evidently, a two-person game can be called "fair" if M = 0; and
it can be called "symmetric" if the players S,, S, have the same roles.
I.e., if on interchanging ¢ and 1 (which presupposes that Z, = 22)
h(¢, 1) and - h(¢, ) are also interchanged, in other words, if

h(g.v TI) i h(T]r §)

or, equivalently,

glx, y) = - gly, x)

i.e., if the bilinear form h(¢, n), or else the matrix g(x, y) is
skew-symmetric. In this case, the game is, of course, also "fair", as can
be seen as follows:

- Max Minnh(g, n)

. MinMa.xn-h(g, n) = Min

3
Min, Max h(t, n)

h
gMa.xn (n, &)

i.e.,
-M=M M=o0 .2

One can easily see that in our two examples (in 2.) M = 0 since
A contains only ¢, = &, = 1/2 and By ~f, = g3 = 1/3 respectively,
and ® contains only n, =1, = 1/2 and 1, =, = ng = 1/3 respectively.
I.e., both games are "fair" ("Paper, Scissors, Stone" is even symmetric),
and in both examples each player must choose all numbers at random, all of

9 Use is made of the fact that Max Min = Min Max, i.e., we have applied
our rather deep theorem on bilinear forms. Trivially -- i.e., from
Max Min < Min Max -- it would only follow that

Max Min < 0, Min Max > 0 .

While this paper was put into its final form, I learned of the note of
E. Borel in the Comptes Rendus of Jan. 10, 1927 ("Sur les systémes de
formes linéaires...et la théorie du jeu," pp. 52-55). Borel formulates the
question of bilinear forms for a symmetric two-person game and states that
no examples for Max Min < Min Max are known.

Our result above answers his question.
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them with the same probability.

The following point should be emphasized: Although in Section 1
chance was eliminated from the games of strategy under consideration (by
introducing expected values and eliminating "draws"), it has now made a
spontaneous reappearance. Even if the rules of the game do not contain any
elements of "hazard" (i.e., no draws from urns) - as e.g., the two ex-
amples in 2. - in specifying the rules of behavior for the players it be-
comes imperative to reconsider the element of "hazard". The dependence on
chance (the "statistical" element) is such an intrinsic part of the game
itself (if not of the world) that there is no need to introduce it
artificially by way of the rules of the game: even if the formal rules
contain no trace of it, it still will assert itself.

§3. PROOF OF THE THEOREM "Mex Min = Min Max"

1. Let us slightly change our notation by replacing I, by
M+ 1, %, by N+1 and g(p, @) by Upge We then have

2
M+1 N+1
h(e, =
(6, 1) = ) ) apgtpng
p=1 Qq=1
Because of the conditions
§1+...+gM+§M+]=1, “1"“'*“N+"N+1=1
the complex & is already determined by €&,, ---»fy and so is the complex
n by Nys coes Ty Thus
M N M N
= +
£ Z Z Ypatply Z Vpép * Z Vg * T
D=l p=1 q=1

(There is no need to specify explicitly the coefficients in terms of apq')
We shall make use of only some of the properties of h(t¢, n) and investi-
gate continuous functions of two sets of variables f(¢, n) which satisfy

the following conditions:

(K). If f(g', n) > A, f(e", n) > A, then f(g, n) > A for
every 0< 9< 1, & =08 + (1 - 9)g" (Lee., & =9t + (0 -2ty
Dy B e, M) EBTHER YIS R, f(e, ") < A, then f(¢, 1) < A
for every 0< 3 < 1, 1 =o' + (1 - )" (i.e., Mg ﬁqa £ (4 = ﬁ)qa’
g =1y, 2, «se, N).
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(It is clear that h(té, n), being linear in the ¢ as well as
in the =0, has the property (K).) For these functions f(&¢, n) we are
going to prove that

Max Min (f(g, n) = MinnMang(g, n)

3
where Maxg is taken over the range £, 205 .oy Ey > Q, g, + -ee ¥ gM <1
and M:Ln,q 1s taken over the range 1, > 0, «eey My > 0, Ny + oo + M < 1.
We can also write
Max, Max Max Min  Min_ ... Min_ f(¢, q)
& £ M 4 Mo o
§120 5220 EMZO n]ZO ﬂ22° nNZO
£,<1 &, +E LT E e g UPEA I PRs PXA I PR RS Tl
= Min_ Min Min Max, Max, ... Max, £(&, n)
T = N 1 2 M
20 20 R0 £120 8,20 20
1,<1 Kt LFRERERS It E1<1 B HECT B et .

2. We introduce the following notation:

3
M rf(§1) ceey gr: ﬂ1: sy ﬂs) = Max§ f(§1: sy gry ﬂ]; ceey ﬂs)
L

£, >0

£ +ena+E LI

n
M Sf(§1: sy §r’ b OO ﬂs) £ Minnsf(§1’ sy §r: Nqo2 o3 ﬂs)
Ng>0

q1+...+quI

€ 1
Clearly, M " and M ° eliminate the dependence of f on £x and g

respectively. We are going to prove: if f satisfies the condition (K)
(in 1.), then

PR €, 1, 1 n

'M2 ...MPM'M2...M%fp

&

n 3 £
.MM M2 .. .MP¢r .

Evidently, we need only prove the following two assertions:
a) If £ = (8, «ovs Epy ngs ooy ng) 1s continuous and has
il
the property (K), the same holds for M X f and M S f.
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B) If £ = (&, «ovs Epy Mgy voes qs) is continuous and has
the property (K), then

3 n n 3
MfMSr-mM3SMTF .
3%
We first prove (a). It is sufficient to consider M - f; the
n

same considerations apply to M ol 1

We have

£
Mrf(§1: coey gI" T|1) s eisy T]S) f*(g], seey gr_1: T]-l: ) ﬂs)

M&Xg f(§1, coey §r, MNqs =o2y 'qs)
r

2D
P T
It is obvious that the continuity of f implies that of f*. We still

have to examine the two properties in (K).
First, let

f*(g;’ AL §£,_1: 1']1: Sheliory) TIS)ZA: f*(g-';: CRLRLY ) g;_-ll 711} sinhe. » T]S)ZA .

The f* represent maximal values of f on finite intervals. Since f 1is

continuous, they are actually assumed, say, for gé and g; respectively.

Then
f(g{; seey gl',i Nqs ec°» TIS)ZA: f(§;', voimy §;.: Mys soe ﬂs)ZA

and since f satisfies (K) (we put £, = 981 + (1= a)g?, .

=oth  + (1 -0)en  and g, = 98l + (1 - 9)EL)

r-1

f(g-]: eeey §I” 'ﬂ1) ceey Tls)>A .

The inequalities

EL>0, ]+ ... +8l1, En>

imply directly

§r > 0, §1 + e + gr <1 .

Hence, a fortiori, for the maximum £*
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f*(gl, cees Bpiqs Mys eeey Ng) > A
Second, let
P*(E1s coes Bpqs s coes ME) KA, FH(E;, ceey &l s Mys eees ) S A
In virtue of the maximum property of f* we have
f(gI, P P qé) < A, f(gl, cees B q¥,l..., ns) < A

for all b for which

£, 2 0, B+ cee B
Since f satisfies (K), this again implies
f(§]: ceey §r.: g2 ooy TIS)SA

(g =) + (1 =9y, «oey ng = 0nl + (1 - ¥)ng). And since this holds
for all e mentioned above, we have
E*(E1s coes Bpqs Mgy oo ng) <A

This completes the proof of our assertion (a).
3. We will now show that always (i.e., for all B cees Engs

Nys wees Ngoy) WS e o W'S M r 1ron £(8) sees Epo Ngs ooes Ng)
we keep the variables E1r ey gr-1’ Nqs =ees Ng_y fixed, then f, as
a function of £ Ng alone, evidently still satisfies the condition (K).
It remains for us to prove (writing &, n for I

If f(¢, n) is a continuous function and if
£(e', n) > A, £(e", 7)) > A for &' < &< t" implies
that f(§: W)ZA; and if f(ﬁ: Tl')SA;

f(g, n") <A for n' < n< " implies that
£(g, n) < A, then

Max, mnnfh:n) MUH Mugfhyn)

Keca Kngb Kn<b Keca

(We write a and b for 1 - £y = c+r = 8p, a@nd 1 -, - ... -
respectively. )

g1
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The assertion can also be formulated in the .following way: There
exists a "saddle point" €, ng (0 < g < 8 0< 15 < b), 1i.e., f(&,, n)
assumes its minimum for =n = n, in 0<n < b and £(e, no) assumes its

S in 0 E< a.

First of all, we evidently have

maximum for & =

Max, Min £(&, 1) < Min Mex, £(&, n)
and secondly, the assertion just formulated implies that

Max, Min f(¢, n) > Min £(eg n) = £y ng)

Min Max, £(g, n) < Max, £(e, ng) = £l&g ng)

hence

Mex, Min  f(¢, n) = Min, Max, £(e, n) = £(&5 ng)

Our task is now to find a pair £ Mo with the desired properties.

let t be fixed. For which values of 7, 0< n <D, does
f(&, 1) assume its minimum? The answer is easy. Since f 1s continuous,
this set is closed, and because of the second assumption about f
(£(t, n') < A, £(&, n") < A implies f(¢, n) < A for all n'<nq<")
it is convex. But the only closed and convex sets of real numbers are
closed intervals. Therefore, this set is a subinterval of the interval
0, b; we call it K'(¢), K"(&).

If 71 is fixed, we conclude in the same way that those §,
0< & < a, for which f(&, n) assumes its maximum form a closed sub-
interval of 0, a; we call it L'(y), L"(n).

Evidently, always K'(&) < K"(¢) and L'(n) ¢ L"(n). Further-

more, the continuity of f(&, n) implies that K'(e), L'(q) and K"(&),
L"(n) are lower and upper semi-continuous functions respectively.1o

et now E* be fixed. We form the set of all e** with the
following property: There exists an n* such that f(&*, n) assumes 1ts

10 1ot us indicate the proof for K'(¢). It will be the same for the other
three functions.

If K'(¢) = 0, the assertion is trivial since always K'(¢) > 0. Let
K'(e) > 0. For 0<n< K'(¢) - e(e > 0), there existsa B8 > O “such that
£(g, n) 2 Min £(e, n) + 5, by the definition of K'(¢). Hence, if ¢ 18

sufficiently close to &, we still have f(¢, n) 2 Min £(t, n) + 8/2 (be-
cause both f(&, n) and MinTI f(t, n) are continuous); i.e., £00, 50

does not assume its minimum (in n, for 0< < b) in 0< n < K'(g) - e.
Therefore K'(t) > K'(¢) - ¢, and K'(¢) Is lower semi-continuous as we
have asserted.
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minimal value (in 0 < ) at n§ = n* and f(t, n*) assumes its
maximal value (in 0 < ) at & = g**. TI.e., we form the union of
all intervals L'(n*) < &** < L"(4*) where n* assumes all values in the
interval K'(E*) < q* < K'(&*).

1<Db
£ <a

In the interval K'(t*) < n* < K'(&*) the lower semi-continuous
function ‘L'(n*) assumes its minimum and the upper semi-continuous func-
tion L"(n*) assumes its maximum. Hence the set of E&** contains a
minimal as well as a maximal element. It also contains every intermediate
element &', which can be demonstrated in the following way: If it were
not so, every interval L'(n*), L"(n*) would lie either entirely to the
left or entirely to the right of &', and both kinds would exist (those
belonging to the smallest as well as to the largest &x**). BSince n*
runs over an interval, both kinds of n* would have a common limit-point.
Since both L'(n*) < &' and L"(n*) > &' occur arbitrarily close to nq'
(and L', L" are lower and upper semi-continuous respectively), it follows
that L'(n') < &', L"(n") > &'; 1i.e., &' Delongs indeed to one of the
intervals, namely, to L'(q'), L"(n').

Our ¢&** thus form a closed subinterval of 0, a, which we shall
call H'(e*), H"(g*). H'(¢*) 1is the minimum of the L'(n*), H"(g*) 1is
the maximum of the L"(n*), for K'(g*) < n* < K"(g*). It is easy to
see that H'(t*) and H"(&¢*) are again lower and upper semi-continuous
respectively (this is implied by the corresponding properties of K'(g*),
K"(e*), and L'(n%), L"(n*)).

It remains to find a £*(0 < &* < a) which at the same time is
aex*, i.e., a &* for which H'(g*) < &* < H"(g*).

If no such &* existed, every interval H'(g*), H"(g*) would
lie either entirely to the left or entirely to the right of ¢&*, and both
kinds would exist (&* = a and ¢&* = 0). Since ¢&* runs over an in-
terval, both kinds of ¢* would have a common limit-point ¢'. Since
arbitrarily close to &' both H'(g*) < &* and H"(g*) > &% occur (and
H', H" are lower and upper semi-continuous respectively), it follows that
H'(e') < &', H'(¢') > &', 1.e., &' belongs indeed to the interval
H'(e'), H"(g').

We have now proved our last assertion (and hence the assertion
(g)), which concludes the proof of our theorem.

§t. THE CASE n = 3

Having dealt in Sections 2 and 3 with the case n = 2 we now
proceed to the next case, n = 3.

Consider a three-person game characterized, according to the
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description at the end of Section 1, by three functions 8ys 8yr 83 of
three variables X, y, 2 (X =1, 2, «ve, ;5§ = 15, 2, «vty Iy,
Zl= A2 e, 23), where identically

g, +8 * g3 = 0

In the case n = 2 it was possible to strictly determine the
value of a play for each of the players S1 and 32 with the results

5, I, z, I,
value for S, = Max Min Z Z g(p, q)§p g Max Min Z Z 1(ps a p“
p=1 q=1 p=1 g=1
e
value for S, = -Min Max, Z z g(p, q = Max Min, Z Z 8,(ps Q)tng
p=1 g=1 p=1 g=1

where

value for S1 + value for 32 =0

Let us now try in the case n = 3 to compute the values of a
play for the three players S1, 82, S3. Assume these values to be w,, Wy,
LS respectively. For these values to be satisfactory under any conditions
and without further discussion they clearly should have the following
property: No two players must be able, by forming a coalition, to achieve
an expected value exceeding the sum of the "values of a play" assigned to
them. Furthermore, w, + W, + Wy = 0 must hold, since the players make
payments only to each other.

By putting
2, I, I
Manginq }: }j }Z (g1(pqr) & ga(pqr))gpq“r = M1,2
p=1 q=1 r=1
2, I, Zg
Manginn }: E: zz (g, (pqr) + g3(pqr))§prnq =M 5
p=1 g=1 r=1
z, I, I,

n
=

Mex Min z z Z (gy(par) + gy(par))e oy = M, 5
p=1 g=1 r=1
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(the qu form a system of probabilities, as do the Nps similarly gpr’
ng and &, np), S, and S, by forming a coalition can play an ordinary
two-person game against S3, thereby procuring for themselves (in
accordance with the above) the expected value M1’2. The same holds for

S, and S3, and for S5, and S, regarding the expected values M

1 3
and M, respectively. Hence we must have
>

1,3
3

Clearly, this is possible if and only if

Mo * ¥ 3 +M4, .40

As we are going to show in 2., it is always true that

M1,2 + M1,3 + M >0

and it is easy to give examples in which the > sign holds. Such an ex-
ample is provided by the following three-person game:
By = Iy .= 23 = 3. If among the Xy Xg, Xg (i.e.,
among the choices of Sl, SE, S3, formerly also de-
noted by X, y, z) there are two for which X, = v

X, =u, then u, v form a "true couple". Clearly,
there will be precisely one true couple, or none at
all.

If no "true couple" exists, let g, = g, = g3 = O-
If there is a "true couple", let it be u, v and let
the third of the numbers 1, 2, 3 be A. Let

g,=8,=1,8 =-2.

In this game, evidently M, , = M1,3 =M, 32 (any two S“,
2 2
S, 1in coalition can choose v and u respectively to form a "true
couple" and thus take from the third player, S the amount 2!). Hence

Ml,e + M1,3 + M2,3 =6 > 0.

The reason that in this game any attempt at valuation is bound to
fail is the following: In order to gain the amount 2, it is only nec-
essary for any two of the three players to get together. They are then in
a position to rob the third one without any ado, in spite of the fact that
the rules of the game are strictly symmetrical, i.e., the game is formally

X,
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fair.'' The symmetry would imply the value for each player to be zero, but
this is obviously wrong. If two players only want to, they can procure for
themselves a gain of 2. How is this contradiction to be resolved?

2. Let us proceed systematically.

12
Myyo ¥ M 3% ¥ 5270
always holds. For, evidently,
I, I, Ig
M1,2 - Manginﬂ E: }: }: (g1(pqr) + ge(pqr))gpan
p=1 Q=1 r=1
(according to our theorem on two-person games )
1 2 23
- minMax, ) ) ) (g (par) + gp(par)pgny
p=1 q=1 r=1
R e
= - Mangin§ }: }E g3(pqr)§pqnr .
p=1 q=1 r=1

We have to prove, therefore, that

n n

I\'IE.XTl .M:Ln§| Z g3(pqr)§}')qqz'. + MB.XT] uMingn Z ge(pqr)gprnq
b,q,r P,q,r

. M&xqujngnl Z g, (qu)gé;:."lf)” <=0
p,q,T

' This shows that our example is anything but a "patholggical" game .
Actually, it is a fairly frequent and typical case. Accordingly, we shall
see in Section 4, 3 and Section 5, 1 that it is even the general case of

a three-person game.
"2 Intuitively, this is immediately clear. S, and S, in coalition
against S, can at best obtain M2,3, hence S1 for himself (against
all others) can at best obtain - M2,3 (because of our theorem on two-
person gemes). Likewise, S for himself can at best obtain - M1

2

3
8, and S, in coalition can at best obtain M, .. "Unity is streﬁgth,"
¥

il.e.,
- My g - M KM, My, e M M 520



THEORY OF GAMES OF STRATEGY 35

i.e., for all systems 7', n", J''!

Ming, E: 33(pqr)g' ﬂ' + Min " }Z g2(pqr)§prq"
p,q,Tr pP,Q,T

+Min§lll Z 81(Pq1‘)§”"l'”$°
b,q,T

This is actually the case. For, if we put

" = a'nt

§1'>q = n('l"nq tor = Nps Eé_x'. = g

we obtain (because of 8 * 8 *83c= 0)

-y == : —y=n= -y=n= _
Z g3(pqr)~q1'.nqq1')" > z Sg(pqr)ﬂl'.ﬂqﬂl')" + Z g, (qu)nz',qpnc'l" = 0 .
b,q,r b,q,r p,q,Tr

We know already that the > sign actually occurs. The case of
equality must, therefore, be regarded as a degenerate limiting case.

Let us assume that the player S1 makes a claim on a gain of e
per play. How can he enforce it? Evidently, in two ways.

First of all, he can try to play alone. Essentially, this
amounts to setting up a two-person game in which he is on one side and
SQ, 53 (in coalition) on the other. The value of a play is for him
- M2,3. This solution is acceptable only if W, £ -M Let us, there-
fore, assume Wy > - M2,3.

2,3"

Then only the second possibility remains. 51 must try to get

32 or S3 as an ally. In coalition with 32 or S3 he can win the sum
Ml,a or M1’3 per play. Since he wants to keep e for himself, he can
offer the sum M1’2 -, to 32, or M1,3 -, to S3 as the price of
the alliance. It is out of the question, however, that 52 or S3 will

accept this offer if in coalition with each other they can win more than

(Ml’2 - wl) + (M1,3 - w1) per play, i.e., if
My o= W)+ (M 5 =W ) <M, 5 Wy > 0/2 (M 5+ My 5 =M, 5) .
Hence we can say that S] has no hope at all of satisfying a
claim W, which is
> - My 5 > 1/2 (Mh2 + M g - M2,3) .
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The second number is > the first (because M + M + M S 015
- ~ 1,2 1)3 2)3-
ence

1/2 (M + M -M, ) =W,

W 1,2 1,3 2,3

IN

1

must hold. In the same way, it can be shown that

w, < 1/2 (M1,2 +M, 5 - M1,3) =W,

Wy < 1/2 (M1,3 + M2’3 - Ml,z) =W

must hold.

These upper limits for the claims i1, Ge, ﬁ3 of the three
players can easily be obtained. If, say, S1, 32 enter into a coalition,
they can achieve the gain M1:2 = ﬁ1 - ﬁz (against S3). In the same way,
S1, S3 or 32, S3 can, by entering an alliance, make sure of the gain
M],3 = ﬁ1 - QB and M2,3 =W, + i3 respectively. Hence, the highest
possible and still completely justified claims of the three players S1,
S,» S3 in a play are ﬁ1, ﬁe, §3 respectively.

3. How is this valuation compatible with the impossibility we
found in 1. to make a general valuation? If M1,2 + M1,3 - M2,3 = 0, no

difficulty arises. In this case

Wy = = M2’3, W 2 M1’3, w3 = Ml,e

i.e., each player can push his claims all by himself, without the help of
another (and in the face of a possible coalition of his opponents ). All
three players can satisfy their claims simultaneously, and accordingly

The situation is different for M + M + M > 0. Since
1,2 1,3 2,3
W> =M, 5 W>-M 5, W >-M o,

no player alone can satisfy his claim, and since

Wy o+ Wy + Wy o= 1/2 (Ml’2 + M1:3 + M2,3) > 0

it is impossible for all three of them to obtain their desired gains at
the same time. But because
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each pair of players having entered an alliance (to rob the third) is
assured of its success. Both players can completely satisfy thelr claims,
while the third player will receive only - M2 32 - M1 3’ M1 2
respectively per play, and therefore, his gain will fall short of his
justified claim by the amount of 1/2 (M1,2 + M1,3 - M2,3)

This can be formulated as follows: Each of the three players
S1, 52, S. must endeavor to ally himself with another player. If he

3
succeeds, he receives per play

1/2 (M1,2 + M1,3 - M2,3), 1/2 (Ml,2 + M2,3 - M1’3),

1/2 (Mg 5+ My g =My 5)
respectively. If he does not succeed (i.e., if the two others form a
coalition), he recelves only

- M - M

- M 1532 1,2

2,37
respectively. Still another way of describing the situation, and possibly
the most concise one, would be the following:

@) A play has for the players S,, S,, S3 the
respective "basic values"

v, = 1/3 (M1,2 + M1,3 - 2M2,3), Vo * 1/3 (M1,2 + MQ’3 - 2M1’3),

vy = 1/3 (M1,3 + 1\/12’3 - 2M1’2)

Since V)tV + Vg o= 0, this is a proper valuation.

B) But for each of any two players entering an
alliance against the third there exists the possibility
to win 1/6 D in excess of the above "basic values",
while the third one sustains a loss of 1/3 D (also
in excess of his "basic value"). We have

ks 13
D= M1,2 + M1:3 + M2,3 > 0 .
(The first case, D =M, , + M, 3 * M, 3= 0, can
2 2 2
also be included in this formulation. Here, (a) is

the result, and -- since D= 0 -- (B) is vacuous.)

13 Incidentally

Ny ™~ - M2,3 + 1/3 D, Vg = = M1,3 + 1/3 D, i< M1:2 3 /3 DI
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This solution shows immediately that the three-person game is
essentially different from a game between two persons. The actual game
strategy of the individual player recedes into the background. It does
not offer anything new since the formation of coalitions (which is bound
to take place) makes the play a two-person game. But the value of a play
for the player does not only depend on the rules of the game. Rather, it
is a question -- at least as soon as D > 0 -- of which of the three
equally possible coalitions Sl, Se; S1, S3; Se, S3 has been formed. A
new element enters, which is entirely foreign to the stereotyped and well-
balanced two-person game: struggle.

§5. PRELIMINARY REMARKS ON GAMES FOR n > 3

1. For n> 3 it has not yet been possible to obtain results
of general validity. It may be that the best way to proceed will be in
analogy to the cases n = 2, 3 which we have already dealt with. Let
us recapitulate.

n = 2. We define

B 14
M = Ma.xg Minn z g1(pq)gpnq d
b,q

An individual play has for the players S1, 32 the
values M, - M respectively.

n = 3. We define

=
I

1,2 = Max, Minn Z (g, (par) + gz(pqr))tpan
p,q,r

=
I

1,3 = Max, Min z (g, (par) + g3(par))e gy
b,q,r

14

=
I

2,3 = Max, M:Ln11 Z (g2(pqr)+g3(pqr))§qrnp
P,Q,T

s The Ma.xg and MinTl are to be taken for all systems of probabilities,

i.e., we require that
all gp > 0, ZE_ = 1; all ¢ .. > O, e = 1; etec.

and similarly,
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D> 0, and we distinguish two cases, viz. D=0
and D> 0.

D= 0. In this case, a play has for the players
S1, 82, 53 the values - M2,3, - M1)3, - M1,2
respectively.

D> 0. In this case, a play has for the players
Sys Sy» 33 the "basic values" - le3 + 143D,

- M1,3 +1/3 D, - M1,2 + 1/3 D respectively. In
order to obtain the correct values, however, arnother
term has to be added to the "basic values". This is
due to the fact that each of any two players who form
a coalition against the third (no matter which two)
can procure an additional gain of 1/6 D, while the
third player sustains a loss of 1/3 D per play

(in excess of his basic value).

From this summary it becomes clear that the cases n = 2 and
n=3 with D= 0 are of the same type. The case n = 3, D> 0, how-
ever, as was already established at the end of Section 4, represents a new
type. We shall denote these two types by the terms strictly-determined
and symmetric non-strictly determined respectively, which are self-
explanatory.

Is there any chance of reducing all games of strategy to these
same two types, even if n > 3? Or are new compllications to be anticipated?
In particular, the possibility of asymmetrical non-strictly determined
types has to be contemplated, 1.e., types for which the significant
possibilities of coalition-formation are not symmetrically distributed
among all players. For n = 3 this possibility cannot arise. Any
possible asymmetries of the rules of the game are entirely absorbed by the
"pasic values" of the three players. But all players are equally capable
of forming coalitions, all three coalitions Sl, 523 S1, S3; 32, S3 are
equally possible. Let us investigate this question somewhat more closely.

2. In order to characterize a general n-person game we intro-
duce the following constants:

5 %
M{H1:P2:"',U~k] = Maxg Minﬂ Z z o
p1='| p2=1
zn
Z (8, (Dys +oes Py) + oo + 8, (Dyy -+v, Py)IE
1 2 2 DN
Hq n My 1 n pu11 puk ple :Pvn_k

Pp=1
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where Hys Hpy e+, M are any k distinct numbers among the numbers
1,2, «eo, n, and vy, vy, eeo, Vh-x @&re the remaining numbers (Maxg
0, =t =
is to be taken for all épu soeesBy 20, = D isdesD 1, and
1 K 1 L

MinTI for all >0, qu = 1). Clearly,
v

n
D, seee)P 3°°+,D
Y1 “n-k 1 g Yn-k

M 1s the sum per play which the coalition of the players
[“1’“2) . -;P-k]

Su e 3 S“ 1s able to obtain from the coalition of the players
1 k
S, s+ 8, (since, in fact, the game is a two-person game ).
1 n-k
Evidently, M[ } = 0- Our theorem on two-person games further

implies that M["l , Finally, let Hps o wees Hys
1

...,pk] - M[vi,...,vn_k]'
Vis sees Vpi Py eee, Byl ol be three subsets of 1, 2, «s«, N, comple-
mentary to each other. If the players 3“1, alocsiy Su as well as

Svl’ wie) o1y sz and Spl’ =TeYs Spn-k—z form fixed coalitions, this is a
three-person game, and we have (putting primes on the quantities involved
in this kind of game

! =

M1,2 M[u1,...,uk,v1,...,v3]
1 = = -

M1:3 Mf“]""’uk’pl’""pn—k—!] M[V1:"':V£]
-z = - M

M2,3 M[V.I,..-,V ’p1""’°n-k-£] [Hul) sy IJ-k] .

But according to our results for three-person games we have

i.e.,
M[u1,...,uk,v1,...,vz] 2 M[p1,...,uk] ¥ M[v,,...,vl] .
We recapitulate:

A glven n-person game assigns to each subset
Hps Hps weoey By of 1, 2, ..., n a constant

M (that is the sum per play which the
(g e esy]

coalition of the players Su » s S“ is able to
1 k

obtain from the coalition of the other players). The
system of the constants M[ ) always satisfies
u1,---,uk
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the following three conditions:

e M{ ] = 0

(2401 M[“l,...,uk] + M[V-':"')vn_k] =0 1f “1; SHSRSHY. uk
and Vis cees Voo are complementary subsets of
1y 25 eecey Ne

3. M{p.‘,...,uk,v,l,...,v“ {u1,...,p.k] [v1,...,v2}

1 Hys =ees By and Vys teey vV, are disjoint
subsets of 1, 2, ..., n.15

It is not difficult to prove the converse, i.e., to specify, for
each system of numbers M(mﬂ (m ranging over all 2  subsets of
1, 2, «.., n) satisfying the conditions 1: to 3., a game of strategy for
which the above constants have precisely these values M[wﬂ' We refrain

from discussing here such an example, which is not deep at all.

3. I venture the conjecture that the complex of valuations and
coalitions in a game of strategy is determined by these 2®  constants
alone. We have seen that this is true for n = 2, 3;16 for n> 3 a
general proof has yet to be found. While in the case n =2 no coalition
at all is possible and for n = 3 only one type of coalition is con-
ceivable (i.e., "two against one"), the number of possibilities increases
rapidly for n > 3. If n =4 one must already declde whether a coalition
"three against one" or "two against two" is going to be formed, i.e.,
which alliance offers the best chances to the participants. If n = 4
it is still possible to discuss the principal cases (on the basis of the
Mﬁm} alone!), but a satisfactory general theory is as yet lacking.

If our conjecture is correct, we have brought all games of
strategy into a natural and final normal form. Each system of ot
constants M[WU satisfying the conditions 1. to 3. represents a class of

- Intuitively, this assertion is as clear as the one considered in the
footnote 12, p. 3

16 For n =2
My =0, Mgy =M Mpy=-M  Myoy=0
and for n = 3
My =0, Mggy= =My 5 My =-M 5 Mgy=-M 5 Mooy =M,
o .

Mig,3) = My,30 Mg 3y = My 30 My 5,5y =
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"tactically equivalent" games of strategy.''

In conclusion I would like to add that a later publication will
contain numerical calculations of some well-known two-person games (Poker,
though with certain schematical simplifications, Baccarat). The agree-
ment of the results with the well-known rules of thumb of the games (e.g.,
proof of the necessity to "bluff" in poker) may be regarded as an
emplrical corroboration of the results of our theory.

i Another possibility of normalizing the M[mﬂ consists of introducing
"basic values" Vis Vps «ee; Vy for the players 8., S,, ..., 8, —~1in

analogy to the "values" (of a play for n = 2 and the "basic values"
for n = 3. For the values exceeding the vy one obtains, of course,

the new constants

*
Mgy = Mgy - Z p
p in Mm

Appropriately, the vp are chosen such that
* * *
M{]] = M(2] = see B M[n}, V1 + v2 + ese ¥ Vn = 0

i.e., all players playing for themselves are equally strong, and differ-
ences are due only to the various possibilities of coalitions.

(From 1. - 3. it follows easily that the common value of
* * *
Mi1y> Mepys ooer Mgy < 0

If it is zero, all M;2= 0, 1i.e., after payment of the "basic values" the

play is strictly determined. Hence this common value represents a kind of
measure of how non-strictly determined the game is, i.e., a measure of the
tactical possibilities the game offers.)



